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Abstract. Generalized Two-Level Grammar (GTWOL) provides a new
method for compilation of parallel replacement rules into transducers.
The current paper identifies the role of generalized lenient composition
(GLC) in this method. Thanks to the GLC operation, the compilation
method becomes bipartite and easily extendible to capture various appli-
cation modes. In the light of three notions of obligatoriness, a modifica-
tion to the compilation method is proposed. We argue that the bipartite
design makes implementation of parallel obligatoriness, directionality,
length and rank based application modes extremely easy, which is the
main result of the paper.

1 Introduction

It is extremely difficult to compile grammars into finite-state transducers without
efficient and readily implemented compilation methods for high-level rules. In
particular, replace rules (such as [1]) have a rich semantics that is difficult to
capture. The goal of this paper is to analyze the author’s recently proposed
method [2] and the related approach in general.1

The new method [2] differs from the most similar alternative approach of
Kempe and Karttunen [1] in some obvious ways:

– It reduces oriented replace rules to two-level rules
– It does not necessarily use composition
– It derives all modes from optional replacement
– Its left-and-right context conditions are closed under Boolean operations
– It uses brackets only to avoid overlapping rule applications.

In this paper, perhaps the most important contribution is the recognition
of the relevance of the bipartite architecture of the new method. According to
it, the rule-independent mode constraints are separated from rule-specific con-
dition. Related to this, we present the necessary machinery including Jäger’s
composition operator [3] and new strict preference relations. The second im-
portant contribution is to present Bracketed Generalized Two-Level Grammar
(BGTWOL) that is crucial to the new compilation method. The third contribu-
tion is to separate three modes of obligatoriness. A clear understanding of these
1 For further resources http://www.ling.helsinki.fi/users/aylijyra/replace.
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modes helps relate the existing compilation methods and improve the compati-
bility of the new method and the Xerox calculus. Finally, the paper sketches a
rich rule system that covers the multi-character two-level rules of GTWOL [4,
5] and BGTWOL, parallel replace and marking rules [1, 6], directed modes [7]
and three principles for ranking [8] or disjunctive ordering [5].

The paper is structured as follows: Preliminary definitions are in Section
2. In Section 3, we describe the essentials of Generalized Two-Level Grammar
(GTWOL) [4]. Section 4 reduces replace operations into the GTWOL formalism.
Section 5 studies applications of generalized lenient composition to obligatory
replacement. The new design pattern for compilation methods is discussed in
Section 6. The conclusion is in Section 7.

2 Preliminaries

Let A1 , A2 be sets of symbols. Let U and V be languages over A1 . We assume
that the reader is familiar with regular languages and the basic regular opera-
tions: concatenation UV , intersection U ∩V , union U ∪V , asymmetric difference
U\V , complementation U , Kleene’s star U∗, and Kleene’s plus U+. Let U0 = ε
and let Uk , where k > 0, denote the languages UU (k−1).

The local A2 -closure of U ⊆ A1
∗ is the relation fA2 :A1

∗ → A1
∗ defined

as fA2 (U) = {f(a0 )f(a1 ) . . . f(am−1 ) | a0a1 . . . am−1 ∈ U ∧ a0 , a1 , . . . , am−1 ∈
A1} where f(a) = a∗ for every a∈A2 , and f(a)=a otherwise. The elimination
of symbols A2 in language U is the function dA2

(U) = fA2
(U)\A1

∗A2A1
∗. The

inverse of relation dA2
is denoted by dA2

−1 .
Notation A1 :A2 denotes alphabet {a1 :a2 |a1 ∈ A1 ∧ a2 ∈ A2}. Set Π is

called the total pivot alphabet. Its every element is a character pair a:b and it
is closed in such a way that a:a, b:b ∈ Π for all a:b ∈ Π. The diamond alphabet
M contains markers #:#, : , �0 :�0 , �1 :�1 , �2 :�2 , . . . , �s :�s and it is disjoint from Π.
The indices of the diamonds will be used to indicate the disjunctive ordering
level of GTWOL rules. Level 1 is the level of the least specific rules. An identity
pair a:a ∈ (Π ∪M) is often written simply as a.

We use marker ∈ M to represent the place for centers in an environ-
ment string. The center extension with V ⊆ A1

∗ is the relation σV :(A1 ∪
{ })∗ → A1

∗ defined as σV (U)={σ(a0 )σ(a1 ) . . . σ(am−1 ) | a0a1 . . . am−1∈U ∧
a0 , a1 , . . . , am−1

∈ A1 ∪ { }} where σ(a)=V when a = , and f(a)=a otherwise.
The null string is denoted by ε. Let u be a string over an alphabet A1 .

We often denote set {u} by u. The length of u is denoted by |u|. A sequence
u = a0 :b0a1 :b1 . . . am−1 :bm−1 ⊆ (A1 :A2 )∗ is called a symbol-pair string and
analyzed alternatively as a string pair (x1 , x2 ) = (a0a1 . . . am−1 , b0 b1 . . . bm−1 ).
Pair (x1 , x2 ) can be denoted by x1 :x2 when |x1 | = |x2 |. String x1 is called the
input string and x2 is called the output string.

Disjoint sets BL ⊆ Π and BR ⊆ Π have the same cardinality and they
are called the left and the right bracket alphabets, respectively. Set BL contains
symbols <1 , <2 , . . . , <s , and set BR contains symbols >1 , >2 , >, . . . , >s . Let B =
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BL ∪ BR and Bi = {<i , >i}. The indices of the brackets will be used to denote
the ranking level of a ranked rule.

