The conormal symbolic structure of corner bound-
ary value problems

T. Krainer and B.-W. Schulze

Abstract. Ellipticity of operators on manifolds with conical singularities or
parabolicity on space-time cylinders are known to be linked to parameter-
dependent operators (conormal symbols) on a corresponding base manifold.

We introduce the conormal symbolic structure for the case of corner
manifolds, where the base itself is a manifold with edges and boundary. The
specific nature of parameter-dependence requires a systematic approach in
terms of meromorphic functions with values in edge-boundary value problems.
We develop here a corresponding calculus, and we construct inverses of elliptic
elements.

Introduction

Boundary value problems for elliptic differential operators on a manifold with cor-
ners (or parabolic operators on a spatial configuration of that kind) can be studied
in terms of symbolic structures that contain parameter-dependent operators on
base manifolds of corresponding local cones (or cylinders). The analysis of such so
called conormal symbols is the first essential step for establishing parametrices or
regularity and asymptotics of solutions in weighted Sobolev spaces, as is done in
Kontratyev’s work [10] for the case of conical singularities with a smooth base.

The classical theory of parabolic boundary value problems in connection with
parameter-dependent ellipticity is developed in Agranovich and Vishik [1]. New
applications concern the construction of inverses of parabolic operators in infinite
cylinders, cf. [11], the characterisation of resolvents of elliptic operators as mero-
morphic inverses with a specific dependence on parameters, cf. [27], or Maniccia
and Schulze [15], and the evaluation of Shapiro-Lopatinskij elliptic edge conditions
for elliptic operators on manifolds with edges, cf. [25], [29], or Nazaikinskij, Savin,
Schulze, and Sternin [16].

Conormal symbols also play an important role in the recent develoment of
the index theory on manifolds with geometric singularities, e.g., in analytic in-
dex formulas, cf. Schulze, Sternin, and Shatalov [32], or Fedosov, Schulze, and
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Tarkhanov [5], [6]. Another interesting aspect is the spectral flow of families of
conormal symbols associated with edge singularities, cf. [17].

The main purpose of the present paper is to establish a new calculus of
boundary value problems on a manifold W with edges with meromorphy in a
complex parameter.

Such parameter-dependent operators should be contained in a future algebra
of boundary value problems on manifolds with higher corner singularities as a
component of a corresponding symbolic hierarchy.

Moreover, if the manifold W plays the role of a cross section of an infi-
nite space-time cylinder our calculus (in a corresponding anisotropic form) can be
related to iterated long-time asymptotics of solutions to parabolic equations, sim-
ilarly as the author’s joint paper [12] for the simpler case of conical singularities
and without boundary.

Here we study isotropic parameter-dependent operators associated with the
elliptic theory of boundary value problems on manifolds with corners and base
W. The calculus as a whole contains interesting substructures, e.g., parameter-
dependent operators that are flat in the cone and corner axial variables r,t € R,
cf. [18], or smoothing operators with iterated asymptotic information for r and ¢
tending to zero, cf. [3].

This paper is organised as follows.

Chapter 1 starts from manifolds with corner points where the base spaces are
manifolds with edges and boundary. Configurations of that kind can be described
by corresponding ‘corner metrics’; the associated Laplacians are then corner de-
generate. For such differential operators, we observe how corner conormal symbols
appear as parameter-dependent edge degenerate differential operators. Moreover,
we consider operators with the transmission property at the boundary for the case
of manifolds with conical exits to infinity. Then we formulate the cone algebra on
an infinite cone with discrete asymptotics at the tip of the cone.

Chapter 2 develops the calculus of boundary value problems on a manifold
with edges in parameter-dependent form. We introduce edge amplitude functions
taking values in boundary value problems on the infinite model cone. Discrete
a symptotic data are formulated in terms of the meromorphic structure of subor-
dinate cone conormal symbols and of the mapping properties of Green symbols.
The edge algebra itself will be formulated with continuous asymptotic types, based
on vector- and operator-valued analytic functionals in the complex plane of the
Mellin covariable belonging to the axial variable of the model cone. We investigate
parameter-dependent ellipticity of edge boundary value problems and obtain in-
vertibility of operators in weighted edge Sobolev spaces for large absolute values
of the parameter (Theorem 2.16).

An essential technical tool is the kernel cut-off procedure which generates
elements that are holomorphic in the parameter (Theorem 2.6), cf. also [24], [28],
[26], and [13].
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In Chapter 3 we investigate ‘corner conormal symbols’, i.e., families of edge
boundary value problems meromorphically depending on a parameter. Kernel cut-
off produces a rich space of such families (Theorem 3.3), and parameter-dependent
ellipticity is preserved in this process.

We finally show that the space of corner conormal symbols is closed under
inversion of elliptic elements (Theorem 3.10).

1. Parameter-dependent boundary value problems

1.1. Differential operators on manifolds with edges

By a manifold W with edge Y and boundary we understand a topological space
such that W\ Y is a C*° manifold with boundary, ¥ a C* manifold, and every
y € Y has a neighbourhood U in W that is modelled on a wedge X2 x Q with
XA = Ry x X)/({0} x X) for a compact C* manifold X with boundary, and
an open set 2 C R?, ¢ = dimY. In addition we require a specific behaviour of
transition maps belonging to different ‘singular charts’ U — X2 x (.

It will be convenient to first pass to the double W = 2WW which is a manifold
with edge Y (without boundary). The space W may be described by a stretched
manifold W associated with W which is a C* manifold with boundary W, and
OW is an X-bundle over Y for X = 2X, the double of X. Then W itself follows
by squeezing down the fibres (W), for every y € Y to the single point y. This
gives us the local structure of W near a point of ¥ as X2 x Q, and transition
maps are induced by the ones for a collar neighbourhood of 8W in W, represented
by diffeomorphisms Ry x X x @ — Ry x X x Q that restrict to corresponding
transition maps of the X-bundle &W on the boundary.

By construction, there is then a projection

7 W— W,
defined as the map that restricts to the bundle projection OW — Y on the bound-
ary and to the identity map on int W. Let us write
Wsing = W, Wreg = int W.

In the following, for convenience, we assume W to be a trivial X-bundle
onY,ie, OW = X x Y. The general case requires more comment on invariance
properties of our operators below which is not the main intention of the present
paper.

For references below, we identify neighbourhoods U near Wsing with [0,1) x
X x G, where G is a coordinate neighbourhood on Y, and we fix diffeomorphisms

(1.1) Y:U-RixXxQ, k:G—0

for an open set Q C R?, such that x(r,z,y) = (r,z,k(g)) for 0 < r < % Now W
can be regarded as the double of another stretched space W associated with our
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W, with a projection
=7y : W W.
To make the idea more transparent we consider an example, namely
W:=R. x X xQ, W:=R; x X xQ.

