
Developing a Finite-State Morphological
Analyzer for Urdu and Hindi

Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

Universität Konstanz

Abstract. We introduce and discuss a number of issues that arise in the
process of building a finite-state morphological analyzer for Urdu, in par-
ticular issues with potential ambiguity and non-concatenative morphol-
ogy. Our approach allows for an underlyingly similar treatment of both
Urdu and Hindi via a cascade of finite-state transducers that transliter-
ates the very different scripts into a common ASCII transcription sys-
tem. As this transliteration system is based on the XFST tools that the
Urdu/Hindi common morphological analyzer is also implemented in, no
compatibility problems arise.

1 Introduction

As part of the ParGram (Parallel Grammar) project [1], [2], we are developing a
grammar for the South Asian language Urdu.1 Very few resources exist for this
language, in particular, no broad-coverage finite-state morphological analyzer
exists to date. Part of the Urdu Grammar project is therefore to build a finite-
state morphological analyzer for Urdu and to connect it up with the syntax
via the morphology-syntax interface [3] defined for Lexical-Functional Grammar
(LFG; [4]).

Current features of the Urdu ParGram project in the context of parallel gram-
mar development have already been discussed elsewhere [5]. In this paper, we
focus on some issues that have arisen with respect to the morphological analyzer
in particular. All the (larger) ParGram grammars to date include a finite-state
morphological analyzer that interfaces with the syntax. These morphological an-
alyzers are generally built with the Xerox finite-state technology tools and follow
the methodology established by [6]. The finite-state tools and the solutions al-
ready proposed by [6] prove to be more than adequate to meet the challenges
posed by Urdu. However, some interesting issues do arise with respect to 1) the
script and tokenization (section 2); 2) reduplication (section 3) ; 3) potentially
ambiguous information at the morphology-syntax interface (section 4).

2 Two Different Scripts, One Representation

Urdu is structurally almost identical to Hindi. The major difference is that the
vocabulary of Urdu bears more Persian/Arabic influences, while the vocabulary
1 Thanks go to Tafseer Ahmed for helping us understand some issues with respect to
the script and the morphology.

Developing a Finite-State Morphological Analyzer for Urdu and Hindi 87

of Hindi is more Sanskrit based. Both are ultimately descended from a version
of Sanskrit (i.e., are Indo-European). Urdu as a separate version of the language
came into being when the Moghuls invaded the Indian subcontinent. The lan-
guage of their court was Persian, which came into contact with a local language
generally referred to as Hindustani (or Hindi). The very Persianized version of
this language came to be known as Urdu.2

This brief historical sketch is of relevance because lexical items borrowed in
from Persian tend to behave differently (i.e., have different inflectional possibil-
ities). However, questions of lexical and morphological origin tend to be minor
issues. A more major issue is that Urdu and Hindi are written in very different
scripts. Urdu is written with a version of the Arabic script.3 Hindi, in contrast,
is written in Devanagari, a phonetic-based script passed down over the millenia
from Sanskrit.

2.1 A Common Transliteration System

(1) and (2) show a couplet (162,9) from the poet Mirza Ghalib (1797–1869): (1)
is written in Urdu, (2) is the same couplet, but written in Devanagari (Hindi).
Note that Urdu is written right-to-left, whereas Hindi is written left-to-right.

(1)

(2)

Although the two writing systems differ markedly, the languages they encode
are structurally almost identical. Given this fact, our general strategy in building
a morphological analyzer is to produce a resource that can be used for text
written in both Urdu and Hindi. This involves building a transliteration system
that goes from whichever script is being processed to a common ASCII base and
then being able to generate back out from the common ASCII base to either one
of the scripts. That is, both the texts in (1) and (2) are rendered as in (3).

2 Modern Hindi naturally also bears traces of language contact with Persian, but not
as markedly as Urdu.

3 Unicode fonts for this script have only recently been developed (e.g., see
http://www.crulp.org; [7]).

88 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

(3) hAN bHalA kar tirA bHalA hOgA
yes good.M.Sg do then good be.Fut.M.Sg
Or darvES kI sadA kyA he
and dervish Gen.F.Sg call.F.Sg what be.Pres.3.Sg
‘Yes, do good then good will happen, what else is the call of the dervish.’

