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Abstract

We show relative index formulas for boundary value problems in cylindrical domains and
Sobolev spaces with different weights at £oco. The amplitude functions are meromorphic in
the axial covariable and take values in the space of boundary value problems on the cross
section of the cylinder.

AMS CLASSIFICATION: 35J40, 47G30, 58J32.

Introduction

This paper is aimed at studying boundary value problems in an infinite cylinder R x X,
where X is a compact C°° manifold with boundary Y. The operators on X will be repre-
sented in terms of amplitude functions with respect to the axial variable ¢ and a complex
covariable w as meromorphic functions in the complex w-plane taking values in the algebra
of pseudo-differential boundary value problems on the cross section X. We study ellipticity
and Fredholm property in (doubly) weighted Sobolev spaces and express parametrices within
the calculus as well as the relative index with respect to changes of weights. Problems of a
similar structure including relative index results are well known for the case of a closed com-
pact cross section X, cf. Melrose and Mendoza [9], Schulze and Tarkhanov [14]. Boundary
problems for differential operators in weighted Sobolev spaces in infinite cylinders have been
systematically studied in Sternin [15].

Results of a similar type in the pseudo-differential set-up are necessary in mixed elliptic
problems, as they are studied in [2], and also in other interesting new applications with
geometric singularities, e.g., crack problems, cf. Kapanadze and Schulze [6]. This is the
main motivation of the present investigation. The main results are Theorems 2.8 and 2.9,
and the conclusions are explicitly applied in [2]. Let us also note that meromorphic families of
boundary value problems are studied in connection with operators on manifolds with conical
singularities, cf. Kondratyev [7], Schrohe and Schulze [11], [12] or, in the context of long-time
asymptotics for the parabolic case Krainer [8].

As far as we employ background from [14] or Gohberg and Sigal [3] we will content
ourselves with references. An inspection of the methods shows that it is essential to have
transposed operators in the calculus. Those are not always available in boundary value
problems with the transmission property, namely when the operators have non-vanishing
type or order (which is the case for differential boundary problems). One of the new points
in this paper is to avoid this difficulty by applying a specific class of holomorphic reductions



of orders, see Harutjunjan and Schulze [5] which do not contribute to zeros and poles in a
prescribed weight strip.

One also should possess results of that kind in more general situations, e.g., when the
cross sections have geometric singularities and boundary. In this sense another consequence
of our investigation is a general and transparent approach which makes it easy to predict
similar relative index results also for cross sections with higher singularities, cf [4].

1 Meromorphic symbolic calculus

1.1 Boundary value problems with parameters

If M is a closed compact C°° manifold by L% (M; R') we denote the space of all classical
pseudo-differential operators of order 1 € R on M depending on a parameter A\ € R'. More
precisely, the local amplitude functions a(z,&,\) belong to the standard classical symbol
spaces
SEH(U x ]R?:{l),

U C R" open, n = dim M, L~°(M;R') := S(R', L=°°(M)) with L=°°(M) = C®(M x M)
being the space of smoothing operators on M, and S(R', ...) the Schwartz space with values in
the space in the brackets. Throughout this exposition all manifolds in question are assumed to
be equipped with Riemannian metrics. This gives us L2- spaces with a fixed scalar product
(in the compact case, otherwise local L?-spaces). Moreover, H*(M) denotes the scale of
standard Sobolev spaces on M of smoothness s € R. It will be convenient to formulate
our consideration in terms of distributional sections H*(M, E) in smooth complex vector
bundles E, all assumed to be equipped with Hermitian metrics. Let Vect(-) denote the set of
all smooth complex vector bundles on the manifold in the brackets. If X is a compact C'*®
manifold with boundary we set H®(int X, E) := H*(2X, E)|in; x for an E € Vect (2X) and
E:=E lint x; here 2X denotes the double of X, obtained by gluing together two copies X _
and X of X along the common boundary (where we identify X with X).

Let us now pass to the space B*4(X;v;R') of parameter-dependent boundary value
problems for a compact C*° manifold X with boundary Y; p,d and v will be explained
below. The operators are assumed to be of the form

H*(int X, E) H* H(int X, F)
A @ N ® (1)
1
ol | H 37 (Y, Jy) @ H* 27" (Y,G})

for E,F € Vect(X), Ji, Gj € Vect(Y), and we set v := (E, F; (Jg)k=1,..k,(Gj)j=1,...7), b =

1
12 (1 — 9~ Vk)lgkgK
. . Concerning the admitted s we assume that A is
(pj +5h<i<s (P =M 1gi<s
1<k<K
of type d € N and take s > d — % Let us write A as a block matrix

(4 5)

with A(\) : H*(int X, E) — H* *(int X, F') in the upper left corner, cf. the formula (5) be-
low. The lower right Q()) is assumed to be an J x K matrix of elements in L/* (Y J;,, G;; R')
with Douglis-Nirenberg orders pu;; = p; — v, for certain pj,1, € R The components of



TA) = YTy(N),...,Ts(N\) are so called (parameter-dependent) trace operators of type
d € N in Boutet de Monvel’s calculus, ord T} = p; + 3, and K(A) = (Ki(A), ..., Kk())) is a
vector of potential operators K () of order p — % — V.

