
SynCoP – Combining Syntactic Tagging with
Chunking Using Weighted Finite State

Transducers

Jörg Didakowski

Berlin-Brandenburgische Akademie der Wissenschaften
Jägerstr. 22/23, 10117 Berlin

Abstract. This paper describes the key aspects of the system SynCoP
(Syntactic Constraint Parser) developed at the Berlin-Brandenburgische
Akademie der Wissenschaften. The parser allows to combine syntactic
tagging and chunking by means of constraint grammar using weighted
finite state transducers (WFST). Chunks are interpreted as local de-
pendency structures within syntactic tagging. The linguistic theories are
formulated by criteria which are formalized by a semiring; these criteria
allow structural preferences and gradual grammaticality. The parser is
essentially a cascade of WFSTs. To find the most likely syntactic readings
a best-path search is used.

1 Introduction

In several natural language processing tasks such as information extraction and
machine translation and especially in corpus linguistics information about syn-
tactic structures is needed. The main interest lies in detecting syntactic relations
between words. This is generally done by building dependency structures of sen-
tences.

This paper presents an approach to dependency parsing which combines
chunking ([1]) and syntactic tagging by means of constraint grammar ([2]).
Chunks are interpreted here as local dependency structures within syntactic
tagging; this approach is related to [3]. The advantages of these two linguistic
theories are linked: robustness is achieved by local structures and underspecified
dependencies and disambiguation is done by a greedy strategy and by a pattern
preference strategy.

Previous work which implements chunking (e.g. [4]) and syntactic tagging
(e.g. [5]) with finite state machines leads to some restrictions and problems:
chunking is implemented with the left-to-right, longest-match replacement oper-
ator [5] with which chunks are marked by brackets and are disambiguated by
a left-to-right, longest-match strategy if there are various chunking possibilities.
But the operator restricts the analysis to unambiguous input; in case of ambigu-
ous input the longest-match is calculated for each input string independently.
Hence, to achieve unambiguous chunking an unambiguous input has to be used.1

1 Additionally, sometimes the left-to-right constraint causes unexpected analyses.

108 Jörg Didakowski

Furthermore, the operator leads to large finite state machines which require the
limitation of patterns (see [6]). Syntactic tagging is implemented as finite-state
intersection grammar by means of the restriction operator [7], which implements
constraints as elimination rules. With these rules readings can be eliminated in
an ambiguous input. But this implementation lacks the possibility of violating
or preferring (weighting) constraints. Thus the main problem of implementing
chunking and syntactic tagging is the way of doing disambiguation.

In the new approach proposed in this paper disambiguation is done by lin-
guistic criteria. These criteria are formalized by a semiring over weights of a
weighted finite state transducer (WFST). Scored dependency structures are gen-
erated over an input by a cascade of WFSTs (i.e. WFSTs are applied sequen-
tially). Then the structures can be ordered on the basis of their weights by means
of linguistic criteria to extract the most likely syntactic readings. This approach
solves the problems mentioned above.

The paper is organized as follows: Section 2 gives basic definitions and nota-
tions. Section 3 is a brief reminder of the used linguistic theories. In sections 4, 5
and 6 the implementation of chunking, syntactic tagging and their combination
with linguistic criteria is presented. Finally, an overview of the system SynCoP
which implements the approach is given in section 7.

2 Definitions and Notations

In our approach syntactic analyses are generated and scored over an input
by a WFST representing a constraint grammar such that syntactic readings
can be judged by linguistic criteria. A weighted finite state transducer T =
(Σ, Δ, Q, q0 , F, E, λ, ρ) over a semiring S is an 8-tuple such that Σ is the fi-
nite input alphabet, Δ is the finite output alphabet, Q is the finite set of
states, q0 ∈ Q is the start state, F ⊆ Q is the set of final states, E ⊆
Q × (Σ ∪ {ε}) × (Δ ∪ {ε}) × S × Q is the set of transitions, λ is the initial
weight and ρ : F �→ S is the final weight function mapping final states to ele-
ments in S.