Our transliteration is based on proposals by [8]. Capitalized vowels indicate
length, H marks aspiration, N nasalization, S stands for S and other capitalized
consonants indicate retroflexes.

A transliterator in accordance with our overall strategy has been imple-
mented by [9]. Malik’s HUMTS (Hindi-Urdu Machine Transliteration System)
is written as a cascade of finite-state transducers that transliterate from the
Urdu and Hindi scripts to SAMPA [10], a common underlying phonetic ASCII
alphabet, and back out from SAMPA to the two differing scripts. SAMPA has
been developed to enable coverage of all the world’s languages; however, for the
purposes of Urdu, it is unwieldy and very difficult to read. In integrating Malik’s
work into the Urdu grammar, we will therefore use Glassman’s transliteration
system. Beyond the simple conversion of letters that is necessary to do this, we
anticipate no further (major) problems as HUMTS was written with the same
XFST tools used in our Urdu grammar project.4

2.2 Future Morphology: Illustrating Tokenization Problems

Writing a transliterator that takes one script as an input and is able to output
another script is not an easy task. Many of the problems that arise are discussed
in Malik’s work. In terms of the Urdu Grammar, most relevant to us are problems
of tokenization. In particular, problems associated with the future morphology
in Urdu/Hindi was one of the first to arise.

We already had an example of future usage in (1) and (2). An inspection
of each example will quickly reveal one of the very general problems in dealing
with the Urdu script: while in Hindi, each word is clearly demarcated and easy
to identify, in Arabic-based scripts in general, word boundaries are very difficult
to identify. One must basically know the language (i.e., be able to access the
lexical items) in order to be able to read the script.5

Beyond this very general problem, the scripts also encode differences of opin-
ion as to what exactly a word is. This is illustrated in (1) and (2) with respect to
the future form of ‘be’ hOgA. In (1) it is expressed by the last two letter groups
on line one (reading from right to left). In (2), the form is expressed by just one
letter group: the last one (reading from left to right) on line 1. This difference
in encoding reflects an on-going historical change.

The future in Urdu/Hindi is formed as shown in the paradigm (4) for the stem
mAr ‘hit/kill’. The stem is followed by information about person and number
4 Related work has been done by [11], who provide a transliterator into ASCII as well,
but do morphological analysis using the Functional Morphology Toolkit [12].

5 The same is not true for Devanagari, which, being phonetically based, allows a
sounding out of the words.

Developing a Finite-State Morphological Analyzer for Urdu and Hindi 89

(UN/E/EN/O), to which the future marker g is attached. This, finally, is followed
about information about number and gender.

(4) Urdu Future Paradigm
Singular Plural Respect (Ap) Familiar (tum)
M/F M/F M/F M/F

1st mAr-UN-g-A/I mAr-EN-g-E/I
2nd mAr-E-g-A/I mAr-EN-g-E/I mAr-O-g-E/I
3rd mAr-E-g-A/I mAr-EN-g-E/I
mAr- ‘hit’

The future paradigm is thus a relatively complex assemblage of morpho-
logical pieces. The person/number morphology is identical to that used in the
subjunctive paradigm, shown in (5). To these essentially subjunctive forms, a -g-
is attached to mark the future. The consensus in the available literature is that
the future -g- is derived from a Sanskrit participle of the verb gā ‘go’ [13], [14].
This analysis immediately explains the gender and number agreement morphol-
ogy (A/I/E) exhibited by the future: Participles functioned like adjectives and
so generally had number and gender agreement morphology. This morphology
has simply been retained in all the verb forms in Urdu/Hindi that derive from
old participles (i.e., the perfect, imperfect and progressive forms), including the
future.