Let 0:0 ∈ Π be a representative for the empty string ε. The input and
output projections π1 , π2 : Π∗ → Π∗ are defined respectively as π1 (X) =
{d0 (x1 ):d0 (x1 ) |x1 :x2∈X} and π2 (X) = {d0 (x2 ):d0 (x2 ) |x1 :x2∈X} where
d0 = d{0 :0}. Let I = π1 (Π) and Σ = I\B.

Let U2 = Π∗MΠ∗MΠ∗. Define relations ν�,l , ν2 ,l : Π∗→(Π ∪ M)∗ by
equations ν�,l(w) = d{�1 ,�2 ,...,�l}

−1 (w) and ν2 ,l(w) = ν�,l(w)∩U2 , and relations
μ, μ4 : (Π∪M)∗ → (Π∪M)∗ by equations μ(w) = {#vν�,l(x)y# | �j ∈ M ∧
v, x, y ∈ Π∗ ∧ #v�jx�j y# ∈W} and μ4 (w) = μ(w) ∩ #U2 #.

Let W,W ′ ∈ (Π ∪M)∗. The language Π∗\dM (W \W ′) is denoted by gen-
eralized restriction W

Π,4,M⇒ W ′, if W ⊆ #U2 #, and by extended generalized
restriction W

Π,μ,M⇒ W ′, if W=μ(Y ) and W ′=μ(Y ′) for some Y, Y ′ ⊆ #U2 #.

It holds that [W
Π,4,M⇒ μ4 (W ′)] = [W

Π,4,M⇒ μ(W ′)] and [μ4 (W )
Π,4,M⇒ μ(W ′)] =

[μ(W )
Π,μ,M⇒ μ(W ′)]. Accordingly, [μ4 (W )

Π,4,M⇒ μ4 (W ′)] = [μ(W )
Π,μ,M⇒ μ(W ′)].

3 Generalized Two-Level Grammars

The formalism of Generalized Two-Level Grammars (GTWOL) [4, 5] presents
several improvements over the classical Two-Level formalism [9, 10] in computa-
tional morphology. Its main improvement is to support multi-character changes
while not turning the formalism into so-called partition-based two-level system
which would behave quite differently. Since Yli-Jyrä [5] adds disjunctive order-
ing to the definition of GTWOL grammars, we will use the same notation here.
However, we adopt in this paper an extended notion of the GR operation.

Simple and Complex Rules For any i ∈ N, let X i , Li and Ri denote regular
languages over Π, and let li be a positive integer. The GTWOL formalism [4,
5] includes center prohibition rule [li :: X i/<=Li Ri ], context restriction rule
[li :: X i=>Li Ri ], surface coercion rule [li :: X i<=Li Ri ], and composite i.e.
double-arrow rule [li :: X i<=>Li Ri ] that is a short-hand notation for a context
restriction rule and a surface rule. The symbols and # belong to the diamond
alphabet M . Each context condition Ci = #Li Ri# ⊆ #Π∗ Π∗# can be repre-
sented by a weaker form C ′i ⊆ (ε∪ #)Π∗ Π∗(ε∪ #) that is related to Ci by the
following equivalence:

Ci = [(ε ∪ #Π∗)C ′i(ε ∪Π∗#)] ∩ (#Π∗ Π∗#). (1)

In other words, the following syntactic conventions are implemented: ... ... ⇔
...ε ε...; #Π∗L ... ⇔ L ...; ... RΠ∗# ⇔ ... R. The GTWOL formalism sup-
ports rules that have multiple contexts or, more generally, even Boolean com-
binations of two-sided context conditions, because these context conditions are
actually languages.
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Let the set of rule operators O contain symbols /<=, <=, =>, <=>. The rule
types have a general form X i opi Ci , where X i ∈ Π∗, opi ∈ O, and Ci ⊆
#Π∗ Π∗#.

The Individual Rules of GTWOL The semantics of the individual rules of
GTWOL grammar is defined as follows:

[li :: X i/<=Ci ]
def=[σν�,li

(Xi )(Ci)
Π,μ,M⇒ ∅] (2)

[li :: X i=>Ci ]
def=[σν�,li

(Xi )(#Π
∗ Π∗#)

Π,μ,M⇒ σν�,li
(Xi )(Ci)] (3)

[li :: X i<=Ci ]
def=[σν�,li

(π1
−1 (π1 (Xi )))(Ci)

Π,μ,M⇒ σν�,li
(Xi )(Ci)] (4)

[li :: X i<=>Ci ]
def=[σν�,li

(πj
−1 (πj (Xi )))(Ci)∪σν�,li

(Xi )(#Π
∗ Π∗#)

Π,μ,M⇒ σν�,li
(Xi )(Ci)]. (5)

In contrast to [4], the generalized postconditions specify now immediately the
successful rule applications (like Si later in [4]).

Since the original GTWOL [4], context restriction rules have had both licens-
ing and restricting functions because of the longest application principle [4, 5].
While the problematic left-arrow rules with empethesis [14] were addressed [4],
the double function of context restriction rule [(a ∪ a:b)∗=>c d] restricted the
occurrences of such substrings as ε, a and aa. The currently updated GTWOL
contains a default core Gencore of two rules: rule [1 :: Π=>∅] says that every
symbol in strings needs to be licensed, and rule [1 :: I∗=> ] says that all sub-
strings consisting of identity pairs are licensed. The latter default rule is now in
an intended conflict with [1 :: a∗=>c d].

