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ABSTRACT. We study the geometry of the set of closed extensions of index
0 of an elliptic cone operator and its model operator in connection with the
spectra of the extensions, and give a necessary and sufficient condition for the
existence of rays of minimal growth for such operators.

1. INTRODUCTION

The principal purpose of this paper is to establish a framework for the construc-
tion of the resolvent as a pseudodifferential operator for elliptic cone operators A
on a compact manifold with boundary in the presence of suitable ray conditions.
Our main emphasis here is on geometric aspects of the problem. For example, we
may view the spectrum of an extension (of index 0) as corresponding to the inter-
section in a Grassmannian of a complex variety and a complex curve, and in the
case of a symmetric operator we prove that the set of all selfadjoint extensions is
a smooth submanifold of the Grassmannian of extensions (of index 0). The actual
construction of resolvents in the form of pseudodifferential operators is carried out
in [3]. From a practical point of view, our main results in the present work are
Theorems 8.7 and 9.4, both establishing necessary and sufficient conditions for a
closed sector in C to be a sector of minimal growth for the operator with a given
domain. Theorem 8.7 concerns the model operator A, while Theorem 9.4 is about
A itself. While both are abstract theorems, the condition (8.8) of Theorem 8.7 is
in principle verifiable.

Cone differential operators are generalizations of the operators that arise when
standard differential operators are written using polar coordinates. Their study
is therefore of interest in the context of manifolds with conical singularities, both
in themselves and as guiding examples in a general theory of analysis of differen-
tial operators on manifolds with other kinds of singularities, c¢f. Schulze [12]. As
indicated in [3], our motivation for constructing the resolvent of a cone operator
as a pseudodifferential operator comes from the desirability of executing Seeley’s
program [13] in the case of elliptic cone operators.

Resolvents for cone-elliptic operators written as pseudodifferential operators have
been constructed by other authors in special cases, e.g. Briining-Seeley [1], Mooers
[10], Gil [2], and Schrohe-Seiler [11], the last mentioned article being the one closest
to our own aims in [3]. Also of interest is Loya [6] in the context of b-operators.
Our aim, here and in [3], is to solve the problem with minimal assumptions.

A description of the paper follows.
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We shall be working with a fixed elliptic cone operator A acting on sections
of a Hermitian vector bundle E over a manifold M; the latter is assumed to be
compact of dimension n with nonempty boundary. The definition of cone operators
is recalled in Section 2, where we also recall the definitions of the spaces on which
cone operators act. In this section we introduce certain strongly continuous one-
parameter groups of isometries x,, one associated with M and one with the interior
pointing part of the normal bundle of OM in M (where A, lives). These actions
generally play an important role in the analysis of degenerate elliptic operators, see
Schulze [12], and they do so here as well.

The c-cotangent bundle, “T"* M, is defined in Section 3. Its definition is analogous
to that of the b-tangent bundle of Melrose [7, 8]. It is a vector bundle over M
which is canonically isomorphic to T*M over the interior of M. Cone operators
have invariantly defined symbols, ‘o (A), defined on “T*M. We also recall in this
section the definition of A, and discuss some properties inherited by A, from A.
We also briefly recall the definition of the conormal symbol.

In Section 4 we recall known facts about the closed extensions of cone-elliptic
operators on compact manifolds, such as M, and sketch proofs of analogous results
for the operator A,. Proofs are needed since A,, though elliptic in the proper
sense, is not a Fredholm operator on the spaces naturally associated with it. For A,
as is well known, there is a minimal closed extension with domain Dy,;,, and there
is a maximal extension with domain Dy,... Likewise, for A5 there is the domain
of the minimal extension, DA min, and the maximal domain DA max. In both cases,
the minimal domain has finite codimension in the maximal domain (in fact the
same codimension). The set of domains of closed extensions can be viewed as a
Grassmannian variety, and there is a natural map O, cf. (4.22) one can use to pass
from one variety to the other. This is most relevant in [3]; indeed, the meaning of
the condition that ‘e (A) admits a ray of minimal growth is clear, but to express
the analogous condition for A, requires the specification of a domain for A,. This
domain is the one associated by © with the given domain for A.

The analysis of the spectrum of a given closed extension of A is taken up in
Section 5. It is natural to classify the set of extensions of A by the index. The ones
with index 0 being the only relevant in the problem of studying the spectrum, we
let & be the set of domains D such that ind Ap = 0; here and elsewhere Ap means
A with domain D. The simple condition that both numbers d” = —ind Ap_,, and
d’ = ind Ap,_,, be nonnegative is necessary and sufficient for & to be nonempty,
see Lemma 5.1, and if this is the case, then & can be viewed as a (complex)
Grassmannian variety (based on Duyax/Dmin). An at first surprising fact is that
if dim® > 0, then for every A € C there is D € & such that A € spec Ap, see
Proposition 5.7.

Letting

bg-spec A = ﬂ spec Ap, bg-res A = C\ bg-spec A,
Dew®
we get
spec Ap = bg-spec A U (spec Ap N bg-res A),

a disjoint union. It is the part of spec Ap in bg-res A that is most amenable to
study. For A € bg-res A, the dimension of Ky = ker(Ap,,,, — A) is constant, equal
to d’, and

A€EresAp <= A€ bgresA and xND =0,
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cf. Lemma 5.10. And if £y ND = 0 then Dpax = Ky @ D. Let 1, p be the
projection on Ky according to this decomposition.

If A € bg-resA, then Ap_. — A is injective and Ap_, — A is surjective (this
property characterizes bg-res A). For such A let Bpax(A) be the right inverse of
Ap_.. — X whose range is orthogonal to IC) with respect to the inner product

max

(u,v) 4 = (Au, A'U)177n/2L§ + (u, U)wfm/ng,

and let Bpin(A\) be the left inverse of Ap_, — A with kernel the orthogonal of
rg(Ap,,. —A) in x=™/2L2(M; E). Then, if A € res Ap, one has the formula

Bp(A) = Bmax(A) = (I = Buin(A\) (A — X)) e, 0 Bumax (A)

for the resolvent Bp(\) = (Ap — A\)~! of Ap. This formula is evident if one notes
that the factor in front of mx, p is the identity on ICx. In principle both Bpin () and
Bpax(A) can be written as pseudodifferential operators, a purely analytic problem,
so inverting Ap — A is reduced to an algebraic problem, indeed, a problem in a finite
dimensional space, as follows.

Let Emax be the orthogonal of Dy in Dpax with respect to the inner product
defined above. Let Tmax @ Dmax — Dmax be the orthogonal projection on & ax.
Both I — Bpin(A)(A — A) and 7x, p vanish on Dyyin, SO

BD(A) = Bmax()\) - (I - Bmin()\) (A - A))Trmax T, D 7Tmameax()\)-
On the other hand,
A€resAp <= X € bg-res A and T\ N TmaxD = 0,

and for such \, Emax = TmaxkKorBTmax D, cf. Lemma 5.10. The map Tmax W/CX)D‘E.
is just the projection on my.x/Cx according to this decomposition of &Epax, “of.
Lemma 5.20.

Organizing the information in terms of Grassmannians turns out to be quite
useful. The set & can be viewed as the Grassmannian Grg» (Emax) of d’-dimensional
subspaces of Enax, and the spaces K (which are the fibers of a holomorphic vector
bundle over bg-res A) give a holomorphic map A — TmaxKn € Grg (Emax). The

condition that A € bg-res A N spec Ap is that T,/ belongs to the set
Lp = {V € Gry (5max) VN WmaX(D) 7& 0}.

This is a complex analytic variety in Grg (Emax) of codimension 1. The condition
that for some nonzero \g € bg-res A, the ray {rAg : » > R} contains no point of
spec Ap is that the curve in Gry (Emax) given by r — Ty, has no point in
Up when r > R. And if V € Grg (Emax)\Up, then the norm of the projection on
V using Emax = V P TmaxD can be estimated in simple terms. This can be useful
for estimating the norm of the resolvent of Ap near a point in spec Ap N bg-res A.

In Section 6 we discuss some aspects of symmetric cone operators from the
geometric perspective developed in Section 5. Among other things we show that
for such operators, the set of domains of selfadjoint extensions is a real-analytic
submanifold of &, and that if dim & > 0, then for every real A there is a selfadjoint
extension of A with A in its spectrum. This is so even if the operator with minimal
domain is bounded below (or above).

In Section 7 we analyze A,, also from the perspective of Section 5. While Ax
is not a Fredholm operator, the fact that it is homogeneous under the action of
the one-parameter group «, permits a rather complete analysis of the operator, its
background spectrum and the resolvents of the various extensions with index O.
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Theorem 8.7 gives a necessary and sufficient condition for a given extension of Ax
to admit a sector of minimal growth.

Theorem 9.4, a necessary and sufficient condition for a given extension of A to
admit a sector of minimal growth, is an analogue of Theorem 8.7. While their proofs
are quite similar, some assumptions in Theorem 9.4 are automatically satisfied in
the case of Theorem 8.7.

In [3] we use pseudodifferential methods to prove that if D € ® and A is a sector
of minimal growth for ‘@ (A) and for A gp, then it is also a sector of minimal
growth for Ap.

2. DEFINITIONS AND CONVENTIONS

Throughout the paper M is a compact n-manifold with boundary, m is a smooth
b-measure, £ — M is a Hermitian vector bundle, and V a Hermitian connection
on E. The boundary of M will be denoted by Y. By z we shall mean a smooth
defining function of Y, positive in the interior M of M. This function will be fixed
shortly so as to have certain properties that simplify the calculations.

The b-tangent bundle of Melrose, *T'M , is the vector bundle over M whose space
of sections is

CE (M;TM)={X € C®°(M,TM) : X is tangent to OM}, (2.1)
see [7, 8]. The space C2 (M;CTM) is a Lie algebra over C under the usual Lie

bracket, and the collection of elements of order < m in its enveloping algebra is the
space Diff}" (M) of totally characteristic differential operators of order < m. If E —
M is a complex vector bundle and Diff™ (M; E) is the space of differential operators
on C*®(M; E) of order m, then Diff};"(M; E) denotes the subspace consisting of
totally characteristic differential operators on C*°(M; E) of order m, cf. Melrose
8]
The elements of =™ Diffy"(M; E), that is, differential operators of the form
A=z P with P € Diff;"(M; E), are the cone operators of order m.

The Hilbert space L (M; E) is the L? space of sections of E with respect to the
Hermitian form on E and the density m. Thus the inner product is

(u,v)r2 :/(u,v)Em if u, v e L}(M; E).

For non-negative integers s the Sobolev spaces Hj (M; E) are defined as
Hi(M;E)={uc L}(M;E): Puc L}(M;E) VP € Diffj(M; E)}.
The Hilbert space structure is defined using the vector fields in C&S, (M ; T M) with

tan
the aid of the connection on E and a partition of unity. The spaces H; (M; E) for
general s € R are defined by interpolation and duality, and we set

H*(M; E) = (Hy(M;E), H,>~(M;E) = H;(M;E).

The weighted spaces
«T#HE(M;E) = {:E‘uu RS HE(M»E)}

are Hilbert spaces with the inner product for which Hf(M;E) 3 u — zfu €
x*H{(M; E) is an isometry. In the case of s = 0 one has

" HY(M; E) = 2" L}(M; E) = L*(M,z~*m; E),
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and the Sobolev spaces based on L?(M, x~?*m; E) and Diff; (M; E) are isomorphic
to x# Hi(M; E). The topological structure of these spaces is independent of the
particular b-density on M, Hermitian structure and connection of F, and defining
function z.

To simplify a number of computations and constructions it is convenient to
introduce additional structure. Let 7 : NY — Y be the normal bundle of Y in M,
NY =Ty M/TY. Let  : M — R be any defining function for Y, positive in M.
Since dx vanishes on TY, dx defines a function x, = dxr : NY — R. Define

YN ={veNY :x v >0},

and let 7, : Y — Y be the restriction of .

Let 20, denote the canonical section of *T'M along Y. Let my = xd,.|m be the
contraction of m by xd, along Y; my is a smooth positive density on Y. There is
a tubular neighborhood map

¢:VcY'—-UcCM (2.2)
and a defining function x for Y in M such that

d
P'm="@r"my in V. (2.3)
X

To see this, pick some smooth but otherwise arbitrary tubular neighborhood map
® and a defining function #. Trivialize N1Y as [0,00) x Y by choosing some
smooth vector field Jz in M along Y such that 0z;Z = 1. Trivialized in this manner,
Za :]0,00) x Y — [0,00) is the canonical projection. The b-density % @mimy is
smooth, positive, and globally defined on Y. Therefore, near Z, = 0,

~ d
TA

with some smooth function f. From the fact that ® is a tubular neighborhood map
it follows that f = 1 when 5 = 0. There is g smooth, defined near 5 = 0, and
equal to 1 at £, = 0, such that if

F(i'/\ay) = (i./\g(i./\u y)ay)u
then i 0
F* (f& ®mimy) = Zh g Timy.
N N
Indeed, this holds if g solves

g  1-f(@rg,y)
f(@ng,y) N
Since f(0,y) = 1, There is a smooth solution with initial condition ¢(0,y) = 1.
Define ® = ® o F. Then @ is a tubular neighborhood map satisfying (2.3). Let
x be a smooth function on M, positive in ]\;[, that agrees with T o d~! near Y.
Then ® and x are as required.

We fix a tubular neighborhood map (2.2) and defining function z for Y such
that (2.3) holds, and take

07,9 =

dx
my=—2® T my (2.4)
Ta
as density on Y. We also fix x4 as defining function for Y in N, Y. Both U and

V contain Y.
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Let XA = 0, be the canonical vertical vector field. Fix a smooth real vector
field X on M which coincides with d®(X,) near Y. Shrinking V' and U we assume
that this holds in U.

Definition 2.5. An operator P € Diffy"(M; E) is said to have coeflicients inde-
pendent of z near Y if [P,V,x] = 0 near Y.

If P € Difff"(M; E), then for any N there are operators Py, Py € Diffy"(M; E)

such that
N-1

P= Z Ppa® + Py (2.6)
k=0
where each Pj has coefficients independent of x near Y. If P has coefficients
independent of z near Y then so does its formal adjoint P* in L?(M;E). This
follows immediately from

(VIXU,’U)Lg(M;E) = _(U, vwX’U)Lg(M;E), U, vE CSO(U7E) (27)
To see that the latter formula holds we note that
X (u,v)g = (Vexu,v)g + (u, Voxv)p

because the connection is Hermitian. Near Y, the Lie derivative £, xm vanishes
because of (2.3) and the choice of X. So if u and v are supported in U and
h = (u,v)g, then 2Xhm = L, xhm = d(hzX|m). Therefore, by Stokes’ theorem,
JzX (u,v)pm =0 if u, v € C§°(U; E). This gives (2.7).

