
ZETA-FUNCTION OF A NONLINEAR SYSTEM

A. KYTMANOV, S. MYSLIVETS, AND N. TARKHANOV

Abstract. Given a system of entire functions in Cn with at most countable
set of common zeros, we introduce the concept of zeta-function associated with
the system. Under reasonable assumptions on the system, the zeta-function is
well defined for all s ∈ Zn with sufficiently large components. Using residue
theory we get an integral representation for the zeta-function which allows us
to construct an analytic extension of the zeta-function to an infinite cone in
Cn.
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1. Introduction

In the present paper we define a zeta-function associated with a system of non-
linear equations in Cn. As but one motivation of this concept we mention numerous
applications in the elimination theory for nonlinear systems and in algebraic geom-
etry, cf. [AYu83], [BKL98], [Tsi92], etc.

The basis for the solution of systems of algebraic equations is the method of
elimination of unknowns. As a rule, the procedure for elimination is realised by the
successive elimination of each of the unknowns, using Sylvester’s resultant of two
polynomials.

If the original system has only isolated roots, then at the last stage of the elim-
ination we obtain a system of equations in one unknown, which we can replace by
one equation. In case the number of equations just amounts to the number of un-
knowns, the multidimensional logarithmic residue allows one to eliminate all of the
unknowns except one at one step. The resulting equation preserves the multiplicity
of the roots.
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The construction of the resulting equation is suitable also for the solution of
systems of holomorphic equations.

Suppose that f = (f1, . . . , fn) is a system of holomorphic functions in a domain
D ⊂ Cn, which has finitely many zeros {ak} in D. After [Tsi92, § 19], the resultant
of a function F : D → C with respect to the system f is the number

(1.1) Rf (F ) =
∏
k

(F (ak))μk ,

where μk is the multiplicity of the zero ak of the system f . In the case when
n = 1, D = C, and f and F are polynomials, the resultant Rf (F ) coincides with
Sylvester’s resultant. Taking the logarithm of both sides of the equality (1.1) easily
gives

log Rf (F ) =
∑

a∈Nf

log F (a),

where the sum is over all zeros of f in D counted with their multiplicities. The
right-hand side is well defined if the image of Nf by F lies in C with slit along a
ray from the origin.

When considering a system of holomorphic functions f in a product domain
D = D′ ×B of Cn+1 ×C, one can introduce the resultant of the function fn(z′, zn)
with respect to the truncated system f ′(z′, zn) = (f1(z′, zn), . . . , fn−1(z′, zn)), for
fixed zn ∈ B. The function R(zn) = Rf ′(fn) obtained in this manner has the
property that R(zn) = 0 if and only if the system f(z′, zn) = 0 has a solution for
this zn.

If f is a polynomial map of Cn, then the resultants of the functions F (z) = exp zs,
s ∈ Zn

+, with respect to f are of crucial importance for the elimination theory.
Indeed, they alow one, when combined with the Newton recurrence formulas, to
explicitly evaluate R(zn), cf. § 8 of [BKL98]. The series

∑
a∈Nf

as is an analogue
of the Riemann zeta-function.

We introduce the zeta-function ζf (s) of the system f by the series
∑

a∈Nf
a−s,

if it converges. Note that ζf (s) is, by the very definition, a function of n variables
s = (s1, . . . , sn).

We are interested in the analyticity of ζf in s ∈ Cn, which certainly depends
on the location of the zero set of f . To highlight the situation, we recall the
construction of zeta-function for an elliptic boundary problem.

2. Zeta-function of elliptic operators

The idee of this paper goes at least as far as [GL53]. This latter deals with the
regularised trace for the Sturm-Liouville operator. Let {λk} be the characteristic
values of

−u′′ + q(x)u = λu for x ∈ (0, π),
u′(0) − hu(0) = 0,

u′(π) + Hu(π) = 0,

the mean value of q on the interval [0, π] being zero. Denote by {ck} the character-
istic values of −u′′ = cu with the same conditions. Gelfand and Levitan proved in
[GL53] that

∞∑
k=1

(λk − ck) =
1
4

(q(0) + q(π)) + hH.
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The paper [Dik55] shed some new light on this formula. Let {λk} be the eigen-
values of the same differential operator but with the Dirichlet boundary conditions
u(0) = u(π) = 0. From the identity

(2.1)
∞∑

k=1

(λk + z)−1 = Tr(D2 + q(x) + z)−1

one can obtain the formulas

(2.2)
∞∑

k=1

λn
k = Tr(D2 + q(x) + z)n,

for n = 1, 2, . . ., by expanding formally in powers of z−1 and equating coefficients.
The apparently meaningless formulas (2.2) can be “regularised” by forming asymp-
totic expansions of both sides of (2.1) for large z, assuming q(x) to be infinitely
differentiable.