Coherent Intersection An important aspect of GTWOL is how it combines
rules. In the classical Two-Level Grammar, rules are compiled in separation and
then combined under intersection, whereas GTWOL can combine rules before
they are compiled. The operation �under which the rules are combined is
introduced in [5], and it is called coherent intersection.

[W 1
Π,μ,M⇒ W ′

1 ] �[W 2
Π,μ,M⇒ W ′

2 ] def= [(W 1∪W 2 )
Π,μ,M⇒ ((W 1∩W ′

1 )∪(W 2∩W ′
2 ))]
(6)

Let G be a collection of GTWOL rules that use alphabet Π. When all rules
are combined under the coherent intersection, the grammar reduces to a single
generalized restriction W

Π,μ,M⇒ W ′ that returns the language described by G.
This language is denoted by GenG .

Coherent intersection implements conflict resolution for various kinds of ar-
row conflicts [11, 4, 5]. In addition, two further resolution strategies follow from
the definition of ν�,l : conflicts between embedded rule applications are resolved
on the basis of the longest application principle [4] and disjunctive ordering
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of the levels [5]. Disjunctive ordering uses alternative diamonds �1 , . . . �s . The
disjunctive level denoted by �1 is the least general one. Rules at level strictly
greater than 1 use several alternative diamonds. However, partially overlapping
applications are not resolved automatically and rules with shorter applications
cannot override rules with strictly longer applications. This is where GTWOL
will continue to mature.

Most GTWOL rules are stored at the level 1. Therefore, we can abbreviate
such rules by leaving out their level specifications.

Bimorphisms Defined by GTWOLs Bimorphisms [12] are a useful notion
that can be combined with generalized restriction [5]. Let Σ1 , Σ2 and Π be
alphabets. A bimorphism is a triple (ψ1 , P, ψ2 ) where ψ1 : Π∗ → Σ1

∗ is the
input homomorphism, P ⊆ Π∗ is the pivot, and ψ2 : Π∗ → Σ2

∗ is the output
homomorphism. The transformation relation β(P ) ⊆ Σ1

∗ × Σ2
∗ computed by

bimorphism is defined as β(P ) = {(ψ1 (w), ψ2 (w)) | w ∈ P}.
Let GenG ⊆ Π∗ be a language described by a two-level grammar. Ac-

cording to bimorphism (π1 ,GenG , π2 ), this language defines a regular relation
β1 (GenG) where β1 (P ) = {(π1 (w), π2 (w)) | w ∈ P} [9, 4].

4 Reduction of Replace Rules into Two-Level Grammars

In the literature, a diverse variety of algorithms have been proposed as solutions
to compilation of oriented, inverted, directed, parallel, and ranked replacement
and marking rules [6, 7, 1, 13]. In order to integrate different rule types and their
compilation methods, we relate them to Generalized Two-Level Grammar that
provides a good basis for representation of conditions of individual rules.

Centers The heart of a usual replacement rule is the description of change, or
the center, that consists of two regular languages, U ⊆ Σ∗ and Y ⊆ Σ∗, meaning
that a substring in U will be replaced disjunctively with replacements that are
picked from set Y . The separate description of U and V is motivated by the usual
rule formats in production systems and it may be easier to read. Some rules e.g.
in Generative Phonology contain backreferences that are normally expressed
with feature variables. According to Kaplan and Kay [14], such rules could be
split into a number of subrules.

However, it is arguable [15] that if the centers are defined as regular rela-
tions we obtain a more expressive and useful definition that includes, for ex-
ample, marking rules. Therefore, we will specify the center X i directly as a
same-length relation i.e. a language over Π. In fact, there are various ways to
obtain an adequate X i from languages U i and Y i , if needed. If X i is obtained
adequately, cross product U i ×Y i equals to β1 (X i). Rules that contain a list of
centers X1 , X2 , . . . Xn reduce now to union ∪i=1

nX i . Moreover, the center of
the marking rules [7, 13] can be expressed easily as a subset of Π∗. For example,
the description of change in the marking rule [a+ -> b e g ... e n d] in XFST
[13] corresponds to two-level center 0:b 0:e 0:g a+ 0:e 0:n 0:d.
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Oriented Contexts Both replace (and marking) rules can be conditional [6,
7, 13] i.e. restricted to apply only in certain contexts. The context conditions of
these rules can be reduced into GTWOL context conditions easily. For consistent
presentation, assume that boundary markers .#. [13] and # are synonymous.

The previous implementations of replace rules express each context condition
Ci as a language #Li Ri#, where Li , Ri ⊆ Σ∗. For convenience, each such context
condition can be represented in a weaker form C

′
i ⊆ (ε∪ #)Σ∗ Σ∗(ε∪ #) that is

related to Ci by the following equivalence:

Ci = [(ε ∪ #Σ∗)C
′
i(ε ∪Σ∗#)] ∩ (#Σ∗ Σ∗#). (7)

In contrast to two-level contexts that are subsets of (Π ∪M)∗, the replace
rules restrict their context conditions to languages over (Σ∪M)∗. This is due to
the fact that these contexts have four possible orientations: left-to-right, right-
to-left, upward and downward. If the context condition Ci of the replace rule is
left-to-right (or right-to-left), it is interpreted as a combination of a look-a-head
condition Ri (Li) in the input string and a trailer condition Li (Ri) in the output
string. Conditions with either upward or downward orientation are simpler and
they check either the input or the output string, respectively.