The operators A € B*4(X;v; R') have a (parameter-dependent) principal symbolic struc-
ture

o(A) = (94 (A),00(A))

consisting of the homogeneous (in (£, \) # 0) principal interior symbol
op(A) :=0y(A) i Y E = nx F (3)

with the canonical projection 7y : T*X x R \ 0 — X (0 means here (£,\) = 0) and the
homogeneous (in (7, A) # 0) principal boundary symbol

E'® H*(Ry) F'@ HM(Ry.)
oy(A) : Ty ) — Ty ® (4)
Sr Ik ®/_,Gj

with the canonical projection 7y : T*Y x RE \ 0 — Y (0 in this case means (n,\) = 0),
s>d—% B :=E|y,F':=Fl|y.

Definition 1.1 An element A € B*4(X;v;R!) is said to be parameter-dependent elliptic if
both (3) and (4) are isomorphisms (in (4) this may be required for some fized s > max (u, d)—
.

To describe the operators A in (1) we denote by L5(2X;E~,F’;Rl)tr the subspace of
all elements of Lé‘l(ZX B, F; R') that have the transmission property at the boundary Y
concerning the definition on the level of local symbols and further details cf. Boutet de
Monvel [1] or Rempel and Schulze [10]. For references below we give an outline on some
elements of the calculus.

The upper left corner A of (1) has the form

A = r*PO)et + G, (5)

for an element P(\) of LY (2X; E, F; R )., E = E|x, F = F|x; e* is the operator of extension
by zero from int X to 2X and rt the restriction from 2X to int X. The second summand
G(A) is a family of so called Green operators. Let us recall the structure of G(\) together
with the trace and potential operators. We will formulate the elements of the calculus for
the case u € Z and pj = p, v, = 0 for all j, k and then write B4 instead of B*4. By using
reductions of orders on the boundary with a suitable holomorphic dependence of a complex
parameter, c¢f. Theorem 1.5 below, we then obtain all results also for the general case.

By B~ X;v;R!) for v = (E, F; J,G),J := oK Ji, G = @jzle, we understand the
space of all smoothing elements of type 0 of the calculus of boundary value problems. For
[ =0 and trivial bundles of fibre dimension 1 this simply means that the entries of (2) have
C™ kernels on X x X, X xY,Y x X and Y x Y, respectively. This has a straightforward
generalisation to the case of arbitrary bundles E, F, etc. The resulting space B=(X;v)
is then Fréchet, and we set B~°0(X;v;R!) := S(R!, B7°%(X;v)). For d € N the space
B~4(X;v;R') is the set of all operator families of the form

d
G(N) = Go(N) + ) G;(N)diag (17,0) (6)

i=1
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where T' is any first order differential operator C*°(X,E) — C*°(X, E) the homogeneous
principal symbol of which near Y is equal to &, ® idﬁ;( E, where &, is the covariable to z,
the normal to Y in a collar neighbourhood of the boundary.

Now let BZ’O(X; v; R') defined to be the set of all operator families C®(X, E)®C>(Y, J) —
C>®(X,F)®C*(Y,G) which are mod B~Y(X; v; R!) locally near any point of Y of the form
wOp(g)w for some w,w € C°°(X) supported in a collar neighbourhood of Y and equal to
1 near Y and a so called Green symbol g(y,n,A) of type 0. By this we mean a classical
operator-valued symbol

glysmA) € SHOQ xR L LA(R) 0T, SRy o T) (7)

with j and j' being the fibre dimensions of J and G, respectively, such that the pointwise
formal adjoint ¢*(y,n, A) is of analogous structure (of course, with interchanged role of j
and j'). Moreover, B‘é’d(X ;v;R!) denotes the set of all operator families of the form (6) for
arbitrary G;(\) € Bg_j’O(X; v; R,

Here and in the sequel we employ material on operator-valued symbols with twisted
homogeneity p. Let us briefly recall the meaning.