In [Lev64] a new method is presented for calculation of the regularised sums∑∞
k=1 λs

k with s = 1, 2, . . .. It is based on specifying λk as roots of an entire
analytic function of λ ∈ C.

An approach to perturbation theory due to Dikii [Dik55] is based on a study
of Dirichlet series related to the positive eigenvalues of a selfadjoint operator. A
problem of the theory is to sum divergent series of the form

∑
k zn

k , where n is a
positive integer and the numbers {zk} are zeros of an entire function f . The sum
is defined by analytic continuation of the corresponding Dirichlet series

∑
k z−s

k . A
solution is required from a knowledge of coefficients in an asymptotic expansion of
f .

Lidskii and Sadovnichii studied in [LS67] a class of entire analytic functions f of
the form

f(z) =
N∑

j=1

ecjz pj(z),

where cj are complex constants and each pj(z) has an asymptotic expansion of the
form pj(z) ∼ ∑∞

k=−kj
Cjkz−k with Cj,−kj �= 0. It is assumed that the z -plane

can be divided into a finite number of sectors, in each sector the pj(z) are analytic
for large |z| and the corresponding asymptotic expansions can be differentiated.
Denote by {zk} the zeros of a function f in the class and define the corresponding
zeta-function ζf (s) =

∑
k z−s

k in the half-plane �s > 1. In [LS67], asymptotic
expansions for zk are obtained and, by putting in certain convergence factors, the
sum ζf is converted into a sum which converges for �s > −m − 1, m being any
positive integer.

For a general elliptic boundary problem Au = f with homogeneous boundary
conditions on a compact C∞ manifold M with boundary, the ζ -function is defined
by

ζA(s) =
∫

M

trKAs(x, x),

where KAz is the Schwartz kernel of the power Az. Seeley proved in [See69] that
the ζ -function of an elliptic boundary problem has a meromorphic extension to all
of C.

If the boundary value problem is selfadjoint and {λk} are its eigenvalues, then
ζA(s) =

∑
k λs

k for �s < −n/m, where n is the dimension of M and m the order of
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A. Moreover, the series converges absolutely and uniformly in s in any half-plane
�s < −n/m− ε with ε > 0, cf. for instance [Shu87, § 13].

3. Generalised zeta-function

Let f = (f1, . . . , fn) a system of entire functions in Cn. Consider the system of
equations

(3.1)

⎧⎨
⎩

f1(z) = 0,
. . .

fn(z) = 0.

Denote by Nf = f−1(0) the set of all roots of system (3.1), every root being
considered along with its multiplicity. From now on we assume that Nf is at most
countable. Hence it follows that this set has no accumulation points but the point
at infinity. Indeed, take any bounded domain D ⊂ C

n whose boundary does not
contain any roots of (3.1). Then Nf ∩D is a compact analytic set in D, hence it is
finite. It follows that Nf is discrete, as desired.

We will be concerned with an integral representation for the zeta-function ζf (s)
of system (3.1), i.e.,

ζf (s) =
∑

a∈Nf

a−s,

where s = (s1, . . . , sn) and a−s = a−s1
1 · . . . · a−sn

n .
Note that the classical zeta-function of Riemann corresponds this way to the

equation exp z = 1.

4. Preliminary results

Write zj = xj + ıyj for j = 1, . . . , n. Suppose no function fj vanishes on the set
R̄n

+ := {z ∈ Cn : x1, . . . , xn ≥ 0, y1 = . . . = yn = 0}. In particular, this implies
Nf ∩ R̄n

+ = ∅.
Let us choose a polyhedral domain D of the form D = D1 × . . . × Dn in Cn,

where

Dj = {z ∈ C : rj < |z| < Rj} \ {z ∈ C : rj < �z < Rj , �z = 0}
for 0 < rj < Rj , cf. Fig. 1.

�

�
�z

�z
��

�

�

�

��	

 �

rj

Rj

Fig. 1. The domain Dj .