(5) Urdu Subjunctive Paradigm
Singular Plural Respect (Ap) Familiar (tum)

1st mAr-UN mAr-EN
2nd mAr-E mAr-EN mAr-O
3rd mAr-E mAr-EN
mAr- ‘hit’

The old participle of the verb gā ‘go’ used to form its own word. Indeed, as
recently as a century ago, clitics like the emphatic hI ‘even/only’ could intrude
between the -g- and the stem+subjunctive morphology. This is illustrated in (6).

(6) kAh-ũ=hi=ga
say-1.Sg=Emph=Fut.M.Sg
‘I will say (it), of course.’ (Hindi, from Kellogg 1893:§399)

These examples suggest that while the old participle was no longer function-
ing as an independent word a century ago, it retained some prosodic indepen-
dence and was probably functioning as a clitic (indicated by the glossing with
‘=’). This is entirely consonant with well known processes of historical change
whereby words are reanalyzed as clitics and then reanalyzed further as inflec-
tional morphology as they move from expressing content words to functional
elements (e.g., [15], [16]).

The examples in (6) are only marginally possible in modern Urdu, whereas
speakers of Hindi tend to reject them outright. This difference in native speaker

90 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

judgements may or may not be correlated with the differences encoded in the
writing system. Recall that in written Hindi, the future is expressed in one word
together with the subjunctive stem. In Urdu however, the stem+subjunctive and
the future+number+gender are generally written as two separate words.

In both languages all the pieces of morphology involved nevertheless perform
exactly the same function, so our morphological analyzer should treat them in
parallel. In the morphological analyzer, the future -g- is treated as an inflectional
morpheme and a form like mArEgI would be analyzed as in (7).

(7) mArEgI ⇔
mAr+Verb+Subjunct+2P+Sg+Fut+Fem
mAr+Verb+Subjunct+3P+Sg+Fut+Fem

The tokenizer thus has to turn the Urdu input of mArE gI into mArEgI. This
in and of itself does not present a problem, since the deletion of white space is
not a problem. In principle, since forms like marE are also words in their own
right, a serious ambiguity problem could arise. However, as gI/gA/gE are not
words in their own right,6 we do not anticipate serious problems with our basic
approach.

In sum, the future morphology discussed here provides a good example of
the potentially problematic factors that must be dealt with. Another, perhaps
more interesting problem posed by Urdu is that of reduplication.

3 Reduplication

Urdu/Hindi, like most of the South Asian languages, tends to use reduplication
quite frequently [17]. All content words can generally be reduplicated and the
effect of the reduplication is to either strengthen/emphasize the original word or
to express something like “and those kinds of things”.

(8) a. kHAnA vAnA
food.M.Sg. Redup
‘food and those kinds of things’

b. tHanDA tHanDA
cold.M.Sg. Redup
‘ice cold (cold cold)’

c. kHAtA vAtA
eat.Impf.M.Sg Redup
‘he is eating and such’

There are two different kinds of reduplication strategies. In the one illustrated
by (8a), the onset of the content word is replaced with another consonant. This
consonant could be either v, t. (T) or S (S). In another strategy ((8b)), the word
is simply repeated. We will refer to this latter strategy as full word reduplication,
the former strategy is generally described as echo formation or echo reduplication.
6 gA is a word, namely the bare form of the verb ‘sing’. However, this would never (or
rarely) occur in conjunction with a subjunctive verb.

Developing a Finite-State Morphological Analyzer for Urdu and Hindi 91

3.1 General Strategy

Generally, reduplications are written as seperate words in both Urdu and Hindi.
The fundamental problem facing the tokenizer is thus the fact that a reduplicated
item must be recognized. The transliteration system will yield two words, as
shown in (9), for example, which are separated by white space.

(9) calnA valnA
walk.Inf.M.Sg Redup
‘walking and such things’

Our morphological analyzer basically follows the solution for full stem redu-
plication presented by [6] for Malay. The basic lexicon built independently of
reduplication for nouns, verbs, adjectives and other content words interacts with
reduplicating regular expressions.

The morphological analysis of reduplications as in (9) is shown in (10). That
is, within the morphological analyzer, the reduplicated form is simply registered
via the tag +Redup and is passed on as such to the Urdu grammar, which can
decide how to use this information (or whether to use the very subtle semantic
information implied by reduplication at all).