If H is a Hilbert space and {r)}xcr, a strongly continuous group of isomorphisms ) :
H — H with kyky = ky for all \, N € R we say that H is equipped with a group action.
Let H be a second Hilbert space with group action {Fx}rery -

Definition 1.2 The space S*(U x R?; H, H) for n € R,U S RP open, is defined to be the
set of all L(H, H)-valued C* functions a(y,n) on U x R? which have the property that

SUP(y,n)e K x R4 I (77>7“+W| 7‘?(_,7% {D;?Dﬁa(y, W)}H(m | |5(H,f{)

is finite for every K CC U,a € NP, 3 € N, Here (n) := (1 + |17|2)%

The elements of SH(U x R?; H, H) are called operator-valued symbols (with twisted
symbolic estimates). The subspace of classical symbols S (U x R?; H,H) > a(y,n) is de-
fined by the condition that there are homogeneous components a(,_;(y,1),j € N (that is

a(u—j) (Y, An) = A“*j/ﬁa(u,j)(y,n)/f;\l for all (y,n) € U x (R?\ {0}),\ € Ry, such that
o0

a(y,n) ~ Y _ x(mag.—j ;)

j=0

for any excision function x(n) (i.e., x € C*(R?), x(n) = 0 for n| < co,x(n) =1 for |n| > ¢;
for some constants 0 < ¢y < ¢1). The spaces Séf: N (U xR?; H, H) are Fréchet in a natural way
(here we write ‘(cl)’ if a consideration is valid both for the classical and the general case).

The deﬁni:cions extend to the case of Fréchet spaces H or H with group actions. For
instance, let H = @H J be a projective limit of Hilbert spaces with continuous embeddings

JEN
Hitl— H ~3 ‘for all §, and let H° be endowed with a group action which restricts to a group
action on H’ for every j. Then we set Sfbd)(U xR H H) = %Sél)(U x R?; H, H).
JIS
An example for the latter case is
SRy) e U =lim(,) VH/ (R;) & C'
JEN

with the group action k) (u(z,) ® c) := )\%u()\xn) ®M\Ezcforue (z,)7HI(R,),c € TV'; the
plus sign is taken for (7), the minus sign for the formal adjoint.
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Theorem 1.3 Let A € B4 (X;v;R') be parameter-dependent elliptic. Then there exists a
parametriz P € B*”’(d*“)Jr(X; v ;R in the sense that T—PA € B~>>4(X; E,E, J, J;R'),d, =
max (u,d), and Z — AP € Bfoo’(df“)Jr(X;F, F,G,G;RY). Moreover, (1) is a family of Fred-
holm operators for any s > max (u, d)—%, and there is a C' > 0 such that (1) are isomorphisms
for all || > C.

A proof may be found in [10], see also [12] or [8] (concerning an evaluation of types, see

[6])-

1.2 Meromorphic families

In this section we introduce meromorphic families of parameter-dependent pseudo-differential
operators, first for the case of a closed compact C°° manifold M and then on a compact C'*®
manifold X with boundary.

If F is a Fréchet space and U € C an open set by A(U, F) we denote the space of all
holomorphic functions in U with values in F.

Let L'} (M; CxR") denote the subspace of all operator families A(w, ) € A(C, L% (M;R'))
such that

A(T +iy, A) € L (M; Rij\l)

for every v € R and uniformly in compact y-intervals. We will employ the following result
from [8].

Theorem 1.4 For every P(r,\) € LY (M; Rij\l) there exists an element A(w,X) € Lk (M;Cx
RY) such that A(T,)\) — P(1,A\) € L™°(M;R"f!). In addition, if P(7,)\) is parameter-
dependent elliptic of order pu with the parameter (1, \) € R\, also A(T+iv,\) is parameter-
dependent elliptic for every v € R.

As is well known, if an operator is parameter-dependent elliptic it induces isomorphisms
Al +i7,A) + H(M) — H*=#(M) (8)

for all s € R and all |7, \| > C for some constant C' > 0. The construction of [8] shows that
for every ¢ < ¢ there exists a C(¢/,¢”) > 0 such that the operators (8) are isomorphisms
for all s € R and all {w € C: ¢ <Imw < "}, provided that |A| > C(c,").

Also for boundary value problems we look at holomorphic families. A simplest example
are parameter-dependent elliptic differential operators

A(m,A) = Y aa(@)DE, , )+ H(int X) — H* ¥ (int X)
| <p

in X = G for an open bounded set G C R" with smooth boundary Y. In the parameter
(1,A) € R we also admit [ = 0. Let

T(1,A) = Y(Ti(1, N, ..., Tn(1,N)

be differential boundary conditions which are of the form

Ty(r, Nu= Y bs(@)D[, _yuly
18]<p;
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with coefficients bg(z) that are smooth in a neighbourhood of Y. Then the family of operators

H*~h(int X)
A(r, A) 5(;
A(1,A) = T(r. \) c H?(int X) — ® 1 (9)
’ @;-V:le_“j_E(Y)
which is continuous for all s > max {y; + % :7=1,...,N} has a canonical extension to a

family A(w, A) which is holomorphic in w € C. Assuming that A(7, \) is parameter-dependent
elliptic it can easily be verified that A, (7, ) := A(7 + i, A) is also parameter-dependent
elliptic for every v € R. From Theorem 1.3 it follows that for every fixed v € R the operator
family A, (7, A) has a parameter-dependent parametrix P, (7, A) of type (d — )t (and with
upper left corner being of order —pu).