Note that every Dj is a simply connected domain. Its boundary Γj = bDj

consists of the segment [rj , Rj ] on the real axis, the circle SRj of radius Rj around
the origin with positive orientation, the segment [Rj , rj ] on R which just amounts
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to [rj , Rj ] with opposite orientation, and the circle −Srj which is equal to Srj with
opposite orientation.

The product Γ = Γ1 × . . .×Γn is the skeleton of D. We choose the radii rj and
Rj , j = 1, . . . , n, in such a way that Γ ∩ Nf = ∅.

Consider the integral

(4.1) I(−s) =
1

(2πı)n

∫
Γ

(−z)−s df

f
,

where
df

f
=

df1 ∧ . . . ∧ dfn

f1 · . . . · fn

and (−z)−s = (−z1)−s1 · . . . · (−z1)−sn . The functions (−zj)−sj = e−sj ln(−zj) are
actually holomorphic in the domains Dj if by ln ζ is meant the main branch of the
logarithm, i.e., the regular branch of ln ζ in C \ {ζ ∈ C : �ζ ≤ 0, �ζ = 0} that
vanishes at ζ = 1. It is easy to see that the integral I(−s) is an entire function of
s ∈ Cn.

Denote by [fj ] = {z ∈ Cn : fj(z) = 0} the divisor of the function fj . We say
that the domain D agrees with the map f if [fj ] ∩ (bD)j = ∅ for each j = 1, . . . , n,
where

(bD)j = D̄1 × . . . × D̄j−1 × Γj × D̄j+1 × . . . × D̄n

is the j -th face of the boundary of D.
If D agrees with f then applying the principle of separating cycles [Tsi92, § 9.2]

immediately yields

(4.2) I(−s) =
∑

a∈Nf∩D

(−a)−s.

A trivial verification shows that the condition [fj] ∩ (bD)j = ∅ can be rewritten
in the form

1) fj(z) �= 0 if |zj| = rj and rk ≤ |zk| ≤ Rk for k �= j;
2) fj(z) �= 0 if |zj| = Rj and rk ≤ |zk| ≤ Rk for k �= j;
3) fj(z) �= 0 if rj ≤ �zj ≤ Rj , �zj = 0 and rk ≤ |zk| ≤ Rk for k �= j.

The formula (4.2) still remains valid when we drop the assumption 3). Indeed,
consider an auxiliary system

(4.3) Fj(z) = 0

for j = 1, . . . , n, where Fj(z) = fj(0, . . . , 0, zj, 0, . . . , 0). It satisfies the condition 3)
because fj(0, . . . , 0, xj , 0, . . . , 0) �= 0 for all xj ≥ 0. The function Fj(z) is obtained
from fj(z) by equating the Taylor coefficients of the monomials containing a variable
zk with k �= j, to zero. Under sufficiently small perturbations of these coefficients
the condition 3) remains still fulfilled, for the sets over which zk vary are compact.
It follows that formula (4.2) holds for such coefficients. Since both the left-hand side
and the right-hand side of (4.2) depend holomorphically on the Taylor coefficients
of f away from the discriminant set, we deduce that the formula (4.2) remains still
true when we drop 3).
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5. An integral representation

Let us investigate the behaviour of I(−s) when rj → 0 and Rj → +∞, for
j = 1, . . . , n. The skeleton Γ splits into sets defined by means of circles Srj , SRj

and segments [rj , Rj ] oriented in either of two directions.
Consider an integration set of the form Sr1 × Γ2 × . . . × Γn. Let us show that

for �s1 < 1 the integral

(5.1)
∫

Sr1

(−z1)−s1
df1

f1
∧

∫
Γ2×...×Γn

(−z2)−s2 · . . . · (−zn)−sn
df2 ∧ . . . ∧ dfn

f2 · . . . · fn

tends to zero if r1 → 0. We get

|(−z1)−s1 | = |e−s1(ln r1+ı(ϕ1−π))|
= e−�s1 ln r1+�s1(ϕ1−π)

= O(r−�s1
1 )

for r1 → 0, where ϕ1 = arg z1. Since f1(0) �= 0, it follows that∣∣∣
∫

Sr1

(−z1)−s1
df1

f1

∣∣∣ ≤ c

∫
Sr1

|(−z1)−s1 | |dz1|

≤ C r1−�s1
1

with constants c and C independent of r1. Hence the first integral of (5.1) tends to
0, when r1 → 0, and so does the whole integral, as desired.