Let E — Y be the vector bundle 7% (E|y) and give it the canonical Hermitian
metric and connection. An operator P € Diffy"(Y"; E") is said to have constant
coefficients if it commutes with V, x,. The spaces

S H (Y EY)
are defined in a manner completely analogous to those associated with M, using
constant coefficient operators; for nonnegative integers s they are defined using
smooth vector fields in *TY” that commute with z* X”. Since Y is non-compact,
2 L3 (Y"; EM) literally means the L2-space corresponding to the measure x5 #m.
Using the tubular neighborhood map ®, define
o, : BNy — Ely

as follows: For n = (p,n') € E}) withp € V and ' € E, (), let ®.n € Eg(p) be the
element obtained by parallel transport of #’ along the curve t — ®(tp), ¢t € [0, 1].
The map P, is a smooth vector bundle isomorphism covering ®, an isometry because
V is Hermitian. For this reason, and because of (2.3), the induced map

&, :a " PLA(VENy) — 2 2L (UL E|y) (2.8)
is an isometry.
Let x: be the one parameter group of diffeomorphisms of M generated by xX.
If u is a section of E, let (kbu)(p) € E, be the result of parallel transport of
u(Xlog oP) € Ey,., ,p along the curve
[Oa 1] EE X(1-s) logg(p) € M.
There is a unique smooth positive function f, : M — R with the property that

fox™m = Xlog o(Z"'M).
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Definition 2.9. Let &, act on C§° (M E) as kou = fyky. Denote also by k, the
analogously defined family of maps on C§° (YA EMN) obtalned using ma and xA0;, .

The context will indicate whether an instance of x, means the operator on sec-
tions of E over M or sections of E” over Y. In the case of Y, the function f, is
0™/?. Because of the following lemma, the function fo, in the case of M, is equal
to 0™/2 near Y.

Lemma 2.10. Let u € C§°(V; EMy). Then ky®.u = ®uk,u for all o> 1 —¢ for
some € > 0 depending on u.

This follows from the definitions of ®, and k,, using that near Y, ®*m = mj,
" =z o®, and 9,0,, = X. The number ¢ serves only to ensure that the support
of K,u is contained in V.

Lemma 2.11. The family o — k,, nitially defined on CSO(J\;I;E), extends to
x_m/QLg(M; E) as a strongly continuous one-parameter group of isometries.

Proof. Let h denote the Hermitian metric on E. If u, v € 080(1\04; E), then
h(kpu, kov)z™m = h(fokpu, forbv)z™m
= h(kbu, ﬁgv)fzxmm Xiog o (P (1, v) 2™ m)
S0 K, extends to 27™/2L2(M; F) as an isometry. Next we note that

foro= fQ'XTogg’fQ'
Indeed,
fgz/ga:mm = Xﬂ,g oM = Xikog Q/Xikog yT'm
2 * 2\ f2
= Xrog g’(fgxmm) = (Xlog g’fg) sz m.
Thus
Koo = for oKy o = fo (Xrogg fg)"f‘ ”439 = fg"f” fg’fg = Kg'Kg-
That ¢ — keu is continuous follows from the fact that this holds when u belongs

to the dense subspace C§°(M; E) of 2=™/2L2(M; E) and the continuity of each
Ko- g

We end the section with a brief comment on what we mean by the Mellin trans-
form of an element of z~™/2L2(M; E). Fix w € C§°(—1,1) real valued, nonnegative
and such that w =11in a nelghborhood of 0. Also fix a Hermitian connection V on
E. The Mellin transform of an element v € C§° (M E) is defined to be the entire
function @ : C — C*°(Y; E|y) such that for any v € C°(Y; E|y)

(:z:_wwuaﬁfv)Lﬁ(M;E) = (4(0),v)L2(v;E|y)-
By mjv we mean the section of E over U obtained by parallel transport of v along
the fibers of my. As is well known, the Mellin transform extends to the spaces
o' LE(M; E) in such a way that if u € *L3(M; E) then (o) is holomorphic in
{So > —p} and in L2({So = —pu} x Y) with respect to do @ my-.

The density m, the map ®, the function x and the Hermitian connection are
fixed throughout the paper. For the sake of some notational simplification we
will henceforth write =, m, and E instead of z., m,, and E”. Fixing a defining
function x for Y in M, as we have done, is equivalent to fixing a trivialization of
Y, a diffeomorphism Y — [0,00) X Y.
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3. THE SYMBOLS OF A CONE OPERATOR

Let E, FF — M be complex vector bundles over M. An operator
A€z "Diffy"(M;E,F)
is called c-elliptic if P = 2™ A is b-elliptic, which means that its b-symbol,
bo(z™A) € C°°(*T*M\0; Hom(r* E, 'r* F))
(cf. Melrose, op. cit.), is invertible. Here ’r : *T*M\0 — M is the projection

map. This definition depends in a mild way on the choice of defining function: if &
is another defining function for M, then

Yo (i A) = (&/2)™ bo(z™A). (3.1)

Alternatively, consider the following construction of the c-cotangent bundle of
M, ¢T* M, motivated by Melrose’s definition of *T'M, and definition of an invariant
replacement of the b-symbol. Let ¢ : 9M — M be the inclusion map and define

CX(M;T*M)={neC>®(M, T*M) : *n=0},
the space of smooth 1-forms on M which are, over 0M, sections of the conormal
bundle of M in M. Just as with the b-tangent bundle, there is the c-cotangent
bundle, “T*M, whose space of smooth sections is CS2(M;T*M), and a homomor-
phism

Cev: “T"M — T*M

which is an isomorphism over the interior. The fiber over p is

Ty M = C3(M;T*M)/(Z,(M) - CZ/(M; T* M)

where Z,,(M) is the ideal in C*° (M) of functions vanishing at p, and the homomor-
phism “ev is the one induced by

C(M;T*M) 3 0 — n(p) € T; M.

Since the latter map has Z,(M) - C(M;T*M) in its kernel, it induces a map
‘evp 1 “TyM — T7M. Let “T'M be the dual bundle and let “r : “T"M — M be
the projection map.

At this point it is convenient to recall that the b-tangent bundle of M is defined
in a completely analogous manner using Ce2 (M;TM), cf. (2.1), so that

tan

"T,M = C5,(M;TM)/(Z,(M) - O, (M; TM)).

tan tan

Thus we have a map bev: °TM — TM.
Now let A € =™ Diff}"(M; E,F). Since A is a differential operator in the
interior of M, it has a principal symbol there, given by the standard formula

o (A)(€)(9(p)) = lim 7" TP A §)(p)

with f a real-valued smooth function such that df (p) = £ and with ¢ a smooth
section of F. Suppose now that f is defined in a neighborhood of a point py € OM
and vanishes on 0M, so that df is conormal to M and therefore represents a local
section of “T*M. If, with local coordinates x, 41, . .., yn—1 and with respect to some
frame ¢; ..., ¢, of E and frame 11, ...,1s of F, near py, we have

A gy =2 YT af, (@, y) DY (D) iy,

Iz oV kit |o <m
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then, away from the boundary,
a(A)NQ_ W) =27y Y afap(@,9)(@y ) @0uf) D .
© v k+|al=m
Since f = xg with smooth g, this is equal to
DY (@ 9)(0y9) (g + 2029) W
v k+|al=m

which is smooth up to the boundary. Suppose that f is another smooth function
defined near py and vanishing on the boundary, so that f = 2§ for some §. Then
the statement that R

df — df € T,, (M) - O35 (M; T° M)

is equivalent to the statement that
9(po) = §(po) and 9y,9(po) = 0y, G(po) for j=1,...,n—1;
recall that pg € @M. Thus if df and df represent the same element of “Tp, M, then
Tim a(A) & ()(@) = lim o (4)@f)6()
for any smooth section ¢ of E defined near py. It follows that the function
TiM 31— “o(A)(n) = a(A)(“ev(n))
extends by continuity to a function
‘T*M 31— “a(A)n),
a section of Hom( r* E, v*F') over “T*M\0. It is easy to see that ‘o (A) is smooth.
Definition 3.2. The section °o(A) is the c-symbol of A.

By the definition,
‘o(A)(n) =a(A)(“ev(n), ne “TyM.
From the fact that “ev is an isomorphism over the interior of M, invertibility of
co(A) over M is equivalent to ellipticity of A in that set.
To relate the c-symbol of A and the b-symbol of 2™ A recall first that if P €
Diffy"(M; E, F), then
‘o (P)("ev*n) = a(P)(n), n€T*M\0;
here ev* : T*M — °T*M is the dual of Yev : ®TM — TM. Thus, if n € *TM
projects on an interior point of M, then
(2™ A)(@) = o (P)(("ev?) L), 7€ "TM\O.
The fact that 2™A is totally characteristic implies that 7 ~— o (P)((%ev*)~1(#))

extends by continuity to the boundary. Let n € “T™*M project over an interior
point. Then

“a(A)(n) = o (A)(“ev(n) = 2~ o (c™ A)(“ev(n))
— o2 A) (@ “ev(n) = o (@™ A)(ev* (@™ Cev(n))).

Writing the map 7 — Yev*(z~! “ev(n)) in coordinates one sees that it extends as a
smooth isomorphism x~! : ¢T*M — °T*M, so

‘o (A)(n) = "o (a™ A)(x (1))
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In particular, invertibility of the c-symbol of A is equivalent to invertibility of the
b-symbol of =™ A.

The isomorphism x~ ! : ¢T*M — YT*M is determined by the defining function
x, so is not natural. Write x for its inverse. If z is another defining function for
OM then x~'% is multiplication by Z/z; this is the reason for (3.1).

Definition 3.3. The operator A € x~™ Dift;"(M; E, F) is called c-elliptic if
‘o(A) € C*(°T*M\0; Hom( " E, T*F))
is an isomorphism. If F = E, the family A — A — X is called c-elliptic with
parameter in a set A C C if
Co(A) =X e C®((“T*M x AM\0; End((“r x id)*E))
is an isomorphism. Here “r x id : (°“T*M x A)\0 — M x A is the canonical map.

Let x: be the one-parameter group of diffeomorphisms generated by the vector
field X, cf. Section 2. Fixt andletn € C3(M;T*M). Then xjn € CS(M;T*M),
since x; ot = . Since also x;Zy, () (M) = I,(M), we get a map

X;: ‘TM — °TM, (3.4)

a vector bundle morphism covering x_;. It is not hard to see that this map
is smooth. If A € z ™ Diff}"(M;E,F), let A, = g_mkaglAmQ. Then A, €
x~™ Diff )" (M; E) and

o(Ag) = 07"k, (“(A) 0 Xjog p)Fe- (3.5)
Thus A, is c-elliptic if A is.

We now recall the definitions of conormal and wedge symbols, and boundary
spectrum.

If P € Diff)*(M; E) and if u is a smooth section of E that vanishes on Y = 0M,
then Pu also vanishes on Y. Therefore, if v is a section of F over Y and w is an
extension of v, then (Pu)|y does not depend on the extension. Thus, associated
with P there is a differential operator

P(0): C®(Y;Ely) — C®(Y;Ely)

of order m. Fix ¢ € C. Since u — 27 P(2'°u) is an operator in Diff;"(M; E),
there is, for each o € C, an operator P(c) € Dif™(Y; E|y). The conormal symbol
of P is defined to be the operator-valued polynomial

C 50— P(o) € Dif™(Y; Ely). (3.6)

It is easy to verify that P(o) is elliptic for every o if P is b-elliptic. The boundary
spectrum of P, cf. Melrose [8], Melrose-Mendoza [9], is

specy(P) = {o € C: P(c) is not invertible}.

The definition of P(c) depends on the choice of defining function z but different
choices of defining functions give operators related by conjugation with multipli-
cation by €9 for some smooth real-valued function g, so the particular choice
of defining function to define the conormal symbol is not critical. The conormal
symbol of A € z~™ Diff)"(M; E) is defined to be that of the totally characteristic
operator ™ A, and the boundary spectrum of A is defined to be that of ™ A.
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If A€ 2z7™Diffy"(M; E, F), then ®_'A®, is a cone operator defined in V, cf.
(2.8), and if u € C§°(Y"; E"), then the limit in the following definition exists in
C (YN M.

Definition 3.7. The wedge symbol of A is the operator A, € =" Diff)"(Y"; E, F)
defined by

Apu = lin% 0" k(PP AD, K, M (3.8)
Q—?

The wedge symbol A, of A inherits properties of A. Using the tubular neigh-
borhood map ® we also get a bundle isomorphism

TyY"N — “TypM
covering ®. It is not hard to verify that, over Y =Y = OM we have
CU'(A/\)| cTyHY A = C@'(A)| eTy M-

Thus c-ellipticity is preserved.
Let A* be the formal adjoint of A acting on x~™/2L%(M; E). Since ®, and &,
are isometries (the former near Y),

(gmmg(tI)*_lA@*)nglu,U)zfm/ng = (u, gmﬁg(leA*@*)ﬁglv)rm/ng

if u,v e C§° (};A; E™) and p is small. Thus, taking the limit as ¢ — 0 we get
(An)" = (A%)A. (3.9)
Lemma 3.10. Suppose that A is symmetric on Cgo(]\;[; E). Then Ap is symmetric

on C§ (YN E). If in addition A is semibounded from below, then Ax is semibounded
from below by 0.

The first assertion follows immediately from (3.9) and the hypothesis that A* =
A. For the second, let C' € R be such that

(Au, w)gmrzpz 2 Cllull3-mjaps,  ue€ C5°(M; E).
Suppose that u € C§° (13, E™). Then

(0" K, (@ AD, )k u, W)y-mapz = 0" (APukgu, Rukiglt) y—m/2p2

> OO [Barigul’ o ags = Co™lul2eps
Passing to the limit as ¢ — 0 we thus get the second assertion of the lemma.
It also follows from (3.8) that the family A — A, — X satisfies the homogeneity
relation
Ap — 0" A = 0" k(AN — /\)Iigl for every o > 0. (3.11)

Definition 3.12. A family of operators A(\) acting on a k-invariant space of
distributions on Y/ will be called x-homogeneous of degree v if

A(™N) = 0"k ANy,

4

for every o > 0.
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4. CLOSED EXTENSIONS

Suppose that A € =™ Diff}"(M; E), fix u € R and consider A first as an un-
bounded operator

A:C®(M;E) C a"L3(M; E) — 2" L3(M; E) (4.1)

Write Dpin(A) for the domain of the closure of this operator; with this domain, A
is referred to as the minimal extension of A. The structure of Dyin(A) when A is
c-elliptic was characterized in Gil-Mendoza [4, Proposition 3.6]. Define also

Diax(A) = {u € 2" LI (M; E) : Au € 2" L} (M; E)}
The maximal extension of A is
A Dpax(A) C 2" LE(M; E) — 2" L3 (M; E),

also a closed operator. The space Dmin(A) is a closed subspace of Dpyax(A) in
the graph norm defined by A, and all closed extensions of (4.1) have as domain a
subspace of Dyax(A) containing Dy (A).

It is well known, see Lesch [5], that if A is c-elliptic, then A with domain Dy,ax(A)
is Fredholm, Dyin(A) has finite codimension in Dyyax(4), and if D is a subspace of
Dinax(A) containing Dpin(A4), then

ind Ap = ind ADmin + dim D/Dmin- (42)
Here Ap means the operator
A:DCa'L}(M;E) — a"L}(M;E).

