
Finite-State Compilation of Feature Structures
for Two-Level Morphology

François Barthélemy

CNAM (Cédric), Paris, France
INRIA (Atoll), Rocquencourt, France

Abstract. This paper describes a two-level formalism where feature
structures are used in contextual rules. Whereas usual two-level gram-
mars describe rational sets over symbol pairs, this new formalism uses
tree structured regular expressions. They allow an explicit and precise
definition of the scope of feature structures. A given surface form may
be described using several feature structures. Feature unification is ex-
pressed in contextual rules using variables, like in a unification grammar.
Grammars are compiled in finite state multi-tape transducers.

1 Introduction

Feature Structures are a convenient way of representing partial information.
They have been broadly used for many purposes in Natural Language Processing.

Finite-State Morphology is an approach of computational morphology where
the morphology of a natural language is described using contextual rules which
denote a rational relation. These rules are simultaneous or sequential constraints.
Each rule is compiled into a rational relation and all the relations are intersected
or composed to obtain a unique relation implementing the grammar.

The use of feature structures for morphological computational descriptions
is now very widespread. Many systems including Pc-Kimmo 2, Mmorph, Xerox
Finite State Tool, have feature structures. Feature structure processing is usually
performed by a separate engine, but there were some attempts to incorporate
features into finite state machines.

Rémi Zajac [1] proposed a two-level formalism where the lexical level consists
in a feature structure. This formalism is compiled into an extended finite-state
transducer. Instead of concatenating the features of the lexical level, the extended
finite-state machine unifies them. The surface representations are concatenated
as usual. There is no restriction on the power of feature structure used, as far as
the unification is decidable. The main drawback of the approach is that there is
no other operation on feature structure than unification. The values may become
more and more precise, but they can’t change in a success path of the trans-
ducer. It is therefore impossible to encode informations such as the grammatical
category that is changed by affix composition (e.g. realization where the form
is a noun but the category of the root realize is verb).

More recently, Amtrup [2] proposed to use weighted finite state-machines,
the weight being a feature structure. The idea is that feature structures with

Finite-State Compilation of Feature Structures for Two-Level Morphology 49

union and unification are a semiring, which is the only property required on
weights. Here again, there is no restriction on the feature structures, but the
feature computation has to be monotonous. An important benefit with respect
to Zajac is that there is no modification of the underlying finite-state machines.

Another approach is used by the Xerox tools [3]. There are no feature struc-
ture but flag diacritics which may be seen as independent features. There is
a set of different operations on features: unification, but also positive setting,
which gives a value to a flag, regardless of its previous value, negative setting
which excludes a value for a given flag, positive and negative value test. All the
operations act on a single feature, not a feature structure.

The flag operations are present in the finite state machines as special symbols
concatenated to ordinary symbols. Operations are not performed by finite-state
machines: they are performed at runtime, with an enumeration of the solutions
and using a memory to store a single feature structure. Karttunen and Beesley
propose to use features to decrease the size of finite-state machines. Finite-state
machines over-generate, the over-generation being fixed at runtime. The system
provides a command which transforms automatically a machine having flag di-
acritics into an equivalent machine without such flags, so the user may choose
between run-time evaluation of these flags or compile-time evaluation, which
may cause an explosion of the size of the machine.

Kiraz [4] proposed to compile features into finite-state automata. They are
represented by strings of special symbols which are concatenated to the strings
of grapheme/phoneme of the lexical level. In this framework, features are used
only for two-level rule filtering: two-level rule application involves the unification
of a feature structure associated to the rule with the feature structure associated
to the lexical part of the feasible pair of the rule. Feature structures are always
local to one morpheme. Features can’t govern morpheme composition and no
structure for the complete form is computed.

In this paper, we generalize the work of Kiraz in such a way that feature
structures may be used not only for rule filtering, but also for affix concatenation.
Instead of concatenating lexical representations and feature structure on the
same level, they will be separated in two different levels. The rule application
will involve possibly several feature structures. Two-level grammars become a
kind of unification grammars. Such a formalism will allow the use of a feature
structure as abstract representation of a form, following the proposition of Zajac.