This shows in what sense W is equal to 2W for X = 2X. Here 7: Ry x X x Q —
XA x Q=W isinduced by 7 : Ry x X x Q@ = X2 x Q = W. The invariance of
the latter construction under transition maps for a general stretched manifold W
gives us correct global definitions also for W. Let us set

Wying == 77'Y  and Wieg := W\ Wyipg .

Then (under our assumption on GW) we have Wyjng = X x Y, and W, is a O
manifold with boundary.

Let us now pass to a corner W2 = (R x W)/({0} x W) with base W, and
consider the associated stretched corner R, x W. We also look at the doubles W4
and Ry x W, respectively. Differential operators on Ry x W may be defined in
terms of restrictions of corresponding operators on Ry X W to Ry x W. Typical
examples are Laplace-Beltrami operators to corner metrics of the form

(1.2) dt* + gy (1),

where t € Ry is the corner axis variable and gy, (t) a family of edge-metrics on W,
smoothly dependent on ¢ up to 0. By an edge metric we understand a Riemannian
metric on Wreg that is close to Wsing in the splitting of the variables (r,xz,y) €
Ry x X x Q of the form

(1.3) dr?® + 7“295((7“) + ga(r),

where g (r) and gqo(r) are families of Riemannian metrics on X and (2, respec-
tively, smoothly dependent on r up to 0. In other words, (1.2) takes the form

(1.4) dt*> + t*(dr® + 7“2gX(t,r) + galt,r))

with g and go being smooth in ¢, € Ry x Ry up to (0,0).

Let Dift*(M) for a C°° manifold M denote the space of all differential opera-
tors on M (with smooth coefficients) of order y; this is a Fréchet space in a natural
way (all manifolds in this paper are assumed to be paracompact and locally com-
pact). Moreover, let lefé‘dge( ) be the space of all elements of Diff*(W,e,) that
have close to Wsing in the splitting of variables (r,z,y) € Ry X X x Q the form

- 0 . o
(15 Y aalr) (P Dy
Jtlal<p
with coefficients aj, € C* (R4 %, Diff*~UFleD (X)), Also Diff}, .(W) is a Fréchet

space in a canonical way. Then the Laplace Beltrami operator assoc1ated with an
edge metric on W,eg belongs to lefedge (W).
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Moreover, the Laplace-Beltrami operator associated with a corner metric
(1.2) has the form

(1.6) A= t’”Zbk(t)(—t%)’“
k=0

(for p = 2) with coefficients b, € C* (@+,Diffg(;g’;(W)). For r near 0 it follows
that

1) A=t Y b)) (S )i(rD,)

. ot
k+j+|a|<p
with coefficients cxjo € C°(Ry x Ry x Q, Diff#—(k+itlel (X,
The corner conormal symbol for the operator A in our terminology is the
operator function

(1.8) oe(A)(w) =Y bp(0)wk
k=0

with a complex variable w varying in C or on a weight line
[g:={weC:Rew =g}

for some real 3.
In other words, the Fuchs type derivative —t% is replaced by the covariable
w in the Mellin transform Mu(w) = [;° ¢~ 'u(t)dt. We also employ the weighted
Mellin transform (M u)(w) = M (¢ u)(w +7), v € R (such that M = M), with
the inverse
M, Yg(t) = (2mi) ! / £ g (w)dw.
ry_,

Setting

opy,(fu(t) = (2m) 7" // (%) _(%_MT)f(t, t', w)u(t')dt'dr,

w = 5 — 7 + 47, which has the meaning of a Mellin pseudo-differential opera-

tor M7 f M, with amplitude function f(t,#',w) (to be specified below), we have

M wM, = —t5. More generally, for f(t,w) =Y h_; b (t)w" it follows that
A=t""op},(f)-

Here v € R is arbitrary when A is applied to argument functions with compact

support in t € R, otherwise, for extensions of the operator to weighted Sobolev

spaces we have to specify the number -, cf. [30].

Let W be compact. Writing f(7) := 0.(4)(B + i) for any fixed § € R we
obtain a 7-dependent family of operators in the edge algebra on the space W, acting
in weighted edge Sobolev spaces W#7 (W), cf. [29], and Definition 1.1 below.

Operators in the edge algebra are characterised by a principal symbolic hi-

erarchy which is particularly simple for the subalgebra generated by Diffgdge(W),
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the edge-degenerate differential operators. We shall formulate symbols at once in
parameter-dependent form with parameter 7 € R.
First, we have the standard homogeneous principal symbol of order p

o5 (f)(@,€,7) € CF((T"Wreg x R) \ 0)

which is independent of 8. For points & € Wreg close to Wsing in the splitting of
variables & = (r,z,y) € Ry xZxQ, X CR*, Q@ CR? open,n =dim X, ¢ =dimY,
with covariables (o, &,n) € RET" | we can write

oy (/) z,y,0,&n,7) =r "oy (f)(r,z,y,re,&,11,r7)
for a function
Gy (f)(r,z,y,0,81,7),
homogeneous in (g,&,7,7) # 0 of order u and smooth in r up to = 0. This is

immediate from the definition.
Furthermore, we have a so called homogeneous principal edge symbol

U/\(f)(ya m, T)

which is an operator valued function on (T*Y x R) \ 0, acting between weighted
Sobolev spaces on the infinite (stretched) model cone X” of the local wedges that
characterise W near Wsin, . Representing f(7) locally in the form

FO = Y a0 nn) (-4 in) (r i (D,

k4j+|al<p

we have

D@ = T ergal0,0,9) (i) (=2 )

) or
k+j+lol<p
ICS’V()?A) — ICS_‘W_“()?A).

Let us briefly recall the definition of the involved spaces. Given a C'*° manifold
N, by LE(N; R') we denote the space of all classical parameter-dependent pseudo-
differential operators of order i on N, with parameter A € R'. Recall that local
(left-) amplitude functions a(x, £, ) are classical symbols in the covariables (£, \) €
R** n = dim N, while L=°(N;R') is identified with A(\) € S(R', L=>°(N)).
Let IV be compact. Then it is known that for every s € R there exists an element
R*(\) € L% (N;R) that induces isomorphisms H"(N) — H"~%(N) for all r € R.
Let H57(N") for s,7 € R, N = Ry x N, denote the completion of the space
C§°(N”) with respect to the norm

{(271-1')_1/11 ||RS(IH1w)(MU)(w)||%z(N)dw}1/2:
M—_l_'y

where R*(1) € L*(N;R) is any choice of an order reducing family.
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In this paper, by a cut-off function on the half-axis we understand any real-
valued w € C§°(Ry) that is equal to 1 in a neighbourhood of 0. We then define
the space

K5V (N™) ={wu+ (1 —w)v:u e H>'(N"), ve H (N}
for any cut-off function w. Here H . (N”) for the unit sphere N := S™ in R"*! is

cone
defined as the subspace of all v € H (R"'\ {0}) such that (1—w)v € H*(R"*),
otherwise, for general N we define HZ, ,(N”) by a simple reduction to the previous
case by a localisation on sets Ry x U for coordinate neighbourhoods U on N, cf.
[29].