Let us now assume [ = 0. Then P, (7) is known to be extendible to a (meromorphic) family
P(w) of operators with a pattern of ‘poles’ of finite multiplicity which intersects every finite
strip {w € C : ¢ < Imw < ¢} in finitely many points. In order to analyse this behaviour
in connection with the program of the papers Gohberg and Sigal [3] or of the discussion in
[14], [4] we want to reduce orders and types of P(w) in such a way that the multiplicities of
non-bijectivity points of A(w) (or of the poles of P(w)) remain unchanged. For this reason
we recall a result on holomorphic order reducing families also on a manifold with boundary.

Let X be locally near a point of the boundary identified with the half-space @1 ={z €
R™ : z, > 0}; write x = (2/,2,) and £ = (¢',&,). We then consider parameter-dependent
symbols in R” of the form

én
C{¢,mA)

p € Z, for a function ¢ € S(R) such that ©(0) = 1 and supp F~lp C R, (with F being
the one-dimensional Fourier transform). As is known (10) is a classical symbol, cf. [11]. A
sufficiently large choice of the constant C' > 0 guarantees the parameter-dependent ellipticity
of (10). In order to form operators on X we consider symbols

P (20, &, 7, A) i= (€, 7, )@ (¢, 7, Appit—w(@a)) (11)

€ N) = (o )€ N —ia)”, (10)

for some cut-off function w(z,). By a system of charts on 2X to R* 3 (z,z,) for neigh-
bourhoods of the boundary which induce charts on Y to R*~! 3 2’ and charts to R” for
neighbourhoods on 2X \ Y we easily find a family

RM(1,)) € LY (2X; Rij;l)tr

of parameter-dependent elliptic pseudo-differential operators having the local amplitude func-
tions (11) near Y and (£, 7, \)* outside a neighbourhood of Y, modulo lower order terms,
cf. the paper [5]. More generally, a similar construction can be carried out for the case of
operators acting in distributional sections of a vector bundle E € Vect (2X) and we then
obtain R¥(7,\) € Ly (2X; E, B; R} )ir. Then

rTRF (T, \)eT

is an element in B*0(X; E, E; R'*!) for E = E|x. We now apply the kernel cut-off construc-
tion from [13] to boundary value problems (which is also the background of the Theorems
1.5 and 1.6 below). Let us set

K(p,\) := (2n) ! / P RE (1, N)eTdr

—o0
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(the integration is carried out for the function in 7 with values in the Fréchet space B*9(X; E, E;R)).
Moreover, choose an arbitrary function ¢(p) € C§°(R) which is equal to 1 in a neighbourhood
of p =0, and form

Rew,N) = [ (o) K (o, dp
Then we obtain a family
R (w, \) € A(Cy, B (X; E, E;R"))
which has the property
R*(w, N |[tmw=0 = r"R¥(7, \)e" mod B~°(X; E, E;R'*)
(here w = 7 + 7).

Theorem 1.5 The operator family RY(7,\) :== R*(1 +1v, \) is parameter-dependent elliptic
in BMO(X; E, E;R"™f) for every v € R (without additional trace and potential conditions),
and for every ¢ < " there exists a constant C(c/,") > 0 such that for |A| > C(c',c") the
operators

R*(w,\) : H*(X,E) — H* (X, E)
are isomorphisms for all s € R, s > max (p,0) — %, for all {w e C:d <Imw < '}

This result corresponds to [5, Theorem 2.7].

Let us now describe a space of meromorphic families of pseudo-differential boundary value
problems, first for the B*%-version and then for B*4 in general.

Let B4 (X;v; Cx R') denote the subspace of all h(w, \) € A(C, B»4(X;v;R!)) such that
h(T 4+ iv,\) € B”’d(X;v;le;\l) for every v € R, uniformly in compact ~y-intervals. If the
upper left corner only contains a Green contribution, cf., analogously, the expression (5), we
admit g4 € R and also denote the corresponding space by B‘é’d(X ;v;C x RY). Otherwise, if
the interior pseudo-differential part in the upper left corner is non-trivial, we assume y € Z.
This allows us to assume arbitrary orders for all entries separately (and integer orders in the
upper left corners) which gives us analogously the spaces B4 (X;v;C x R').

Let us now fix a sequence

R ={(pj,mj, Gj)}jez (12)
with p; € C,m; € N,|[Impj| — oo as j — o0, and finite-dimensional subspaces G; C
B=>4(X;v) of operators of finite rank. Set mcR := {p;};ez. Define Blgoo’d(X; v;C) as the
subspace of all f(w) € A(C\7¢ R, B~°%(X;v)) such that f is meromorphic with poles at the
points p; of multiplicities m;+1 and Laurent coefficients at (w—pj)_(k‘H) inGj,0 <k <mj,
for all j € Z, and such that

X(T + i) f(r +iy) € B~UX;v;R,)

for every v € R, uniformly in compact y-intervals. Here y(w) is any mcR-excision function
(i.e,, x € C*(C),x = 0 for dist (w,7cR) < cp,x = 1 for dist (w,ncR) > ¢ for certain
0 < ¢y < ¢1). In a similar manner we can define spaces of the kind Blgoo’d(X; v; S(¢ o)) Of
meromorphic functions in the strip Sy vy := {w : ¢ < Imw < "} for arbitrary ¢’ < ¢,
where R is a sequence of the kind (12) with poles p; € Sy ¢y, TcR N Sy 01—y finite for
every € > 0, and corresponding multiplicities and Laurent coefficients as before.