The same reasoning applies to any integral whose integration set includes at least
one of Srj . All the integrals tend to zero, when rj → 0, provided �sj < 1.

We next consider the integral over the set SR1 × Γ2 × . . . × Γn. We obviously
have

(5.2)
∫

SR1×Γ2×...×Γn

(−z)−s df

f
=

∫
SR1×Γ2×...×Γn

(−z)−s Jf

f
dz,

where Jf is the Jacobian of the map f . If �s1 > 0 and

Jf

f
= O

( 1
R1

)
,

when R1 → +∞, then the integral (5.2) tends to 0, when R1 → +∞, for∣∣∣
∫

SR1

(−z1)−s1
Jf

f
dz1

∣∣∣ ≤ C R−�s1
1

just as above.
If the condition

(5.3)
Jf

f
= O

( 1
Rj

)
,

when Rj → +∞, is fulfilled for all j = 1, . . . , n, then all the integrals whose
integration set includes at least one of SRj tend to zero.

It remains to consider the integrals over the product of segments oriented in
diverse directions. We restrict our attention to a product

P = [R1, r1] × . . . × [Rk, rk] × [rk+1, Rk+1] × . . . × [rn, Rn]

where the first k segments are oriented in the direction of decreasing the variable
xj := �zj.
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By the definition of the holomorphic function (−z)−s, we immediately get the
equality∫

P

(−z)−s df

f
= (−1)k e−2πıs1 · . . . · e−2πısk

∫
[r1,R1]×...×[rn,Rn]

(−x)−s df

f

because

(−z)−s = (−x1e
2πı)−s1 · . . . · (−xke2πı)−sk(−xk+1)−sk+1 · . . . · (−xn)−sn

= e−2πıs1 · . . . · e−2πısk(−x)−s.

Summing up the integrals over the sets which contain only segments we arrive at
the integral

1
(2πı)n

(1 − e2πı(1−s1)) · . . . · (1 − e2πı(1−sn))
∫

[r1,R1]×...×[rn,Rn]

(−x)−s df

f
,

as is easy to check.
Letting rj → 0 and Rj → ∞ in (4.2) we thus get

(5.4)
1

(2πı)n
(1 − e2πı(1−s1)) · . . . · (1 − e2πı(1−sn))

∫
R̄n

+

(−x)−s df

f
=

∑
a∈Nf

(−a)−s,

the series on the right-hand side converges because so does the integral on the
left-hand side. An easy computation gives

1 − e2πı(1−sj) = eπı(1−sj) 2ı
e−πı(1−sj) − eπı(1−sj)

2ı

= −2ı eπı(1−sj) sin π(1 − sj)

= (−1)−sj 2ı sin π(1 − sj),

hence the left-hand side of (5.4) is equal to

1
πn

sinπ(1 − s1) · . . . · sin π(1 − sn)
∫

R̄n
+

x−s df

f
.

Summarising, we get an integral representation of the zeta-function ζf (s) in the
product of critical strips 0 < �sj < 1.

Theorem 5.1. Suppose 0 < �sj < 1 for all j = 1, . . . , n, and (5.3) is satisfied.
Then,

(5.5)
1
πn

sin π(1 − s1) · . . . · sin π(1 − sn)
∫

R̄n
+

x−s df

f
=

∑
a∈Nf

(−a)−s.

Set Cj = (+∞, rj ] ∪ (−Srj ) ∪ [rj , +∞) and C = C1 × . . . × Cn. The proof of
Theorem 5.1 actually shows that

(5.6)
1

(2πı)n

∫
C

x−s df

f
=

∑
a∈Nf

(−a)−s.

The integral in (5.6) converges if �sj > 0 for each j = 1, . . . , n. It thus gives an
analytic extension of the zeta-function ζf (a) to the product of half-planes �sj > 0.
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6. Proper systems

The condition (5.3) is always fulfilled for polynomials fj, and Theorem 5.1 holds
in this case.

We now assume that each function fj can be written as infinite product of
polynomials, i.e.,

(6.1) fj(z) =
∞∏

k=1

pjk(z)

for j = 1, . . . , n.

Corollary 6.1. Assume that 0 < �sj < 1 is fulfilled for j = 1, . . . , n, and the
integral ∫

R̄n
+

x−s df

f

converges absolutely. Then formula (5.5) holds for system (6.1).