The problem we wish to consider is the nature of the spectrum and structure of the
resolvent of the closed extensions of (4.1) of index zero (if any).
Since multiplication by ¥ is an isomorphism (in fact an isometry)

2V LI (M; E) — 2" L3 (M; E)

we may conjugate A with such operators with no essential change of the problem.
For convenience we will work with the operator z=#~™/2 Axk+m/2 g0 as to base all
the analysis on 2= ™/2L2(M; E). Clearly, 2=#~™/2 Agh+m/2 ¢ =™ Diff]"(M; E).
Since

Co(x_“_m/zA:E“+m/2) = ‘o(A),

c-ellipticity is preserved by such conjugations. We thus assume that u = —m/2.
The standing assumption, unless otherwise indicated, will be that A is c-elliptic.
We will usually abbreviate Dpin(A) t0 Dmin and Dyax(A) t0 Dpax when the
operator is clear from the context. As already indicated, the operator A with
domain D will be denoted by Ap.
The inner product

(w,v)a = (U, 0)p-ms2p2 + (Au, AV)ym/2p2 (4.3)
on Dy« makes this space into a Hilbert space.

Definition 4.4. The orthogonal of Dyyin(A) in Diax(A) with respect to this inner
product will be denoted Epax(A), or Emax if A is clear from the context. We denote
by Tmax : Pmax(A) — Dmax(A) the orthogonal projection on Epyax(A).
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Since Dy is closed in Dy,
Dmax == Dmin &® gmax
and since Dy, has finite codimension in Dyyax, Emax 1S a finite-dimensional space.

Lemma 4.5. The space Emax(A) is equal t0 Dmax(A) Nker(A*A + I), where the
kernel is computed in the space of extendable distributions.

Here A* is the formal adjoint of A in the space z~"/2L%(M; E), that is,
(Au,v) = (u, A"v) Vu, v € Cgo(]\;[;E).

It is immediate from the definitions of minimal and maximal domains that the
Hilbert space adjoint of

A Duin(A) € 27™2L2(M; E) — 2 ™2L3(M; E) (4.6)
is

A Doy (A*) C 2™ ™2L2(M; E) — o™ 2L3(M; E).
Proof. We first show that Emax C Dmax(A) Nker(A*A + I). If u € Epax, then
U € Dpax(A) and
(A’U,,A’U)mfm/2L§ = —(u,v)zfm/ng Vv € Dmin.
Therefore the map
Dmin(A) S0 — (Au,A’U)w—m/2L§ eC

is continuous in the norm of 2=™/2L%(M; E), and consequently, Au belongs to the
domain of the Hilbert space adjoint of (4.6). Thus u € Dpyax(A* A) and the identity
(uu U)A =0,ve Dmin(A) gives

(A*Au,v) + (u,v) =0 Yo € 080(1\04; E)
which gives that u € ker(A*A + I'). Thus Emax C Dmax(A) Nker(A*A + I).

To prove the opposite inclusion, suppose that u € Dpax(A) Nker(A*A+1I). Then
Au € 7™/2L2(M; E) (since u € Dyax(A)) and A*(Au) = —u € = ™/2L2(M; E),
80 Au € Dpax(A*). Thus

(A*Au,v) = (Au, Av) Yov € Cgo(]\;[; E)
and it follows that (u,v)4 = 0forallv € Cgo(]\;[; E). Since the latter space is dense
in Dpyin, we get that u € Epax. [l

In the course of the proof we also showed:
Lemma 4.7. £yax(A) C Dmax(A*A).

Since A is c-elliptic, so are A* and A*A+ I. It follows that the Mellin transform
of any u € Epax is a meromorphic function defined on all of C.

We now discuss analogous aspects for the operator A,. The space Dpmin(An) is
the domain of the closure of

Apc: C’go(};A;E) - x_m/QLg(YA;E) — a:_m/QLg(YA;E)
and
Duax(Ap) = {u € 2 ™2L2(YN E) : Ayu € 2™ ™2L2(YN; E)}.
Since Ax need not be Fredholm with either of these domains, we discuss these in

some detail. We will usually write D min and Da max for the minimal and maximal
domains of A,.
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Lemma 4.8. If u € Dyax(An), then (1—w)u € Dumin(AA) for every cut-off function
w with w =1 near x = 0.

In other words, as far as closed extensions are concerned, there is no essential
structure at infinity.

Proof. Let j : Y” — Y’ be the involution (z,y) — (&,y) = (1/z,y). Under
this map, Po = z AN goes over to a certain other totally characteristic b-elliptic
operator Py, A goes to Ay = &M Py, and

J* et HY (Y E) — ¢V HP (Y E)
is an isomorphism. We’ll write for j*u. Since Py is b-elliptic, there are properly
supported operators (Q and R defined on extendable distributions such that for
every v the operators

Q:&'Ly(Y;E) — ¢"H" (Y E), R:&'LyYNE)— &/HP(YNE)

are continuous and o 3

QPy=1-R.
If u € Diax(AA) then @ € E™/2L2(Y N E) and ™ Pyt = f € E™/2LE(Y"; E). From

Q¢ f = Q¢ ™ Pyii = u — Ru,
we get 3 o
ut=Q"f+ Ru
with Q¢ f € ¢&™/2H" (Y™ E) and Ri € €"/2HX (YN, E). If w is as in the
statement of the lemma, then (1 — &) is supported near ¢ = 0, so (1 — ©)Ri €
EMPHMY N E). Thus (1 —@)a € EmPLA(YNE)NE™2HMYNE). Let x €
C§°(R) be such that x(&) =1 near 0 and let x¢(§) = x(¢€). Define
o= (1- Xe)(l — @)

Then v, € E™2LEYNE)NE™ m/QHm( E) and vy — (1 — @)a as £ — oo, in
ML (YN E) as well as in £/2H(Y"; E). From the latter we get that Pyoy
converges in ™/ 2L2(Y" E) to Py(1 d)) s ¢ — oo, and consequently, that A7,
converges in {™/2L2(Y"; E) to Ax(1 —@)a. This proves that (1 —w)u € Dyin(An),
since the v, are compactly supported. (I

The structure of DA min near Y is described in the first two items of the following
proposition, which can be proved using the same arguments as in the proof of [4,
Proposition 3.6]. The third follows from an analysis of Mellin transforms that takes
advantage of the fact that the conormal symbols of A, and A are the same. An
explicit, simple but fundamental isomorphism between the spaces Da max/ DA min
and Dpax(A)/Dmin(A) is given in Theorem 4.12.

Proposition 4.9. Let A € =™ Dift)"(M; E) be c-elliptic. Then
(1) Damin = {8 € D max : wu € 2™/2SHM™ (YN, E) Ve > 0}.
(#1) Dpmin = 2™ 2H (Y™ E)Na~™/2L2(Y™; E) if and only if spec,(A) N {So =
—-m/2} = @.
(191) dim Da max/Da,min = dim Diyax(A)/Dimin(A).
On D max we take, naturally,
(u,v)a, = (Anu; ANV)p-mr2pz + (U, V) -m/212, (4.10)

as inner product.
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Definition 4.11. The orthogonal of Da min in Da max With respect to this inner
product will be denoted Emax(An), OF Eamax if An is clear from the context. We
denote by A max : Pmax(Ar) — Dmax(An) the orthogonal projection on Epax(An).

The proof of Lemma 4.5 gives that Ea max = D max Nker(Ax Ax + I).

The following result, although elementary in nature, is of fundamental impor-
tance in expressing the relation between the domains of A and the domains of Ax.
Let

S={oceC:—-m/2<Soc <m/2},
and for each o € S let N(o) be the largest integer N such that So — N > —m/2.
Let 05, 7 =1,...,v be an enumeration of the elements of 3 = spec,(4) N S.

Theorem 4.12. Let A be an arbitrary c-elliptic cone differential operator. There
are canonical decompositions

Emax(A) = P&, (A),  Emax(An) = P&, (An) (4.13)
j=1 j=1
such that
(i) if u € &, (A), then U|{s5>—m/2y has poles at most at o; — i for ¥ =
0,...,N(0’j),’

(ii) if u € Eq;(An), then U|{go>—_m/ 2} has a pole at most at o;;
(ii1) if u € E,(A) oru € E,(An) and 4 is holomorphic at o, then u = 0.

There is a natural isomorphism

0 : Emax(A) = Emax(AN) (4.14)
such that for each j,
0|Saj(A) 1€, (A) = &5, (AN), (4.15)
and for each j and for all u € &, (A),
(@ 'wu — Qu)™ is holomorphic near o, (4.16)

where w € C§°(U; E) is such that w =1 near Y.

Proof. For any open set U C C let 9M(U) be the space of meromorphic functions
on U with values in C*°(9M; E|onr). For ¢ € U let M,,(U) be the subspace of
M(U) counsisting of elements with pole only at o9 € U. Finally let H(U) be the
subspace of holomorphic elements. We let

Soo : Moo (U) — Mg, (C)
be the map that sends an element in M, (U) to its singular part at og.
If A=2""P with P € Diff};"(M; E), then near Y = 9M = 9Y" we have
m—1
amA=P=> Pua"+Pna" (4.17)

k=0

where each Py, k < m, has coefficients independent of . Then
AN = O] Py,

near Y in Y. Let Pk be the conormal symbol of P;. The operator 150 is the
conormal symbol of both A and A,.
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Let ¢ € X, and let U C S be a neighborhood of oy such that U N spec,(A) =
{o0}. Then P, gives an operator

P:MU)/HU) — MU)/H(U)

whose kernel is finite-dimensional. Since o¢ is the only point of spec,(A) in U,
the elements in the kernel of P are represented by meromorphic functions on U
with pole only at o¢. By taking the singular part of such functions we get a space
E50(AN) C M, (C) with the property that h € M,,(C) and Poh € H(U) imply
that there is a unique element ¢ € &,,(Ax) such that h — ¢ € H(U):

Eoo(An) = {500 (Po(0) ' f(0)) : | € HU)}. (4.18)

If ) € £,,(An), then there is u € x~™/2H*(M; E) supported in U such that
@ — 1) is holomorphic in Yo > —m/2. Such u belongs to x~™/2L2(M; E), and since
Pyt = ]50(11 — 1)) is holomorphic in o > —m/2, we get that @ 1u € Dyax(An). If
v € Dmax(AA) also has the property that ¥ — 1) is holomorphic in So > —m/2, then
O 1u — v € Dpin(A4n), and consequently ma max®; 't = Ta maxv. Thus there is a
well defined operator Fp 4, : égo (Ap) — Emax(An), characterized by the property
that

Y — [Fa o] is holomorphic in So > —m/2.

From this property one obtains that
SUO([FNUOQ/JD =

so the operator F)j ,, is an isomorphism onto its image. Define

50'0 (A/\> = F/\,Uogo'() (A/\) (419)
Clearly, if 04, 0; € ¥ and 0; # 0;, then &, (Ax) N &y, (An) = 0.
If u € Emax(An), then 4 is meromorphic in So > —m/2 with poles in %, since

Py is holomorphic in S0 > —m,/2. Therefore So; (1) € fgj (Ap)and a— ) s, (1)
o;€EX
is holomorphic in So > —m/2. Thus the Mellin transform of

v
v=u-— ZF,\,gjsgj (@)
j=1

is holomorphic in o > —m/2, and therefore v € Dyin(An). But since v also
belongs to Emax(AA), v = 0. Thus we have (4.13) for the operator Ax.
We now construct the spaces &5, (A) for A. Pick op € ¥ and let ¥ € &5, (An).

Thus 1501/1 is entire. Define é,, 0 as the identity map on c‘fgo (AA) and inductively
define

bo0  Eo(An) = My _ip(C), 9 =1,...,N(0p)
by

9—1
o) = =50 o) Y Po-a(o) )l + 0~ 0) ).
=0
Then

9
D Py o(0) (€op e (¥) (0 + (9 — 1)) (4.20)
=0
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is entire, and
N Uo)

m—1 (
Z Pi(o Z Eaq,0(¥) (0 + ik)
k=0 =0

is holomorphic in So > —m/2. Define
~ N(GO) ~
Eo(A) ={ D Cop0(¥) 19 € £y (AN)}- (4.21)
9=0

Given 1 € &,,(Ap), choose for each 9 and element uy € x~"™/2H°(M; E) such that
Gy — E40.9(¢) is entire. Then u = 3" uy € Diax(A). If the vy € 2™/ 2H?(M; E)
also satisfy the condition that 0y — &4,,9(1)) is entire, then Tmax(u) = Tmax(v), s0

again we have a well defined operator Fy, : £ (Ar) — Emax(A). This operator is
injective; we let £y, (A) be its image. It is more tedious than hard to verify that
(4.13) holds.

Define 6 so that (4.15) holds, and on each &;,(A), 0 = Fp o, © F‘jl. Then (4.16)

g

also holds. (]
Let
D(A) = {D C Dmax(A) : D is a vector space and Dp,in(A) C D}.

The elements of ®(A) are in one-to-one correspondence with the subspaces of
Emax(A) via the map

D 35D+ DN Dyax(A) = Tmax(D) C Emax(4),

so D(A) can be viewed as the union of the Grassmannian varieties of various di-
mensions associated with Epax(A). Likewise let

Dp ={D C Dp max : D is a vector space and D min C D}.
With the map 6 of Theorem 4.12 we then get a map
0 :D(A4) — Da. (4.22)

5. DOMAINS AND SPECTRA

Only the closed extensions of the c-elliptic cone operator A € =™ Diffy" (M; E)
that have index zero may have nonempty resolvent set.

Lemma 5.1. There is D € ® such that ind Ap = 0 if and only if ind Ap_,, <0
and ind Ap,_,,, > 0.

Proof. If there is a domain D € © such that ind Ap = 0, then the relative index
formula (4.2) gives

ind Ap,,, <ind Ap_,, + dimD/Dpax =0
<ind ADmin + dim Dmax/Dmin =ind Apmax.

Conversely, suppose that 0 < —ind Ap_,, and ind Ap_, > 0. Using (4.2) again we
get

d=ind Apmax —ind Apmin,
so —ind Ap_,, < d, and there is a subspace of Dyax/Dmin of dimension —ind Ap,_,, .
This subspace corresponds to an element D € © for which (4.2) gives

ind AD = ind Apmin —ind Apmin = 0,
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which proves the lemma. [l

The domains D € ® on which A has index 0 are those in
&={De®D:dimD/Dpy, = —ind Ap_,, }.
By the lemma, & is empty unless
ind Ap,_,, <0 and ind Ap,__, > 0. (5.2)
Assuming this, let d’ = —ind Ap_,,. Then
® 35D+ DN Enax = TmaxD € Gra (Emax) (5.3)

is a bijection between & and the Grassmannian of d”-dimensional subspaces of £,
which we use to give ® the structure of a complex manifold. Let d' = ind Ap_,. .
Then d = d’ + d” = dim Enax.

An initial classification of points in the spectrum of a closed extension of A
begins with the notion of background spectrum.

Definition 5.4. The background spectrum of A is the set
bg-spec A ={\ € C: \ € spec Ap VD € D}.
The complement of this set, bg-res A, is the background resolvent set.

Thus, if D € &, then Ap has as spectrum the (disjoint) union of bg-spec A and
a subset of bg-res A. Note that the resolvent set res Ap of Ap, D € &, is contained
in bg-res A. As we shall see, the part of the spectrum of Ap in bg-res A is amenable
to detailed study. The set bg-spec A has the same generic structure as a spectrum:

Lemma 5.5. The set bg-spec A is either C, or closed and discrete.

Indeed, bg-specA is an intersection of closed sets, so itself closed, and either all
spectra are C or there is one extension with discrete spectrum.
Thus bg-res A is open. A useful description of bg-res A is as follows.