Like Kiraz and the Xerox flag diacritics, some restrictions will apply on fea-
ture structures to allow their compilation as strings. Furthermore, some struc-
tural restrictions will apply on grammars in order to remain finite-state.

2 Compiling feature structures

In this section, we consider the compilation of a restricted kind of feature struc-
tures in strings. There is nothing new in this part of the paper: the techniques
come from previous work about compilation of feature structures either in finite-
state machines or in Prolog terms (see for instance [5]).

50 François Barthélemy

We first restrict ourselves to flat feature structures taking values in finite
domains (small ones). Such structures are a convenient way of describing partial
information, which is possibly incrementally enriched, by unification with other
structures or by applying some rules.

A feature structure is a set of features, each feature being identified by its
name and taking a value in a small domain. Each pair (name, value) may be im-
plemented by a special symbol written <name=value>, and a feature structure
by the concatenation of the symbols corresponding to its features. For instance,
the features pers and num representing respectively the person and the number of
an English verbal form, take respectively the values 1, 2, 3 and sg (singular), pl
(plural). The alphabet used for implementing them are: <pers=1>, <pers=2>,
<pers=3>, <num=sg> and <num=pl>. A structure [num=sg,pers=1] is rep-
resented by the string <num=sg><pers=1>.

To obtain the uniqueness of the representation, one has to use a fixed order
between features such as for instance the lexicographic order between feature
names. If one knows the set of features which may enrich a feature structure
along the computations, a feature structure may be compiled into a regular
expression implementing all these features. For instance, the structure [pers=3]
is compiled into (<num=sg>|<num=pl>)<pers=3>.

Unifying two structures is equivalent to intersecting the strings representing
them.

The compilation technique extends to embedded acyclic structures. The no-
tion of feature name is just replaced by the notion of path. For instance:⎡

⎢⎢⎣
cat name

agr

[
gender masc
number plural

]
⎤
⎥⎥⎦

<agr.gender=masc><agr.number=plural><cat=name>.

Such an imbrication is convenient when several structures share the same
substructure. This may be denoted using a single variable. In the compiled form,
there will be no difference with respect to a flattened structure.

The disjunction and difference over regular expressions give support for fea-
ture structures with disjunctive and negative specification. For instance:[

person 1|2
tense ← past

]

(<person=1>|<person=2>)(dom(tense)–<tense=past>)

3 Relating feature structures and strings

In the propositions of Zajac and Amtrup, a single feature structure is associated
to respectively a surface form and a pair lexical and surface forms. For Kaplan

Finite-State Compilation of Feature Structures for Two-Level Morphology 51

and Kay [6], there is a feature structure for each symbol, describing its phono-
logical properties using binary features. Kiraz gives an example where a feature
structure is associated to each lexical entry (typically, a morpheme), several such
entries being concatenated to obtain a surface form. This means that morpholog-
ical descriptions may use feature structures having different scopes with respect
to the symbols of surface form. And why not using several types of structures
with different scopes in the same description? For instance, one feature structure
for each affix and another one for the complete form.

Partition-based morphology gives a way to implement this notion of scope. It
is a variant of two-level morphology first defined by [7] and further improved by
[8], [9] and [10]. Instead of describing a length preserving relation using symbol
pairs, it uses pairs of strings of possibly different length. For instance an affix-
based description of the form impossibly is (im:in)(possibil:possible)(ity:ity). In
such a system, the pairing is not distributive with respect to concatenation, so
the above string is considered different from (i:i)(mpossibil:npossible)(ity:ity),
for instance. In other words, the splitting of strings in substrings is significant.
In the implementations, the boundaries of substrings are represented using a
special symbol. We will use the symbol w.

Such a segmentation of surface form is useful for feature structures. For in-
stance, ([cat=name],spi)([number=plural],es). It is possible to use n-ary relations
instead of binary relations, so the feature structures may be added to the two
classical levels (lexical and surface) as a third level.

The compilation method proposed in [10] consists in compiling n-ary reg-
ular expressions in n-tape transducers synchronized on substrings terminators,
inserted at the end of each pair – or tuple in the case of n-ary expressions. The
other symbols are read independently, ordered according to the level they belong
to. For instance, a string (aaa:xx)(b:yy) is compiled in the same-length expres-
sion a:0 a:0 a:0 0:x 0:x w:w b:0 0:y 0:y w:w, and then in the corresponding letter
transducer.