We now set

BN (X505 81 ) = BM(X;0;€) + B (X505 S o). (13)
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in the sense of a non-direct sum. In particular, for ¢ = —oo,¢” = +00 we have the space
Bﬁ’d(X;'u;(C).

Let us mainly discuss the latter case; all assertions have a corresponding version also in
strips S(. o) for arbitrary ¢, c".

Theorem 1.6 (i) For even f(1) € B*4(X;v;R) there exists an h(w) € B*4(X;v;C)
such that
h(w)|imw—0 = f(7) mod B~4(X;v;R).

(ii) If f(7) is parameter-dependent elliptic, also h(t + iy) € B4 (X;v;R,) is parameter-
dependent elliptic for every v € R.

Proof. Cf. [6, Theorem 2.1.68]. O

Definition 1.7 Let R be a sequence of the form (12). Then an element B}I_?d(X;’U;S(CI’CH))
is called elliptic if for some v € R, <y < ", such that {Imw = v} NncR = & the family
f(r +ivy) € BH(X;v;R,) is parameter-dependent elliptic, cf. Definition 1.1.

Remark 1.8 The ellipticity of f in the sense of Definition 1.7 is independent of the specific
choice of .

The following result may be found in [12] (except for the types in the inverse which are
calculated in [6]); concerning more material see also [8].

Theorem 1.9 Let f € B%’d(X;U;S(nycu)) be elliptic. Then there exists an inverse f~! €
_ )t

BQ”’(d 2 (X;'ufl;S(C,,cu)) (in the corresponding space of meromorphic operator functions)

for a certain sequence Q of analogous structure as R. Here v—! := (F,E;G,J).

Proof. From [6, Theorem 1.2.92] we know that f(7 4 iy) has a parametrix fC D (7 + i)
in the space B~#(=9"(X;p~1;R,) for any fixed v € (¢,¢"). From Theorem 1.6 it fol-
lows the existence of a g(w) € B#@=m"(X;v~1;C) such that fCV(r + iy) = g(r + iy)
mod B~°(@=m" (X;»~1;R). This implies f (w)g(w) = 1—c(w) for some c(w) € Bgoo’(d_“)+(X; Vs S emy)
for some sequence S of the kind (12), v, = (F,F;G,G). As is shown in [12] we have
(1—¢)7! = (1 — d) for an element d € B;oo’(d_“)+(X;vr;S(C,,Cu)). This gives us the in-
verse f~1(w) = f"D(w)(1 — d(w)) as an element in B~H(@=m" (X;p~1; S(er emy)- O

Remark 1.10 The operator families R*(w, \) of Theorem 1.5 belong to B*O(X; E, E; CxR').
According to Theorem 1.9 for every fized A € R we obtain (RF(w,\)) ! € BE”’O(X;E,E; C)
for some sequence R = R(\) as described in (12). In particular, for every ¢ < " and

sufficiently large |A| we obtain mcR(X) N Sy oy = @. Similar constructions are possible on
closed C'*° manifolds M.

Remark 1.11 Let f € Bu7d(X;'U;S(CI,CH)) be elliptic. Then f defines a meromorphic Fred-
holm family between the spaces as in formula (1) for all s > max (u,d) — %, and f~' is of
analogous nature. Thus we are in the context of the paper [3] of Gohberg and Sigal, and
we can apply the definition of partial null-multiplicities n(f(wo)) and partial polar multi-
plicities p(f(wo)) := n(f 1(wo)) at every wy € S(er ey There are only finitely many points
wo € S(¢/ e, —e) for every e > 0, where n(f(wo)) and p(f(wo)) do not vanish. Thus, the
numbers

n(f)= S n(w) p(N= S p(fw)  (14)

Im wo€(c'+¢,c"—¢) Imwo€e(d +¢,c"—¢)

are both finite.



For the constructions in Chapter 2 below it will be convenient to reduce orders and types
to zero in such a way that we do not destroy poles and multiplicities in a prescribed strip
S(¢ ). From Remark 1.10 for every ¢’ < ¢” we have elliptic families

Rjy(w) : H*(X, E) — H*™"(X, E)
in B0(X; B, B;C), pu € Z, s > max (1, 0) — 5, and
Py(w) : H*(Y,J) — H* (Y, J)

in L4 (Y; J,J;C),v € R,s € R, such that the families of inverses are holomorphic in the strip
S(er ey (outside S( oy there may be poles as described in Theorem 1.9).