Both H%7(N”) and K%7(N”) are Hilbert spaces with suitable scalar prod-
ucts, where K®°(N") = HOO(N?) = =35 L%(R, x N) with L? referring to the
measure dtdx.

If N is equal to the double X = 2X of a manifold X with boundary, consisting
of two copies X4 of X (and X identified with X) we set Ky (X%) := {a €

K#Y (X)) s supp @ C X4} which is a closed subspace of X*7(X"), and
’CS/‘V(X/\) = {’a|int XA u € ICS”Y(XA)}

isomorphic to K*7(X”) = 7 (X") /K57 (X”) and endowed with the correspond-
ing Hilbert space structure.

For references below we set
(1.9) STXMN) ={wu+ (1 —w)v:u € KV (XN), veSRy,C®(X))}.

Given a Hilbert space E together with a strongly continuous group of isomor-
phisms ks : E — E,0 € Ry, such that ksks = kgs for all 6,0’ € Ry, we say that
E is equipped with the group action & = {ks}ser,. More generally, if a Fréchet
space E is written as a projective limit of Hilbert spaces (EY) jen with continuous
embeddings F/t! — EJ — ... < E° for all j, and if & is a group action on E°
that restricts to group actions on E7 for all j, we say that E is endowed with the
group action k.

We apply this terminology to E = K57 (N/) for (ksu)(t, z) = "% u(dt, z),0 €
R, ,n = dim N, and later on to a variety of Fréchet subspaces.

Definition 1.1. 1. Let E be a Hilbert space with group action & = {ks}scr, -
Then W?*(R?, E), s = R, denotes the completion of S(R?, E) with respect
to the norm

A 1/2
lulbwe ey = { [0 I gamlizan}

where 4(n) = Fu(n) is the Fourier transform in R? and () = (1+|n|?)
2. It £ = @jeN EJ is a Fréchet space with group action, we denote by

W?(RY, E), s € R, the projective limit of the spaces W*(R?, EY), j € N.

The space W?(R?, E) in the case (ii) is Fréchet with || - |[yysra, i), 7 €N, as
a system of norms.

1/2.
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There is also an analogue of standard ‘comp’ and ‘loc’ spaces in the present
vector-valued case

Weomp(2, E) and - Wi (2, E)

for any open set {2 C R?.
Applying Definition 1.1 to E = K%7(N”) we obtain the spaces

WT(N? x RE) := WH(RE, K7 (N)

for every s,7 € R. For N = X the space WS"’(W) is defined as the subspace of all
u € Hf . (Wreg) such that wpu = x*v for some v € W7 (X" x R?) for every x of
the kind (1.1) and any cut-off function w(r) vanishing for r > 1, and ¢ € C§°(G),
cf. also Section 2.2 below.

We set

W(W) = {wu + (1 —w)v:u € W(X xR?), v € HY (Weeg) }

for any cut-off function w(r), with r referring to the local splitting of variables
(r,x,y) near Wsing. For simplicity, pull backs under charts are suppressed in the
latter notation; also below we shall identify a neighbourhood of Wsing with KJF X
X x RY. Now let us set

W (W) = {a € WS (W) : supp i C Wy }

with W4, where the two copies of W constitute the double W (with W being
identified with W, ), and

WS (W) = {ifinew,., : & € W™ (W)}
The conormal symbol (1.8) can be written in the form

s d)w) = r0r) Y enjal0m)w) (-r o) (1D,
k4j+|al<u

+ (L= w)r > b(0)uw.
k=0

Proposition 1.2. (1.8) represents a holomorphic family of continuous operators

(1.10) oe(A)(w) : WY (W) = WETHI—H(W),

Corollary 1.3. The restriction of (1.10) to int Wye, gives us a holomorphic family
of continuous operators

(1.11) oc(A)(w) : WHT (W) — W77 (W).
for all s,y € R.
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The continuity of (1.10) for every fixed w € C is a consequence of the fact
that (1.10) near Wying can be regarded as a pseudo-differential operator with an
operator-valued symbol of a specific kind. The general definition is as follows.

Let E and E be Hilbert spaces with group actions & = {kx}rer, and & =

{Fr}rer,, respectively. Then

(1.12) SH{U x R%; E, E)

for p € R,U C RP open, is defined as the set of all a(y,n) € C®(U x R?, L(E, E))
such that

(1.13) yezunlémO?)*”'mIIR(nﬁ{DZ”Dﬁa(y,n)}lﬂn)llg(E,E) <o

for every K@U, a € NP, 3 € N¢. The expressions (1.13) form a semi-norm system
which makes (1.12) a Fréchet space.

Elements of (1.12) are called operator-valued symbols of order p.

We also have operator-valued symbols in the case when E or E are Fréchet
spaces, written as projective limits of Hilbert spaces, where the respective group
actions extend to group actions in the former sense in all Hilbert spaces of the
projective limits, cf. [29].

Let S5 (U xR?; E, E) denote the space of classical symbols, that is, for a(y,n)
there exist homogeneous components a(,_j)(y,n) € C*(Ux(R?\{0}), L(E, E)),j€
N, i.e.,

Au—j) (4, 6m)) = "I Esauj (y, k5"
for all § € Ry, such that
N
a(y,n) —x() Y _ agu—j (y,n) € "~V (U x RY; E, E)
j=0
for all N € N and any excision function x. Also S%(U x RY; E, E) is a Fréchet
space in a natural way.

If a relation holds both for classical or general symbols, we write ‘(cl)’ as
subscript.

The spaces Sél) (R?; E, E) of y-independent symbols are closed in S(”CD(U X
RY; E, E).

Theorem 1.4. Let U = Q x Q for Q C R? open, and let a(y,y’,n) € SH(Q x Q x
R?; E, E).
Then, setting Op(a)u(y) = [ W=y ' nyu(y)dy'dn, dn = (27)1dn,
the operator
Op(a) : C*(2, E) — C=(Q, E)
extends to a continuous operator

Op(a) : W2, (0, E) — W “(Q, E)

comp loc

for every s € R.
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1.2. Boundary value problems with the transmission property

Let X be a smooth manifold with boundary 0X. In this section we discuss a few
basic constructions on parameter-dependent pseudo-differential operators on X
with the transmission property at the boundary. For simplicity, we assume X to
be compact. The non-compact case will also be of interest in a variety of cases.
We will tacitly use the corresponding generalisations, unless special precautions
are necessary; those will be separately described.

