
Intersection Optimization is NP-Complete

Guillaume Bonfante1 and Joseph Le Roux2

1 INRIA – LORIA
2 Nancy Universités – LORIA

Abstract. Finite state methods for natural language processing often
require the construction and the intersection of several automata. In this
paper, we investigate the question of determining the best order in which
these intersections should be performed. We take as an example lexical
disambiguation in polarity grammars. We show that there is no efficient
way to minimize the state complexity of these intersections.

1 Introduction

The main concern of this paper is to answer the following question: given a
set {A1 , . . . , Ak} of finite state automata, can we guess an order on them to
efficiently perform their intersection? More precisely, can we find a permutation
π for which the following algorithm will run as quickly as possible?

A = A[pi[1]];
for i = 2 to k do

A = A intersect A[pi[i]]
done

Observe that computing the intersection as above takes in the worst case
exponential time. Indeed, the size of the result, that is to say the number of
states, is exponential |⋂ i≤kAi | =

∏
i≤k |Ai |. We refer to Saaloma and Yu to

learn more about state complexity [1, 2]. But this is not the issue addressed here.
The question is to find the order in which we have to perform the intersections.
And we show that this part of the problem is also inherently difficult. To get rid
of the size problem, we consider the ordering problem with regards to some a
priori upper bound on the size of automata. The decision problem will be proved
NP-complete.

A standard NP-complete problem about automata intersections is the empti-
ness of the result. See for instance [3] or [4] which give explicit upper bounds.
But, here, we are more concerned with the intersection process than the result
itself. An analogous question to our present issue is matrix multiplication. Given
a sequence of matrices M1 , . . . ,Mk of different sizes, the way one parenthesizes
the expression M1 × · · · ×Mk has a huge impact on the cost of evaluating the
product (see [5]). For this problem, computing the best order can be done in
polynomial time by a dynamic programming procedure.

Intersection Optimization is NP-Complete 75

Let us now present the practical application which originally motivated the
present study: disambiguation for lexicalized polarized grammars (PGs) like Cat-
egorial Grammars [6], Interaction Grammars [7] or Polarized Unification Gram-
mars [8]. A lexicalized grammar is defined by its lexicon, which associates a set
of syntactic items to every word of the language. Each of these items specifies a
grammatical construction in which the corresponding word participates.

One of the main features of PGs is that each syntactic item is equipped
with polarized features. Polarities are used to guide the process of syntactic
composition: features with the same type but with opposite polarities try to
neutralize each other. The process ends successfully in a parse structure for a
sentence where all polarized features are neutralized.

Syntactic items, if we forget their structure, become bags of polarized fea-
tures. A necessary condition for a tagging to be successful is that summing po-
larized features in the bag must end with a zero. Automata are a well-suited way
of factorizing this counting. The crux is that one may count different features,
each of which provides an automaton. Hence, the resulting necessary condition
is given by the intersection of these automata [9]. Unfortunately, it is known [10]
that when performing multiple intersections, intermediate automata can possibly
be huge, even if the final automaton is small.

We prove that looking for the order in which intersections have to be per-
formed to create the minimal number of intermediate states is actually NP-hard.
For that reason, we have used heuristics3 in our implementation.

2 Polarized Grammars and Lexical Disambiguation

In this section, we present a general lexical disambiguation method for PGs
relying on automata intersection.

2.1 Polarized Grammars and Parsing

We give here a very brief description of such grammars. Any reader who wants a
wider presentation of these grammars should refer to [6–8]. A polarized grammar
is equipped with:

– a set W of words (for instance English vocabulary);
– a set S of items (for example “noun phrase coordination”);
– a function � : W → Pfin(S) which associates words with finite sets of items;
– a set of feature names F (e.g. “category” and “gender”) and a set of feature

values V (e.g. “noun” and “masculine”);
– a function ρ : S × F × V → I[Z] which associates to any item and feature

name/value a finite interval over the integers. This function counts the po-
larized features of items. For instance, ρ(give_Verb, “cat” , “noun phrase”) =
[−3,−1] because a verb like give can be intransitive (expecting 1 noun
phrase), transitive (2 noun phrases) or ditransitive (3 noun phrases).