In Generative Grammar, the slash character / is conventionally used to sep-
arate the description of change and the context condition [16]. In the replace
formalism [6], the specific form of this separator si ∈ {//, \\, | |, \/} indicates
also the orientation of the context. The oriented context condition siCi corre-
sponds to a two-level context condition

Ci=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{x1 :x2∈Π∗|x∈d0

−1(Ci) ∧ x1 :x∈#Π∗ Σ∗# ∧ x:x2∈#Σ∗ Π∗#}, if si=′// ′;
{x1 :x2∈Π∗|x∈d0

−1(Ci) ∧ x1 :x∈#Σ∗ Π∗# ∧ x:x2∈#Π∗ Σ∗#}, if si=′\\ ′;
{ x:x2∈Π∗|x∈d0

−1(Ci)}, if si=′ | | ′;
{x1 :x ∈Π∗|x∈d0

−1(Ci)}, if si=′\/ ′.
(8)

The reduction lends itself for a simple finite-state implementation e.g. by using
composition or a simpler ad hoc algorithm. Given the reductions (7) and (8),
a typical weak replacement context condition such as // c d is considered a
two-level context #Π∗π2

−1 (c) π1
−1 (d)Π∗#.

The subsets of #Π∗ Π∗# are obviously closed under the Boolean operations.
As we have now reduced all context conditions into these sets, we can combine
contexts with different orientations under intersection, asymmetric difference and
symmetric difference. Accordingly, we capture more than the usual possibilities
[13] with considerable ease.

Two-Level Operators for Replace Modes When the center X i and the
context condition Ci are both in the two-level format, it is natural to introduce a
flexible rule syntax for parallel rules. On one hand, centers and context conditions
can both be combined with Boolean operations. On the other, the extended
generalized restrictions obtained from each parallel rule can be combined under
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coherent intersection. Parallel rules can be indicated in the rule formalism in
different ways. One possibility is the XFST notation:

X1 op1 C1 „ X2 op2 C2 „ . . . „ Xn opn Cn . (9)

In XFST, the rule operators are used to indicate the mode of application. Alter-
native operators include (->), ->, <-, <->, @->, ->@, @>, and >@. These indicate
respectively the optional, obligatory, inverse, bidirectional, longest left-to-right,
longest right-to-left, shortest left-to-right, and shortest right-to-left replacement
modes.

In order to account for different replacement modes compactly, it is useful to
understand what aspects they have in common and which mode could be used
as a primary notion for obtaining the others.

4.1 Overlapping vs. Non-Overlapping Applications

In GTWOL, rules such as [1 :: a:b=>c d] are actually very similar to optional re-
placement rules [4, 5]. Provided that the rule neither overlaps nor interacts with
itself or any other rule than the default rules, the semantics of context restriction
actually coincides with optional replacement. However, a self-overlapping context
restriction [1 :: a:b a:b=> ] and optional replace aa(->)bb are not interchange-
able (consider e.g. the input aaa). And due to the overlaps, context restriction
rules [1 :: a:b=>x x] and [1 :: x a:b x=> ] do not differ when considered in iso-
lation [2]: both would accept the symbol-pair string x a:b x a:b x. However, the
contributions of these rules differ under coherent intersection because the latter
rule has a longer center.

Double-arrow rules are the classical way to express obligatoriness in two-level
grammars. They involve a right-arrow rule and a left-arrow rule. However, the
resulting notion of obligatoriness is quite strict (denoted by M1), because the
combination of such left-arrow rules as [1 :: A:a B:p<= ] and [1 :: B:b C:c<= ]
rejects the input ABC. The consequences B:p and B:b generate a conflict that is
not solved automatically by the current GTWOL.

Kaplan and Kay [14] underlines that phonological rules do not normally
rewrite their own output. This does not refer to overlapping simultaneous rule
applications at the first place but such directed rewriting that does not advance
monotonously in the original input string but resume, after an application, an
earlier string position in the modified string. Anyway, overlapping applications
does not belong to replace rules such as [1].

The interpretations of the optional replace rules [1] and right-arrow rules
on one hand, and obligatory replace and double-arrow rules, on the other, will
coincide if the center is free from self-overlaps and self-embeddings. Thus, re-
placement rules should somehow be reduced to overlap-free GTWOL grammars.

4.2 A Bracketed GTWOL

We use term Bracketed Generalized Two-level Grammar (BGTWOL) to refer to
a loosely characterized family of such GTWOL grammars that assume a non-
empty sub-alphabet B ⊆ I and use it to indicate bracketing in the strings of



204 Anssi Yli-Jyrä

language GenG . The default core Gencore is now [1 :: Π=>∅] �[1 :: Σ∗=> ],
because now alphabet B �⊆ Σ is reserved for a special use and the user does not
have a normal access to it.

Let G be a BGTWOL grammar. The language GenG described by grammar
G is used as the pivot in bimorphism (ψ1 ,GenG , ψ2 ) where ψ1 (w) = π1 (dB (w))
and ψ2 (w) = π2 (dB (w)). In this bimorphism, the grammar describes the regular
relation β2 (GenG) where β2 (P ) = {(π1 (dB (w)), π2 (dB (w)))|w ∈ P}.