Lemma 5.6.

bgresA={A e C: Ap,_,, — A is injective and Ap,, . — N is surjective}.

Proof. If A € bg-res A, let D € © be such that A\ ¢ spec Ap. Since Dyin C D,
Ap,,, — A is injective, and since D C Dax, Ap,,., — A is surjective. Thus A\ €
bg-res A.

Conversely, suppose that A belongs to the set on the right in the statement of
the lemma. Let R C 2=™/2L2(M; E) be the range of Ap_,, — ), and let R* be its
orthogonal. Since Ap_. — A is injective, dim R+ = —ind Ap,,, = d”. Choose a
basis f1,..., far of RY. Since Ap_._ — A is surjective, we may choose u1, ..., ug: €
Dimax such that (A— X)u; = f; for all j. The u; are independent modulo Dyyin. Let

max

D = Din © span{uy, ..., ugr}.
Then D € ® and Ap — A is invertible, since R is closed. O

Proposition 5.7. Suppose that (5.2) holds and that dim & > 0. Then, for every
A € C, there is D € & such that A € spec Ap.
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Proof. Let A € C. If A € bg-spec A then in fact A € spec Ap for any D € &.
Suppose then that A ¢ bg-spec A, so by Lemma 5.6 there is Dy € & such that
Ap, — A is invertible. The hypothesis that dim & > 0 is equivalent to the statement
that the two numbers d” = —ind Ap_,, and d' = ind Ap,_, are strictly positive;
recall that their sum is d, the dimension of Dyyax/Dmin. Let w € Diax\Do. Such w
exists because d” < d. Let f = (A—X)w, and let v € Dy be such that (A—N)v = f.
Then w — v # 0 modulo Dy, and thus is an eigenvector of A. Let D € & contain
w — v; such D exists because d” > 0. Then Ap — X has nontrivial kernel. O

max

We will write Ky for the kernel of Ap_ . — A, A € bg-res A. For such A,
dim Ky =ind Ap,,..,
since Ap,,,, — A is surjective and its index is independent of A.

Proposition 5.8. Let K = uAebg_resA Ky and let p : K — bg-res A be the natural
map. Then IC — bg-res A is a locally trivial Hermitian holomorphic vector bundle.

Proof. Let Ag € bg-res A, let IC)%0 be the orthogonal of Ky, in Dyax. The operators
AL = (A= Nley,  A2(0) = (A= Ny

are continuous as operators into z =™/ 2L2(M; E) when the domains are given the
graph norm of A, and depend holomorphically on A. Since As2()\g) is invertible, the
inverse Az(\)~! exists for A close to Ag. It is easy to verify that if ug € Ky,, then

w(\) = up — Ao (V) TP A (Nug € Ky

for A close to A\g. These are, by definition, holomorphic local sections of L. The
statement that IC — bg-spec A is a locally trivial holomorphic vector bundle follows
by taking local frames near A of the form u;(\) where the u; form a basis of ICy,.
The Hermitian form in K is the one whose restriction to I, is the restriction of the
inner product of Dyax to Ky. O

Note that if u, v € Ky, then
(u,v)a = (Au, Av) + (u,v) = (1 + |A\?)(u, ). (5.9)
Lemma 5.10. Let D € &. The following are equivalent:
(1) A €resAp;
(i) X € bg-res A and Ky ND = 0;
(#31) X\ € bg-res A and Tmax/Cx N TmaxD = 0.
Moreover, if X € res Ap, then
Kx®D = Dpax and Tmaxx ® TmaxD = Emax- (5.11)

Proof. To prove the equivalence of (i) and (ii), we recall first that res Ap C bg-res A.
A point A € C belongs to res Ap if and only if ker(Ap — A) = 0, because A is
Fredholm of index 0. But for A € bg-res A, ker(Ap — A) = Ky ND. Thus (i) and
(ii) are equivalent.

Suppose that A € bg-res A. If 4 € Tyax/Cx N TmaxD, then u = ¢ — v with ¢ € Ky,
and v € Dpin. Thus ¢ = u+ v € TmaxD + Dmin = D, and so ¢ € Ky ND. If
Tmax/Cx N TmaxD # 0, pick u # 0. Then ¢ # 0, so Kx ND # 0. Thus (ii) implies
(ii).

Again suppose that A € bg-res A. To prove that (iii) implies (ii) we will first
show that Tmax|ic, @ Kx — Emax is injective. Let ¢ € K. If mpaxd = 0 then
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¢ € Dpin. But A — X is injective on Dy, so ¢ = 0. Thus if Ky ND # 0, then
ﬂ-maXK:k N 7-‘—max,l) 7é 0.
To prove the last statement we first observe that
dim K + dim D/Dyin = ind Ap,,, — ind Ap

This gives, in view of (iii), that Tmaxx @ TmaxD = Emax- Adding Dpin to both
sides of this formula gives K +D = Diax, but this sum is direct in view of (ii). O

= dim Epax.

min

The lemma gives
spec Ap = bg-spec AU {\ € bg-res A : K, ND # 0}

for any D € &. Since Ky ND =0 if and only if myaxKx N TmaxD = 0, the presence
of spectrum in bg-res A for a given extension Ap is a purely finite dimensional
phenomenon. We will exploit this in Section 9 to give estimates for the resolvent
Bp(A) of Ap — X in terms of a canonical right inverse of Ap_ . — A, a canonical left
inverse for Ap,,, — A, A € bg-res A, and a finite dimensional projection.

If A € bg-res A, more generally, if Ap_, — \ is surjective, then Ap__ — A admits
a continuous right inverse Bpax()), namely, let le\- C Dmax be the orthogonal of
K with respect to the inner product (4.3) (Ky may not be, and does not need to
be, an element of &). The operator

(A= Nx : Kt — 2L (M; E)

is continuous and bijective. Then the inverse, Brax(A), of (A—A)[xcs is continuous.
For each A € bgres A, the operator Bpax(A) has the smallest norm among all
continuous right inverses of Ap,,. — A.

The operators Bmax(\) can be obtained from any family

Brax(A) : x_m/QLg(M§ E) — Drax
of continuous right inverses for Ap_,, — A by means of the formula
Bmax(/\) = B;nax()\) - T‘—K/\B:nax()\) (512)

in which 7, : Dmax — Ky is the orthogonal projection on Iy (with respect to

(4.3)).
The Buax(\), as operators o =™/ 2L?(M; E) — Dmax, depend continuously, even
smoothly, on A. To see this, let A\, \g € bg-res A. Then

(A = X)Bmax(Ao) = ((A = Xo) + (Ao = A)) Bmax(Xo) = I + (Ao — A) Bmax(Ao)-
Since both Bpax(Ao) : :E_m/QLE(M;E) — Dpmax and the inclusion ¢ : Dpax —
x~™/2[2(M; E) are continuous,

tBmax(No) : 27 2L3(M; E) — 2 ™/?L2(M; E)
is continuous. So if A is close enough to Ay, then
Blax(N) = Bmax(A0) (I + (Ao = At Bmax(X))

is a right inverse for Ap,, — A depending smoothly on A. Since the mx,, as
operators Dyax — Dmax, also depend smoothly on A, the correction (5.12) gives
the smoothness of A\ — Bpax(A).

The operators Bax(A) can be used to construct the resolvent of Ap — A for any
D € &, as follows. For each A\ € bg-res A such that £y ND =0 let

TN\, D * Dmax - IC)\
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be the projection according to the decomposition (5.11); this is a continuous oper-
ator. Noting that A € res 4 if and only if A € bg-res A and Ky N D = 0, define

Bp(\) = Buax(\) — 7,0 Bumax(\).- (5.13)

Then 7, pBp(A) =0, so Bp(A) maps into D. Since (A — N)7mg, p =0, Bp(A) is
a right inverse for Ap — A, which must also be the left inverse because Ap — A is
invertible.

The canonical left inverse for Ap,,, — A is constructed in an analogous manner.
Let Ry be the range of Ap,,, — A, A € bg-res A (more generally, one can let A
belong to the set where Ap,_. — A is injective). Since Ap_,. — A is injective if

A\ € bgresA, Ap,,, — A : Dpin — R has a continuous left inverse B%; ()\). The
orthogonal Ry has dimension —ind Ap,,,. Let Bumin(A) be the composition of the
orthogonal projection on Ry followed by BY. (\). Viewing Ry as the kernel of
A* — X on Dyax(A*), we see that | | Aebg-spec 4 1A 18 a smooth (anti-holomorphic)
vector bundle over bg-res A. An analysis similar to that done for Byax(\) gives
that Bin(A) depends smoothly on A € bg-res A.

If B/ ;,()) is aleft inverse for Ap,_, — A, A € bg-res A, and 7, is the orthogonal

projection on Ry (in 2=™/2L2(M; E)), then
Buin(A) = Blin(M 7R, (5.14)

min

and so

[ Binin (M2 (27212 D) < 1Brnin M 2(@-m/212 Do)

Let D € ® and let Bp(A) be the resolvent of Ap — A. It is immediate that the
formula

Bp(A) = Bumin(A) + (I = Bmin(A\)(A — X)) Bp()) (5.15)
holds. Replacing (5.13) in this formula we get
Bp(A) = Buax(A) — (I = Bunin(A\)(A — X)) ic, 0 Bunax (V). (5.16)

Letting mpin = I — Tmax we see that that
TKx, D = Tky, D(Tmax + Tmin) = Tk, DTmax- (5.17)
The operator I — Byin(A)(A — \) is a projection with kernel Dy, so
I — Buin(A)(A = X) = (I = Buin(A)(A = N)) Trmax-
Thus we arrive at
Bp(A) = Bmax(A) = (I = Bmin(A) (A = X)) Tmax Tk, ,DTmax Bmax(A), (5.18)
a formula which will prove to be very useful.

Remark 5.19. The range of the projector I — By (A)(A—X) contains Ky so there is
no difference between (5.16) and (5.13). Writing Bp(A) in the form (5.18) separates
the geometric information, in TmaxTic, DTmax, from analytic contributions.

We now focus on mmaxTic, DTmax, i particular its norm as a map Emax — Emax-

Lemma 5.20. Let D € &. Suppose A € bg-resA and Kx N D = 0. Then
wmaxw;chpb is the projection on Tmax/Cx according to the decomposition Enax =
7Tmaxlc)\ © 7TmaxD-
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Proof. The map Wmaxﬂ']c/hp}g __is a projection. Indeed, in view of (5.17),

TmaxTKy,DTmax 7Ky, D |5max = TmaxTK 5, DT, D |5max = TmaxTKy,D ‘5 )

The kernel of ThaxTic A7D‘ £ has kernel containing m,.xD, since the latter space is
contained in D, and range contained in my,x/Cy. To complete the proof we only need
to show that ker Wmaxﬁjck)p‘gmax = TmaxD. Suppose that u € ker Tmaxmic,,p[o -
Then ¢ = mx, pu € Ky has the property that myax¢ = 0. Thus ¢ € Dyin. But since
A— X is injective on Dy, (since A € bg-res A), ¢ = 0. That is, u € ker mx, p. Since
u is already in Epax, this gives u € D N Epax. But the latter space is mpaxD. O

In the course of the proof of Lemma 5.10 we showed that if A € bg-res A, then
Tmax|ky @ Kax — Emax 18 injective. Thus, since the spaces Ky have dimension
d' =ind Ap, ., we have a map

bg—resA DA 7Tmauxlc)\ € Gl"d/ (gmax)-

Write Kpax for this map, so Knax(A) = mmax/Cx. If Ao € bg-res A, let ¢1, ..., da
be a holomorphic frame of K, cf. Proposition 5.8, near A\g. Thus, in addition to
independence, the maps A — ¢;(X) are holomorphic for A near Ao. If uy,...,uq is
an orthonormal basis of Enax, then Kpax(A) is spanned by the vectors

7Tmax(bj ()\) = Z(¢j ()‘>a uk)ukv
k

which depend holomorphically on A. Thus Kyax : bg-res A — Grg (Emax) is holo-
morphic.

If D € &, then Lemma 5.10 asserts that A\ € bg-res A N spec Ap if and only if
TmaxCx N TmaxD # 0. Writing W = mpax D, let

By = {V € Gra (Emax) : VAW £ 0}

Then
X € bgres ANspec Ap <= Kmax(\) € Tyy.

Definition 5.21. For any nonnegative integer dyp < d and W € Gry, (Emax) let
Q}W = {V S Grd—do (gmax) Vnw 7é 0}
If D e®, we write Up for U, _ p.

Thus spec Ap is the union of bg-spec A and the pre-image of Up under the map
K:max'

Proposition 5.22. The set By C Gry (Emax) 8 a variety of (complex) codimen-
sion 1. For each D € &,

spec Ap = bg-spec AU KL (Vp).
This is a disjoint union.

Proof. We already showed the second statement. To prove the first statement, fix
an ordered basis u = [u1,...,uq] for Enax. Pick some point Vo € Gry (Emax) and
let @ = [¢1,...,04] be a holomorphic local section defined near Vy of the bundle
of ordered bases of the canonical bundle over Grg (Emax). Thus

dV)=u-Z(V)
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for some matrix Z(V) € M@ (C) depending holomorphically on V. Let ¥ =
[i1, ..., 1] be a basis of W, so ® = u- W with W € M%<4"(C). Then

f(V) = det[Z(V)|W]

is holomorphic in V. Since [®(V), ¥] fails to be a basis of Enax if and only if
VNW #£ 0, f(V) vanishes if and only if VN W # 0. Thus Dyy is a complex variety
of codimension 1. O

The norm of the factor myaxTic, DTmax int (5.18), defined for A € bg-res A\ spec 4,
can be estimated in quite simple terms. Using Lemma 5.20, the problem is generally
to estimate, for any W € Gry, (Emax) and V € Grg—d, (Emax)\Dw), the norm of the
projection

VW - gmax - gmax (523)

on V according to the decomposition Eyax = V @ W. We assume that the integer
dy satisfies 0 < dy < d.

Let then W € Grg,(Emax). Fix ordered orthonormal bases u = [uq,...,ud]
for Emax and € = [Y1,...,14,] for W. Let V € Grg_gq,(Emax) and let & =
[#1,. .., Gd—d,] be an ordered orthonormal basis of V. There are unique matrices
V e M4 (d=do)(C), W € M@ (C) such that

b=uV, ¥=uW
Define

SV, W) = | det[V|WV]].
The columns of V', likewise the columns of W, form an orthonormal set of vectors
in CZ. We claim that §(V, W) is independent of the choices of orthonormal bases
® and P. Indeed, if ' and ¥’ are other choices of ordered orthonormal bases of,
respectively, ¥V and W, then &' = & - Uy, ¥/ = ¥ - U, with unitary matrices Uy
and Uy. Thus ' =u-VU; and ¥ =u - WU,. But

Up 0
0 Us

so | det[VU1|WUs]| = | det[V|W] det Uy det Us| = | det[V|W]] since unitary matrices
have determinant of modulus 1. Thus we get a globally defined function

5 : Grd_do (5max) X Grdo (8max) — R.