3 We cannot present these heuristics here for lack of space.

76 Guillaume Bonfante and Joseph Le Roux

Given a sentence w1 , . . . , wn of words in W , the parsing process consists of
a) selecting one item for each word of the sentence, say s1 , . . . , sn and b) check-
ing that this selection verifies some properties depending on the grammatical
framework. Still, there is one common property to all PGs which is that 0 must
be an element of the sum of the intervals in the selection, where intervals are
summed according to [a, b] + [c, d] = [a + c, b + d]. This property can be stated:
∀f, v ∈ F × V : 0 ∈ ∑ i≤nρ(si , f, v). We call this property the global neutrality
criterion and it reflects the neutrality constraint on final structures.

2.2 Counting with Automata

We assume a sentence w1w2 . . . wn to parse with a PG G. Given a feature name
and a feature value (f, v), consider the automaton A(f, v) as follows:

– A state of the automaton is a pair (i, p), where i corresponds to the position
of the word in the sentence and p is an interval of Z, which represents the
counting of polarities up to position i.

– Transitions have the form (i, p) sα−→ (i + 1, q), where sα ∈ �(wi), q = p +
ρ(sα, f, v).

– The initial state is (0, [0, 0]).
– The accepting states are states (n, p) such that 0 is an element of p.

Every path in A(f, v) from the initial state (0, [0, 0]) to an accepting state repre-
sents a lexical selection that verifies the global neutrality criterion. Other paths
can be deleted. So, any path to an accepting state is a candidate for selection.

Actually, it is a necessary condition for a correct lexical selection to be rec-
ognized by polarity automata, for every choice of name f and value v. As a
consequence, the intersection of polarity automata gives an automaton which
also contains the valid solutions. The principle of our selection method is to
build the automaton4 ⋂

(f ,v)∈F×VA(f, v).
For example, in our implementation for Interaction Grammars, for a ten word

long sentence we usually make twelve intersections. With this method we go from
5000 raw selections to 10 selections respecting the neutrality criterion. We have
noticed some performance issues depending on the order in which we performed
the intersection. On some sentences, we experienced tenfold variations in the
number of states of the intermediate automata..

3 NP-Completeness of the Problem

In this section, we review three problems, which we prove to be NP-complete,
related to our disambiguation technique based on automata intersections.

In these three problems we ask whether it is possible to determine the right
order in which the intersection of several automata must be performed to mini-
mize the number of intermediate states.
4 Actually we can restrict our attention to some more particular values for f and v.
See [9] for details.

Intersection Optimization is NP-Complete 77

We prove NP-hardness of these problems by reduction from the Traveling
Salesman Problem (TSP) [3]. To fix the notations, we first recall this illustrious
problem.

An instance of the TSP is a triple (V, d,K) where V = {1, . . . , n} is a set of
cities, d is a distance function between any pair of different cities, d(i, j) ∈ N,
and a bound K ∈ N

+ . The problem is to decide whether there exists a tour of all
cities with a length less than K or in other words if there exists a permutation
π of the cities such that (

∑
i=1

i=n−1d(π(i), π(i + 1))) + d(π(n), π(1)) ≤ K.
For clarity, when π is a function [1..n] → [1..n] and the context is clear, we
write π(n + 1) for π(1) and π(0) for π(n). So the previous sum can be written∑

i=1
i=nd(π(i), π(i + 1)) ≤ K. From now on, we restrict our attention to those

cases where d(i, j) ≤ 2. The problem remains NP-complete (it corresponds to
the reduction from Hamiltonian Circuit).

We will distinguish between the traditional TSP as it has been described
above and a variant that we call the exact TSP in which the tour must be of
length exactly K (see [3]).