Proof. An elementary computation gives

df

f
=

d
∏∞

k=1 p1k∏∞
k=1 p1k

∧ . . . ∧ d
∏∞

k=1 pnk∏∞
k=1 pnk

=
∞∑

k1,...,kn=1

dp1k1

p1k1

∧ . . . ∧ dpnkn

pnkn

.

Note that formula (5.5) is true for each system of polynomials p1k1 , . . . , pnkn , which
is due to Theorem 5.1. Integrating term by term the series obtained establishes the
corollary. �

We now discuss some other classes of functions which satisfy the conditions of
Theorem 5.1. Let f1(z) = f1(z1) be a polynomial satisfying f1(0) �= 0. Then
f1(z1) does not vanish for |z1| small enough. Clearly, f1(z1) is different from 0
for sufficiently large |z1|. Moreover, f1(x1) �= 0 for all x1 ≥ 0, if for instance the
coefficients of f1 have positive real parts. Pick r1 and R1 satisfying the conditions
1) and 2) of Section 4. Take

f2(z) = c2,0 +
m2∑
k=1

c2,k(z1)zk
2 ,

where c2,0 is a non-zero constant and c2,k(z1) are entire functions of z1 with
c2,m2(z1) �= 0 in C. Then f2(z) does not vanish if r1 ≤ |z1| ≤ R1 and |z2| is
sufficiently small or sufficiently large. Hence there are r2 and R2 satisfying the
conditions 1) and 2) of Section 4. Once again we can choose f2 which is different
from zero on R̄n

+, and so on. By induction,

fn(z) = cn,0 +
mn∑
k=1

cn,k(z1, . . . , zn−1)zk
n,

where cn,0 �= 0 is a constant and c2,k(z1, . . . , zn−1) are entire functions of z1 with
c2,mn(z1, . . . , zn−1) �= 0 in Cn−1. Having fixed rj and Rj for j = 1, . . . , n − 1, one
can choose rn and Rn, such that the conditions 1) and 2) of Section 4 are fulfilled.
Moreover, one can guarantee that fn(z) �= 0 on all of R̄n

+. It follows that the system
f = (f1, . . . , fn) constructed in this manner satisfies the conditions 1)–3) of Section
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4. Our next goal is to show that the condition (5.3) is satisfied. To this end, we
observe that

Jf = (f1)′z1
· . . . · (fn)′zn

whence
Jf

f
=

(f1)′z1

f1
· . . . · (fn)′zn

fn
.

Since fj is a polynomial in zj and the coefficient of the highest power of zj is
bounded away from zero, we conclude that

(fj)′zj

fj
= O

( 1
Rj

)

uniformly in the other variables z1, . . . , zn−1, when Rj → +∞. Therefore, f fulfills
(5.3).

7. An example

Let f1, . . . , fn be polynomials with non-negative coefficients, such that the high-
est degree homogeneous parts of fj have a unique common zero at 0 ∈ Cn, and
fj(0) �= 0 for j = 1, . . . , n. Then the system

(7.1)

⎧⎨
⎩

f1(z) = c1,
. . .

fn(z) = cn

has a finite number of roots in Cn for all constant numbers c1, . . . , cn.
Consider the integral

I(s) =
∫

R̄n
+

x−s df1 ∧ . . . ∧ dfn

sinh f1 · . . . · sinh fn

=
∫

R̄n
+

x−s
d tanh f1

2 ∧ . . . ∧ d tanh fn
2

tanh f1
2 · . . . · tanh fn

2

.

Obviously, the integral I(s) converges absolutely if �sj < 1 for all j = 1, . . . , n.
Hence, Corollary 6.1 applies to I(s), the only difference being in the meromorphy
of tanh(fj/2). As

sinh
fj

2
=

fj

2

∞∏
k=1

(
1 +

f2
j

π2(2k)2
)
,

cosh
fj

2
=

∞∏
k=0

(
1 +

f2
j

π2(2k + 1)2
)
,

the points a entering into the right-hand side of formula (5.5) have to satisfy a
system (7.1) with cj = πkjı, where k = (k1, . . . , kn) ∈ Zn. Denote by Nf−πkı the
set of roots of the system f(z) = πkı. Corollary 6.1 yields

I(s) =
πn

sin π(1 − s1) · . . . · sin π(1 − sn)

∑
k∈Zn

∑
a∈Nf−πkı

(−1)o(k)(−a)−s,

where o(k) is the number of odd components of the multi-index k.
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