Consider now operator families (1) of the class Bg’d(X ;v;C) for a certain (12). Let
s €N/s > max (pu,d) — %, and set

Ru(w) := diag (B3 (w), (P52 (1))t i),

Ro(w) = diag (R} " (w), (Péféiuj (w))j=1,....1)-

J
Then the composition
Ao(w) := Ra(w) A(w)Ry ™ (w)

induces an isomorphism
B]’-%yd(X; v; S(c’,c”)) - B%O(Xa v; S(c’,c”)); .A(U)) - AO(w)a (15)

for every fixed choice of ¢ < ¢, provided that the absolute value of the hidden parameter
A in the operators Rj(w),j = 1,2, is chosen large enough. Moreover, the partial null- and
polar indices of the functions A(w) and Ag(w) coincide. Here @) is a resulting sequence of
the kind (12).

2 Calculus on infinite Cylinders

2.1 Operators in weighted Sobolev spaces

Let M be a closed compact C° manifold, and let E € Vect (M). Moreover, let Ph(r) €
L!{(M; E, E;R;) be an arbitrary parameter-dependent elliptic operator which induces iso-
morphisms Py(7) : H¥(M, E) — H* #*(M,E) for all s,7 € R. Then H*(R x M, E) for s € R
is defined as the completion of C§°(R x M, E) with respect to the norm

1

2

{ [ 1Pl o} (16)
R

where F' is the Fourier transform. (For convenience E € Vect (R x M) is identified with
the pull back of the former F € Vect (M) to the cylinder under der canonical projection
R x M — M). Clearly the space H*(R x M, E) is independent of the specific choice of the
order reducing family. Moreover, for every v € R we set

H*'(R x M,E) :=e¢ "H*(R x M, E).
For the case of a compact C*° manifold X with boundary Y we set

H*'(R x int X, E) := H*?(R x 2X, E)|rxint x (17)
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for some E € Vect (R x 2X) such that E = E|gy x. Here 2X is same as in Section 1.1. The
norm in (17) is defined by means of an isomorphism to H*7(Rx 2X, E)/HJ" (Rx int X_, E)
where HJ7 (R x int X_, E) means the (closed) subspace of all u € H*7(R x 2X, E) such that
u|Rxint x vanishes.

For abbreviation we now set

WY (Rx X E, J) == H*'(Rxint X, E)@H* (RxY, J), E € Vect (RxX), J € Vect (RxY),
s,y €R
Let f € B%O(X;v; S(eremy) and set
op” (f)ut) = (27) ! / ¢ f () Fu(w)duw, (18)
I’Y

where I, :={w € C: w =7+ 1iy,7 € R},y € (¢,"), and I, N mcR = @. In (18) we first
take u € C°(R x X, E) @ C§°(R x Y, J); then (Fu)(w) is an entire function in w.

Proposition 2.1 (i) The operator C°(R x X, E) ® CP(R xY,J) - C*°(R x X,F) ®
C*®(R x Y, G) given by (18) extends to a continuous map

op?(f) : H(R x X; B, J) = H* (R x X; F,G) (19)
for every s > —%.
(ii) If f(w) is bijective for all w € L, then (19) is an isomorphism for every s > —%.

Proof. (i) First observe that the space H*7(R x X; E, J) can equivalently be defined as the
completion of C§°(R, C* (X, E) & C*(Y, J)) with respect to the norm

1
{ [ 1R o) ) B gy )
I’Y

when we set R}, ;(7) := diag (R} (7), Pj(7)) with the abovementioned order reducing fam-
ilies R},(T) andij(T), respectively. Then the proof of (i) is formally analogous to the
corresponding result in the case without boundary, cf. [14].

(ii) If f(w) is bijective on the line I, from the proof of Theorem 1.9 we know that f~1(7+
i) belongs to B®Y(X;v!;R.). The bijectivity of op”(f) then follows from (op”(f)) ! =
op”(f~'), using the fact that op”(f)op”(g) = op”(fg) for arbitrary operator-valued ampli-
tude functions f and g in our spaces. O

We now introduce spaces with double weights d := (0_,d4),0+ € R, as
HWOR x X;E,J) :=o(t)H (Rx X; E,J) + (1 —o(t))H**+ (R x X; E, J)

in the sense of a non-direct sum for any o € C*(R) such that o(t) = 1 for ¢t < ¢y and
o(t) = 0 for t > ¢; for certain ¢y < ¢;. A norm on the space H*9(R x X; E, J) is defined by

o O [ ) N (20)

of course, the specific choice of ¢ is unimportant.
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2.2 Relative index

Lemma 2.2 For §_ < §, we have u € H*O(Rx X; E, J) if and only if u € H*"(Rx X; E, J)
for every y € [0_,64].