3.1 Intersection Optimization Problems

We present a first intersection optimisation problem, that we will enrich to get
the second and third problems, which are more difficult. In the proofs, we do not
use automata with loops. So these problems can be stated with or without star
languages. For an automaton A, the size of A that we write |A| is the number
of states of A. Every automaton is considered minimal, unless stated otherwise.

First Problem (IO1): Let An = (Ai)1≤i≤n be a set of n finite state automata,
B ∈ N

+ a bound and K a target size. Is there an injective function π : [1..j] →
[1..n] such that

– |(. . . (Aπ(1) ∩Aπ(2)) ∩ · · ·) ∩Aπ(j)| = K
– for all k < j, |(. . . (Aπ(1) ∩Aπ(2)) ∩ · · ·) ∩Aπ(k)| ≤ B.

In other words, is there a subset A ⊆ An such that |⋂A∈AA| = K with all
intermediate steps smaller than B? For disambiguation, this means that we are
able to know the size of the final intersection.

Second Problem (IO2): Let An = (Ai)1≤i≤n be a set of n finite state automata
and B ∈ N a bound. Is there a bijection π : [1..n] → [1..n] such that for any
j ≤ n we have |(. . . (Aπ(1)∩Aπ(2))∩· · ·)∩Aπ(j)| ≤ B ? For disambiguation, this
means that given a set of polarity automata we are able to know how to perform
their intersection in order to bound the size of each intermediate intersection.

Third Problem (IO3): Let An = (Ai)1≤i≤n be a set of n finite state automata
and B ∈ N a bound. Is there a permutation π of [1..n] such that∑

1≤j≤n |(. . . (Aπ(1) ∩Aπ(2)) ∩ · · ·) ∩Aπ(j)| ≤ B ? This is the problem that we
deal with in disambiguation: is there an order to perform intersection for which
the total number of states that we create is bounded?

78 Guillaume Bonfante and Joseph Le Roux

3.2 NP Algorithms

These three problems are in NP. Each time we have to choose a permutation π
and then:

– for (IO1), if an intermediate intersection is empty we stop and the answer to
the problem is “no” (of course, if K = 0 it is “yes”) if it has a size greater than
B, the answer is no. Otherwise, we proceed to the next intersection. When
j intersections have been performed we compare the size of the resulting
automaton to K. Observe that those intersections can be performed in time
bounded by B2 since all intermediate steps must have a size lesser than B.
And so, we are polynomial with regards to B.

– for (IO2), if an intermediate intersection is empty then the answer is “yes”
else if it is greater than B (again, we may need to consider B2 states before
minimization) the answer to the problem is “no” else we proceed to the next
intersection.

– for (IO3), we need to sum the sizes of the intermediate intersections and
check that this sum is never greater than B. If an intersection is empty or if
a partial sum exceeds B then we can stop immediately.

3.3 NP-Completeness

Theorem 1. (IO1) is NP-complete.

Proof. We consider some cells, that we will associate to build automata. They
are given by Figure 1.

V S :
(s)s∈S

X, Y

X X

Y Y

X

Y

X

Y

X

Y

C2 :C1 :

C⊥: X X XX,Y X, YC0 : X,Y

Fig. 1. Some brick automata

We can note that for i ∈ {0, 1, 2} we have |Ci | = |C0 |+i. In other words, these
automata encode the distance between two cities. Observe also that Ci ∩ C0 =

Intersection Optimization is NP-Complete 79

Ci . So that C0 is the “neutral” element for the intersection. Finally, if A is
some automaton, A′ denotes the same automaton, but with primed letters. We
suppose we are given an arbitrary (but minimal) automaton D of size 6×n + 3.