(10) cal+Verb+Inf+Masc+Sg+Redup

In the Malay example presented by Beesley and Karttunen (B&K), the orig-
inal word and the reduplicated part are merged into a single word. Our imple-
mentation differs from theirs in that we need to deal with the white space. Cur-
rently, we do this by introducing the multiword %ˆHyphen into the lexc source file
(which encodes the basic lexicon plus the morphological continuation classes).
When dealing with reduplication, we thus internally represent the two words
involved as being connected with a hyphen.

Reduplication itself is managed, as in B&K, via the introduction of the multi-
character brackets "^[" and "^]" in order to mark the domain of reduplication.
The right bracket is additionally marked with the characters ˆ2. The lower side
of the finite-state network thus ends up being marked up via the brackets "^["
and "^2^]". As discussed in B&K, the compile-replace algorithm can be applied
to the resulting network — compile-replace essentially treats the marked up
lower side as a regular expression which is to be interpreted. The overall effect
is that something like calnA ends up being doubled to calnA-calnA due to the
ˆ2 specification (and the addition of the hyphen).

We illustrate our approach more concretely with respect to just the adjective
‘strange’ in terms of full word reduplication. The code illustrates a simple lexc
file which allows for two possibilities for all adjectives. In one, a bracketing is
begun which is intended for the reduplicated version. This is notated by the
regular expression ˆ2, which results in the doubling of the material delimited by
the brackets. The bracket filter from B&K removes any unmatched brackets that

92 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

may have resulted from paths which contain only one bracket.7 The bracket filter
and the lexc file are composed, and the compile-replace algorithm is applied to
the resulting network. Compile-replace translates the reduplication [...]ˆ2 into
well-formed strings of this type: [...]%ˆHyphen[...]%ˆHyphen. In a last step a
regular expression (illustrated below as hyph.regex) then replaces the hyphens
(%ˆHyphen) used for internal management of the reduplicated forms with a
white space.

* !AdjRedup.txt, lexc file just for ajIb ’strange’
* Multichar_Symbols
* +Adj +Unmarked +Redup +Intensifier
*
* Lexicon Root
* 0:^[[{ Unmarked ;
* Unmarked;
*
* Lexicon Unmarked
* ajIb Ending ; !the adjective ‘strange’
*
* Lexicon Ending
* +Adj+Unmarked+Redup+Intensifier:}%^Hyphen]^2^] # ;
* +Adj+Unmarked:0 # ;
**
* ! bracketfilter.regex --- bracket filter from B&K
* [~ [?* "^[" ~$["^]"]] & ~[~$["^["] "^]" ?*]];
**
* !hyph.regex, removes ’%^Hyphen’ and inserts a white space
* [%^Hyphen -> 0 || %^Hyphen ?* _]
* .o.
* [%^Hyphen -> " "] ;

3.2 Echo Reduplication

Recall that echo reduplication further requires the use of a different conso-
nant/onset in the reduplicated form ((11)). In order to deal with this further
complication, we introduce replace rules to effect the phonological change and
further make use of flag diacritics (@P.ECHO.v@ in the rules below, cf. B&K) in
order to flag that the echo type of reduplication has taken place.

(11) AlU vAlU
potato.M Redup
‘potatoes and such’

7 This can be done differently, by controlling the continuation paths of the lexc file
more tightly, however, in the long run, this results in a conceptually more complex
structure of the lexc file and it is thus preferable (and more efficient) to simply apply
the bracket filter on unwanted paths.

Developing a Finite-State Morphological Analyzer for Urdu and Hindi 93

The phonological replace rules shown below exemplify just two cases. In
reduplicating contexts (i.e., contexts which have been marked up by a Hyphen),
either the first consonant8 is replaced by a v, or if there is no onset as in (11), a
v is inserted. We have formulated similar rules for reduplications with t. (T) or S
(S).

Cons stands for the set of consonants (this is predefined). The phonological
replacement rule below thus operates on Consonants or Vowels (listed here in-
dividually, though this could also be done differently). Consonants are replaced
by a v (or T or S in the rules not shown here). If there is no consonant, then a
v (or T or S) is inserted before the vowel.