Bracketed Grammar Rules In addition to the disjunctive ordering of rules,
BGTWOL involves another ranking mechanism that is based on bracket labels. It
is, however, not really used before Section 6. For all i = 1, 2, . . . , let X i ⊆ (Π\B)∗

and Ci ⊆ #(Π\B)∗ (Π\B)∗# be regular languages, and let X i
′ = <bi X i>bi ,

Ci
′ = dB

−1 (Ci), Δ0 = (Π\B)∗ and Δ1 = Δ0 (BLΔ0BRΔ0 )∗.
BGTWOL supports some new rule types that include bracketed coercion

[li :: <bi
X i>bi

(<=) Ci ], bracketed inverse coercion [li :: <bi
X i>bi

(=<) Ci ],
bracketed context restriction [li :: <bi X i>bi(=>) Ci ], bracketed double-arrow [li ::
<bi X i>bi(<=>) Ci ], bracketed inverse double-arrow [li :: <bi X i>bi(=<>) Ci ], and
bracketed bidirectional double-arrow [li :: <bi

X i>bi
(<=<>) Ci ]. These operations

are defined as follows:

[li :: X ′
i (<=) Ci ]

def=[σν�,li
(π1

−1 (π1 (dB (X ′i ))))(C
′
i ∩ #Δ1 Δ1 #)

Π,μ,M⇒ ∅] (10)

[li :: X ′
i (=<) Ci ]

def=[σν�,li
(π2

−1 (π2 (dB (X ′i ))))(C
′
i ∩ #Δ1 Δ1 #)

Π,μ,M⇒ ∅] (11)

[li :: X ′
i (=>) Ci ]

def=[li :: X ′
i => C ′i ] (12)

[li :: X ′
i(<=>)Ci ]

def=[li :: X ′
i(<=)Ci ]

�[li :: X ′
i(=>)Ci ] (13)

[li :: X ′
i(=<>)Ci ]

def=[li :: X ′
i(=<)Ci ]

�[li :: X ′
i(=>)Ci ] (14)

[li :: X ′
i(<=<>)Ci ]

def=[li :: X ′
i(<=>)Ci ]

�[li :: X ′
i(=<>)Ci ]. (15)

Bracketed coercion bears functional similarity to surface coercion. It says intu-
itively that the center X i that is non-embedded (i.e. #Δ1 Δ1 #) must not be
left unbracketed in the specified contexts.

Applications of bracketed surface coercion can overlap one another, but even
the first application suffices to reject the pair-string and is normally not can-
celled by other GTWOL rules. Meanwhile, applications of bracketed context
restrictions cannot be embedded or overlapping because X i does not contain
brackets. Accordingly, we can give for the operator a simpler, purely licensing
definition that looks like a tautology but still contributes against the default rule
[1 :: Π => ∅] under coherent intersection.

[li :: X ′
i (=>) Ci ]

def= [σν�,li
(X ′i )(C

′
i)

Π,μ,M⇒ σν�,li
(X ′i )(C

′
i)]. (16)

Optional Replace Rules Yli-Jyrä and Koskenniemi [2] observe that paral-
lel conditional optional replace rules can be represented using context restric-
tion in GTWOL. In the current terms, the representation uses bimorphism
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(ψ1 ,GenG , ψ2 ) where the pivot GenG is obtained by changing the replace rules
into bracketed context restrictions:

[X1(->) C1 „ X2(->) C2 „ . . . „ Xn(->) Cn ] def=
β2 (Gencore

� �

i=1
n [1 :: <1X i>1(=>)Ci ]) (17)

Note that the brackets indicate the regions where a rule has been correctly
applied. This is a quite different approach than the multiplicity of brackets that
are used in [1] to indicate partial satisfaction of conditions for rule application.
For example, pivot language GenG obtained from optional BGTWOL replace
(that corresponds to rule [ab (->) x // ab b] in Karttunen’s [6] formalism)

[1 :: a:x b:0 (->) #Π∗π2
−1 (a b) π1

−1 (a)Π∗#] (18)

contains exactly the following mappings for input string abababa:

(19a) (19b) (19c)
abababa ab<1ab>1aba abab<1ab>1a
abababa, ab<1x0>1aba, abab<1x0>1a.

(19)

Obligatory Replace Rules For the sake of compatibility to the Xerox calculus
[13], it is desirable to pursue the semantics of obligatory conditional parallel
replace such as in [6]. This can be done using bracketed double-arrow rules.

[X1-> C1 „ X2-> C2 „ . . . „ Xn-> Cn ] def=
β2 (Gencore

� �

i=1
n [2 :: <1X i>1(<=>)Ci ]) . (20)

Because the substrings undergoing a change are indicated by brackets, it is easy
to enforce that a substring must be changed whenever the conditions for the
replacement are met. This requirement is contributed by the bracketed coercion.
Its disjunctive ordering level is now 2, because the default rule [1 :: Σ∗=> ]
would cancel the effect of bracketed coercion [1 :: <1X i>1(<=)C ′i ] at level 1.

In inverse replacement (denoted by <-), the roles of the input and output
strings are switched. The bidirectional obligatory replacement requires bracketed
bidirectional double-arrow (i.e. (<=<>)).