Let Vect(-) denote the set of all smooth complex vector bundles on the man-
ifold in brackets. The manifolds in question are assumed to be equipped with
Riemannian metrics and the vector bundles with Hermitian metrics. Operators
will refer to Sobolev spaces H*(X, E) of distributional sections in vector bundles
E € Vect(X).

Parameter-dependent boundary value problems in our set-up will be families
of continuous operators

H*(X,E) H* "(X,F)
(1.14) AN @ - ®
H*"3(8X,J_) H* " 3(0X,J,)

for E, F € Vect(X), J_, Jy € Vect(0X), u € Z, given in the form

(1.15) AN = <T+AE))‘)6+ 8) +G(N),

with the following ingredients.
We assume that

(1.16) A(N) € Lé‘l()N(;EN',F;]Rl)

for vector bundles £, F' € Vect(X) on the double X such that E|x = E, F|x =
F. In other words, (1.16) is a family of classical parameter-dependent pseudo-
differential operators on X (E, F in (1.16) means that the operators act between
distributional sections of corresponding vector bundles). In addition we require the
operators A(A) to have the transmission property at the interface 90X, cf. [19], or
[29]. Let L*(X; E, F;R'),. denote the subspace of all elements of (1.16) with the

cl
transmission property. Moreover,

et : H(X,E) - H*(X,E)
is the operator of extension by zero from int X to the double X of X, s > —%,
and

vt H*(X,E) - H*(X,E)
the operator of restriction, i.e., riu := Wing X -

To explain G(\) on the right hand side of (1.15) we first introduce some other
notation. Choose any differential operator T' € Diff* (X;E,E) on X with smooth
coefficients up to the boundary (acting between sections in E) which is of the
form T = % ®idg in the splitting of variables (z', z,,) in a collar neighbourhood
20X x[0,1) of 0X.
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Moreover, let B~°°(X;v) for v = (E,F;J_,J;) denote the space of all
operators
Ce () LH (X,E)® HY (0X,J-), C*(X,F)& C®(0X, ;)
s,s'€R

1
§>—5

such that the formal adjoint C* with respect to the respective L2-scalar products
represents an operator

c e () LEH(X,F)e H® (0X,J;), C*(X,E) & C*(0X,J)).
5,5’ €ER
s>*%
The space B~>°(X; v) is Fréchet in a canonical way, and we set B~°°(X;v; Rl) =
S(R', B=°*9(X;v;R')). We then form the space B~>¢(X;v;R') of all operator
families
d

(1.17) C(A) =Co(N) + > C;(A) diag(T7,0)
j=1
for arbitrary C;(\) € B~°*%(X;v; R).

Let us endow the spaces L?(R;., CY )®&CM and S(R4, CY)aCM for (R4, CN) :=
@jeN(xn)_jHj(]Rg,(CN) with the group action ¢(z,) ® ¢ — (02¢(0z,)) & ¢,
0 € Ry . Then we can form operator-valued symbols

g(@', &', 0) € SHEOQ X R LY (R, C) @ O, SRy, ) & CF)
with e, f,j_ and j; in the meaning of fibre dimensions of the bundles E, F,J_
and J, , respectively, 2 C R~ open, such that the pointwise adjoints g*(z’, &', \)
in the sense of (g(z', &', ), v) 2w, o5 )0+ = (U, 9" (@, €, A)0) 12k, ¢ )oo- have
the property
g* (@, € A) € S x R 2Ry, ) @ TF, SRy, C°) & T).
Note that then

d .
0J
b(ﬂj’:f’, >\) = go(x’,gl, )\) + E gj(ﬂ?’,f’, )\) diag(w, 0)
J=1

n

for arbitrary g;(z', ¢', A) of the abovementioned structure, of order ;41— j, represents
a symbol

(1.18)  b(a', &', \) € SH(Q x R HS (R, C°) © TU- ,S(Ry., T ) @ TU+)
forall s >d— % Also
(1.19) diag(1, (€', \)%)b(a", €', \) diag(L, (¢, \)™%) =: h(z', €', \)

is a classical operator-valued symbol, although with slightly modified group actions
in the involved spaces, namely () @ ¢ — 62p(0z,) ® 02¢, 6 € Ry, instead of
the previous ones.
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Choose an open covering of the collar neighbourhood 90X x [0, 1) of the bound-
ary by charts x; : Uj x [0,1) - Q@ x Ry, @ C R*~! open, k = 1,...,N, such
that {U7,...,Upy} is an open covering of 0X by induced charts xj, : U;, — €. Let
{o1,...,on}, {t1, ..., ¥n} be systems of functions ¢y, ¢y, € C§°(U] x [0,1)) such
that ) ¢ = 1 in a neighbourhood of X and ¢, = 1 on supp ¢x. Set ¢}, = ¢ilax,
Y}, = Yrlax. Then, using symbols hy (2, £, ) of the kind (1.19), we can pass to op-
erator pull backs Hy(A) of pseudo-differential operators Op, (hg)(A) to Uy, x (0, 1)
(that also take into account the transition functions of involved bundles) and form

N

(1.20) HN) =) diag(pr, @) He () diag(dn, Uf)-
k=1

The operator G(\) in (1.15) is assumed to be of the form

(1.21) GA) =HA) +C(N)

for arbitrary H(A) as in (1.20) and C(\) € B~ >4(X;v; RY).

Definition 1.5. Let B*%(X;v;R) for p € Z,d € N, v = (E,F;J_,J;) de-
note the space of all operator families of the form (1.15) for arbitrary A(\) €
Lgl()Z;E,ﬁ; R )i and G(A) € Bg’d(X;'U;]Rl), the subspace of all elements of the
kind (1.21). Given any A € B*%(X;v;R!) we also write d = d4, called the type
of A. Moreover, let
B (X;uiR) = | BM(X; 0 R,
deN
and, similarly, BE(X;v;RY) = Ugen BLY(X;u; RY).

The operator families A(A\) € B*(X;v; R') have a parameter-dependent prin-

cipal symbolic structure
o(A) = (o4(A),05(A))

with the homogeneous principal interior and boundary symbols oy (A) and o5(A),
respectively. The interior symbol of A(\) is the restriction of the parameter-
dependent interior symbol of (1.16) to (1*X x R')\ 0, where 0 stands for (¢, \) = 0.
The boundary symbol, expressed in a collar neighbourhood of 0.X in the variables
(«',xy), contains an ingredient from r* A(A)et, namely

00(r+Ae+))($lagla>‘) =t OPg,, (UQP(A)| :0)($17£I7>\)e+7

Tn
regarded as a family of maps
0o Ac) (!, €, 3) : H'(Ry) — H*H(R,)
for s > — 1, invariantly defined as an operator family parametrised by (T*(0X) x
R') \ 0, with 0 being interpreted as (¢/,\) = 0.