In this paper individual linguistic criteria are formalized by the notion of a
semiring. Let S �= ∅ be a set and ⊕ (called addition) and⊗ (called multiplication)
binary operations on S, then (S,⊕,⊗, 0̄, 1̄) is called a semiring if (S,⊕, 0̄) is a
commutative monoid, (S,⊗, 1̄) is a monoid and ⊗ distributes over ⊕. Linguistic
criteria are represented by this structure. To judge syntactic readings via addition
an additive idempotent semiring has to be used to create a partial order over S.
Thus a partial order is defined by (a ≤ Sb) ⇔ (a ⊕ b = a). Here a ≤ Sb means
that a is “better” than b in respect to linguistic criteria.

It will be necessary to judge analyses by more than one linguistic crite-
rion; the criteria are ranked by preference. To model this we define the com-
position of additive idempotent semirings as follows: if a linguistic preference
(S1 ,⊕1 ,⊗1 , 0̄1 , 1̄1) ! (S2 ,⊕2 ,⊗2 , 0̄2 , 1̄2) ! ... ! (Sn ,⊕n ,⊗n , 0̄n , 1̄n) is given
and if for each semiring a partial order is defined by ⊕, then:2
2 The definition is similarly to the cross product of semirings.

SynCop 109

(S,⊕,⊗, 0̄, 1̄) =

(S1 ,⊕1 ,⊗1 , 0̄1 , 1̄1) ◦ (S2 ,⊕2 ,⊗2 , 0̄2 , 1̄2) ◦ ... ◦ (Sn ,⊕n ,⊗n , 0̄n , 1̄n) =

(S1 × S2 × ...× Sn ,⊕,⊗, (0̄1 , 0̄2 , ..., 0̄n), (1̄1 , 1̄2 , ..., 1̄n)) (1)

The composition ◦ is the vectorization of the individual domains. The operation
⊗ of the semiring (S,⊕,⊗, 0̄, 1̄) is defined as a vectorization too, if
(a1 , a2 , ..., an) ∈ S and (b1 , b2 , ..., bn) ∈ S are given:

(a1 , a2 , ..., an)⊗ (b1 , b2 , ..., bn) = (a1 ⊗ 1 b1 , a2 ⊗ 2 b2 , ..., an ⊗ nbn) (2)

And finally, the operation ⊕ which compares syntactic readings is defined as
follows:

(a1 , a2 , ..., an)⊕ (b1 , b2 , ..., bn) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 , a2 , ..., an) if (a1 , a2 , ..., an) = (b1 , b2 , ..., bn)
(a1 , a2 , ..., an) if a1 = b1 and a2 = b2 and ... and ak−1 = bk−1

and ak ⊕ kbk = ak

with k ≤ n and ak �= bk
(b1 , b2 , ..., bn) if a1 = b1 and a2 = b2 and ... and ak−1 = bk−1

and ak ⊕ kbk = bk
with k ≤ n and ak �= bk

(3)

With this composition it is possible to combine ranked linguistic criteria rep-
resented by several semirings to one semiring. The resulting semiring is now
additive idempotent as well and a partial order can be defined by ⊕.

Syntactic analyses are ordered by linguistic criteria according to their degree
of grammatical acceptance. This is done by a simple comparison: a reading
is better than another or not. That allows structural preferences and gradual
grammaticality. Extracting the most likely readings in a WFST T is a classical
best-path problem. Weights along a path of T are combined by multiplication
and create costs. If several paths are in T their weight equals the addition of
weights of the different paths, that means the “best” cost (see [8]). The most likely
syntactic analyses are simply represented by paths which cause these “best” costs.

A constraint grammar R can be applied by composition in linear time accord-
ing to the size of an input acceptor S. Here, the composition can be computed
in time O(|R||S|) where |R| and |S| denote the number of states of R and S
respectively (cf. [9]). The application of the constraint grammar results in a
WFST which is acyclic. The best-path search can be calculated in O(|Q|+ |E|)
in the acyclic case if Q is the set of states and E is the set of transitions (see [8]).
Thus, the worst case time and space complexity of the application of a constraint
grammar is O(|S|) (cf. [6]).