5 Violable Mode Constraints

Although BGTWOL provides a solution to obligatory replacement through the
bracketed double-arrow, we will now compare the solution to the new method
of Yli-Jyrä and Koskenniemi [2]. For this purpose, we introduce some additional
machinery.
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5.1 Strict Preference Relations

A binary relation T ⊆ I∗×I∗ is a strict preference relation (SPR) if it is irreflex-
ive (thus not complete), transitive and antisymmetric. The following relations
and their inverses are strict preference relations:

Tmost = {(π1 (w), π2 (w))|w∈(BL:0Σ∗BR:0∪Σ ∪B:B)∗} (21)

Tmost+ = {(π1 (w), π2 (w))|w∈(BL:0Σ+BR:0∪Σ ∪B:B)∗} (22)
T norep = {(w,w′)|w,w′∈I∗∧dB (w)=dB (w′)∧w/∈(I∗BLBRBLBRI∗)*w′} (23)
T lest = {(w,w′)|w,w′∈I∗∧dB (w)=dB (w′)∧w/∈(I∗BI∗)*w′} (24)
T lr = {(vby, vau)|v, y, u∈I∗ ∧ a∈Σ ∧ b∈BL ∧ dB (y)=dB (au)} (25)
T rl = {(ybv, uav)|v, y, u∈I∗ ∧ a∈Σ ∧ b∈BR ∧ dB (y)=dB (ua)} (26)
T lrlong = {(vau, vby)|v, u, y∈I∗ ∧ a∈Σ ∧ b∈BR ∧ dB (y)=dB (au)} (27)
T rllong = {(uav, ybv)|v, u, y∈I∗ ∧ a∈Σ ∧ b∈BL ∧ dB (y)=dB (ua)} (28)
Tα,B ′ = {(w,w′)|w,w′∈I∗ ∧ (dB\B ′(w), dB\B ′(w′)) ∈ Tα}. (29)

Let T be an SPR. According to T , element x1 ∈ I∗ is interpreted strictly
more preferable than x2 ∈ I∗, i.e. x1 ≺ x2 , if and only if (x1 , x2 ) ∈ T . For
example, Tmost+ compares only compatible bracketings and prefers those that
have more markup:

aa<1ab>1<2ab>2a ≺ { aaab<1ab>1a, aa<1ab>1aba } ≺ aaababa;
{<1aa>1<1aa>1 , a<1aa>1a} ≺ aaaa.

Let us prove that Tmost+ is an SPR. Relation Tmost+ removes at least one
pair of brackets, but it can also remove more, or even all brackets. Therefore,
the expressed relation is transitive, since for all v, x, y ∈ I∗, (v, y) ∈ Tmost+ if
(v, x) ∈ Tmost+ and (x, y) ∈ Tmost+. It is irreflexive and antisymmetric, since
for all (v, w) ∈ Tmost+, |v| > |w|. Thus, the relation of Tmost+ is a SPR.

The union of two strict preference relations is not generally a strict preference
relation since the result is not necessarily antisymmetric. Still, some preference
relations can be combined under union.

All the SPRs defined in (21–29) are regular and easily implementable with
finite-state transducers or bimorphisms. Typically the corresponding transducer
contains only a few states.

5.2 Applications of Strict Preference Relations

The Method of Yli-Jyrä and Koskenniemi Yli-Jyrä and Koskenniemi [2]
were inspired by the “matching” approach [17] used in selecting candidates that
have minimal compatible set of constraint violations in Finite-State Optimal-
ity Theory. A somewhat similar approach has been used in [18]. In order to
implement the method for parallel obligatory replacement [2], the minimality
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constraint is inverted to obtain strings with maximal bracketing. The five steps
of the resulting method in [2] are the following:

1. Prepare Ci (and compute X i);

2. Compute Ci
′ = dB

−1 (Ci) and X i
′ = <1X i>1 ;

3. Compute GenG = [1 :: (Π\Σ)=>∅] � �

i=1
n [1 :: X i

′=>Ci
′];

4. Compute D = π1 (GenG) and D′ = {w2 |w1 ∈ D ∧ (w1 , w2 ) ∈ Tmost+};
5. Compute Gen′G = {w1 :w2 ∈ GenG |w1 /∈ D′} and return β2 (Gen′G).

(30)

Generalized Lenient Composition Jäger [3] defines a left-associative binary
operator (glc) and controversially calls it generalized lenient composition op-
erator although it rather addresses a problem with lenient composition than
generalizes it. We add two variants: inverse one (denoted by r-glc) and bidirec-
tional one (denoted by b-glc). The operators assume two operands: a candidate
set S ⊆ Π∗ and a strict preference relation T ⊆ I∗× I∗, and they are defined as
follows:

S glc T
def={w∈S | ¬∃w′(w′∈S ∧ (π2 (w), π2 (w′))∈T )}; (31)

S r-glc T
def={w∈S | ¬∃w′(w′∈S ∧ (π1 (w), π1 (w′))∈T )}; (32)

S b-glc T
def=(S glc T ) ∩ (S r-glc T ). (33)

Now, as we have slightly elaborated our formal machinery, we can express
the compilation method of [2] as a two-step algorithm:

1. Compute GenG = Gencore

� �

i=1
n [1 :: <1X i>1(=>)Ci ];

2. Compute β2 (GenG r-glc Tmost+). (34)

5.3 The Alternative Modes of Obligatoriness

Together with Kaplan and Kay [14], Yli-Jyrä and Koskenniemi [2] maintain
that all other replacement modes are subsets of the relation described by the
corresponding optional replacement (denoted by Opt), which contrasts to the
approach of [6].