Cons -> v || ?* %^Hyphen _ ?* "@P.ECHO.v@"
.o.
a -> v a , e -> v e , i -> v i, o -> v o,
u -> v u || ?* %^Hyphen _ ?* "@P.ECHO.v@";

We thus implement the two differing reduplication strategies by using a range
of FST methodologies. Full word reduplication is treated via a markup that feeds
into the compile-replace algorithm. Echo reduplication additionally requires the
use of phonological replace rules and flag diacritics.

Overall, allowing for reduplication results in a threefold increase of the basic
lexicon. However, this increase is dealt with in a conceptually elegant manner and
can be achieved by writing just a few extra lines of code (regular expressions)
that are composed with the source lexc file. In our approach, we have based
ourselves on the B&K solution — the successful application of their basic idea
to Urdu provides a confirmation of the basic principles of finite-state based non-
concatenative morphology formulated by B&K.

4 Issues in Potential Ambiguity

In this final section of the paper, we address some issues that arise with respect to
the morphology-syntax interface. Recall from the discussion of the Urdu/Hindi
future in section 2.2 that the future is formed in combination with subjunctive
forms. Our present analysis of future forms is thus as in (12).

(12) mArUNgI ⇔
mAr+Verb+Subjunct+1P+Sg+Fut+Fem

From the perspective of the syntax (and semantics), marking these forms
as subjunctive as well as future is unnecessary as every future form also carries
some subjunctive meaning with it (this has been dubbed contingent future in the
literature). Experience gathered with respect to the German ParGram grammar
[1] has shown that it is ultimately better to eliminate tags of this kind from the

8 So far, all the words in our lexicon have just simple consonants as onsets — this
seems to be a strong tendency, if not a hard phonotactic constraint of Urdu.

94 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

morphology, since dealing with them complicates the morphology-syntax inter-
face. Given that there are simple subjunctive uses as in (13), the interpretation
of the +Subjunct tag within the morphological component will need to differ
depending on whether it is found in conjunction with future morphology or not.

(13) mArUN ⇔
mAr+Verb+Subjunct+1P+Sg

We have therefore decided to eliminate the +Subjunct tag from the morpho-
logical analysis of future forms altogether even though the morphology involved
is in actual fact the subjunctive morphology.

A somewhat different version of this same problem is found with respect to
Urdu/Hindi infinitives as in dEkHnA ‘to look/looking’, which can also be used
as verbal nouns. To date, the morphology provides analyses as in (14).

(14) dEkHnA ⇔
dEkH+Verb+Inf+Masc+Sg

It will be imperative to know that infinitives can also function as nouns in the
grammar. It might therefore be necessary to anticipate this in the morphology
and provide both the analyses in (15) for the syntax.

(15) dEkHnA ⇔
dEkH+Verb+Inf+Masc+Sg
dEkH+Noun+Deverb+Masc+Sg

However, this would result in quite a bit of ambiguity within the morphologi-
cal analyzer. Our current solution, shown in terms of LFG functional annotations
in (16) is therefore to add the information that this form could optionally (de-
noted by the round brackets) be used as a noun whose type is deverbal as part
of the definition of the morphology-syntax interface.

(16) +Inf ((↑NTYPE) = deverbal).

The abstract morphological tag +Inf is thus annotated with the functional
information that it could also be used as a noun, in which case it is deverbal.
This solution pushes the ambiguity from the morphology into the syntax, but
since the syntax can eliminate the ambiguity by means of unifying in other
information, it may be better to deal with the ambiguity in the syntax, rather
than in the morphology, where no contextual information is available. We are
currently experimenting with both possible solutions to determine the better
one.

5 Conclusion

In this paper, we have introduced and addressed a number of issues that arise
in the process of building a finite-state morphological analyzer for Urdu. Our

Developing a Finite-State Morphological Analyzer for Urdu and Hindi 95

approach allows for an underlyingly similar treatment of both Urdu and Hindi via
a cascade of finite-state transducers that transliterates the very different scripts
into a common ASCII transcription system. As this transliteration system is
based on the XFST tools that the Urdu/Hindi common morphological analyzer
is also implemented in, no compatibility problems arise.