VUL WU = (VW] [

This function is clearly continuous, and Uy is the set of zeros of V — 4(V, W).
Suppose V ¢ Uy and let mpyy @ Emax — V be the projection (5.23) on V. The
basis u can be written in terms of the basis [®, ¥], as

u=[® 9] -Q

where () is the inverse of P = [V|W]. Let P be the matrix of minors of P, so that
Q = (det P)~ 1P. The entries of P are polynomials of degree d — 1 in the entries of
P. Since the columns of the latter matrix are vectors in the unit sphere in C?, the
entries p,~C of P are bounded by a constant independent of P. If u = S atup € Emax,
then the two terms in

d—do d
{detP z; ¢k2pf“] [detP Z’/”“ZNM " 1

=1 (=1
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correspond to the decomposition Eqax =V & W. Thus

=
_ oy
YW= G kg P zE—l pra.

=1
This gives:
Lemma 5.24. Let W € Grg,(Emax) and let V € Gri—gy(Emax)\TVw. Then

c
< .
Il < 5557%9

The constant C' is independent of V.

The question arises as to whether there is D € & such that spec Ap is discrete.
The following proposition shows that if there is one such domain, then the set
of such domains is open and connected, and its complement is a set with empty
interior.

Proposition 5.25. The set
Y ={De&:specAp =C}
is a variety. Thus, since & is connected, U # & if and only if UV has empty interior.

Proof. We identify & with Grg»(Emax) using the map (5.3). Let v — Grgr (Emax)
be the canonical vector bundle. This is a holomorphic vector bundle. Let Dy € &

and let uq,...,uqs be a holomorphic frame for v in a neighborhood U of Dy. Thus,
if u?,...,uf is a basis of Emax, then
d
uj(D) = gi(Dyy, j=1,....d"
=1

with holomorphic functions gf :U — C. Any u € D € U can be written uniquely

as
4"

u=uv-+ Zajuj(D)
j=1

with v € Dpin. For D € U define F(D) : Dy — D by

d// d//
F(D)(v+ Z dui(Dy)) = v+ Z u;(D), v € Dumin.
P j=1

This operator is bijective, and continuous in the graph norm of A. The operators
AD,\) = (A=) o F(D): Dy — 2~ ™2LE(M; E)

depend holomorphically on (D,\) € U x C, and the invertibility of Ap — X is
equivalent to the invertibility of A(D, \).

If Dy ¢ B, then there is A\ ¢ spec Ap,, and therefore, there is a neighborhood
U’ C U of Dy and & > 0 such that A(D, A) is invertible for (D, X) € U’ x B(\o,¢),
where B(Ag, €) is the open disc in C with center Ay and radius e. Thus U’ is disjoint
from U, which proves that U is closed.
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Suppose that \g € spec Ap,, let K = ker(Ap, — \o), and let K be the orthogo-
nal of K in Dy. Let R = (A—\o)(Dy), let R* be the orthogonal in 2=™/2L2(M; E)
of R, and let mr and mr1 be the respective orthogonal projections. Define

A11 = WRLA(D, )\)|K A12 = ﬂ-RJ-A(Da A)|KJ-
Asy = mrA(D, )|k Az = mrA(D, N[+
so that N
K R
A(D,A) = [ﬁ“ ﬁ”] Lo - @
21 2] gl R

The operators A;; are continuous as operators into their target spaces as subspaces
of x=™/ 2L3(M; E) when their domains are given the graph norm of A, and depend
holomorphically on (D,A) for D € U and X close to Ag. Since Aaz(Dy, Ag) is
invertible, we can, perhaps after shrinking U, find ¢ > 0 such that Asx(D, ) is
invertible if D € U x B(Ag,¢). If (D, ) € U x B(\g,¢€), the elements of the kernel
of Ap — X are in one-to-one correspondence with the elements in the kernel of
A = All — A12A2_21A21 . K — RJ'
via the map
ker A > u+— u— A2_21A21u € ker A(D, \) = ker Ap — \.

Since Ap has index 0, K and R* have the same dimension. Picking bases of K and
R+ we can define a determinant f(D, \) for A. Since A depends holomorphically
on (D, \), so does f(D, ). The set

{(D,\) €U x B(Xo,e) : (D, ) =0}
is the intersection of
specA = {(D,\) € 8xC: X €specAp}
with U x B(Ao, ) (thus specA is a variety). Write f as

FD.N) =" fuo(DYA = o)
£=0

the functions f; are holomorphic in U. If D € U NY, then f(D,\) = 0 for all
A € B(\o,€), so f¢(D) = 0. And if this condition holds for D, then f(D,\) = 0.
So YN U is the set of common zeros of the functions f, : U — C, and U is a
variety. ([l

The following gives examples where U is not empty.

Example 5.26. Let A = ¢~ D, on the interval [—1,1], with p € C, p # 0. This
is a cone operator: _
A=(1—-z*)"te (1 - 2*)D,
and (1 — 22) vanishes simply at z = 1. We consider this operator initially as an
unbounded operator
Ce*(=1,1) € (1 =) "2Li(-1,1) — (1 —a®) 71 2Lj(-1,1)

with the measure m = (1 — 2?)"'dz. The space (1 — 2?)7Y/2L2(—1,1) is just
L?(—1,1) with the measure dz, so the domains of the minimal and maximal exten-
sions are, respectively, the standard Sobolev spaces Hi[—1,1] and H*(—1,1). Since
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H'(—1,1) consists of continuous functions on [—1, 1], the elements in Dy,ay can be
evaluated at + = —1 and at x = 1. The Mellin transforms at either boundary
of elements of (1 — 22)~*/2L2(—1,1) are holomorphic in So > 1/2, of course. To
compute the conormal symbol of P = e~%#*(1 — 2%)D, at x = —1 let x;, = 1 + 2.
Then

P=(2- xL)e_i”(”_l)xLDwL = 2e_i”(”_1)xLDmL — ;vLe_i”(”_l)xLDwL

so the conormal symbol of P at x = —1 with respect to zy, is 20¢'”, giving a simple
pole at 0 = 0 for the inverse of the conormal symbol. If u € Dpax, its value at
x = —1 is essentially the residue at ¢ = 0 of the Mellin transform of u. Using
xr = 1 — z as defining function for {z = 1} we get

P=-(2- xR)e_i”(l_wR)xRDwR = —2e_ip(1_””R):ERDwR + :ERe_i”(l_wR);vRDwR

and the conormal symbol at that boundary is —2ce~%. Since the only point in
specy,(P) is 0, we deduce that Dyin = (1 — 22)/2H} and that

Diin = {t € Dpax : u(—1) = u(1) = 0}.

The operator A with the minimal domain is injective. The formal adjoint of A is
A* = €"*(D,, +p), and the Hilbert space adjoint of Ap,_, is A* with its maximal
domain, D ... The latter contains the function e~%*, which spans the kernel of
A*, so the index of Ap_,, is —1. This also gives that the index of Ap,_,  is +1.

The domains on which A has index 0 are of the form
Do_ o, = {t € Dpax : a—u(—1) + ayu(l) = 0}

with (a_,a;) € C?\0. If 2 # 0 then (za_,zay) determines the same domain as
(a_,ay), so &, the manifold of domains where A has index 0, is CP! = S2.
Fix some (a_,ay) € C2\0. The kernel of (A — \) on Dyay is spanned by

ha(x) = A" /e,

max

The condition that hy € Dy_ o, is

—ip ip
a_er 4o e =,

equivalently
o+ a+€2i>\p’1 sinp _ a_ + a+e)\[giﬂ_e*ip]/p —0.
Thus, if p € 7#Z (p # 0), then a— + a4y = 0 implies specADL,% = C while

a- + ay # 0 implies spec Ap, = @. And if p ¢ 7Z, then for any (o, a-) €

C?\0, the spectrum of Ap_, _  is discrete, and empty if either a_ or ay = 0.

[

6. SELFADJOINTNESS

We now discuss the important case where A is symmetric on Dy, from the
perspective of Section 5. The selfadjoint extensions of such operators were studied
by Lesch [5]. Suppose A is such a c-elliptic symmetric operator. Since

(A= Nul = [SA[[[u] if u € Dmin,

Ap,.. — A is injective when S\ # 0. Since A is Fredholm and the Hilbert space
adjoint of Ap,,, is A with domain Dpax, Ap,,., — A is surjective if I\ # 0. Since
the operators Ap, ,, — A are Fredholm and depend continuously on A, the indices at
A=1and A = —i are equal. So the deficiency indices are the same, and A admits
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selfadjoint extensions. If Ap is one such extension, then spec Ap C R, therefore
bg-spec A is a discrete subset of R.
The Dirichlet form of a general cone operator A is the sesquilinear form

[u,v]a = (Au,v) — (u, A*v), U € Dmax(A), v € Dimax(A"). (6.1)
It has the property that

[uu U]A = [Wmaxua ﬂ-maX’U]Au

because [Tmaxt, Tmin¥]A = [Tmint, Tminv]a = 0 for any v and v. Moreover, the
induced sesquilinear pairing
Emax(A) X Emax(A*) — C is nonsingular (6.2)

(cf. Theorems 7.11 and 7.17 in [4]). If D € D(A), let JD € D(A*) be the
annihilator of D with respect to the pairing (6.1). Thus if D € D, then the Hilbert
space adjoint of Ap is A% 5. We will prove in a moment that the mapping J :
D(A) — D(A*) is real-analytic. Let J* : D(A*) — D(A) be the analogously
defined map. Clearly J*7 is the identity. If A is symmetric on Dy, and D € &,
then J : & — &, J* = J, and Ap is selfadjoint if and only if D is a fixed point of
J. Such domains will be called selfadjoint.

Lemma 6.3. Let A be an arbitrary c-elliptic cone operator.
(i) If u € Emax(A), then Au € Enax(A*). The map
Emax(A) D ur— Au € Enax(A¥)
s an isometry.
(17) If u € Emax(A) and v € Dyax(AY), then
(Aua U)A* = [U, U]A-
(13i) Let D € D(A). If u € DNEmax(A), then Au is orthogonal to JD with respect
to the inner product defined by A*.
Proof. To prove the first assertion in (i), suppose u € Emax(A). Then Au €
Diax(A*). In addition, A* Au = —u, so AA*(Au) = —Au, that is, Au € Enax(A*).
If u, v € Emax(A), then
(Au, Av) o+ = (A* Au, A* Av) + (Au, Av) = (u,v) + (Au, Av) = (u,v)a.
For part (ii), suppose u and v are as indicated. Then
(Au,v) 4« = (A*Au, A*v) + (Au,v) = (—u, A*v) + (Au,v) = [u,v] 4.
For part (iii) we observe that if u € D and v € JD, then [u,v]4 = 0, and use part
(ii). O
Proposition 6.4. The mapping J : ©(A) — D(A*) is real-analytic.
Proof. Let Dy € ©(A), and let ¢1,...,¢q be an A-orthonormal basis of Eyax(A)
whose first dy elements form a basis of Dy N Emax(A). Let ¢; = Ag;, j=1,...,d.

The v, form an orthonormal basis of Emax(A*), by part (i) of Lemma 6.3. Therefore,
by part (ii) of the same lemma,

[0, Yr]a = 0. (6.5)
We deduce that
jDO = Span{wdo-l-la s 7wd} @ Dmin(A*)'
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Write ®1 = [d1, ..., Ddo)s P2 = [Pdo+1,- - - » Pd, and analogously ¥y, ¥y. The set
{span(®, + B, - Z) : Z € M(d—do)xdo(C)}
is a neighborhood of Dy in (a component of) D(A), and the map
Z — span(®; + ®, - Z)

is the inverse of a holomorphic chart. Likewise, parametrize the (d—dp)-dimensional
subspaces of Epax(A*) in a neighborhood of 7Dy by

W span(¥y + ¥ - W)
with W € Mdox(d=do)(C). The condition that the vector space spanned by

do
Uhtdo + D Wiy, k=1,....d—do
j=1
is [, ] a-orthogonal to
d—do
&+ > ZFria, F=1,...,do

k=1

isZ ;’“ —l—Wi = 0 because of (6.5). Thus, in coordinates, J maps the space determined
by Z to the space determined by W = —Z*. We conclude that J is real-analytic.
O

Since J is real-analytic, its set of fixed points is a real-analytic variety. In fact:

Proposition 6.6. Let A be symmetric on Dyin. The set 624 of domains D € &
such that Ap is selfadjoint is a real-analytic (smooth) submanifold of & of codi-
mension (d')?, d =ind Ap,, .

Proof. If ind Ap,,,, = 0 then also indAp_,, = 0, Dmin = Dmax, and Ap_,, is
the only selfadjoint extension of A. Assume then that ind Ap___ > 0 and pick a
selfadjoint domain Dy. Let ¢1, ..., ¢4 be an orthonormal basis of Dy N Epax. Then
[¢j, ox]a = 0. By part (i) of Lemma 6.3, (A¢;, Apr)a = 5. Thus by part (ii),
[¢j, Aprla = (Agj, Apr)a = ;. Also by part (i), [Ad;, Adkla = —(¢;, Adj)a,
which vanishes by part (iii). As above, write ®1 = [¢1,...,ds] and let Py =
[Ap1, ..., Ada]. So a neighborhood U C & of Dy is parametrized by the vector
spaces associated with the bases ®1 4+ ®5-Z, Z € gl(C,d"). Writing the components
of &1 + Py - 7 as

&

b+ ZFAdk, j=1,....d

k=1

we see that the selfadjoint domains in U are those that satisfy

Zi -7 =0

(i.e., Z is a selfadjoint matrix). These equations represent (d')? real-analytic con-
ditions. 0

Proposition 6.7. Let A be symmetric on Dy, and assume that —ind Ap_, > 0.
For any A € R there is D € & such that A € spec Ap.
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Proof. If X\ belongs to bg-spec A, then A\ already belongs to the spectrum of any
extension, selfadjoint or not, of A. Suppose A € bg-resA. If u, v € Ky, cf.
Proposition 5.8, then
[u,v] 4 = 2iS(N) (u, v),
so if A is real, then the Dirichlet form of A vanishes on K. Since
dimCy =ind Ap,,,, = —ind Ap,,,,
and since T,y i injective on Ky,

D)\ = IC)\ + Dmin (68)

is an element of & on which the Dirichlet form vanishes. Thus Ap is selfadjoint,
and \ € spec Ap. O

Note that there is no assumption on semiboundedness of A.

Proposition 6.9. Let A be symmetric on Duyin. Then

bg-spec A = ﬂ spec Ap. (6.10)
DecA

Proof. If ind Ap,,, = 0, then & = {Dyin} and bg-spec A = spec Ap,,.. Since
Ap,,,, is already selfadjoint, (6.10) is an identity.

Suppose then that —ind Ap,,, > 0. Denote the set on the right in (6.10) by S.
From the definition of bg-spec A we get bg-spec A C S.