The join operation is a way to merge relations (resp. transducers) which
share some common components (resp. tapes). [10] shows that this operation is
defined if the two operands have exactly one common level. This property holds
even when this common level is split in two different ways in the two relations.
A different substring terminator is used for each way.

We propose a multi-level formalism where regular expressions and contextual
rules are extended to describe tree-structured relations. Each level in the tree
is an n-tuple with n greater or equal to 1. The syntax <i| and |i> is used
to respectively open and close a tuple at a depth i in the tree. <0| and |0>
open and close the tuple at the root of the tree. Each member of the relation is
composed of exactly one such tuple. <0| and |0> are used in the description as
the string boundaries classically needed and sometimes written #.

Such structured representations are compiled using terminators, i.e. the tuple
openings and commas separating their components disappears and the tuple
closings are compiled into a special symbol ωi read on all the relevant tapes.

52 François Barthélemy

[cat=name,num=pl]
[type=root] [type=suffix]
s p y s
s p i e s

<0| [cat=name,num=pl],
<1| [type=root],

<2| s, s |2>
<2| p, p |2>
<2| y, i |2>
<2| epsilon, e |2> |1>

<1| [type=suffix],
<2| s, s |2> |1> |0>

Fig. 1. An example of the tuple notation

In order to remain finite-state, tree-structures must be restricted. The syntax
that we propose here refers explicitly to the depth of trees, so it describes depth-
bounded trees, which are finite-state. A discussion of the tractable tree structures
will take place in the last section of this paper.

We use a simplified version of the generalized restriction rules by Yli-Jyrä
and Koskenniemi [11]. Let Π be a finite alphabet and � a symbol not in Π. A
rule is written W ⇒ W ′ where W ⊆ Π∗ �Π∗ �Π∗ and W ′ ⊆ Π∗ �Π∗ �Π∗. W
is called the precondition, W ′ the postcondition. The diamonds are used to split
strings in three parts: the left context, the center and the right context. Let d	
be the operator which deletes all the occurrences of the symbols � in a language.
It may be formally defined as the composition with a finite transducer followed
by a projection. The rule W ⇒ W ′ denotes the language Π∗ − d	(W −W ′).

Informally speaking, if the precondition holds, then the postcondition has to
be verified. The diamonds are markers inserted in regular expressions to define
the center of the rule in such a way that precondition and postcondition apply
on the same part of the strings. The context restriction and surface coercion
rules from previous versions of two-level morphology may be written using this
unique kind of rules.

In our system, the patterns W and W ′ of a rule W ⇒ W ′ must be valid tree-
structured regular expressions where the center is any part of the expression.

Feature structure types are declared as a set of names associated to finite
domains, each value being a string. In the expressions, the features are explic-
itly typed. The type is given first, then the pairs (name, value). For instance,
[verb:pers=3,gen=m] is a feature structure of type verb.

Variables may be used to represent a value shared by several features in an
expression or in a rule. An expression with such a variable is equivalent to the
disjunction of the expressions where the variable is replaced by a given value.
Variables will be written with an identifier beginning with the symbol $.

Finite-State Compilation of Feature Structures for Two-Level Morphology 53

4 Examples

In the first example, there is a unique feature structure associated to each form.
This example consists in a partial description of the imperfective of the Arabic
verb. The information about gender, number and person is given by prefix and
suffix added to a core.

The description begins with some declarations. The type of feature structures
is given as a list of feature names and for each name, the domain of values of
the feature. In this first example, there are two levels of structure: there is a
grouping of letters into affixes, and then a grouping of affixes into a form to
which a feature structure is associated.

The morphotactics is defined using regular expressions. The construction
REGEXP gives a name to the disjunction of regular expressions it contains. Each
such expression is terminated by a semi-colon. The underscore stands for any
adequately structured string (wildcard). It has different actual meanings depend-
ing on its context. The construction LET allows to define a regular expression by
applying algebraic operations on previously defined expressions.

FEATURE TYPES
verb: gen in {m,f}, pers in {1,2,3}, num in {sg,pl,du};

END TYPES
REGEXP prefix IS

<0| [verb:pers=1,num=sg], <1| a |1> _ |0>;
<0| [verb:pers=2], <1| t a |1> _ |0>;
<0| [verb:pers=3,gen=m], <1| y a |1> _ |0>;
...