Another ingredient is defined by the summand G(A) in (1.21), more precisely
by H(A) in (1.21), locally given by

aa(G)(z', €', \) = diag(L, |€', A|2)b( (2, €', A) diag(L, [€', A| %)
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for (¢, A) # 0, cf. (1.18), (1.19), and

d .

b ! IA _ ! IA ! IA d- a]

(N)(wafa )_gO,(u)(wafa )+Zgj,(u—j)(w7§7 ) lag(axj,O),
i=1 n

with g; (u—j)(@',§',A) as the homogeneous principal components of the classical
operator-valued symbols g;(z', &', ) of order u —j, j =0,...,d. Then

oo(A)(', €', N) = diag (oo (r AeT)(2",§', 1),0) + 05 () (2", €', N)
represents an invariantly defined family of operators

H*(Ry)  H7"(Ry)

(1.22) oa(A)(2', &N & - ®
- Qi+
parametrised by (7*(0X) x R') \ 0, with homogeneity
ro( Ay ¢ o0 = (% O oaaen (0 0)
I3} ) ) - 0 (5% o 1S 0 (5%

for all § € R;.
Given a Fréchet space F' and an open set U C C we denote by A(U, F) the
space of all holomorphic functions in U with values in E. By

(1.23) B4 X;v;C x RY)
we will denote the space of all operator families

f(z,m) € A(C, B (X;v; RY))
such that

F(B+iom) € B (X;v; Ry )

for every f € R, uniformly in ¢ < g < ¢ for every ¢ < ¢'. For ¢ = 0 we simply
write B*4(X;v;C). Moreover, we set

(1.24) B*(X;v;C x RY) = [ J BH(X;v;C x RY).
deN

The space (1.23) Fréchet in a natural way.
Remark 1.6. As is well known, cf. [22], [23], or [9], the space B#4(X;v;C x R?) is

rich in the sense that for every operator family p € B*%(X;v; ]R;fnq) there exists
an f(z,m) € BH4(X;v;C x R?) such that
plo,n) = f(io,n) mod B~*4(X;v; RY).

The construction of f is based on a kernel cut-off construction, cf. Section 2.1
below.
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The spaces B#4(X;v; R') as well as (1.23) have a straightforward generalisa-
tion to the case of a non-compact C'* manifold X with boundary. This will tacitly
be used below. Instead of (1.14) we then talk about continuous maps between
Sobolev spaces with subscript ‘comp’ or ‘loc’.

An interesting situation with a specific control of the non-compactness at
infinity is the case of an infinite stretched cone X = Ry x X > (r,z) for a
compact C*° manifold X with boundary. Let us formulate a few basic notions for
this case. We first discuss operators far from r = 0; operators close to r = 0 will
be studied in the following section.

The typical situation is the half-space Ritt = {& = (#',%,41) € R .
Tpy1 > 0}, & = (Z1,...,%y); in this case X is equal to ST = S" N ]Riﬁ“ the

. . . . —n+1
upper half of the unit sphere. A simple localisation on conical subsets I' of ]R{Tr ,

using invariance of our constructions under transition maps £ : [ — I that satisfy
k(AZ) = Ak(Z&) for |Z| > C for some C > 0 and A > 1, allows us to pass to
operators on X”\. In other words, we mainly look at ]RTJ_H.

In this case we define a global calculus of operators of the class

(1.25) Brhe(RY v)

with a weight o € R at infinity. We do not need any parameter-dependent variant
here.
Similarly to B#¢(X;wv), cf. Definition 1.5, the elements of (1.25) consist of

2 x 2 block matrices of continuous operators

Hs;é(Ri+1,Ce) Hsfu;éfg(]Ri%-l,Cf)

A @ — D

Hs—é;é(]Rgn,Cj—) Hs—u—%;é—g(]Rn,(‘/ﬂ)
for s > d — . Here H*(R?™) := (&) TH*(RT), H* ¥ (R") := (3') °H* (R").
For simplicity, we consider the case e = f =1, j_ = j+ = 0. The constructions for
the general case are straightforward and left to the reader.

First, on R**! we have the standard calculus of pseudo-differential operators
with exit conditions. Let S“;Q(]R{;(gﬂ)) for u, 0 € R denote the set of all a(Z,§) €

O (R(*+1)) such that

(1.26) sup (&) eHlel(€) =D D a(z, £)| < oo
(i7E)eR2(n+1) £

for all o, B € N**t1. Observe that S#¢(R*(»+1)) for o > 0 and p > 0, respectively
contains the subspaces Séf:l) (]Rg"‘l) and
S(ch) (R2T1) “with constant coefficients’ (‘(cl)’ means classical or non-classical

in the respective variables, treated as covariables). Note that S¥ (R"*!) is nuclear
in the natural Fréchet topology. Let us define

S&e (R = SHRET S SH(RET)
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which is the set of all a(Z,£) € S#¢(R*™+1)) that are classical both in & and Z.
Moreover, let S4¢(R2("+1)) be the subspace of all elements with the transmission
property at Zp+1 = 0.

Let us set
(1.27) LI (R ) = {Opz(a) : a(@,8) € SH (R )¢ ).

Then r* Aet for A € L?(R"™!);, (with et being the operator of extension
by zero from R} to R**! and r* the restriction from R**! to R}*') induces
continuous operators

. H +1 —p;0— +1
I+ At HSO(RUFL) o5 Heomo-e(RIH)

for all s > —%; 0 €eR

Symbols a(Z, 5) that are classical in € of order p and Z of order p have a triple
of principal components, consisting of

oy (a)(#,§) € C(RET \ {0}, SH(RE™)),
homogeneous of order y in € # 0,
0u(a) (&, €) € ORI\ {0}, SARE)),
homogeneous of order p in & # 0, and
0y.e(a)(7,6) € CF((RFT\ {0}) x (RF \ {0})),
homogeneous in € # 0 of order y and & # 0 of order g. For A = Op(a) we then set
oy (1T Ae™) = oy (a), oe(tTAe™) = 0e(a), oye(ttAe™) = 0y e(a).

There is also a variant of operator-valued symbols with exit conditions in R, ,
acting between Hilbert spaces E and E with group action, cf. (1.12) and (1.13).
Let S#¢(R®"; E, E) be the set of all a(#',') € C®°(R*", L(E, E)) such that

Csup (#) e NE) IR 2 (D8 D2 a(# )}k oy < 00
(&,€)ER*™
for all a, 8 € N*.

Also in the operator-valued case there is a natural notion of classical symbols
in both variables #' and €, for more details, cf. [9, Chapter 3]. Let SH¢(R*; B, E)
denote the corresponding subspace of S#¢(R?"; E, E). Finally, we can generalise
such symbol spaces to the case of Fréchet spaces FE, E with group actions.