To prove the opposite inclusion suppose that A\g € bg-res A. If SAg # 0, then
Ao € S, since S C R. If \yp € RN bg-resA, consider Ap,,, where D), is as in
(6.8). From the proof of Proposition 6.7 we know that Ap, is selfadjoint. Since
Ap,, is Fredholm and spec Ap, ~# C, this spectrum is discrete. Since Ky, C Dy,
Ao € spec Ap, . We can therefore find a neighborhood U C bg-res A of A with
the property that U Nspec Ap, = {Ao}. We claim that if A\ € U\{)o}, then
Ao ¢ spec Ap,. To see this, let A\ € U and assume that A\g € spec Ap,. Then
Kx, NDy # 0. Thus there are ¢ € Ky, with ¢ # 0, and ¢ € Ky, v € Dpin such that
¢ =¥ +wv. The element ¢ — v € D), is equal to 1, so Dy, N Ky # 0. Necessarily
Y # 0, since Tmax® = Tmax?® and ¢ # 0. Thus A € U N spec Ap, , which implies
A = Xg. It follows that if A € U NR\\g, then D, € &2 and Ay ¢ spec Ap,, hence
Ao € S. Therefore S C bg-spec A. O

7. THE MODEL OPERATOR

In this section we focus on the spectra of closed extensions of the operator A, cf
(3.8). We continue to assume that the operator A € =™ Diff}"(M; E) is c-elliptic.
We will usually write Da min for Dmin(Ax) and Da max for Dmax(Ax). Recall that
the inner product on Da max is given by (4.10). The nature of Da min was described
in Proposition 4.9. We also noted there that D max/Da min is finite dimensional.
Because of the finite dimensionality of this quotient, many of the results concerning
the closed extensions of A find their analogue in the situation at hand, despite the
fact that neither of the operators

Ap i Dpmin C 2 ™2L2(YNE) — o ™2 L2(Y E)

nor

Ap i Dpmax C 2 ™ 2LUY N E) — 2 ™ 2L Y E)
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needs to be Fredholm. On the other hand, the homogeneity property

Apn =X = 0"Ko(An — N 0™)K, " for every 0> 0 (7.1)

of Ay — A A e€C, cf. (3.11), not available in such simple form in the case of A,
permits an essentially complete understanding of the spectra and resolvents for the
closed extensions of An.

We begin our analysis with:

Definition 7.2. The background spectrum of A, is the set
bg-spec Ay = {A € C: X €specArp VD € DA}
The complement of this set, bg-res A, is the background resolvent set.

The analogue
bg-res Ay = {\ € C: Axr p,.., — A is injective and A p,,.. — X is surjective}
of Lemma 5.6 holds for A in place of A, with the same proof.

Lemma 7.3. If A € bg-res A\ and D € D, then Ay p — X is Fredholm. The set
bg-res Ax is a union of open sectors.

Proof. Let A € bg-res Ax. Since Da max/Da min is finite dimensional and A — A is
injective on DA min, AA D,... — A has finite dimensional kernel. Thus Ax p,,, — A is
Fredholm, and so is its restriction to any subspace of Da max of finite codimension.

Next, suppose that Ag € bg-res Ay and let A = p™\g. Since k, is invertible and

Apn — A= 0"k (An — )\0)I€_1

Q b
Ap — s injective on Da min and surjective on D max. Thus the ray {rAq: r > 0}
is contained in bg-res Ar. Since A\g € bg-res Axn, A, — Ao admits a continuous
left inverse B(\g) : x_m/ng(YA;E) — Dp min. Since the inclusion Dy yin —
x~™/2[2(Y; E) is continuous, the formula
B(Xo)(Ar —A) =1+ (Ao — A)B(Xo)
gives that (Ax min —A) admits a left inverse if A is close to Ag. Likewise (A max — )

admits a right inverse if A is close to Ag. So bg-res A, is open. Therefore its
connected components are open sectors. ([l

Label the connected components of bg-res Ay by /ia, a € J C N. Since the
inclusion map D — z~"/2L2(Y"; F) is continuous for any D € D,

= ind(Axp — A)
is constant, and
ind(Arp — A) = ind(Ap Doy — A) + diMD/Dp min, A € bg-res An.
Let

d, =ind(Arp,. —A), d!=—ind(Arp,, —A), €A,
and let
Bra={DeEDr:dimD/Drmin=do}, a€l.
The elements of &, , are thus the domains D for which A p— A has index 0 when
A € Ay. Write Ex max for the orthogonal of Da min in Da max. Using that

@/\ 5D HDﬂg/\7max
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is a bijection onto the set of finite dimensional subspaces of Ex max We give each of
the &, o the structure of a complex manifold.

The proofs of the following lemma and proposition parallel the arguments in the
proofs of Propositions 5.7 and 5.25, respectively.

Lemma 7.4. For every a € J such that dim &, o0 > 0 and every A € /ia there is
Dy € B o such that A € spec Ax p,-

Proposition 7.5. For every a € J the set
Vo={DeEBp,: /ia C spec App}
is a variety.
If D € ®,, then k,D is again an element of ® . Indeed,
Dpmin C KoD C Da max
since both Da min and Da max are s-invariant. Define
Ko:Dpn—=Dp, Ko(D) =k,D.
Since KD, min = DA, min,
TA,maxFo = TAmaxFoT A ,max;
and therefore the map
R 3§ — TA maxKes |5A’max 1 Enmax — Enmax (7.6)

is a (continuous) one-parameter group of isomorphisms of £x max, necessarily given
by exponentiation of its infinitesimal generator. So (7.6) extends to a holomorphic
action of C on Ea max. We will use the notation k,(V) for mTa maxke(V) when
V C EA max 1s a subspace.

Proposition 7.7. Let dy < d = dimEp max be a nonnegative integer. The map
R X Grgy(En,max) D (€,V) — KeeV € Gray(En,max)
extends to a holomorphic map
Kexp : C X Grgy(Enmax) — Gray (En max)
with the property that

Klexp(é- + Cla V) = Klexp(Cu Kexp (Cla V))
for all ¢, (' € C and V € Grgy(Enmax)- In particular, for each V € Gray(En max)s
the curve
R> 5 = K,GEV S Grdo (5/\,max)

is real-analytic, and the infinitesimal generator of the group action Kexp is the real
part of a holomorphic vector field.

Proof. The proof is an elementary argument on Grassmannian varieties. Let Vy €
Gry, (Ea,max) and pick a basis ® = [¢1,...,¢4] of Ea max whose first dy elements
form a basis of Vy. Then ma maxkec ‘5A sends the basis ® to the basis ® - k(¢)

whose j-th component is

d
> kb ()
k=1
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the matrix k(¢) = [Ii]; (¢)] depends holomorphically on ¢. Let ®1 = [¢1,...,d4,],
&y = [bayi1, ..., ¢4). If Z € M(@=d0)xdo(C) is a (d — dy) x dy matrix with complex
entries, then ®5 - 7 is defined, the entries of ®; + ®5 - Z are independent, and
V(Z) = span(<1>1 + ‘I’Q . Z) C g/\,max
defines an element of the Grassmannian Grg,(Ea max). For a fixed basis ® the
collection of elements V(Z) is a neighborhood U of Vy and Z — V(Z) is the inverse
of a holomorphic chart of Grg, (Ea max). Write the d x d matrix &£(¢) in block form,
1 1
k1 (C) "'2(4)]
k(() = ,
O=[g 5O
with x1(¢) € M>do(C). With this notation, ma maxk
of @1 + ®5 - Z to the components of
Py - (£1(Q) +£3()Z) + @2 - (K7(C) +K3(C)Z).
If Z belongs to a bounded set in M (¢=0)*do(C) then for ¢ small enough the matrix
k1(¢) + k1(¢)Z is invertible, since k(0) = I, and we get from
-1
{®1+ @2 (51(0) +£3(¢)2) (51(0) +£2(0)Z) "} - (51(C) +£3(C)2)
that k.c maps the point in U of coordinates Z to the point in U of coordinates

(K3(Q)+£3(0)Z) (K1(C) +n§(C)Z)_1. The latter is a holomorphic function of ¢ and
Z. O

If D e®p, then D = ma maxD @ DA min. Therefore

| maps the components
€ gmax

HegD = (WA,max’ieﬁ 7T/\,ma‘x,Z)) S3) D/\,min
for real €. For ¢ € C, define
HeCD = (WA,max/feC 7T/\,maxD) @ D/\,min-

The K¢ + Grygy(Enmax) — Gray(Eamax) With & € R form a one-parameter group
of biholomorphisms. Let 75 be the infinitesimal generator. The points where 7
vanishes are the fixed points of k.e. The vector field 7, is the real part of a
holomorphic vector field 7} (a holomorphic section of 719D ,). Since 7, vanishes
at a point if and only if 7 vanishes at that point, we have that the set of fixed
points of K¢ in each Gry, (Ea max) is an analytic variety.

Corollary 7.8. The set of k-invariant domains in ® 5 is an analytic variety.
Thus the set of k-invariant domains is a small set.

Remark 7.9. By Lemma 5.12 of [4], a subspace of € max is -invariant if and only
if it is a direct sum of subspaces &; C &y, (Ap), each of which is itself s-invariant.
The set of s-invariant subspaces of &5, (Ax) of a given dimension needs not be a
discrete subset of the corresponding Grassmannian.

Again as in Section 5, let
Kax=ker(Anp,,. — A); A € bgresAx.

The proof of Proposition 5.8 gives that the I,  are the fibers of a Hermitian
holomorphic vector bundle

max

KA — bg-res Ap (7.10)

over bg-res Ax; the rank of KA|£, is the number d,, which may change with a.
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Lemma 7.11. Let X € bg-res Ax. The map K, sends KCa x to Ka gmx, and so gives
a vector bundle morphism ICn — K.

Proof. Writing (7.1) in the form

Ay —A=0 "k

0 YAN — 0™ Nk, for every o >0, (7.12)

and letting each member of this identity act on ¢ € K5\, we see that ¢ €
IC/\7Qm)\. D

Lemma 5.10 has a word by word translation to the situation at hand and if
D e 6/\10(, then

AeresAypNAy < KaxnND=0. (7.13)
For such A,
Kax @ D = Dp max- (7.14)
Let
IC/\,maX(/\) = WA,maxICA,A-
Then

Aa 2 A = Kpmax(V) € Grar (Enmax)

is holomorphic. .

Suppose that A\g € A, andlet ' = {r\ : > 0} be the ray through Ag. In view of
Lemma 7.11, the set spec Ax pNI" will not contain points A with |A| large if and only
it KKA 0o ND =0 for p large. With the notation introduced in Definition 5.21 (of
course with £y ax replaced by Ea max), this will happen if and only if £,/Ca max (o) ¢
Vi, maxD for large o. Since Uy, .. p C Gra (En max) is of complex codimension
1 and ¢ — KoK max(Xo) is a real curve, these curves generically do not intersect
Vi, maxD- However, it can happen that K£,/Cx max(Ao) € U p for all o, for
instance if KCx x, ND contains a nontrivial k-invariant subspace. It can also happen
that K, max(Xo) € Vr, naxp infinitely often. For example, suppose that Ex max
is two-dimensional and that the infinitesimal generator of the action k, has two
distinct eigenvalues io; and ioe with Sop = Sog. Let up, ug be eigenvectors for
these eigenvalues. If aju; + agus is a basis element for A maxD and Ka max(Ao) is
spanned by the same vector, then £,/CA max(Ao) is spanned by a4 0" uq + a20" us,
and Ko/CA max(A0) N TA maxD # 0 whenever p = e2mk/Ro2=Ro1) with k e Z.

We will show that the spaces K, A € A, can be obtained directly from a
single space Ka ., Ao € Ay via the action of k and B min(A), the left inverse of
Ap D, — A with kernel equal to the orthogonal of Ra x = rg(Aap,m — A). The
family Ba min(A) depends smoothly on A € bg-res A, cf. Section 5.

Fix some sector A, and for the sake of simplicity let A\g € A, lie in the axis of
symmetry I'y, of A,. So

TA,max

Ao ={X: Jarg(A/Xo)| < 0a}
where arg is the principal branch of the argument function on C\R_. Let log be
the principal branch of the logarithm on the same set. Then
‘Bmax()\)(b = 7T/\,max’ielog(>\/>\0)/m7T/\,max¢

is well defined for ¢ € Kx 5, and is holomorphic in A for A ¢ —T',. Thus we have a
map

mmax(/\) : IC/\,)\[) i g/\,max
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depending holomorphically on A for A ¢ —I',,. In general, if ¢ € ICA », then
(A/\ - )\)Tr/\,mind) == _(A/\ - A)7"-/\,max¢-

Thus the right hand side belongs to the range R x of Ax p,,, — A, and

7"-/\,mingzl) - _B/\,min(A)(A/\ - A)7"'/\,max¢
Conversely, if u € Ex max and (Axr — A)u € Rz, then

U — B/\,min()\)(A/\ - )\)U S K:/\)\.

Define
Punin(V) 1 Karo = Damins A€ A
by
‘Bmin(/\)ﬁb = _B/\,min()‘)(A/\ - )‘)‘Bmaxo‘)(bv ¢ € IC/\,AO-
Let also

‘B(A) = mmax()\) + mmin(/\) : IC/\,)\O - D/\,max (715)
The operators Ba min(A) depend smoothly, but not holomorphically, on A (unless
ind(Axppm —A) = 0 for A € A,). So it is not obvious that Pumin(A) depends
holomorphically on .

Proposition 7.16. The map PBmin(A) 1 Kaxg — Da,min depends holomorphically
on A € A, and

BN € Knx for A€ Ay and ¢ € K, (7.17)
Proof. Since Ao € bg-res A, there is D € &, , such that \g € res Axp, so
res A pN Ay # . Let then Ba p(A) denote the resolvent of Anponres Ay pNAg.

In particular By p(A) depends holomorphically on A € res Ay pNA,. Let ¢ € Ka z,
and define

(ﬂpnolin,D(/\)d) = _WA,minB/\,D()\) (A/\ - )\)‘Bmax()\)(b
for A € res An p N Aq. Thus Puin p(A) is holomorphic on the set where we defined
it. Note that Tl;/\)minB/\)D()\) is a holomorphic left inverse for Ax p,,, — A when
A€resApnpNA,.
If € Ko x, and o € R then k,¢ € KA gmi, and
mmax(gmA0)¢ = 7T/\,max"$g¢'
Thus if o™ Ao € res A5 p then
7"'/\,min’ig(b = _WA,minB/\,D(Qm)\O)(A/\ - Qm/\())Tr/\,max’fgd)
= _WA,minB/\,D(Qm)\O)(A/\ - QmAO)%maX(Qm)\O)(b'
Consequently,
‘BmaX(Qm/\O)Qb + ‘Bmin,D(Qm/\O)(b = ’iggb S IC/\,gon-
This implies that the equation
(AA - )‘) [mmax(/\)¢ + mmin,D(/\)¢] =0

is satisfied when A\ € T'y Nres Ay p. By unique continuation, it is satisfied for any
AeAyNresA, p. Thus

Brnax (Ao + Brninp (A € Kax if A € res Ay p N Ag. (7.18)

For such A we therefore have

(A/\ - /\)mmax ()\)(b = _(A/\ - )\)%min,D(/\)¢



GEOMETRY AND SPECTRA OF CONE OPERATORS 35

SO

‘Bmin,D()\)(b = _B/\,min(/\)(A/\ - /\)(‘Bmax(/\)d) (719)

that is,
(‘pmin,D(/\)gb = ‘Bmin(/\)gb' (720)
Replacing this in (7.18) we see that formula (7.17) holds where Puinp(N)@ is

defined.
Since the left hand side of (7.20) is holomorphic where defined, so is the right
hand side. Since the right hand side is continuous on A, the singularities of the

left hand side, i.e. the elements of the discrete set spec Anp N Ay, are removable.
Thus Pmin(N)@ is holomorphic for A € A, and by continuity (7.17) holds. O

The sets .
Ea = {’C/\,max()\) . )\ S Aa} C Grd;‘ (8/\,111&)()
play an important role, particularly their intersection with the varieties Ux, ....D,
D € &) . These sets are invariant under the action of k. for £ real. If V €
Gray (Enmax), then C 3 ¢ — Kk V € Grgy(En max) is a holomorphic map, cf. Propo-
sition 7.7. The generator of the one-parameter group (£,V) — k.cV, the vector field
T, is the real part of a holomorphic vector field 7;, cf. the paragraph following the
proof of Proposition 7.7, which at V is the image of the Cauchy-Riemann vector field
at ¢ =0, O¢lo, under the differential of the map ¢ + k.¢V. If V is not k-invariant,
i.e.,, 7o # 0 at V, then also the imaginary part of 7, is different from 0 at V; thus
¢ — K.V is a local embedding near = 0 if 75 # 0 at V. As a consequence we get
that the real and imaginary parts of 7, commute at the noninvariant points. Since
the set of invariant points is closed with empty interior, the real and imaginary parts
of 7T commute everywhere. We can view the images of the maps C 5 { — KV
as a point (if V is invariant) or as an integral manifold of the involutive Frobenius
distribution generated by R7,, ST} on Grg, (Ea max)\{V € Grg, : V is k-invariant}.