In the following the ENGCG tagset and the regular expression notation of
[5] (slightly extended) are used.3

3 See appendix for regular expression notation details. Here the precedence is defined
top down. The distinction between the language A and the identity relation which
maps every string of A into itself is ignored.

110 Jörg Didakowski

3 Linguistic Background

In this section a short summary of syntactic tagging by means of constraint
grammar, chunking and the combination of these two theories is given.

A constraint grammar [2] consists of a set of constraints, which can be seen
as rules which are applied on linear patterns. The analysis starts from a large
number of alternative analyses (syntactic and morphological) that are reduced
by the application of constraints. Syntactic tags are used here to mark depen-
dency relations where every tag represents a special dependency relation within
a clause. In the following example an analysis of the sentence Bill saw the little
dog is given:4

Bill N NOM SG @SUBJ
saw V PAST @+FMAINV
the DET @DN>
little A @AN>
dog N NOM SG @OBJ

(4)

The left column of the example above corresponds to the input sentence, the
middle column to the morphological analyses and the right column shows the
syntactic functions.

Chunks [1] are local constituent structures which are built by two principles:
chunk connectedness and chunk inclusiveness. Chunk connectedness means that
functional elements (e.g. a function word or an empty word) have to be grouped
with their selected thematic elements (e.g. a content word or other chunks)
forming a chunk. In addition to that, chunk inclusiveness claims that every word
has to belong to a chunk with the exception of a distinguished subset of function
words, which can’t be grouped to their selected thematic elements because of
intervening chunks. This function words are called orphaned words. The following
example shows an analysis by chunks of the sentence used above:5

[ØDet Bill][ØComp saw][the little dog][in[the park]] (5)

In our approach, chunks are integrated in the syntactic tagging formalism.
To infer a dependency structure from a constituent structure, a transformation
rule can be applied: a head α governs his dependent β, iff α is the syntactic head
of the constituent and β is its complement. To apply this transformation rule the
syntactic head within a chunk has to be marked by a tag. Furthermore chunks
by themselves have to be marked by a syntactic tag to be integrated into the
syntax of the syntactic tagging. The following example shows this integration:6

[ØDet Bill@HEAD] N NOM SG @SUBJ
[ØComp saw@HEAD] V PAST @+FMAINV
[the little dog@HEAD] N NOM SG @OBJ

(6)

4 syntactic functions: @+FMAINV = finite main verb, @SUBJ = subject, @OBJ =
object, @DN> = determiner, @AN> = premodifying adjective

5 ØDet and ØComp are empty functional elements.
6 The heads in chunks are marked by @HEAD; the morphological analyses and syn-
tactic functions refer to these heads.

SynCop 111

Additionally, orphaned words can also be linked to their chunk by a special tag.
In some languages, for example German, many orphaned words occur. One can
question if chunk inclusiveness holds in all languages. With linking this problem
can be overcome (see [10]).

4 Syntactic Tagging with Linguistic Criteria

Our interpretation of constraint grammar is related to [11]. Instead of imple-
menting constraints as elimination rules constraints are regarded as score rules.
But in addition we use scores to punish and to support patterns.

The constraint optimization criterion which represents the constraint gram-
mar principle is formulated as follows: the patterns which receive the best scores
by the constraints of a constraint grammar are in this sense the most grammati-
cal. The criterion is formalized by the max semiring (R∪{−∞},max,+,−∞, 0);
here the score is coded by numbers: positive numbers support patterns gradually
and negative numbers punish patterns gradually.

To implement a constraint which supports patterns with respect to their
context the optional score operator is defined as follows (it is sufficient to assign
the weights optionally):

A(⇒ ω) B _ C = def [?* B A C 〈ω〉]∗?∗
A(⇒ ω) B _ = def [?* B A 〈ω〉]∗?∗
A(⇒ ω) _ C = def [?* A C 〈ω〉]∗?∗

(7)

In contrast to the restriction operator [7], the optional score operator does not
need the complementation of its operands. Thus, the resulting WFSTs stay small
and transductions can be performed.7