END
REGEXP core IS

<0| [verb:_], <1|_|1> <1| k t u b |1> <1|_|1> |0>;
...

END
REGEXP suffix IS

<0| [verb:pers=1|3], _ <1| epsilon |1> |0>;
<0| [verb:pers=2,gen=f], _ <1| i i n a |1> |0>;
...

END
LET form=intersect(prefix,core,suffix);

The relation form obtained by intersection of the three descriptions of prefix,
core and suffix, contains verbal forms such as for instance:

<0| [verb:pers=1,num=sg],
<1| a |1><1| k t u b |1><1| epsilon |1> |0>

It is a structured representation of the form aktub (I write). The notation
epsilon stands for the empty string. The description uses an empty suffix to
describe cases where nothing is suffixed to the core.

54 François Barthélemy

In this example, the notion of circumfix is probably more relevant than prefix
and suffix. In the proposed implementation, the coordination of prefix and suffix
is obtained through feature structure unification. A more explicit alternative is
to define directly the circumfixes using expressions such as:

<0| [verb:pers=2,num=pl,gen=f],
<1| t a |1> _ <1| n a |1> |0>;

The above description gives the lexical form of a verb. To obtain the surface
form, some phonological and graphemical rules are to be applied. It is possible
to express them using a classical set of contextual rules which associates pairs of
symbols from lexical and surface level, and then join this two-level system with
the rational relation form defined here, identifying the lexical level of the two
systems. The result of this join is a ternary relation.

The second example shows that it is possible to use feature structures not
only for the morphotactics but in the contextual rules too. It consists in a partial
description of French conjugation. There is a feature structure for each affix,
having different types according to the affix. The sharp symbol in contextual
rules is used to identify the center of the rule (instead of the � symbol used in
the presentation of generalized restriction rules).

FEATURE TYPES
root: conj in {1,2,3};
suff1: tense in {pres, fut, past, cond, imp};
suff2: conj, tense, pers in {1,2,3}, num in {sg, pl};

END TYPES
ABBREVIATION infix : for tuples depth 2;
REGEXP affix IS

<1| [root:conj=1], a:_ i:_ m:_ |1>;
<1| [root:conj=3], c:_ o:_ u:_ s:_ |1>;
...
<1| [suff1:tense=pres], epsilon:_ |1>;
<1| [suff1:tense=fut], R:_ |1>;
...
<1| [suff2:tense=fut,pers=1,num=sg], a:_ i:_ |1>;
<1| [suff2:tense=!passe,pers=1,num=pl], o:_ n:_ s:_|1>;
...

END
REGEXP morphotactics IS

<0| <1| [root:conj=$C], _ |1><1| [suff1:tense=$T], _|1>
<1| [suff2:conj=$C,tense=$T], _ |1> |0>;

END
LET affix_star=star(affix);
LET verbal_forms=intersect(morphotactics,affix_star);
RULES

<0| <1| [root:conj=3], _ o:_ u:_ #s:_# |1>
<1| [suff1:tense=fut], R:_ |1> _ |0> =>

Finite-State Compilation of Feature Structures for Two-Level Morphology 55

_ #s:d# _;
<1| [root:conj=1], _ |1> <1| _, #epsilon:_ R:_# |1> _

=>
_ #epsilon:e R:r# _;
...

END

$C and $T are variables which represent any value for respectively the con-
jugation and the tense of a form. They are used to ensure that two feature
structures have the same value, whatever it is.

Examples of forms are aimerai (I will love) and coudrons (we will sew):

<0| <1| [root:conj=1], a:a i:i m:m |1>
<1| [suff1:tense=fut], epsilon:e R:r |1>
<1| [suff2:tense=fut,pers=1,num=sg,conj=1],

a:a i:i |1>
|0>;
<0| <1| [root:conj=3], c:c o:o u:u s:d |1>

<1| [suff1:tense=fut], R:r |1>
<1| [suff2:tense=fut,pers=1,num=pl,conj=3],

o:o n:n s:s |1> |0>;

This example shows that no new construction is needed for using feature
structures in contextual rules. The usual notions of context and center are suf-
ficient. Features may be seen as a syntactic facility to express regular strings
through a macro-expansion. The result of this macro-expansion is a set of reg-
ular generalized restriction rules which are compiled using the algorithm by
Yli-Jyrä and Koskenniemi [11].