Theorem 7.21. The set L, is contained in one orbit of T}.
In fact, the set L, is identical to the set
{fielog(A/Ao)/mWA,maxIC/\,)\o A€ Aa}u

a subset of the orbit of 7, containing ma max/Ca,x,- Thus, if dimg Gra, (En max) > 2,
then L, is in principle a small set (nevertheless it could be dense).

The following lemma completes our description of the vector bundle K, intro-
duced in (7.10).

Lemma 7.22. If ¢ € K\ 5, then
KePN) o = PN (¢), o0€Ry. (7.23)
Proof. Write (A\/Ag)'/™ = ellog(A/ Xol)+iarg(A/Ao)l/m =\ ¢ T, For real o and
A ¢ —T', we have
7T/\,rn:en("f,(_ﬂ'r/\,max’i()\/)\O)l/m7T/\,max = 7T/\,max’i(gm)\/)\O)l/m7T/\,max

Thus Ta maxfePBmax(A)® = Pmax(0™A)p. But if A € Jia, then kK, B(N)@ € ICh oma
and Pmin(0™A)¢ is the unique element of D min such that

mmax(gm)\)(b + ‘Bmin(gm/\)d) S IC/\,gm)\

so we have

“Q%(/\)¢ = %maX(Qm)‘)(b + %min(gm/\)¢'
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This is (7.23). O

Suppose ¢ € Ka x,- If ¢(A) = P(A)¢ vanishes at some A1, then ¢(\) vanishes
along the ray through A;. Therefore it vanishes identically, since ¢(\) is holomor-
phic. Thus, if we pick a basis {¢;} of K ,, then the sections P(\)¢; form a frame
over A, for the bundle .

8. RESOLVENTS FOR THE MODEL OPERATOR

We now turn our attention to determining the existence of sectors of minimal
growth for extensions of Ax.

If D e &y, we write B p(A) for the inverse of Axp — A, A € resA p. If
A € C\0, then A= A/|IAl. By a closed sector we shall mean a set of the form

A={zeC:z=re forr>0, 6 €R, |#— 0| <al.

If R >0 and A is a closed sector, then Ap = {A € A: |A\| > R}. Let D € &5 4. L
A be a closed sector with A\O C A,. Then A is called a sector of minimal growth
for A, p if there is R > 0 such that A5 p — A is invertible if A € Ag, and either of
the equivalent estimates

I1BADM 2 (@-mrarzy < C/AL - NIBADM 2@-m/202Dpme) C - (8:1)

holds for some C' > 0 when A € Ap.

The following lemma is immediate, in view of (7.1) and the fact that x, is an
isometry on z="/2L2(Y; ).
Lemma 8.2. If D € &pq, thenresA, 1 = 0" "resAnp. IfresApp # 2,
then

B, -1p(A) = 0"k, 'Bap(0™ Ny, 0> 0. (8.3)

Thus, if the closed sector A, A\O C Jia, is a sector of minimal growth for Ax p,
then A is a sector of minimal growth for B/\1551D()\).

In fact, if the first estimate in (8.1) holds when A € Ag, then
HB/\,NEID(/\)”D?(m*m/?Lg) < C/l/\|, A E AR/gm

with the same constant C.
The simplest domains are those that are k-invariant:

Proposition 8.4. Suppose D € &, , is k-invariant. Then either Jia NresAxp =
&, or Ao, Cres Ap p. In the latter case the resolvent B p(N\) of Axp satisfies

[BADM)|| 2 (z-mrzrzy < C/|A| (8.5)
for some C' > 0 when A € A\O, A a closed sector with A\O C Aa.

Proof. Suppose that g € /ia N spec Ax,p. The homogeneity property (7.1) and
the assumption that D is s-invariant give that A/ o™ € spec Ax p for every o > 0.
Thus spec Ay p N A, is not discrete. On the other hand, if D_e Sn o\ Dy, cf.
Proposition 7.5, then spec Ay pNA, is a discrete closed subset of A,. In particular,
for every ray

I ={zeC:z=re forr >0} (8.6)

contalned in Aa, I' N spec Axp 1S closed and discrete. Thus, if D is k-invariant,
then A N spec Ax p # @ implies A C spec A p.
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Suppose A is a closed sector with A\O C res Ax p. Since D is k-invariant, (8.3)
reads

Barp(A) = Qm/@ng/\,D(gm)\)/@g.

|—1/m

Setting o = |\ gives

Bap(A) = |)\|_1H\A|l/mBA,D(;\)FJNUWL-

For A € A (|A| = 1) we have a uniform estimate for | B p(A)]| go(z-m/212), and (8.5)

follows immediately, since k, is an isometry on 2~™/2L2(Y"; E). O

If the domain D € &, , is not k-invariant, the existence of a ray or sector of
minimal growth for Ba p(A) is more complicated:

Theorem 8.7. Let D € &, ,, let A be a closed sector with A\0O C /ia. Then A s
a sector of minimal growth for Ax p if and only if there are C, R > 0 such that
AR CresAnp and

||7TA,max7T/cA,;,K;‘1/mD|gmmax||$(DA,max) <C, AeAg. (8.8)

If D is k-invariant, then

TA.maxT" —1 } = TA,maxTK , |
A,max Kasob (j1/m PIEAmax AmaxT S PIEN max’

and the theorem reduces to the trivial situation of Proposition 8.4.
The proof of the theorem requires some preparation. Define Ba max(A) for A €
bg-res A5 as the right inverse of

Apn =X Dpmax C 2 ™ 2LV E) - 272 L2 (Y, E)

with range in IC*)/\. Thus Ba max(A) has the virtue of being the right inverse of
AA max — A with the smallest operator norm. It depends smoothly on A € bg-res A,;
this is proved in the same way as the corresponding statement for Bpax(A) in
Section 5. Recall that B min(A) is the left inverse of Ax p,,,, — A with kernel equal
to the orthogonal of Ra x = rg(Aa Dpe — A)- For A € res Ap p let

TKA D D/\,max - D/\,max

be the projection on KA » according to the decomposition D max = Ka,x @ D, cf.
(7.14). Then the resolvent of A p is

B/\,D(/\) = B/\,max(/\) - (I - B/\,min()\)(A/\ - )\))F’CA’)\,’DB/\,H]&X(A)7 (89)

cf. (5.16). We will take advantage of this formula by using the group action x. We
begin with estimates for Ba min(A) and Ba max ().

Lemma 8.10. The operator Ba min(\) is k-homogeneous of degree —m,

Bamin(A) = 07"k Bamin(A ™)k, (8.11)
Therefore, if A is a closed sector with A\O C bg-res A, then
[ BAmin(M| g (z-mr2r2) < C/|A| (8.12)

for some C' > 0 when A € A\0.
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Proof. Let B ,in(A) = 07 "™KoBamin(A@™)k,". The operator B ;,(A) maps
into Da min because the latter space is x-invariant. Using the xk-homogeneity of A
one verifies that the operator B} ;,()) is a left inverse for A min —A. Also because
of the k-invariance of D min and the x-homogeneity of Ay — A, Ry = K,Ry/gm-
The kernel of B}, ;.()) is /{QRi-/gm. Since #, is an isometry on z~"/2L2(Y"; E),
kg preserves the orthogonality of the decomposition Ry, ,m @& Rj-/ om- Hence, the
kernel of B} ..,(A) is orthogonal to Ry. Thus B} .;,(A) = Ba min(A), and (8.11)

A,min A,min
holds.
The estimate in (8.12) follows from setting o™ = |A| in (8.11). O

The operator family Ba max(A) is not x-homogeneous. Nevertheless its norm
satisfies good estimates.

Proposition 8.13. Let i, , : Damax — Damax be the orthogonal projection on
Kax. Regard the finite dimensional space Ka x as a subspace of x_m/QLﬁ(Y’\;E)
and let

Py x_m/QLIQJ(YA; E)— x_m/QLg(YA; E)

be the orthogonal projection on KCa x. Then

B = N o (1 = T, ) BVl (5:14)
Therefore, if A is a closed sector such that A\O C bg-res A, then
[ BAmax(A)| 2 (z-mr2p2y < C/|A| (8.15)
for some C' > 0 when A € A\0.
The proof will require:
Lemma 8.16. For any A € bg-res Ax and o > 0,
Ky 1Ty gma i L+ AP P, F %Pm,x (8.17)

T 14jemap?
We will prove the lemma later.

Proof of Proposition 8.13. Suppose f € z~™/2L2(Y"; E) and let u = B max(\) f-
Then (An — 0™ N)kou = 0™ ko(Ar — Nu = 0™k, f, and consequently
B max (0™ N) 0" ko f = Kou — T A, gm A FoU-
This gives the formula
QmB/\,maX(gmA)’igf = KQB/\,maX(/\)f - WKAYkaK/QB/\,maX()\)f

which, in view of (8.17) and the fact that the range of Ba max(A) is orthogonal to
KA, Teduces to

m m 1— Q2m
0 B/\,max(@ A)Hgf = KQB/\,maX(/\)f - WKQPKA,,\B/\,max()\)f'
Thus
1— Q2m

- WPK/\,/\)B/\JI]&X()\)K/Q_l .

The formula (8.14) is obtained from this by replacing o™ by |\| and A by A. The
estimate (8.15) is evident given the formula (8.14). O

B/\,maX(QmA) = Q_mfig (I
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The operator
B’AI max(A) = |)\|_1KJ|)\‘1/MBA,max(X)/QI_)\l‘l/m7 A € bg-res Ap

is a k-homogeneous right inverse of Ax max — A of degree —m that coincides with
Ba max(A) when |A| = 1. For any closed sector A with A\O C bg-res A, there is C
such that

HB/\ max( )H_f(w*mng) < O/|/\|a A€ A\Oa
and for any closed sector A as above and R > 0,
||B/\,max()\) Bk max( )”E(m*mng) < C/|)\|

for A € Ag. So in some estimates below, it makes little difference whether the
correction term involving px  is present or not. However, we will keep on using

B max(\) instead of B?

A max(A), as the former family is in some sense more natural
than the latter.

Proof of Lemma 8.16. Let ¢1,...,¢a be an Ax-orthonormal basis of Kn x. Then
8jie = (05, 1) an = (L4 [A*)(05, br)-
In particular, the \/1 + [A\[2¢; € KA » are orthonormal in x=™/2L2(Y"; E). On the
other hand, using that #, is an isometry on 2="™/2L(Y"; E),
(Ko®j, odr)an = 02" (05, dk)an + (1 — 0°™) (¢, dk)
1—o®™ 1+ |Qm/\|2
2m
= LS S S N
( + 1+|,\|2) TR R

Thus the /(14 [A]2)/(1 + [0™A2)kph; € K gmr are Ax-orthonormal, and if u €
KCAx, then

L+ A2
Ty yma ol = WJ’J/\P Z(ng, Ko®j) AnKo®;
J

1+ AP m .

= 1 + |Q|m|A|2 Z 2 U ¢J Ap (1 - 92 )(’U’ad)j)]’%gd)j
1+ |22 - .

= 1+ |Q|m|A|2 QZ [92 (u7¢j)AA¢j + (1 - 92 )(’U/?(b])(b]}

J

1—|— |/\|2 9 1_92m )
=Kol mys @ — = 14|\ VS
H9(1+|Qm)\|29 TIAAU T RPN ;( + AP (u, 5)05)

:,{(LWQ - u+1_79p;c u).
Ql—|—|gm)\|2 A 1+|Qm)\|2 AA

This gives the formula in the statement of the lemma. O
Note that if u € Da max, then
prcpnull < llull < lulans Ipeasulay < VT+HAP[ula, (8.18)
Lemma 8.19. Let A be some closed sector, let R > 0, and let
P(X) :a™"PLY(Y ™ E) — D max
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be a family of operators defined for A € Ar. Then
[P 2@-mrzrzy < C/IA - and [P g(z-m/202,Dp mae) < € (8.20)
hold for some C' > 0 and all A € Ag if and only if
1850 PO e 222,y < O (8.21)
holds for some C > 0 and all A € AR.
P(\) = |A'650,m AAP(N), and that k7

Proof. Using that A/\/Qp\‘l/m N \All/’" is an
isometry in z="/2L2(Y"; E), we obtain
I3t POV, = [AnR L POVFIE + 1530 PSP
= 2653 AP + 55 POV
= NTIARPFIP + 1PV £
if fea™™/2L2(Y";E). Thus (8.21) follows from (8.20).
Assume now that (8.21) holds and let f € x=™/2L2(Y"; E). Then
[PV = 183 POV < 130 PO L
gives the first estimate in (8.20). To obtain the second, write ||P(A)f||%, as
APV + PO = l155m AP + 157570 m POV
and use the k-homogeneity of Ax to conclude that
POV, = INPIARS 1w POV + 6 m POV FII?
< (A2 4+ DIk PO,
The second estimate in (8.20) follows from this. O

Corollary 8.22. Let D € &, 4, let A be a closed sector. Then A is a sector of
minimal growth for Ax p if and only if there are C, R > 0 such that

531/ m BADN | 2w -m/202 Dy ) < C/IAL - A € A, (8.23)

Both Ba min(A) and Ba max()) satisfy (8.20), therefore (8.21) for any closed
sector A with A\O C A,. In the case of Ba min(A), the first of the estimates in
(8.20) is (8.12). To prove the second we note that

A/\B/\,min(/\) = TR + )\B/\,min()\)

where mr, , 1 2T™/2LYYNE) — a~™/2L(Y"; E) is the orthogonal projection
on R x. The norm of this operator is 1, and || ABA,min(A)[| 2 (2-m/212) is bounded
independently of A when A € A and || is large. The argument for Ba max(A) is
analogous, using (8.15) and the fact that this operator is a right inverse for Ay — A

Proof of Theorem 8.7. We will prove that (8.8) is equivalent to (8.23). Recalling the
formula (8.9) for B p(A) and that Ba max(A) satisfies (8.21), we see that Ba p())
satisfies (8.23) if and only if

H’k‘./l_)\l‘l/m (I - BA,min(/\)(AA - )‘))WKA,A,DBA,maX()‘)||§f(z*m/2L§,Dmax) < C/l/\|
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for A € A, |\ large. We have
Finfm (I = BrminN) (Ax = N)mc, 0 Bamax(V) =
(1 = Bamin(N) (An = 0) K]/ T n DA /065 o Bamax(A)
Evidently Cx x 0D = 0 if and only if nl—ﬁl/mm,k N RNI/mD = 0. By Lemma 7.11,
/@I_/\I‘I/MICA,A = ICAMA\, and it is not hard to see that

1 _
BN TN PR/ = T ot D

Using that I — Ba min(A\)(Ax — A) and 7k, , p both vanish on D min regardless of
A and D, we arrive at the conclusion that Ba p(\) satisfies (8.23) if and only if the
norm of

(I = Bamin(N)(An = X)) Ta max T T Amaxhy[1/m Bamax(V)  (8:24)

A,Xﬁ;\l‘l/m
as an operator 2™/ 2L2(Y"; E) — D max is bounded by C/|\| for some C'if A € A,
|A| large. By Lemma 8.19,

HK/I_)\l‘l/wnB/\,max()\)||$(z*7n/2L§1’D/\,max) S C/|/\|
for A € A, || large. Evidently

”I - BA,min(;\)(AA - ;\)||$(DA,max)

is bounded independently of A, A € A\0. Thus if (8.8) holds, then the norm of the
operator (8.24) is bounded by C/|)| for some C when A € A, |\| large.