The weights have to be assigned obligatorily (concerning the domain) to
implement a constraint which punishes patterns with respect to their context.
Otherwise the constraints have no effect. Thus, the mandatory score operator is
defined as follows:8

A⇒ ω B _ C = def [∼$Dom(B A C) B A C 〈ω〉]∗ ∼$Dom(B A C)
A⇒ ω B _ = def [∼$Dom(B A) B A 〈ω〉]∗ ∼$Dom(B A)
A⇒ ω _ C = def [∼$Dom(A C) A C 〈ω〉]∗ ∼$Dom(A C)

(8)

With this operator transductions can be performed, too. But the operator is
defined by complementation, hence the operator causes larger WFSTs.

7 Complementation presupposes deterministic finite state acceptors and the deter-
minization of the complement acceptors shows an exponential behaviour concerning
the number of states.

8 The function Dom returns the domain of the constraint patterns. So the regular
language which does not contain the constraint patterns in respect of the domain
can be built by complementation.

112 Jörg Didakowski

To assign positive or negative potentials to patterns we complete the optional
score operator and the mandatory score operator:

A(⇒ ω) _ = def [?∗ A 〈ω〉]∗?∗
A⇒ ω _ = def [∼$Dom(A) A 〈ω〉]∗ ∼$Dom(A) (9)

In the following an example of a constraint and its application are given.
Let ... a move ... be an input fragment. We define the constraint [@.N.](⇒
10)[@.DET.] _ to analyse the input fragment as follows:910

@ a DET @DN>
@ move [[N [@SUBJ|@OBJ|@I-OBJ](〈10〉)]|

[V @+FMAINV]]

(10)

With the introduced weight 〈10〉 the reading in which move is a verb can be
suppressed. A constraint grammar is constructed by combining the initial and
the context constraints by composition. The big advantage of this approach is
the possibility to violate constraints; so the application of a constraint grammar
to an input is never empty.

5 Chunking with Linguistic Criteria

The grouping of chunks is formalized on the POS level by patterns which include
the functional element optionally and its selected thematic element and the
elements which can occur between them obligatorily. These patterns are marked
in the input by brackets representing the syntactic projections. This is done by
the optional insertion operator which is defined as follows if A denotes the chunk
pattern and P and S the brackets:

A(→)P...S = def [?∗[0.x.P]A[0.x.S]]∗?∗ (11)

Building chunks with this implementation is not definite because of optional
chunking, optional functional elements, ambiguous possible selections and espe-
cially ambiguous input. The following example this cell structure which includes
the POS sequence [DET|PRON]N[N|V] shows the ambiguous chunking, if the
chunker [[(DET)N∗]|[PRON]](→)%[... %] is applied:11

this cell structure
[this] [cell] [structure]
[this] [cell structure]
[this cell structure]

...

(12)

9 The macro “.” is defined as ∼$@ and the symbol “@” is used to mark word borders.
10 For the sake of readability the morphological features are left out in the example.
11 The lexicalized multi-word unit cell structure is treated as a non-lexicalized multi-
word unit like president Kennedy or city Berlin which can also be seen as one the-
matic element.

SynCop 113

The problem of ambiguity arises, because the greedy definition of chunks by
chunk connectedness and chunk inclusiveness is not implemented.

Our approach concerning longest match is based on the work of [6] and [12].
There, a longest match constraint is implemented using the weights of a WFST.
In our approach, the longest match is formalized by the tropical semiring (R ∪
{∞},min,+,∞, 0) and is implemented as follows: intra-chunk symbols receive
a high negative number to prefer exhaustive grouping and brackets receive a low
positive number to prefer large groupings. Following the example above, words
within chunks get the weight 〈-1〉 and bracket pairs the weight 〈0.1〉; the syntactic
readings are ordered by their longest match satisfaction:

-2.9 [this cell structure]
-2.8 [this] [cell structure]
-2.7 [this] [cell] [structure]

...
0 this cell structure

(13)

The analysis on the top represents the longest match (with the weight −2.9). It
is possible to disambiguate chunking with the help of this greedy strategy.