We further explored reduplication in Urdu, again basing ourselves on solu-
tions proposed with respect to XFST and show how differing reduplication pat-
terns in Urdu/Hindi can be dealt with elegantly with the finite-state methods
proposed by B&K.

Finally, we addressed some potential ambiguity problems and discussed diffe-
rent ways of solving them. The discussion here mainly revolves around where and
how information should be encoded with respect to the morphology-syntax in-
terface that has been defined between finite-state morphological analyzers and
LFG grammars as part of the ParGram project.

References

1. Butt, M., King, T.H., Niño, M.E., Segond, F.: A Grammar Writer’s Cookbook.
CSLI Publications (1999)

2. Butt, M., Dyvik, H., King, T.H., Masuichi, H., Rohrer, C.: The Parallel Grammar
project. In: Proceedings of COLING, Workshop on Grammar Engineering and
Evaluation, Taipei (2002) 1–7

3. Kaplan, R.M., Maxwell III, J.T., King, T.H., Crouch, R.: Integrating finite-state
technology with deep LFG grammars. In: Proceedings ESSLLI, Workshop on
Combining Shallow and Deep Processing for NLP. (2004)

4. Dalrymple, M.: Lexical Functional Grammar. Academic Press (2001)
5. Butt, M., King, T.H.: Urdu in a parallel grammar development environment.
Language Resources and Evaluation (2007) Special Issue on Asian Language Pro-
cessing: State of the Art Resources and Processing. To Appear.

6. Beesley, K., Karttunen, L.: Finite State Morphology. CSLI Publications, Stanford,
CA (2003)

7. Rahman, S., Hussain, S.: Development of character based Urdu Nastaleeq font.
Asian Media and Communication Bulletin 33(2) (2003)

8. Glassman, E.H.: Spoken Urdu. Nirali Kitaben, Lahore (1977)
9. Abbas Malik, M.: Hindi Urdu machine transliteration system. MSc Thesis, Paris
7 (2006)

10. Wells, J.: SAMPA computer readable phonetic alphabet. In Gibbon, D., Moore,
R., Winski, R., eds.: Handbook of Standards and Resources for Spoken Language
Systems. Mouton de Gruyter, Berlin and New York (1997)

11. Humayoun, M., Hammarström, H., Ranta, A.: Urdu morphology, orthography and
lexicon extraction. In Farghaly, A., Megerdoomian, K., eds.: Proceedings of the
2nd Workshop on Computational Approaches to Arabic Script-based Languages.
(2007) 59–66 Held at the Stanford LSA 2007 Institute.

12. Forsberg, M., Ranta, A.: Functional morphology. In: Proceedings of Ninth ACM
SIGPLAN International Conference of Functional Programming. (2004) 213–223

13. Kellogg, S.H.: Grammar of the Hindi Language. Munshiram Manoharlal Publishers
Pvt. Ltd., Delhi (1893) Second Edition, reprinted 1990.

96 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

14. McGregor, R.: The Language of Indrajit of Orchā. Cambridge University Press,
Cambridge (1968)

15. Harris, A.C., Campbell, L.: Historical Syntax in Cross-Linguistic Perspective.
Cambridge University Press, Cambridge (1995)

16. Hopper, P.J., Traugott, E.C.: Grammaticalization. Cambridge University Press,
Cambridge (1993)

17. Abbi, A.: Reduplication in South Asian Languages. An Areal, Topological and
Historical Study. Allied, New Delhi (1991)

	Developing a Finite-State Morphological Analyzer for Urdu and Hindi
	1 Introduction
	2 Two Different Scripts, One Representation
	2.1 A Common Transliteration System
	2.2 Future Morphology: Illustrating Tokenization Problems

	3 Reduplication
	3.1 General Strategy
	3.2 Echo Reduplication

	4 Issues in Potential Ambiguity
	5 Conclusion
	References