Classical operator-valued symbols a (&', 5’) in (&', 5’) of order p in € and p in
Z' have also a triple of principal symbols, namely

05(a)(@') € C(RE, \ {0}, SE (R ; B, ),
homogeneous of order p in € # 0 in the sense

(1.28) oo (a)(#,\') = MEroa(a) (&, &)k,
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for all A € Ry,
0w (a)(@,€') € C*(Ry \ {0}, SH(RE; B, ),

homogeneous of order g in Z' # 0 in the sense

(1.29) e (a)(67,€') = 6%0e (a)(7',€)
for all § € Ry, and a corresponding mixed term
00,0 (a)(&',€') € O (R \ {0}) x (RE, \ {0}), L(E, E)),

homogeneous in £ # 0 of order p as (1.28) and in &' # 0 of order p as (1.29).
In particular, we can talk about so called Green symbols g(Z', ') of type 0
in the half-space, defined by the conditions

9(@, &), " (@, &) € SH¢(R" x R*; L*(R1), S(R4))
with g* being the pointwise adjoint with respect to the L?(R; )-scalar product.
Moreover, Green symbols g(Z', ') of type d € N are defined by

9(&, Zg]ig

with Green symbols g;(&’ L€ of type 0 and order (u—j,0), j =0,...,d.
Let B=°%%=°°(R™") denote the set of all operators

d
CZC

j=0 n+1

8$n+1

where C; are integral operators with kernels in

S(]RZ’_+1 ]Rn+1) S(]Rz(n+1) )|

n+1 ntl-
R+ ><R+

An element 1) € C®°(R71") is called an admissible cut-off function, if it has the
following properties:

(i) There are constants R < R’ such that

¢Yv=1 for £€Lr, =0 for .’,’i'gLRr

for L. := {% € R"™ : |Z,11| < @)} U{E € R 2 |Fp01| < ¢}, ¢ > 0.

(i) ¥(0Z) = (&) for all 6 > 1, |#| > ¢é for a sufficiently large ¢ > 0.

Now Bt4i¢(R}*!) is defined as the set of all operators
(1.30) A =17 0p;z(a)e” + 1o Opz (9)¢1 + C
for arbitrary a(&,€) € SH¢(R¥ 1)), a Green symbol g(i',£') of type d, admis-
sible cut-off functions g, 1, and a smoothing operator C' € B"X”d?’m(]R’_i‘_+1 )-

Let N be a closed compact C'°*° manifold, n = dim N, and form a C'"*° man-

ifold Nx =2 R x N > (r,z) with conical exits for r — +oo (i.e., on Nz we fix a
Riemannian metric that has the form dr? +r?gy for |r| > R for some R > 0 where




Conormal symbols of corner boundary problems 17

gn is a Riemannian metric on N). Moreover, let H*9(N.) for 5,6 € R denote the
subspace of all u € H¢ (Nx) such that (1 —w)u, (1 —w)u" € (r) O HE, (N") for
uw¥(r,xz) = u(—r,x) and any cut-off function w(r) on the positive half-axis. On N«
we then have a calculus of pseudo-differential operators L*¢(N<),u, 0 € R, the
local symbols of which on subsets of Ux = R x U (for any coordinate neighbour-
hood U on N) satisfy the symbolic estimates of the form (1.26) in coordinates
7 € R"*! (the corresponding charts x : Ux — I' are assumed to be homogeneous
in the sense x(Ar,x) = AZ for A > 1,|Z| > R for some R > 0). In this calculus the
smoothing operators have kernels in S(Nx x Nx) 2 S(R x R,C*® (N x N)).

Taking classical local symbols in (&,£) we get the subspace L/?(Nx) of clas-
sical operators with exit behaviour for |r| — occ.

Given vector bundles E, F' € Vect(Nx) we have similarly the spaces

of operators A acting between corresponding spaces of distributional sections
A:H¥(N<,E) —» H*"9~¢(N_, F).

Applying this picture to N := 2.X, the double of a compact € manifold X
with boundary, there is a subspace LY/¢((2X)<; E, F), of operators which have
the transmission property at (9X)=. Then, if r* : H*°((2X)x, E) - H*°(X<, E)
(for E = E|x_) is the operator of restriction to int X=, et : H*9(int X=, E) —
H*9((2X )=, E) the extension by zero to the opposite side of int X« in (2X)x,
every A € L1i%((2X)<; E, F)¢, gives rise to continuous operators

rTAet : H¥(Xo,E) — H¥ "0 ¢(X ., F)
for every s,0 € R, s > —%.

There is also a generalisation of Green and smoothing operators of the class
B”’d;g(ﬁiﬂ) to the case of a smooth manifold X~ with boundary and conical exits
for |r| — oo, including the aspect of operators between sections of vector bundles

and additional trace and potential operators, cf. also [9, Chapter 3]. This gives us
spaces of boundary value problems

(1.31) Brée(X_sv) for v=(E,F;J_,J.),
E,F € Vect(Xx), J+ € Vect((0X)x). The operators in (1.31) have the form

_ (rtAet 0O
A_< 0 0>+Q,

where G is a 2 x 2 block matrix of Green, trace and potential operators with exit
behaviour for |r| — 0o, and A € L*?((2X)x; E, F)i,. The operators A in (1.31)
are continuous in the sense
H* (X<, E) H*=m9=¢(X_ F)
(1.32) D — @
Ho=¥9((0X)<,J_)  H*=m=40-0((9X)<, J})
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for all s > d — %. Let us set
(1.33) Brdie(X7v) = {Alxn 1 A € BA5e( X v)};

in this notation X" is regarded as a subset of X in a canonical way, and bundles
on X« ((0X)x) and their restrictions to X" ((0X)") are denoted by the same
letters. B N

Operators A € B*%¢(X;v) with A := 1T Aet for A € Li?((2X)<; E, F)y
in the upper left corner have a principal symbolic structure

0(A) = (0y(A),0e(A), 0y,e(A); 09 (A), 0er (A),05,e1 (A))-

Here oy (A) is the standard homogeneous principal symbol of A of order
i, further o¢(A) is the homogeneous principal exit symbol of A of order o (by
definition, this concerns homogeneity in the variable r for r — +00) and oy (A)
is the homogeneous principal part of oe(A) of order p in the Xx-covariables.
Moreover, os(A) is the standard homogeneous principal symbol of A of order u,
further oo (A) is the homogeneous principal exit symbol of A of order g (which
refers again to homogeneity of order g in the variable r for r — +00), and 0 ¢ (A)
is the homogeneous principal part of g (A) of order p in the 0 X<-covariables.

An operator A € B*%¢(X_;v) is said to be elliptic, if all components of
o(A) are bijective on the respective sets of variables and covariables.