It is not trivial to describe how obligatory replacement restricts Opt. Three
different approaches have already been presented in this paper (Sections 4.1, 4.2
and 5.2). These do not produce the results in general, and it is therefore at least
fair to say a word about their differences. The replace relations corresponding
to these modes form an inclusion order M1 ⊆ M2 ⊆ M3 ⊆ Opt. The modes
themselves can be described as follows:

M1 – Overlapping Synchronized Coercion Kaplan and Kay (page 357 of
[14]) mention but do not elaborate a possibility of overlapping applications of
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obligatory rules. However, Section 4.1 and [2] point out that a GTWOL rule
can have overlapping applications. Due to this, a double arrow rule such as
[1 :: A:a B:p ∪ B:b C:c <=> ] is in a self-conflict, which results into an over-
constrained input-output mapping that fails to relate any output to input string
ABC.

M2 – Non-Overlapping Coercion The bracketed double arrow of BGT-
WOL (Section 4.2) differs from the double arrow of GTWOL by using a brack-
eting that serves to avoid overlapping applications in every candidate mapping.
Its left-arrow part is, however, surprisingly constrained since, for example, rule
[2 :: a:xb:0 (<=) #Π∗π2

−1(ab) π1
−1(a)Π∗#] does not allow such mapping as

(abab<1ab>1a): (abab<1x0>1a).
As far as I can judge, Karttunen et al. [6, 1, 13] seem to implement this notion

of obligatoriness into XFST when compiling the right-oriented rule ab (->) x //
ab b.2 In particular, the definition 27 (the Replace component relation) in
[6] cannot skip a center in a proper context without replacing it. Candidate
(abab<1ab>1a):(abab<1x0>1a) is not included to the result, because there is a
non-overlapping substring (underlined) that should have been replaced with x0.
The method ignores the fact that this additional change cannot be done (it would
result into incorrect symbol-pair string *(ab<1ab>1<1ab>1a):(ab<1x0>1<1x0>1a))
without altering the lower left context that was assumed by one of the changes.

M3 – Maximal Set of Non-Overlapping Changes This third notion of
obligatoriness is represented by Section 5.2 and [2]. The subtle difference between
the new method [2] and [6] was not recognized in [2] although it is a crucial
part of backward compatibility. The semantics of the new method is illustrated
considering the mappings of optional replace rule (18). Mappings (19b and 19c)
are maximal candidates under the preference relation Tmost+.

5.4 The GLC Approach to M2

Besides the bracketed double arrow, the new method of [2] can be modified to
capture mode M2. The solution is based on the idea of a bracketed identity
rule where brackets B2 are used to mark the valid replacement locations that
are held back i.e. the applications of the rule [1 :: <2π1 (X i)>2 (=>)Ci ]. The
contribution of this is to make the candidate set more dense under Tmost+. SPR
T lest,B2 prefers candidates that do not contain B2 . Pivot GenG has always at
least one candidate without brackets B2 .

[X1->C1 , , . . . , X i->Cn ] def= β2 (GenG r-glc (Tmost+∪T lest,B2
)) (35)

where GenG = Gencore

� �

i=1
n [1 :: <1X i>1∪<2π1 (X i)>2(=>)Ci ].

2 It may be helpful to remark that [19] and [14] compile directed rewriting rules, see
the discussion in [6]. Therefore they do not belong here.
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Example The set GenG contains the following candidates for the unbracketed
input abababa:⎧⎪⎪⎨
⎪⎪⎩
abababa ab<2ab>2aba abab<2ab>2a ab<2ab>2<2ab>2a
abababa, ab<2ab>2aba, abab<2ab>2a, ab<2ab>2<2ab>2a,

ab<1ab>1aba abab<1ab>1a ab<2ab>2<1ab>1a
ab<1x0>1aba, abab<1x0>1a, ab<2ab>2<1x0>1a

⎫⎪⎪⎬
⎪⎪⎭ . (36)

The set of all maximal bracketings in GenG is obtained using strict prefer-
ence relation Tmost+ that ignores the bracket labels when comparing bracketed
strings:

GenG r-glcTmost+
∩

dB
−1 (π1

−1 (abababa))
=
{
ab<2ab>2<2ab>2a ab<1ab>1aba ab<2ab>2<1ab>1a
ab<2ab>2<2ab>2a, ab<1x0>1aba, ab<2ab>2<1x0>1a

}
.

(37)

The set of candidates without identity rule applications is obtained with an
additional preference transducer T lest,B2

:

GenG r-glcT lest,B2

∩
dB
−1 (π1

−1 (abababa))
=
{
ab<1ab>1aba abab<1ab>1a
ab<1x0>1aba, abab<1x0>1a

}
. (38)

There is only one candidate that remains in the intersection of these sets.

GenG r-glc (Tmost+ ∪ T lest,B2
)

∩
dB
−1 (π1

−1 (abababa))
=
{
ab<1ab>1aba
ab<1x0>1aba

}
. (39)

Insertion Replaces It does not make sense to apply the obligatoriness con-
straint to insertion rules or, more generally, to rules where ε ∈ π1 (X i). Because
there could always be more insertions, no candidate would qualify as maximal
according to Tmost. Using SPR Tmost+ instead has avoided this problem.