Proof. Let u € H*%(R x X; E, .J). For any v € [_, 0] we have

||U||g-[sw(Rxx;E,J) < 2(||Uu||’%{sa7(R><X;E,J) + (1 - O—)UH’%{SW(RxX;E,J))
< CHUHi&S(Rxx;E,Jy
since
2 < 2
||0'U| |’H3s’Y(R><X;E,J) = C1||0'U,||,H5,5_ (RXX;E,J)
and

||(1 - O—)UH'%{SW(RXX;E,J) S Cl||(1 - U)uH?{SﬂJr(RXX;E’J)‘

Here the constants ¢, co and hence ¢ are independent of u.
Conversely, let u € H*Y(Rx X; E,J) for every v € [0_, 61]. The relation (20) shows that

||u||3-15,5(R><X;E7J) S C(| |U| |3.[515_ (RxX;E,J) + ||U| |3.[515+ (RXX;E,J))’ (21)

for the constant ¢ depending only on o. The inequality (21) shows that when u belongs both
to H*'- (R x X; E,J) and H*%+(R x X; E, J) it follows that u € H*?(R x X; E, J). O

Remark 2.3 If u € H*9(R x X; E,J) it follows that Fu(w) is holomorphic in the strip
Ss_,5,)- This allows us to apply (18) for every 6 < < 6y such that I, NmcR = @.

Indeed, this follows from the definition of the weighted Sobolev spaces, i.e., elements u
contain the factors e%-* and e~%+! in a neighbourhoods of —oco and +oo, respectively.

Proposition 2.4 Let f(w) € B%O(X;’U;S(C/,Cu)) and let d < 6_ < o4 < d';mcRN (I5_ U
Is. ) = @. Then for every u € HOR x X; E,J) we have

op’= (f)u(t) — op®*+ (f)u(t) = 2mi Z res,e'™" f (w) Fu(w).

PES(_54)

Proof. According to the relation (13) the function f has a representation f(w) = fo(w) +
fi(w) for certain fo(w) € B*Y(X;v;C) and fi(w) € B}EOO’O(X; v; S(e ory). We first show that

op’~ (fr)u(t) —op™ (fr)u(t) =2mi Y rese™ fi(w)Fu(w)

PESG_54)

(f1(w) on the right hand side may be replaced by f(w)) which is a consequence of Cauchy’s
integral formula and the Residue Theorem. Furthermore, for any v € C§°(R x X; E) @
C3°(R x Y; J) by Cauchy’s Theorem we obtain

op” (fo)u(t) = op’* (fo)u(?). (22)
Since Cf°(R x X;E) @ C§°(R x Y, J) is dense in H*'(R x X;E,J) for any v € R, using
Proposition 2.1 and Lemma 2.2 we get (22) for any u € H*9(R x X; E, J). O
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Our next objective is to associate with f € B%’O(X; v;S(e 7)) @ continuous operator
A:HYPRx X;E,J) = HPOR x X; F,Q) (23)

in the case §_ < d4. Here and in the sequel we may first assume s = 0; the conclusions then
hold for arbitrary reals s > —%.
Let us set

D(f) :={ue HP(Rx X;E,J): resye’™ f(w)Fu(w) =0 for p € S;5_s5,}-
Thus op”(f)|p(y) is independent of the choice of v (and also of s).

Lemma 2.5 Let f(w) be elliptic. Then D(f) is a closed subspace of H*?(R x X; E,J) of
finite codimension

codim D(f) = Z p(f(p))

PES(_sy)

(which is independent of v and s).

Proof. The proof is formally analogous to Lemma 3.8 in Harutjunjan and Schulze [4] or
Lemma 6.5 in Schulze and Tarkhanov [14]. O

Proposition 2.6 (i) Let f(w) € B?{’O(X;v; S(er,emy) be elliptic and assume ncRN 15, = @.
Then op”(f) induces a continuous operator

D(f) = H*°(R x X; F,G) (24)

for every s > —%.

(ii) Let f(w) have no non-bijectivity points on the lines Is, . Then for every v € HO(R x
X; F,G) there exists a solution v € D(f) of the equation op”(f)u = v if and only if

res,e™ f~Hw) Fo(w) =0 for p € S5 64)
(by R(f) we denote the set of all such functions v € H*(R x X; F,G)).

Proof. (i) Because of Proposition 2.4 for u € D(f) we have

b (Pult) = () 1 [ e fw) Putwdw = @2)* [ ¢ f(w)Puu)dw,
Is_ Is,.
Now Proposition 2.1 (i) gives us that op”(f)u € H%%* (R x X; F,G) and the proof follows
from Lemma 2.2.
(ii) Let v = op”(f)u for some u € D(f). Then Fv(w) = f(w)Fu(w) or f~H(w)Fv(w) =
Fu(w). Since Fu(w) is a holomorphic function in the strip S¢;_ 5,y we obtain v € R(f).
Conversely, let v € R(f). Then it is easy to show that the function u defined as an integral

u(t) = %/eitwf_l(w)Fv(w)dw,
I’V

which is independent of v € [0_,d;], cf. Proposition 2.4, belongs to D(f) and op”(f)u =
. U
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Corollary 2.7 The operator (24) is injective, and R(f) is a closed subspace of H¥(R x
X; F,G) of finite codimension

codimR(f) = > n(f(p)).