The third example illustrates how two different kinds of feature structures
may be used in the same grammar: one kind will be devoted to the description
of affixes; the other one to the composition of such affixes. They may be viewed
as the terminal and non-terminal nodes of a unification grammar, respectively.

FEATURE TYPES
term: pos in {N,Adj,V}, from in {N,Adj,V,none};
nterm: pos;

END TYPES
CLASSES

<letter>: a,b,c ...
END CLASSES
TUPLE TYPES

<1| [nterm_], [term:_], <letter>* |1>;
END
REGEXP affix IS

<1| _,[term:pos=Adj,from=none], real |1>;
<1| _,[term:pos=V,from=none], move |1>;
...

56 François Barthélemy

<1| _,[term:pos=V,from=Adj], ize |1>;
<1| _,[term:pos=N,from=V], ation |1>;
...

END
LET affix_star=star(affix);
RULES suffixation ARE
<0| #<1| [nterm:pos=$P],_,_ |1># _ |0> =>

_ #<1| [nterm:pos=$P],[term:pos=$P,from=none],_ |1># _;
_ #<1| [nterm:pos=$P1],_,_ |1># _ =>

_ <1| [nterm:pos=$P2],_,_ |1> #<1| [nterm:pos=$P1],
[term:pos=$P1,from=$P2],_ |1># _;

END
LET stem=intersect(affix_star,suffixation);

This piece of code describes structures such as the following:
[nterm:pos=N]���������

���������
[nterm:pos=V]�������

�������
[nterm:pos=Adj]

[term:pos=Adj,from=none]

real

[term:pos=V,from=Adj]

ize

[term:pos=N,from=V]

ation

This syntax tree is encoded into a sequence of triples where each internal
node is aligned with its rightmost child:

<0| <1| [nterm:pos=Adj],[term:pos=Adj,from=none],real |1>
<1| [nterm:pos=V],[term:pos=V,from=Adj], ize |1>
<1| [nterm:pos=N],[term:pos=N,from=V], ation |1>

|0>

The two generalized restriction rules are an encoding of the unification gram-
mar:

[
nterm
pos 1

]
→

⎡
⎢⎣termpos 1

from none

⎤
⎥⎦

[
nterm
pos 1

]
→

[
nterm
pos 2

]⎡⎢⎣termpos 1

from 2

⎤
⎥⎦

Let us detail the compilation of the simplest of the two rules:

<0| #<1| [nterm:pos=$P],_,_ |1># _ |0> =>
_ #<1| [nterm:pos=$P],[term:pos=$P,from=none],_ |1># _;

Finite-State Compilation of Feature Structures for Two-Level Morphology 57

The first step consists in replacing the variable appearing in the center of the
rule, namely $P, by its possible values, resulting in a set of three rules:

<0| #<1| [nterm:pos=N],_,_ |1># _ |0> =>
_ #<1| [nterm:pos=N],[term:pos=N,from=none],_ |1># _;

<0| #<1| [nterm:pos=Adj],_,_ |1># _ |0> =>
_ #<1| [nterm:pos=Adj],[term:pos=Adj,from=none],_ |1>#
_;

<0| #<1| [nterm:pos=V],_,_ |1># _ |0> =>
_ #<1| [nterm:pos=V],[term:pos=V,from=none],_ |1># _;

The second step replaces each feature structure by its compiled form as a
symbol string. The wildcard symbol is replaced by the relevant expression where
the symbol <any> stands for any regular symbol in the alphabet (all the symbols
except the end of tuple <wi> and #). For the first of the three rules from the
previous step, it gives:

<0| #<1| <nterm><pos=N>,<any>*, <any>* |1>#
<1| <any>*,<any>*,<any>* |1>* |0> =>

<0| <1| <any>*,<any>*,<any>* |1>*
#<1| <nterm><pos=N>,<term><pos=N><from=none>,<any>*
|1>#

<1| <any>*,<any>*,<any>* |1>* |0>;

The third step consists in compiling the tuples using the techniques presented
in the section 3. Like in classical Two-Level morphology [12], 0 is a special symbol
inserted to obtain same-length relations. It is treated alternatively as an ordinary
symbol (for intersection) or as the empty string (for composition).