Conversely, suppose that the norm of the operator (8.24) is bounded by C/|}|
for some C when A € A, |\| large. Composing with ma max on the left we get that
the norm of

-1
TAmax T =1 Dﬂ'/\,max'%')\‘l/mB/\,max()\)
AT L/ m

as an operator = ™/2L2(Y"; E) — E max satisfies the same estimate. Using the
formula (8.14) for Ba max(A) we get

—1
TA,max Ty DK‘Ml/mBA,max()\) =

-1
A1

1- AP

-1 1),.—1
N T nmas i, et (= TP d) Brmax Q)6 3y

A
on 2~ ™/2L2(Y; E). Since px, , has range in K, j,

We dismiss the factor k Tl /m at the end of the last formula, since this is an isometry

|)\|_17T/\ ax 7T -1 (1 — |)\|2)PK . BA (5‘)

,max K/\YS\,H‘Ml/m'D 1+ N2 AR T MAaX
1—[AP
14 |A2
This operator = ™/2L2(Y"; E) — D max evidently has norm O(JA|7!) if A € A,
[A\| = oo (cf. (8.18)). We conclude that if the norm of (8.24) is bounded as
indicated, then the norm of

TAmax T =1 DB/\,max(j\) (825)
AN L/m

=A™

7-‘—/\,mﬂa‘prA;\-B/\,max(;\)-
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is bounded by a constant when A € A, |\| large. The operator A, — A on DA max
satisfies [|Ax — Al 2(D, pyax,e-m/202) < 1. So composing the operator (8.25) with
Ap — A on the right we get that the norm of

TA,max T 1 D(I - ﬂ-’CA,S\) = TAmax T

kT TA,max — TAmax T, 5
A)\,le/m D ,max ,max ALK

—1
A,>\7N‘)\‘1/m

satisfies the same estimate. Since [[TA maxTi, ;| 2(Dn max) < 1, and using that

K, ,D = TK, 5,DTA,max; We obtain that if A is a sector of minimal growth for
An p, then

[[7A max W;cm,ﬁ‘;l‘l/mp 7Tmmax||‘,%’(7JA,IW)
is bounded for A € A, |A| large. This completes the proof of the theorem. O

Let Knmax(A) = TamaxKan. Let D € Bp o, let Ao € Ay be such that [Ao| = 1,
and let R > 0. The condition that

0" X €Eres App for p > R (8.26)
is equivalent to the statement that ICA gmy, N D = 0 for p > R, which in turn
is equivalent to the condition that ICx x, N ﬁng = 0 for o > R. Thus, since
Kaxe N Ag_lD = 0 if and only if Ta max/Ca,x, N ﬂ',\,maxmng = 0, the condition in
(8.26) is equivalent to the statement that the curve v defined by

[R,00) 2 0— (o) = WA)maXIiglp € Grar (En,max) (8.27)

does not intersect the variety Uy, ... (r,) introduced in Definition 5.21 (with Ex max
in place of Emax). With the proof of Lemma 5.20, TA max Ty N H;lp‘g is the

NyAQ» A,max
projection on K max(Ao) according to the decomposition

IC/\,max()\O) @ 7T/\,maxl'igl,D = 5/\,max-
Thus if there is a neighborhood U of Uy, .. (xy) in Grar (Ea max) such that y(o) ¢ U
if o is sufficiently large, then Lemma 5.24 gives that
C
(71 max (o) v (@) || < 5(Knmax(M0);7(2))

is bounded as ¢ — oo. Therefore the necessary condition of Theorem 8.7 is satisfied,
and we get:

Theorem 8.28. Let \g € bg-res A, belong to /OXa. Let D € &, o and suppose that
there is a neighborhood U C Grar (Ea max) 0f Vi s nax (o) SUch that ﬂ'/\,max/qng ¢ U
for all sufficiently large o. Then there is a closed sector A containing Ao which is a
sector of minimal growth for Axp.

9. RESOLVENTS

We will now prove the analogue of Theorem 8.7 for A € x~™ Diff;"(M; E).

Define A, = ¢~™k,'Ak,. Then A, is c-elliptic, since A is assumed to be c-
elliptic, cf. (3.5). Using that A, — A belongs to z=™*! Diff;" (M; E), [4, Proposition
4.1(1)] gives the first formula in

Dmin(Ag) - Dmin (A)7 Dmax(A,g) = Hglpmax(A)-

The second is obtained using that x, preserves C§° (]\Zf, E)and ~™/2L}(M; E). We
will write Dy max instead of Dmax(A,), and Dpin instead of Duyin(4,). Generally
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we prepend the symbol o to subindices of objects associated with A, originally
associated with A. In particular,

1
gg,max =D

min
with the orthogonal computed in D, max using the inner product
(u7 U)Ag = (A9u7 AQU) + (u7 U)

of Dy max; a0d Tpmax : Do max — Dp,max is the orthogonal projection on £, max. It
is not hard to verify that

Epmax = ﬁg_l[ker(A*A + 0*™) N Dpax], (9.1)
cf. Lemma 4.5.
Using
0 "R (A = 0™ AR = Ay — A (9.2)
we see that

bg-res A, = o~ " bg-res A.
For X € bg-res A, let Ky x = ker(A,p,,., —A). Then Ky, pm =k, 'Ky If D € &,
then K;LD € B,, and if A € res Ap, then A\/o™ € res AQ7N;1D. It is easy to verify
that Dy max = Ko r/om @ K, ' D and that

1 _
Ko TKADRe = i, o D" (9.3)

Let By min(A) = Qmmngmin(gmA)/@g. This is a left inverse of A, p,_,, — A. The
operator B, min(A) has range in Dy, since this subspace is s-invariant and the
range of Bumin(0™A) iS Dpin-

Theorem 9.4. Let D € & and let A be a closed sector. Then A is a sector of
minimal growth for Ap if and only if there are positive constants C, R such that
AR CresAp,

[ Bmin(M 2 @-mr2r2) < C/IAL | Bmax(A) | 2 (z-mrzr2) < C/|A] (9.5)
and

y<C, Xe€Ag. (9.6)

||7T\>\|1/m,max7rlc D‘f,‘

ax

-1 (%>
BNEVAC SNV AL/ ™ max Pixj2/m

The proof requires a number of analogues of results obtained in the previous
section. Their proofs parallel those in that section.

Lemma 9.7. Let A be some closed sector, let R > 0, and let
P(\) : 2= "™2L3(M; E) — Dunax
be a family of operators defined for A € Ar. Then

[P .z@-—mrerzy < C/IAl and [PV 2@-m/202 D) < C (9-8)
hold for some C' > 0 and all A € Ag if and only if
6 PO 20723, oy < C/IN (9.9)

holds for some C > 0 and all A € AR.
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Proof. Using that A‘)\'l/mﬁ?l)\‘l/m A\) = A"tk ‘;Tl/mAP()\% and that s,
isometry in z="/2L2(M; E), we obtain
IRk POV = Iyl POV + 5t POV
= X728 m A POVLI? + (1575 1 POV
RY (Al
= X2 A POV + 1 PO FII?

if f €2™™/2L%(M; E). Thus (9.9) follows from (9.8).
Assume now that (9.9) holds and let f € 2=™/2L2(M; F). Then

IPOVA = 15 POVA < I3 POVl
gives the first estimate in (9.8). To obtain the second, write ||[P(\)f]|% as
JAPOYFI + [POVFI? = 1550w APV + 1551 POV
and use the definition of A|1/m to conclude that
POV = PN AN m b5 POV 4 5 POV FIP
< (A2 + Dllsy o PO

The second estimate in (9.8) follows from this. O

Mll/m is an

‘Ml/m

‘)\‘l/m

Corollary 9.10. Let D € &, let A be a closed sector. Then A is a sector of
minimal growth for Ap if and only if there are positive constants C, R such that
Ar Cres Ap and

1631/ Bo )| @mr2p2 y SC/IAl, A€ Ag. (9.11)

\Ml/m,max
Proof of Theorem 9.4: Sufficiency of the condition. We will show that (9.5) and
(9.6) imply (9.11). Since Bpin(A) and Bpax(A) satisfy the estimate in (9.5), and
since these estimates imply for each of them the second estimate in (9.8), we obtain
that Ii‘Ml/mBmin(/\) and fiWI/mBmaX()\) both satisfy (9.9). In particular, to prove
(9.11) we only need to prove that for some C,
||/<’|)\‘1/m (B’D(A) - Bmax(A)) ||g(m—m/2Lg)D

Writing Bp(\) as in (5.18) we get

fia/m (Bmax(X) = Bo(N) = K51/ (I = Banin(A)(A = A)) e, 0 Binax(A)-
We rewrite the right hand side as

(I — B|)\‘1/m1m1n(;\)(A‘>\|1/m — /A\))Ii‘_)ﬁl/m TRA,D KA1/ m Ii‘;ﬁl/mBmax(/\). (9.12)

Using that I — Bwl/m mm(A)(AWl/m — )\) vanishes on Dy, the identity (9.3), and
that Dyin C K

< C/[Al, A€ Ag.

AL/ ™ max

|/\‘l/mD we replace the factor /Qp\‘l/mﬂ]c)\ DR A1/m i (9.12) by

T/ max Tic D TA|Y/ ™ max-

\Ml/m,i’nml/m

By hypothesis the norms of these operators Dy j1/m max — E|x|1/m max are uniformly
bounded when A € Ag. It is easy to verify that the norm of

I - B\Ml/m,min(;\)(AM\l/m - X) : D\Ml/m,max — D|)\\1/m,max
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is bounded independently of A, A € Ag. Finally, as already discussed,

H/Q'_)jumBmax()\)||_g(m—m/2L§)D ) < O/|/\|

\Ml/m,max
holds for some C' > 0 and all A € Ag. Altogether these estimates give (9.11). O
To prove the necessity of the condition in Theorem 9.4 we will need two lemmas.

Lemma 9.13. Suppose that D € & and that the closed sector A is a sector of
minimal growth for Ap. Then there are positive constants R and C such that

[ Bmin (M| 2(@-m/2r2) < C/IAlL || Bmax(AN) |z (@-mr2pzy < C/|A|
for A € Ag.
This is a direct consequence of the formulas
Buin(A) = Bp(M)7R,,  Bmax(A) = Bp(\) — 7, Bp(M),
cf. (5.12) and (5.14) valid for A € res Ap.
Lemma 9.14. Let pi,, : 2 ™/2L(M;E) — x~™/2L}(M; E) be the orthogonal
projection on K, x regarded as a subspace of x=™/2L%(M; E). Then

L+ A2 1—o?™m
== — = . 9.15
T oA e 2Pke (819)

“r T+ [emA
Moreover, HPKQ,AHL”(DQ,MX) < V14 (A2

Proof. The proof of (9.15) parallels that of Lemma 8.16. Let ¢1,...,¢4 be an
Ajg-orthonormal basis of Ky x = k' Kgm. Then

ik = (05, dk)a, = (L+ [A) (05, on).

In particular, the \/1 + [A[2¢; € K, are orthonormal in 2=™/2L2(M; E). On the
other hand, using that r, is an isometry on z=™/2L2(M; E),

-1
Ky K mx Ko

2m 2m 1+ |Qm/\|2
(Ko®j, kigbr)a = 0" (b5, dr)a, + (1 —0"") (), dx) = TEpE Ojk-
This gives an A-orthonormal basis of K,my, and if u € K, x, then
14 |A]2
T gy Kol = TP Xj:(nzgu, Ko®j)AKo®;
1+ |/\|2 2m 2m
= m XJ: [Q (Uad’j)AQ +(1—o )(Uaébj)} Ko®j
_ 1 + |)\|2 2m 1- sz
= o7y AR ? et T IQ’”/\IQPK“*U)'
Thus (9.15) follows. The estimate of the norm of pi, , is elementary. O

Proof of Theorem 9.4: Necessity of the condition. Suppose that A is a sector of
minimal growth for Ap. By Lemma 9.13, (9.5) holds. In particular there are
C, R such that the operator

K3 (Bmax(\) = Bo(V) = #1314 (T = Bunin(A)(A = A)) 7k, 0 Bmax(V)
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as an element of f(x_mng,le/m’max) has norm bounded by C/|\| if A € Ag.
—1
\

Composing with 7 yj1/m max On the left, and using that R

1/m Dreserves Dy, we
conclude that

Tyt max 81/ (L= Bunin(A) (A = X)) e, 0 Bimax(A)
= T A|Y/™ max “F}jl/m iy, 0 Bmax(A)
satisfies the same estimate. The operator
(A= Nspapsm = [NEap/m (Appm = X),

as an element of .Z(Dyj1/m max, £~ ™/?L}), has norm bounded by 2|A|, A # 0. Thus
the operator

-1
7T|)\\1/m,max Iip\ll/m T‘—K,\,'DBIHB.X(A)(A - /\)H‘Ml/m
-1
= YA /m max Ky j1/m T D = T, )Ry n1/m,

as an element of Z(D)y1/m max), has norm bounded by a constant independent of
A € Ag. Since i, DTk, = TK,

-1 21N 1—|A?
B x1/m TR DT KA1/ m = T8 T |)\|27T;cwl/w + TE e n |/\|2p’%\l/m,x
using (9.15). Thus

—1
7072/ mase i) g 1 KA DK By A1/ 2D )< C, A€ Ag,

\Ml/m,max

for some C and consequently also

—1
717127 max g 1/m THs DE| AL/ | 2D ) <C, AE AR,

\Ml/m,max

for some other C. Using (9.3) we conclude that in particular

Scu )\EARu

||7T|)\\1/m,maxﬂ—]( D‘£

\,\\1/m,max)

2D

—1
K
PRSI VRS A1/ ™ ma

This completes the proof of the necessity of the condition. O
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