PESG_5)

This is a consequence of Proposition 2.6 (ii) and Lemma 2.5.
Let us now define the operator (23) by

Au = op”(f)u for uwe D(f) and Au=0 for ue H*(R x X; E,J) © D(f) (25)

(the latter orthogonal complement refers to the scalar product of H%9(R x X; E,.J)). Sum-
ming up, Lemma 2.5 and Corollary 2.7 give the following theorem.

Theorem 2.8 Let f(w) have no non-bijectivity points on the lines 15,6 < 0. Then the
operator (23) defined by (25) is a Fredholm operator with

indA= > {p(f(p)) —n(f(p))}- (26)

PESG_54)

Next we associate operators (23) with elements f(w) € B%O(X;’U;S(c/,cu)) for the case
0_— > 4. To this end we pass to the formal transposed operators with respect to the bilinear
pairings

HOORx X;E,J) x HY *(Rx X;E',J') = C

induced by (u,v) := (u,7) with the H>(9(R x X; E, J)-scalar product (-,-); here E' and
J' are the dual bundles of E and J, respectively. The formal adjoint of op”(f) is equal to
op~7(f") for f'(w) := *f(—w) where the latter t means the pointwise transposed of f which
gives us an element in B%,O(X; v'; S(_en ) for some resulting R', and o' := (F', E';G', J').
For 'f(—w) we are now in the situation with weights 6’ := —6_ < —d, =: §'_ as before, and
hence there is a corresponding operator called *A, which is continuous in the sense

fA:HYY (R x X; F',G) = 1P (R x X E',J),

for §' = (8"_,0',),s > —3% (first for s = 0, but since we have operators in Boutet de Monvel’s
calculus we obtain continuity for all s > —%) Analogously we define

D(f') :={v e H*® (R x X; F',G") : res,e™ f'(w) Fu(w) = 0 for p e S s}
that is a closed subspace of H*? (R x X; F',G") of finite codimension

codim D(f') = Z p(f'(w)) = Z p(f(w)).

pes(é’,,éﬁr) pES(§+,57)

Corollary 2.7 shows that if f(w) has no non-bijectivity points on the lines I5, the analogue
of the operator (24)

D(f") = H* (R x X; E',J

is injective, and R(f') is a closed subspace of H*® (R x X; E', J') of finite codimension

codimR(f) = Y n(f')= >, nlfp)

pES((;/_,(;q_) pES(5+,57)
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Now using the fact that for every u € H*%(R x X; E,J) there is a unique f € H5%(R x
X; F,G) such that

(v, f) = (*Av,u) for v € D(f"), (v,f) =0 for v e H*? (R x X;F',G"Y o D(f"), (27)
we can define a continuous operator (23) in the case 6_ > d; by
Au = f (28)
for f associated with u via (27).

Theorem 2.9 Let f(w) have no non-bijectivity points on the lines I5,,6_ > 0. Then the
operator (23) just defined is a Fredholm operator with

dimker A = Z n(f(p)), dimcoker A= Z p(f(p)),

PES(,,6-) PES(,,6-)

i.e.,

indA= % {n(f(p)) - p(f())}

PESG, 5 )

Example 2.10 Let us consider operator families A(T) of the form (9) for the case | = 0.
Then A(7) extends to an element A(w) € B*Y(X;v;C) for v = (1,1,0,CV) and a cor-
responding matriz p of orders. Assuming that A(T) is parameter-dependent elliptic with
parameter T in the sense of Definition 1.1 for A\ = 7 € R', we obtain parameter-dependent
ellipticity of A(T+17y) for every v € R. Applying (15) to A(w) regarded as an elliptic element
of B¥Y(X;0; (v o)) for given ¢ < " we obtain an elliptic Ag(w) € B (X;v; S ). Ap-
plying the Theorems 2.8 and 2.9 we immediately obtain analogous index formulas also for the
original Fredholm operators

H*~M9(R x int X)
A:H (R x int X) — ® .
1
@ | H M~ 2%(R x Y)

Similar relations hold for differential operators in distributional sections of vector bundles.

Remark 2.11 In [2] we apply Theorem 2.8 to specific operator families as in Example 2.10
for the case that X is an interval with Y as the two end points; in these applications the non-
bijectivity points of the underlying operator-valued symbol are explicitly known. We employ,
in fact, a small modification of the present situation, where we consider weighted cone Sobolev
spaces on Ry X int X and Ry X Y, respectively, which are linked to the present spaces by a
substitution r = e~' which transforms R to R.
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