#:#:# <nterm>:0:0 <pos=N>:0:0 (0:<any>:0)* (0:0:<any>)*
<w1>:<w1>:<w1> #:#:#
((<any>:0:0)* (0:<any>:0)* (0:0:<any>)* <w1>:<w1>:<w1>)*

=>
#:#:# <nterm>:0:0 <pos=N>:0:0 0:<term>:0 0:<pos=N>:0

0:<from=none>:0 (0:0:<any>)* <w1>:<w1>:<w1> #:#:#
((<any>:0:0)* (0:<any>:0)* (0:0:<any>)* <w1>:<w1>:<w1>)*

Finally, the rule is compiled using the formula from [11], namely Π∗−d	(W−
W ′) where W and W ′ are respectively the left-hand side and the right-hand side
of the rule and Π∗ the support of the relation. In our example,
Π∗ is a sequence of triples <1|_,_,_|1>*. Thanks to the type declaration of the
tuples, the compiler knows that it is more precisely:
<1| [nterm_], [term:_], <letter>* |1>*, which compiles into the follow-
ing:

(<nterm>:0:0 (<pos=V>:0:0|<pos=N>:0:0|<pos=Adj:0:0>)
0:<term>:0 (0:<pos=V>:0|0:<pos=N>:0|0:<pos=Adj:0>)
(0:<from=none>:0|0:<from=V>:0|0:<from=N>:0|

0:<from=Adj:0>)
(0:0:<letter>)* <w1>:<w1>:<w1>)*

58 François Barthélemy

The result of the compilation of the rule is given in the figure 2. The notation
<name=_> is used as an abbreviation which stands for any symbol associating a
value to the feature name.

5 Theoretical and practical limits

There are two kinds of limits to the compilation of feature structures using tree-
structured relations: theoretical limits due to the kind of tree structures which
can be represented in finite-state machines; practical limits due to the size of the
finite-state machines.

Not all structure are implementable as finite-state machines. It is well-known,
for instance, that context-free parsing is not finite-state. Chomsky in [13] gives
a characterization of grammars which are regular. A grammar is said self em-
bedding if there exists a derivation A

∗→ αAβ where A is a non-terminal and
α and β are non-empty strings. A grammar is regular if and only if it is not
self-embedding. This includes finite, right-linear and left-linear grammars.

Note that our examples use implicitly linear structures although it seemingly
describes only finite structures because sequences of tuples of a given level are
allowed within a tuple of higher level. For example in
<0| [verb:_], <1|_|1> <1| k t u b |1> <1|_|1> |0>, there is a sequence
of three tuples of depth 1 as second component of the tuple of depth 0.

Linear structures are sufficient to express some morphologies, such as for,
instance, Turkish morphology or French flexion which use mostly suffixes. They
are not sufficient to represent English or French derivation which use both pre-
fixes and suffixes. The solution in these cases are to restrict to use only finite
grammars, for instance by limiting the depth of recursion for self-embedding
non-terminals.

From a practical point of view, descriptions involving tree-structured rela-
tions may be too large to be compiled and executed. Feature structures may de-
scribe long-distance dependencies like in the example of circumfixation of Arabic
verbal forms. We have implemented a prototype which converts the formalism
presented in this paper into genuine finite-state automata and uses the FSM
toolkit [14] to compile and execute them. We have written a number of sam-
ple grammars for French and Turkish verbs and a medium-size grammar of the
Akkadian verb (about 50 rules). During these experiments, we sometimes en-
countered size explosion that we resolved by a careful writing of grammars and
ordering of algebraic operations

Feature structures must be limited to a small number of features having small
domains. Like feature diacritics in Xerox Tools, feature structures in our system
could be evaluated at run-time, when a composition with a surface or abstract
form drastically decreases the size of the machine. Instead of performing unifica-
tion at compile-time, equations giving values to features should be concatenated
within each scope, i.e. in each tuple.