Note that this approach is inconsistent in one case: Let a∗ be the chunk pat-
tern and let a1 a2 ... an be the input. The result of the chunking contains
the weighted strings [... | 〈ω1 〉%[a1%]%[a2%] ... %[an%] | 〈ω2 〉%[a1a2 ...
an−1%]an | ...]; there exists an n with ω1 > ω2 but there also exists an-
other n with ω1 ≤ ω2 . It is possible that the result of the multiplication of the
bracket costs contains the inverse of the cost assigned to a symbol within chunks.
Hence in case of ambiguous input problems can arise.

To avoid this problem we formulate the disambiguation by chunk connect-
edness and chunk inclusiveness as criteria. The two criteria are ranked by pref-
erence: chunk inclusiveness ! chunk connectedness. The criteria say that words
should belong to chunks primarily and words should form large chunks secondar-
ily; that means functional elements should be grouped to their selected thematic
elements. The chunk connectedness criterion and the chunk inclusiveness crite-
rion are formalized separately by the tropical semiring (R∪ {∞},min,+,∞, 0).
Following the approach above the criteria are implemented by assigning negative
numbers to symbols within chunks in respect of chunk inclusiveness on the one
hand and assigning positive numbers to brackets in respect of chunk connect-
edness on the other hand. The optional insertion operator is now adjusted as
follows:

A(→)P...S = def [?∗[0.x.P][A.o.[?〈−1, 0〉]∗][0.x.S]〈0, 1〉]∗?∗ (14)

This implementation works on ambiguous input and disambiguates the input
locally according to the linguistic criteria.12 No complementation operation is
used, hence transductions can be performed and the resulting WFSTs stay small
12 With the given linguistic criteria the acceptance of the syntactic readings [this] [cell

structure] and [this cell] [structure] equals. Such ambiguities should not be solved
within this approach; the remaining ambiguities have no consequences. But in [10]

114 Jörg Didakowski

in size. Furthermore, the chunking can be affected by a later step because all
chunking possibilities are enhanced.

To build a chunker with several planes of projection, several chunk types are
built by the optional insertion operator and combined by composition. If several
chunk types should compete within one level they are combined by union. Then
the Kleene star is applied.

6 Combining Syntactic Tagging with Chunking

To integrate chunking within syntactic tagging, the syntactic heads in chunks are
marked and the chunk itself is labeled with potential syntactic functions. This is
achieved by the optional insertion operator. The following example shows this:

[DET N[0.x.@HEAD]](→)%[... %][@SUBJ|@OBJ|@IOBJ] (15)

Constraints can refer to chunks by their brackets and functions.
Via constraints it should be possible to restrict chunking to resolve garden-

path effects which result from the greedy implementation. The problem is com-
parable to the late closure parsing principle [13] and is shown by the following
example (the example is taken from [14]):

1. ∗[the emergency crews] really hate is [family violence]
→ garden-path effect

2. [the emergency] [crews] really hate is [family violence]
→ resolved

In order to do this, the constraint optimization criterion has to be ranked over
the criteria concerning chunking. But the chunking should not be restricted by
constraints in every case. Hence we distinguish between two kinds of constraint
optimization criteria: strong and weak. The following ranking is used: strong
constraint optimization ! chunk inclusiveness ! chunk connectedness ! weak
constraint optimization. Now an analogical semiring can be built by composition.

Consequently, a constraint grammar contains both chunking and constraints.
Here it is possible to assign costs concerning the weak constraint optimization
criterion to chunk internal patterns. The advantage of combining chunking and
constraints is obvious: robustness is reached by underspecified and local struc-
tures and the input is disambiguated by chunking and by constraints. Thus very
robust and rich parsing is possible while the WFSTs of a constraint grammar
stay small in size.

7 The System

SynCoP (Syntactic Constraint Parser) depends on the Potsdam Finite State
Library (FSM<2.0>) [15], which makes it possible to change semirings via a

a criterion is presented which implements a left-to-right preference strategy which
eliminates these ambiguities.