Now, given an instance of the exact TSP (V, d, k), we consider a set of au-
tomata Ai,j ,m with i, j ∈ V and m ≤ n where n is the number of cities in V . To
fix the intuition, the automaton Ai,j ,m corresponds to the choice of going from
city i to city j at step m of a tour. In other words, it corresponds to the choice
π(m) = i and π(m + 1) = j. The mth distance is set to l = d(i, j) by cell C l ,
between letters V i and V j . Moreover, if i is the initial city, it is also the last
one. We define:

Ai,j ,1 = V iCd(i,j)V j (C0V V \{i,j})n−2C0V i + V ′V \{1}D
Ai,j ,m = (V V \{i,j}C0)m−1V iCd(i,j)V j (C0V V \{i,j})n−m + V ′V \{m}D

for n > m > 1
Ai,j ,n = V jC0 (V V \{i,j}C0)n−2V iCd(i,j)V j + V ′V \{n}D

Let us consider the “witness” automaton A = (V V C0)nV V where no dis-
tance is set. Remark that |Ai,j ,m | = |A|+ d(i, j)+ |D|. The (polynomial) reduc-
tion is then (V, d,K) �→ ((Ai,j ,m)i,j ,m , 2|D|, |A|+ K).

Correctness If there is a tour defined by π of length exactly K, observe that:⋂
1≤m≤n Aπ(m),π(m+1),m =

V π(1)Cd(π(1),π(2))V π(2)Cd(π(2),π(3)) · · ·Cd(π(n),π(1))V π(1)

which has a size |⋂ 1≤m≤nAπ(m),π(m+1),m | = |A|+∑ 1≤m≤nd(π(m), π(m+1)).
The bound on intermediate automata is discussed widely in the next proof. So,
if the TSP has a solution, then its encoding has a solution for (IO1).

Completeness We consider the set A of automata (Ai,j ,m)i,j ,m closed by inter-
section for the converse part. Any non empty automata A ∈ A has the following
properties (proved by successive inductions):

(i) A = A1 + A2 with
– A1 = ∅ or
– A1 = V α1 Cβ1 V α2 Cβ2 · · ·V αn Cβn V αn+1 , αi ⊆ V , βi ∈ {0, 1, 2},

and A2 = V S
′D with S ⊆ {1..n} ;

(ii) In (i), if αj = {k} for some j, then no other α� contains k for � ≤ n,
(iii) In (i), βi = 0 iff i ∈ S,
(iv) In (i), if βi �= 0, then αi = {k}, αi+1 = {�} are singleton sets and βi =

d(k, �).
(v) In (i), α1 = αn+1

From (i), we can say that |A| ≤ |A1 | + |A2 |. So, in the worst case, |A| ≤
2 +

∑
i=1

n |Cβi
|+ |D| < 2× |D|, and the bound on intermediate steps is always

respected. From (iii), we learn that V S
′D is empty iff ∀j : βj �= 0. So that (iv)

80 Guillaume Bonfante and Joseph Le Roux

with (ii,v) gives us the fact (F) that for all i, the set αi = {ki} is a singleton set
and π : [1..n] → [1..n] which sends i �→ ki is a bijection and k1 = kn+1 . Since,
|D| > |A| + k, |A| = |A| + k iff S is empty. The fact (F) above shows that it
corresponds to an acceptable tour.

Theorem 2. (IO2) is NP-complete.

Proof. We reduce the TSP to IO2. Let (V, d, k) be an instance of the TSP, let 2
be the maximal distance between two cities and n = |V |. Again, for each pair of
cities (i, j) with distance d(i, j) we build n automata according to the possible
positions of these cities in a tour. That is to say we build n3 automata Ai,j ,p .
Technically speaking, with regards to (IO1), we must have a stronger control on
the order in which the intersection is performed. This is due to the fact that we
have a weaker condition that applies to every intermediate automaton. That is
also why the proof is much more complex.

We can decompose automata in three components:

1. The first one detailed in Fig. 2 (that we call C1 ,i,j ,p) is responsible for com-
puting the total distance of the tour, like in (IO1) but without indexing V
by a set of cities. The end states of the C0 sub-components are connected
to the initial state of C2 ,i,j ,p by a dummy letter X. Hence, if all the dis-
tances are instantiated (as in IO1) then only the last V will connect this
first component to the second component.