Finite-State Compilation of Feature Structures for Two-Level Morphology 59

0

1

<nterm>:0:0

2

<pos=N>:0:0

8

<pos=V>:0:0<pos=Adj>:0:0

3

0:<term>:0

9

0:<term>:0

4

0:<pos=N>:0

5

0:<from=none>:0

6

 <w1>:<w1>:<w1>

11

0:0:<letter>

7

<nterm>:0:0

 <w1>:<w1>:<w1>

0:0:<letter>

<pos=_>:0:0

10

0:<pos=_>:0

0:<from=_>:0

Fig. 2. Result of the rule compilation

60 François Barthélemy

6 Conclusion

The technique proposed in this paper is an improvement of the proposition by
Kiraz, namely compiling feature structures into regular expressions which are
part of a n-ary relation. The benefits of our approach are a more flexible use
of the features and the possible simultaneous use of several kinds of scope for
feature structures. There is also a better integration to contextual rules: the
feature structures are part of the contexts and centers, and not a side condition.

With respect to the propositions by Amtrup and Zajac, the compilation in
regular expressions offers a better integration into the two-level formalism. On
the other hand, there are restrictions on the kind of structures and a risk of
explosion of the size of the machines.

Ideally, a smart compiler should analyze grammars using unrestricted fea-
ture structures and automatically separate them in three parts: a small number
of features or features approximations which are statically compiled, a second
set of features which are computed at runtime as a finite-state operation (e.g.
transducer composition), after the composition with a surface (or abstract) form
and finally the features which are not computable using finite-state machines,
and which would be evaluated separately for each solution by an external device.
There is still a lot of work to perform such a statical analysis of grammars and
to improve compilation techniques for the first two subsets of features.

References

1. Zajac, R.: Feature structures, unification and finite-state transducers. In:
FSMNLP’98: International Workshop, on Finite State Methods in Natural Lan-
guage Processing. (1998)

2. Amtrup, J.W.: Morphology in machine translation systems: Efficient integration
of finite state transducers and feature structure descriptions. Machine Translation
18(3) (2003) 217–238

3. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications (2003)
4. Kiraz, G.A.: Compiling regular formalisms with rule features into finite-state au-
tomata. In: ACL, Madrid, Spain (1997)

5. Shöter, A.: Compiling feature structures into terms: an empirical study in prolog.
Technical Report EUCCS-RP-1993-1, ICCS, Edinburgh, Scotland (1993)

6. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-
tional Linguistics 20:3 (1994) 331–378

7. Black, A., Ritchie, G., Pulman, S., Russell, G.: Formalisms for morphographemic
description. In: Proceedings of the third conference on European chapter of the
Association for Computational Linguistics (EACL). (1987) 11–18

8. Pulman, S.G., Hepple, M.R.: A feature-based formalism for two-level phonology.
Computer Speech and Language 7 (1993) 333–358

9. Grimley-Evans, E., Kiraz, G., Pulman, S.: Compiling a partition-based two-level
formalism. In: COLING, Copenhagen, Denmark (1996) 454–459

10. Barthélemy, F.: Using Mazurkiewicz trace languages for partition-based morphol-
ogy. In: ACL, Prague (Czech Republic) (2007)

Finite-State Compilation of Feature Structures for Two-Level Morphology 61

11. Yli-Jyrä, A., Koskenniemi, K.: Compiling contextual restrictions on strings into
finite-state automata. In Watson, B., Cleophas, L., eds.: Proc. Eindhoven FASTAR
Days, Eindhoven, Netherlands (2004)

12. Koskenniemi, K.: Two-level morphology: a general computational model for word-
form recognition and production. Technical Report 11, Department of General
Linguistics, University of Helsinki (1983)

13. Chomsky, N.: On certain formal properties of grammars. Information and Control
2(2) (1959) 137–167

14. Mohri, M., Pereira, F.C.N., Riley, M.: Weighted finite-state transducers in speech
recognition. Computer Speech and Language 16(1) (2002) 69–88

	Finite-State Compilation of Feature Structures for Two-Level Morphology
	1 Introduction
	2 Compiling feature structures
	3 Relating feature structures and strings
	4 Examples
	5 Theoretical and practical limits
	6 Conclusion
	References