Theorem 1.7. An operator A € B*%¢(X_;v) is elliptic if and only if A defines a

Fredholm operator (1.32) for any s € R, s > max(u,d) — 3.
If A € BM%e(X<;v) is elliptic, there is a parametriz P € B~Hh—¢(X_;v™1)

forv=t:=(F,E;J.,J_) and h = max(d — p,0) such that
I-PAeB >N (Xosm), T—APeB % (Xs;0,)
fordi = max(u,d),d, = max(d—pu,0), andv, = (E,E; J_,J_),v, = (F, F; J;+, Jy).

Boundary value problems with the transmission property on a manifold with
exits to infinity have been studied systematically by Schrohe [21] where one can
find, in particular, the necessity of the ellipticity for the Fredholm property of
(1.32). In the present paper we refer to the corresponding calculus of [9, Chapter
3].

1.3. The cone algebra

We now turn to boundary value problems of the classes B*¢ globally on X" =
R+ x X 3 (r,x). Close to r = 0 we impose the structure of the cone algebra. For
r — oo the calculus corresponds to operators on a manifold with conical exit to
infinity as formulated in the preceding section.

Let wo(r), w1 (1), ws (r) be cut-off functions on the half-axis, w; = 1 on supp wy,
and wg = 1 on supp ws, and set

(1.34) A = wohconewr + (1 — wo) Aexis (1 — w2) +C.
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Here Aeyit € B#%0(X";v), and Acone is of the form

n

k N
_ — . 65— §—n =
(1.35) Acone = *{opy, * () + Y7 [opy; * (f3) +opyy " ()]}
=0
for some k € N and weights
- 1 = 2
(1.36) 50:50:7and5j:7—§,5j:7—§for1§j§k.

Note that in (1.36) we could fix any other weights J;, Sj such that v —j <
(5j, (5j§7and(5j;é(5j fOI‘jZ]..

We assume
(1.37) h(r,z) € C*(R,, B4 (X;v;C)).

In order to define f; and f] we first introduce so called discrete and continuous
asymptotic types of Mellin symbols.

Given aset A C C we define A” := {\z;+(1-\)22 : 21,22 € A, Rez; = Re 22,
0 < A < 1}. Let V denote the system of all closed subsets V' of C such that
VN{c < Rez < '} is compact for every ¢ < ¢/, and VI = V. A V-excision
function is any x € C*°(C) such that x(z) = 0 for dist(z,V) < €9, (2) =1 for
dist(z, V) > &1 for certain 0 < g9 < €.

For every V' € V we form the space

(1.38) B, %(X;v;C)

of all f(z) € A(C\ V,B~>¢(X;wv)) such that for every V-excision function y(z),
we have
X(2)f(2)]s=p+i0 € BN 05 R, )

for every 8 € R, uniformly in ¢ < 8 < ¢ for every ¢ < ¢. The space (1.38) is
Fréchet in a canonical way.

Consider, in particular, a compact set, and let A’(K, E) be the space of all
analytic functionals, carried by K, with values in a Fréchet space E. Then, for
K €V we have

F(2) == My ,ow(r) (¢, r?) € B2 (X;v;C)

for every ¢ € A'(K,B~°>%(X;v)) and a cut-off function w. Here § € R is any
weight such that K C {z: Rez < 1 — 6}. Moreover,

B> (X;50;C) = {Msw((,m7%) + fo : ¢ € A'(K, B™4(X;v)),
fo € B~4(X;v;C)}.
For V,V € V, V +V := (VUV)!, we have the relation
(1.39) B;f‘l/d(X; v; C) = By (X;v;C) + B ™(X;0;0)

as a non-direct sum of Fréchet spaces. The sets V' € V will be called continuous
asymptotic types for Mellin symbols of the cone algebra.
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A useful property of decompositions like (1.39) is that for every Vi € V and
0,0 € R, § # 4, there exist sets V,V € V such that

(1.40) Vi=V4+VandI;NnV =050V =0.

In other words, Mellin symbols [ with continuous asymptotic types can be decom-
posed as sums [ = f + f, where f € B;Oo’d(X;'u;(C) and f € B‘T/Oo(X;'u;(C) are
holomorphic in a neighbourhood of I's and 'y, respectively.

Now the Mellin symbols f; and f; in (1.35) are assumed as

(1.41) fi(z) € By Y(X;0;0) and  fj(2) € B (X;v;0),

respectively, with sets V;,V; € V such that Pupr 5 NVj=Top_5 0 V; = 0 for
all 5.

It is interesting also to consider Mellin symbols, where the asymptotic infor-
mation is supported by a discrete set {p;};cz C C.

A sequence of triples

R ={(pj,mj, Lj)}jez
for pj € C,m; €N, is called a discrete asymptotic type for Mellin symbols if

(i) mc R := {p;}jen has a finite intersection with {z : ¢ < Rez < '} for every
c<d,

(ii) L; € B7>4(X;v) is a finite-dimensional subspace of operators of finite
rank, for every j € N.

We denote by By (X ; v; C) the subspace of all f(z) € B;‘O;’d(X; v;C) that
are meromorphic with poles at the points p; of multiplicity m; + 1 and Laurent
coefficients at (z — pj)’(’““) belonging to L; for all 0 < k < mj, j € N.

It remains to explain the nature of operators C in the expression (1.34). To
this end we first recall the notion of continuous and discrete asymptotics in the
spaces K57 (X").

First, if @ = (¥,0], —oo < ¥ < 0, is a weight interval, we set

]CgV(X/\) = @’qufﬂfs(X/\)
>0
which is a Fréchet space in a canonical way. Let O be finite, consider any V € V,
Vc{z:Rez< 2l —q} andset K:=VN{z: 2 —y—9 <Rez < 2l — 4}
which is a compact set. Then

Ex(X7) = {w(r)(C,r7) : C € A'(K, 0 (X))}
is a Fréchet subspace of X°7(X"), and we define
(1.42) KEN(XN) = K§T(X") + Ex(X7)

in the Fréchet topology of the non-direct sum. Subscript ‘P’ has the meaning of a so
called continuous asymptotic type associated with V' and weight data g = (v, ©).
We interpret P as the quotient space A'(K,C*°(X))/ ~, where equivalence ¢ ~ ¢’
means that w(r)(¢ —¢’, r~*) belongs to K37 (X"). Let us set
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1
(1.43) ch::Kﬂ{z:%—7+19<Rez}.