C2 ,i ,j ,p C3 ,i ,j ,p
V V

X

X

X

p− 1 n− p

C0
C0 C0 C0V

X

V XCd(i ,j)

Fig. 2. Automaton Ai,j ,p with detailed first component

2. The second one (C2 ,i,j ,p) is responsible for chaining the edges correctly to
make a valid tour. This component is shown on Figure 3. It should be ob-
served that if it is intersected with C2 ,j ,k ,p+1 then the resulting automaton
is of the same size. Otherwise (if city indices do not match) then it grows by
2n states.

3. The third one (C3 ,i,j ,p), presented in Fig. 4, forbids (by making any unwanted
intersection too big) the use of a position more than once and the use of
position p without first considering positions 1, . . . , p−1. Otherwise it grows
by 4n states.

Intersection Optimization is NP-Complete 81

Position 1

Position n

Intermediate Position

X X

X X

X X

X X

2n

1ij
1ij

{∗∗∗}\{1ij} {∗∗∗}\{1ij}
{F ∗}\{F i} {F ∗}\{F i}

X X

2n

nij
nij

F j F j

X X

X X

pij
pij

2n

F ∗F ∗

Otherspij = {∗∗∗}\{pij}\{p′∗i |p′ = p− 1}

Otherspij Otherspij

Othersn ij
Othersn ij

Fig. 3. The second component for the automaton Ai,j ,p

82 Guillaume Bonfante and Joseph Le Roux

X X X

X X X

X X X

X X X
X X

X X

H1

H1

H1
H2

H2 H2

H2

pij pij

pij
pij

H1 |H2

X X

X X

H1 |H2

H1

HH

H1 |H2

X X

X X

H1 |H2

4n

n− pp− 1

1∗∗

1∗∗

(p− 1)∗∗

(p− 1)∗∗

(p + 1)∗∗

(p + 1)∗∗

n∗∗

n∗∗

Fig. 4. The third component for the automaton Ai,j ,p

Finally, we need an additional automaton T , shown on Fig. 5. Its role is to
end the intersection process.

V V
C0

C0 C0
X

X

X

n

X⋃ C2 ,i ,j ,p

⋃ C3 ,i ,j ,p

Fig. 5. The automaton T

The size of Ai,j ,p is |Ai,j ,p | = |C1 ,i,j ,p |+ |C2 ,i,j ,p |+ |C3 ,i,j ,p | where

|C1 ,i,j ,p | = 2n + d(i, j)

|C2 ,i,j ,p | =
{

6n + 2 if p = n
4n + 2 otherwise

|C3 ,i,j ,p | = 3(p− 1)(4n) + 2(n− p + 1)(4n) + 2n = 2n(4n + 2p− 1)

|Ai,j ,p | =
{

2 + d(i, j) + 4n(2 + p + 2n) if 1 ≤ p < n
2 + d(i, j) + 2n + 4n(2 + 3n) otherwise

We want to prove that i1 , i2 , . . . , in , i1 is a tour for the TSP with length
lesser than k if and only if every intermediate automaton of the intersection⋂

1≤i≤m,α(i)∈I⊂[1 ..n]3Aα(i) ∩ T
⋂

m+1≤j≤n3 ,β(j)∈[1 ..n]3\IAβ(j)

Intersection Optimization is NP-Complete 83

is an automaton whose size is lesser than B = 2 + K + 4n(1 + 2n). So the
reduction is (V = {1 . . . n}, d,K) �→ ((Ai,j ,p)1≤i,j ,p≤n ∪ T,B)

Preliminary observations. Without loss of generality, we can suppose that K ≤
2n. Otherwise the TSP is trivial. This entails that among all the automata
(Ai,j ,p)i,j ,p only the automata (Ai,j ,1)i,j are smaller than B:

i) |Ai,j ,1 | = 2 + d(i, j) + 4n(1 + 2n) < B
ii) otherwise,

|Ai,j ,p | ≥ 2 + d(i, j) + 4n(1 + p + 2n)
≥ 2 + d(i, j) + 4n(2 + 2n) + 4n(p− 1)
> 2 + d(i, j) + 4n(1 + 2n) + K > B