SynCop 115

template. The system consists of a grammar compiler and a grammar applier.
The grammar compiler takes an XML specification which contains definitions
concerning constraints and chunking and builds a constraint grammar which
consists of a cascade of WFSTs. This constraint grammar is used by the grammar
applier to parse ambiguous input which is the result of the TAGH morphology
[16].13

So far our goal is not to eliminate all morphological ambiguities but to extract
dependency structures. Material which is not integrated into the dependency
structures is not disambiguated. Our current hand-written grammar for German
newspaper texts is compiled to a cascade of five WFSTs:

(1) morphology interface (48 states, 12415 transitions)
(2) chunking (70501 states, 246535 transitions)
(3) local dependency structures (6573 states, 356750 transitions)
(4) embedded clauses (1609 states, 188570 transitions)
(5) main clauses (2515 states, 346788 transitions)

� � � � � �

�	
	�

�

�����

�����

��

�

	�
���

�
��

���
��

��
�	��

��
�����

��
���������

��
�����

��
�	��

��
�����

��
���������

��
�����

Fig. 1. Number of states and transitions in respect of the level of analysis

Level (1) does simple transductions mapping different POS tagsets and features
and introduces possible main-clause and sub-clause borders and potential syn-
tactic functions. Level (2) performs the chunking (NP-chunks, PP-chunks, AP-
chunks) and chunk labeling with potential syntactic functions. Level (3) links
13 The TAGH morphology contains information about lexicalized multi-word units.
Hence, lexicalized and non-lexicalized multi-word units are discriminated.

116 Jörg Didakowski

orphaned words and disambiguates modifier functions or conjunctions which are
related to chunks. The main reason for the large WFSTs concerning level (2) and
(3) is the modeling of agreement in respect of case, number and gender. Finally
level (4) disambiguates the head functions for embedded clauses and level (5)
does the same for main clauses, while main-clauses and sub-clauses are detected.

During the analysis by our constraint grammar the resulting WFST grows
level by level before the most likely syntactic readings are extracted by a best-
path search. This is shown by the analysis of the German sentence der Mann, der
das Auto auf dem Parkplatz lieben wird, weint. (the man, which is going to love
the car at the parking lot, cries.).14 15 The steps of this analysis concerning the
number of states and transitions are shown in figure 1. Here, the number of states
and transitions concerning the “normal” application of the constraint grammar
is shown by variant 1. The input WFST has 158 states and 249 transitions.
However the final result has 21406 states and 48135 transitions. The reason for
that rapid growth is redundancy: ambiguous structures are looped through the
levels instead of being resolved as early as possible.

To diminish this rapid growth we use a local disambiguation strategy. Mate-
rial within chunks is never affected by constraints of higher levels; hence disam-
biguation can be performed within chunks without eliminating readings which
are necessary for later steps. The same holds for sub-clauses. To do so, we im-
plement a best-path search which refers to chunk and sub-clause brackets: after
level (2) we disambiguate within chunks and after level (4) we disambiguate
within sub-clauses. The amount of states and transitions concerning this strat-
egy is shown in the figure above by variant 2. The resulting WFST has finally
1683 states and 2841 transitions; in level 4 the amount of transitions actually
decreases.

8 Conclusion and Future Work

A new approach to robust dependency parsing which brings together syntactic
tagging and chunking has been presented. Their combination is implemented by
WFSTs over a semiring which represents several linguistic criteria. With these
linguistic criteria disambiguation is done by a simple comparison concerning the
degree of grammatical acceptance of syntactic analyses; this allows structural
preferences and gradual grammaticality. It is possible to extend these linguistic
criteria.

The System SynCoP is currently used for the construction of an engine ana-
logical to the Word Sketch Engine [17].16 Our word sketches show a promising

14 PP-attachment is not covered by our constraint grammar yet.
15 That sentence is analysed as follows: [main_cl [npder Mann@HEAD]@SUBJ,

[sub_clder@SUBJ [npdas Auto@HEAD]@OBJ [ppauf@HEAD [npdem
Parkplatz@HEAD]] lieben@-FMAINV wird@FAUXV], weint@+FMAINV .]

16 A word sketch is a summary which is deduced from corpora showing grammatical
and collocational behaviour of a word.

SynCop 117

quality of annotation. An exhausting evaluation of our constraint grammar has
not been done yet; this will be of interest in future work.