Sometimes it is desirable to make insertions only once at any position match-
ing the context conditions. E.g. we may not want to limit insertions by consum-
ing the material that might be rewritten by other parallel rules. Kempe and
Karttunen [1] address the problem by providing a special strategy for one-time
insertion. A similar strategy can be captured easily with SPR T norep. After this
constraint has been applied, it is natural to apply SPR Tmost in order to get can-
didates with maximal sets of non-repeated insertions and other replacements.

[. X i .] ->Ci
def= β2 (GenG r-glc T norep r-glc (Tmost ∪ T lest,B2 )). (40)

Inverse and Bidirectional Replacement Inverse and bidirectional replace-
ment [1] are extremely easy to implement. All what is needed is to use an ade-
quate generalized lenient composition operator i.e. glc or b-glc.
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Directed Replace It is possible to implement various directed replace opera-
tors [7] (and similar methods of [14, 19]) using suitable strict preference relations.

X i @->Ci
def= β2 (GenG r-glc (T lr ∪ T lrlong)) (41)

X i ->@Ci
def= β2 (GenG r-glc (T rl ∪ T rllong)) (42)

X i @>Ci
def= β2 (GenG r-glc (T lr ∪ T lrlong

−1 )) (43)

X i >@Ci
def= β2 (GenG r-glc (T rl ∪ T rllong

−1 )). (44)

Accordingly, we observe that using generalized restriction with BGTWOL gives
an elegant and uniform approach for computing a large family of different replace
(and marking) rules.

6 The Bipartite Approach

A New Design Pattern The method of [2] has a bipartite design that contains
two main components: GenG and Con.

β2 (GenG ◦Con) = β2 (GenG ◦ 1T 1 ◦ 2T 2 · · · ◦ mTm). (45)

The components are responsible for different kinds of tasks. GenG is the candi-
date generator, and Con is the lenient constraint component. The latter consists
of lenient constraints T 1 , T 2 , . . . , Tn and left-associative generalized lenient com-
position operators ◦i , ◦2 , . . . , ◦m ∈ {glc, r-glc, b-glc}. Jäger [3] observes that
lenient composition [20] can be expressed with generalized lenient composition.

The bipartite approach is very useful because it lends itself to many appli-
cations such as compilation of ranked rewriting rules and directed replacement
rules. By encapsulating the context conditions of the replacements into GenG ,
the conditions are always observed in the generated candidates regardless of
any strategic preferences. It is the task of Con to choose among alternative
candidates, but it does not have to know about the internal structure of the
candidate generator. By using strict preference relations, we obtain a uniform
representation for various rule modalities.

Ranked Rules In Optimality Theory [21], the constraints are ranked. Similar
ranking is possible also among parallel replacement rules. Various kinds of ranked
rules have numberless applications beyond phonology and morphology.

Skut et al. [8] present a compiler for ranked left-to-right fixed-length re-
placement rules with upward-oriented contexts. A similar system of rules can be
implemented easily in the current approach. First, we construct the bracketed
GTWOL grammar corresponding to optional rules in such a way that brackets
<i and >i occur in rules of rank i. The highest rank is now 1, and lowest n. The
resulting bracketed relation, GenG , is constrained as follows:

GenG r-glc T lr,B1 r-glc T lr,B1∪B2 r-glc T lr,B1∪B2∪B3 . . . r-glc T lr,B .
(46)
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In order to give preference to longest applications, strict preference relation
T lr,B ′ ∪ T lrlong,B ′ could be used instead of T lr,B ′ .

In [8], each rule rewrites a fixed-length substring. Our solution is more general
since (i) the contexts in rules can be oriented and combined under Boolean
operators, (ii) centers are not restricted to fixed-length substrings, and (iii) each
rank can be shared by several parallel rules.

7 Conclusion

In the paper, we reviewed and extended the previously published 2-page descrip-
tion of the Yli-Jyrä and Koskenniemi method [2] for compiling parallel replace
rules into transducers. Its relationship to the method of Kempe and Karttunen
[1] is elaborated and discussed critically.

The background sections of this paper included an updated description of
Generalized Two-Level Grammars (GTWOL). The semantics of GTWOL was
defined, for the first time, using an extended notion of generalized restriction.
In comparison to [14, 19, 1], the solution reduces considerably the number of
different brackets needed to compile parallel replacement rules.

The main result in this work is to elaborate the bipartite design pattern that
was employed implicitly in [2].

– Candidates are generated with a GTWOL grammar.
– Three forms of Jäger’s composition operator [3] (GLC) were employed.
– Strict preference relations account for obligatoriness, directionality and

length-based preferences.

The design makes it easy to capture a variety of rule application modes without
bothering about conditions of individual rules. Parallel replace rules can have
even heterogeneous modes and the rules can be ranked.

In addition, the paper presented three important notions of obligatoriness and
defined new compilation methods for each of them. The notion corresponding
to the method of Kempe and Karttunen [1] was covered by two alternative
solutions.

Acknowledgements

I am grateful for Måns Hulden for a better example rule (18) that is simpler
than my original example. In addition, he suggested in September 2007 that
the mode M2 could be captured without generalized lenient composition. This
inspired me to add the bracketed double arrow operator. Further comments by
Dale Gerdemann helped me improve the presentation.

References

1. Kempe, A., Karttunen, L.: Parallel replacement in finite state calculus. In: 16th
COLING 1996, Proc. Conf. Volume 2., Copenhagen, Denmark (1996) 622–627



212 Anssi Yli-Jyrä

2. Yli-Jyrä, A., Koskenniemi, K.: A new method for compiling parallel replacement
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