Then, notice that:

iii) |C1 ,i,j ,p | = 2n + d(i, j)
iv)

|C1 ,i,j ,p ∩ C1 ,k ,l,q | =
{

2n + d(i, j) + d(k, l) if p �= q
2n + max(d(i, j), d(k, l)) otherwise

v)

|C2 ,i,j ,p ∩ C2 ,k ,l,q | =
{
|C2 ,i,j ,p | if q = p + 1 and j = k
|C2 ,i,j ,p |+ 2n otherwise

vi)

|C3 ,i,j ,p ∩ C3 ,k ,l,q | =

⎧⎨
⎩
|C3 ,i,j ,p | if q = p + 1
|C3 ,i,j ,p |+ 4n|p− q| if q > p + 1
|C3 ,i,j ,p |+ 4n if q ≤ p

(v) and (vi) mean that there is a way to preserve the size of the second and
third components: it is to perform the intersection with respect to the order of a
tour (v) and by considering each position once in ascending order (vi). Following
these remarks, for any sequence prefix of a tour i1 , i2 , . . . , ik with k ≤ n + 1 (if
k = n + 1 we force ik = i1) in our instance of the TSP, we have

|⋂ 1≤p≤kAip ,ip+1 ,p | = |⋂ 1≤p≤kC1 ,ip ,ip+1 ,p |+ |
⋂

1≤p≤kC2 ,ip ,ip+1 ,p |
+ |⋂ 1≤p≤kC3 ,ip ,ip+1 ,p |
= |⋂ 1≤p≤kC1 ,ip ,ip+1 ,p |+ |C2 ,i1 ,i2 ,1 |+ |C3 ,i1 ,i2 ,1 |
= 2n + (

∑
1≤p≤kd(ip , ip+1)) + 4n + 2 + 2n(4n− 1)

= 2 + (
∑

1≤p≤kd(ip , ip+1)) + 4n(1 + 2n)

Correctness of the reduction. We first show that all intermediate intersections
of Ai1 ,i2 ,1 ∩ . . . ∩ Aij ,ij+1 ,j for j ranging from 1 to n have a size lesser than B
if there exists a tour i1 , i2 , . . . , in , i1 with length lesser than k. We do this by
induction on the steps of the intersection process.

As stated earlier, the initial automaton must be Ai1 ,i2 ,1 because every other
Ai1 ,i2 ,p would be too large. Then, by application of the equality defined above:

84 Guillaume Bonfante and Joseph Le Roux

|A =
⋂

1≤p≤nAip ,j p+1 ,p | = 2 + (
∑

1≤p≤nd(ip , ip+1)) + 4n(1 + 2n)
≤ 2 + K + 4n(1 + 2n) = B

So these first n intersections straightforwardly encode the tour in the TSP
instance. Now, observe that A ∩ T = ∅ because every Ci from its first com-
ponent is different from C0 . Consequently if the instance of the TSP has a
solution, the sequence Ai1 ,i2 ,1 , . . . ,Ain ,i1 ,n , T, S where S is a sequence over
{(Ai,j ,p)i,j ,p}\{Aik ,ik+1 ,k : k ≤ n} is a solution to IO2.

Completeness. Consider an intersection of the form

A = (
⋂

(αi)i∈IAαi
) ∩ T ∩ (

⋂
(αj)j∈[1 ..n]3\IAαj

)

where no intermediate automaton has a size greater than B. In particular, this
is true for A′ = (

⋂
(αi)i∈IAαi). We note m = |I| and we can deduce that:

– α1 is of the form (x1 , y1 , 1) ; if αi = (xi , yi , p) then αi+1 = (xi+1 , yi+1 , p+1)
and m ≤ n, otherwise component 3 would make |A′| > B. This implies that
αi is of the form (xi , yi , i)

– if αi = (xi , yi , i) and αi+1 = (xi+1 , yi+1 , i + 1) then yi = xi+1 and m = n
implies that αm is of the form (xm , x1 ,m). Otherwise component 2 would
make |A′| > B

– Finally, m ≥ n otherwise |A′ ∩ T | > B. This implies that m = n. Remark
that this also implies that |A′ ∩ T | = 0.