9 Appendix: Notations

(A) option (union of A with epsilon)
∼A complement
$A contains (all strings containing at least one A)
A∗ Kleene star
A+ Kleene plus
A B concatenation
A | B union
A .x. B crossproduct
A .o. B composition
Dom(A) the domain of a rational transduction
[and] square brackets which group expressions
? sigma
?∗ sigma star
0 epsilon
% escape character
〈ω〉 weights

References

1. Abney, S.: Syntactic affixation and performance structures. In Bouchard, D.,
Leffel, K., eds.: Views on Phrase Structure. Kluwer (1990)

2. Karlsson, F.: Constraint grammar as a framework for parsing running text. In:
Proceedings of the 13th International Conference on Computational Linguistics
(COLING-90). Volume 3. (1990) 168–173

3. Aït-Mokhtar, S., Chanod, J.P.: Incremental finite state parsing. In: Proceed-
ings of the 5th. International Conference on Applied Natural Language Processing
(ANLP’97). (1997) 72–79

4. Grefenstette, G.: Light parsing as finite state filtering. In Kornai, A., ed.: Extended
Finite-State Models of Language. Cambridge University Press (1999) 86–94

5. Karttunen, L.: Directed replacement. In Joshi, A., Palmer, M., eds.: Proceed-
ings of the Thirty-Fourth Annual Meeting of the Association for Computational
Linguistics. (1996) 108–115

6. Hanneforth, T.: Longest-match pattern matching with weighted finite state au-
tomata. In: Proceedings of Finite-State Methods and Natural Language Processing
(FSMNLP 05). (2005) 79–85

7. Koskenniemi, K.: Finite-state parsing and disambiguation. In: Proceedings of the
the 13th International Conference on Computational Linguistics (COLING 90).
Volume 2. (1990) 229–232

8. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.
Languages and Combinatorics 7(3) (2002) 321–350

9. Tapanainen, P.: Applying a finite-state intersection grammar. In Roche, E., Sch-
abes, Y., eds.: Finite-State language processing. MIT Press (1997) 311–327

118 Jörg Didakowski

10. Didakowski, J.: Robustes Parsing und Disambiguierung mit gewichteten Trans-
duktoren. Volume 23. Linguistics in Potsdam (2005)

11. Tzoukerman, E., Radev, D.R.: Use of weighted finite state transducers in part of
speech tagging. In Kornai, A., ed.: Extended Finite-State Models of Language.
Cambridge University Press (1999) 193–207

12. Nasr, A., Volanschi, A.: Integrating a pos tagger and a chunker implemented
as weighted finite state machines. In: Proceedings of Finite-State Methods and
Natural Language Processing (FSMNLP 05). (2005) 167–178

13. Frazier, L., Clifton, Jr., C.: Construal. MIT Press (1996)
14. Abney, S.: Chunks and dependencies: Bringing processing evidence to bear on

syntax. In Cole, J., Green, G., Morgan, J., eds.: Computational Linguistics and
the Foundations of Linguistic Theory. CSLI (1995) 145–164

15. Hanneforth, T.: FSM<2.0> – C++ library for manipulating (weighted) finite
automata. http://www.fsmlib.org (2005)

16. Geyken, A., Hanneforth, T.: Tagh: a complete morphology for german based on
weighted finite state automaton. In: Proceedings of Finite-State Methods and
Natural Language Processing (FSMNLP 05). (2005) 55–66

17. Kilgarriff, A., Rychly, P., Smrz, P., Tugwell, D.: The sketch engine. In: Proceedings
of the Eleventh EURALEX International Congress. (2004) 105–116

	SynCoP – Combining Syntactic Tagging with Chunking Using Weighted Finite State Transducers
	1 Introduction
	2 Definitions and Notations
	3 Linguistic Background
	4 Syntactic Tagging with Linguistic Criteria
	5 Chunking with Linguistic Criteria
	6 Combining Syntactic Tagging with Chunking
	7 The System
	8 Conclusion and Future Work
	9 Appendix: Notations
	References