In other words, A′ encodes a tour i1 , i2 , . . . , in , i1 in our instance of the TSP.
Furthermore, the size of A′ if we follow its construction as stated above is

|A′| = |C1 |+ |C2 |+ |C3 | ≤ B
|C1 |+ |C2 ,i1 ,i2 ,1 |+ |C3 ,i1 ,i2 ,1 | ≤ B
|C1 |+ 4n + 2 + 2n(4n− 1) ≤ B

|C1 |+ 2 + 2n(1 + 4n) ≤ 2 + K + 4n(1 + 2n)
|C1 | ≤ K + 2n

2n + d(i1 , i2) + · · ·+ d(in , i1) ≤ K + 2n
d(i1 , i2) + · · ·+ d(in , i1) ≤ K

And so the tour is actually a solution for our instance of the TSP.

Theorem 3. (IO3) is NP-complete.

Proof. The encoding remains the same that the one for (IO2) except for the
first component. The non-instantiated distances before position p are erased by
intersection with C⊥. (Notice that C⊥ ∩ Ci∈{0 ,1 ,2} = C⊥)

Ai,j ,p = (V (C⊥ + XC2 ,i,j ,pXC3 ,i,j ,p))p−1

V Cd(i,j)(V (C0 + XC2 ,i,j ,pXC3 ,i,j ,p))n−p

V (C2 ,i,j ,pXC3 ,i,j ,p)

The bound for this problem is B = K + n(2 + 2n + |C2 |+ |C3 |) = K + n(2 +
8n + 8n2) which corresponds to K and the part of the first automaton of the
tour that does not disappear by intersection before the intersection with T .

Intersection Optimization is NP-Complete 85

4 Conclusion

We showed that determining the best way to intersect a set of automata is an
intractable problem. This compels finite state applications to look for clever
heuristics. In our own implementation we choose to perform intersections ac-
cording to the ascending size of the automata. [10] gives several other heuristics.
Another possibility is to approximate the intersection, see [11].

References

1. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2) (1994) 315–328

2. Yu, S.: On the state complexity of combined operations. In Ibarra, O.H., Yen,
H.C., eds.: CIAA. Volume 4094 of Lecture Notes in Computer Science., Springer
(2006) 11–22

3. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco
(1979)

4. Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite
state automata. In: IEEE Conference on Computational Complexity. (2000) 229–
234

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press (1990)

6. Moortgart, M.: Categorial Type Logics. In van Benthem, J., ter Meulen, A., eds.:
Handbook of Logic and Language. Elsevier (1996)

7. Perrier, G.: La sémantique dans les grammaires d’interaction. Traitement Au-
tomatique des Langues 45(3) (2004) 123–144

8. Kahane, S.: Polarized unification grammars. In: ACL, The Association for Com-
puter Linguistics (2006)

9. Bonfante, G., Guillaume, B., Perrier, G.: Polarization and abstraction of gram-
matical formalisms as methods for lexical disambiguation. (2004)

10. Tapanainen, P.: Applying a Finite-State Intersection Grammar. In: Finite-State
Language Processing. MIT (1997)

11. Yli-Jyrä, A.M.: Simplifications of intermediate results during intersection of mul-
tiple weighted automata. In Droste, M., Vogler, H., eds.: Weighted Automata:
Theory and Applications. (2004)

	Intersection Optimization is NP-Complete
	1 Introduction
	2 Polarized Grammars and Lexical Disambiguation
	2.1 Polarized Grammars and Parsing
	2.2 Counting with Automata

	3 NP-Completeness of the Problem
	3.1 Intersection Optimization Problems
	3.2 NP Algorithms
	3.3 NP-Completeness

	4 Conclusion
	References