For © = (—o00, 0] we choose a sequence {¥;};en, Y41 < ¥; <0 for all j and
¥; = —oo for j — oo. Then, if P; is the continuous asymptotic type, associated
with V' and weight data g; = (7, (9;,0]), there are continuous embeddings

(1.44) K, (X7 = K (X

for all j. We then set X357 (X") = I'&HJEN KB (X"), where P is represented by the
sequence of Pj, j € N, and is regarded as a continuous asymptotic type associated
with V and g = (v, (—o00, 0]). This construction is independent of the specific choice
of the sequence {¥;};en. Let As(X, g) denote the set of all continuous asymptotic
types P, belonging to any V € V and g = (v, ©). Similarly to (1.43) we write

mcP =1V,
if P belongs to V € V.
Let us write
(145) P1 QPZ for 7T(CP1 gchZ.

A sequence
P =A{(pjsmj, Lj)Yo<j<n,

with p; € C,m; € N, N = N(P) < oo, is called a discrete asymptotic type for
weighted distributions on X near r = 0, associated with weight data g = (v, ©),
e = (4,0], if

(i) mcP = {p;j}o<j<n C {z: 2= 7+19<Rez<n+1—7} N(P) < oo for
finite O, rcPN{z:c < Rez < c’} ﬁmte for every ¢ < ¢.

(ii) mj € Nand L; C C®(X,E) (for a given E € Vect(X)) is a finite-
dimensional subspace, for every 7 € N.

Let As(X,g®) denote the set of all discrete asymptotic types in that sense.
For P € As(X,g°%), g = (v, 0), O finite, the space

N mj

N i={w(r) Z ZCJ’“ x)r P logkr tcjk € Lj

7=0 k=0
for 0 <k<mj;, 0<j<N}

(for any fixed cut-off function w) is finite-dimensional, and we have Ep(X") C
Ko7 (XM) and Ep(XM) NKS 7 (X)) = {0}. We then set

(1.46) K7 (X7) == Kg(X") + Ep(XM)

in the Fréchet topology of the direct sum.
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For © = (—00,0] we choose a sequence {¥;};en as above, and form P; :=
{(p,m,L) € P:Rep > ”T“ -7 +9;} € As(X, g3) for g; = (v,0;), ©; = (9;,0].
Then we have continuous embeddings (1.44) for all j, and we set again

K57 (X7 = lim K37 (X).
JEN

Moreover, let us set

(1.47) SHXM) ={wu+ (1 —w)v:ue KPT(XN), ve SRy, C®(X)}.

Remark 1.8. The spaces K37 (X ") and S)(X7) for P € As(X,g) or P € As(X,g°®)
are Fréchet spaces with group action k = {ks}scr,, (Ksu)(r,z) = 5" u(or, x) (cf.
the notation of Section 1.1).

An operator
K& (XN E) KooK (XN F)
C: 5] — ®©
K5 ((0X)N, J-) Ko =hm5((0X)1, )
which is continuous for s > —%, s" € R, is called a Green operator of type 0 in the
cone algebra on X", if C and its formal adjoint C* induce continuous operators

K7 (X", E) Sp (XN F)
(1.48) C: S — ) ®
K =3(0X), J2)  SLTTE(@X)M, J)
and
o (XA, F) Sgl T ((0X ™, B)
(1.49) c* ® > ® :

KT (0X)0 T4) S E (0X)8, )

respectively, for all s > —%, s' € R, with asymptotic types

(150) (PP € AS(X, (7 — 1,0)) x AS(OX, (y — = ,6))
and
(151 (@.Q) € AS(X, (—7,0)) x As(OX, (=7 3,0)),

depending on C (not on s,s’). The formal adjoint is defined in terms of the re-
spective KOO(X",-) & K%~ 2 ((0X)",-)-scalar products (where dots stand for the
corresponding bundles).
An operator of the form
d
C=Co+ ) C;diag(D’,0)

j=1
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for Green operators C; of type 0, 0 < j < d, and D7 as in (1.17), is called a Green
operator of type d.

Definition 1.9. Let C*¢(X", g;v) for g = (7,7 — 11,0), © = (=(k +1),0], v =
(E,F;J_,J;), denote the space of all operators of the form (1.34), such that
Aexit € B4 (X" v), moreover, Aeone given by (1.34), (1.37), (1.41), and a Green
operator C of type d. For © = (—o0,0] we set C*4(X, g;v) = Neen CH4(X;g,;v)
for gy = (77’7 — M (_(k + ]-)7 0])

Theorem 1.10. Every A € C*4(X", g;v) induces continuous operators
)

Ko7 (XN E Ks=m1=h (XN, F)

(1.52) ® - @
KomRI73((0X)0, J) KSR TR ((0X)1, )
as well as
K37 (XN, E) ICZ)_“”Y_”(XA, F)
(1.53) ® — )

K 20X 10) K TR (0X)0, )

for every s € R,s > d — %, and every pair of asymptotic types (1.50) with some

resulting (1.51).

This theorem may be found in [9, Section 2.1.7], cf. also [29, Theorem 2.3.55]
for the case without boundary.
Operators A € C*?(X", g;v) have a principal symbolic hierarchy

0(A) = (04 (A),05(A), 0c(A), 0B(A)),

where oy (A) and 05(A) are the homogeneous interior and boundary symbols of A,
regarded as an element of B*?(X";v). Moreover, o.(A) is the principal conormal
symbol, defined as

(1.54) oe(A)(z) = h(0,2) + fo(z),
cf. (1.35) (without loss of generality, we assume fo = 0, otherwise we have to
replace the summand fo(z) in (1.54) by fo(z) + fo(2)). By definition,

H*(X,E) H*—"(X,F)
: ® —
H* 3(8X,J_) H # 3

—~ —

(1.55) e(A)

—~ @

aX: J+)

is an element of B“‘/d(X; v;C) for some V € V,V N FnTH_V =0.

Finally, og(.A) is the tuple of exit symbolic components
o5(A) = (0e(A), 0y e(A), 0 (A), 00, (A))

for r — oo, cf. the notation of the preceding section.
An operator A € CH4(X", g;v) is called elliptic (with respect to the weight
v € R), if all components of o(A) are bijective; for (1.54) this means that (1.55)
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is a family of isomorphisms for all z € Logr_, and any s € R,s > max(u,d) — 3

(this condition is independent of the choice of s).

Theorem 1.11. An operator A € C*4(X", g;v) is elliptic if and only if (1.52) is
a Fredholm operator for some s > max(u,d) — %

Ellipticity entails the Fredholm property of (1.52) for every s > max(u,d)— %,
and the operator A has a paramatriz P € C~*"( X" g~ v~ 1Y) for h = max(d —
1,0), g7t =(y—n,7,0), v = (F E;J;, J-), i,

IT-PAc C‘é’(X/\,ge;ve), IT—AP¢€ C‘(i;(X/\,gr;'ur)

for dy = max(p,d), g, = (v,7;0), vi = (E,E;J_,J_), and d. = max(d — u,0),
9. =(v—u,7—p,0), v.=(F,F;Jy,Jy).

The proof of the Fredholm property of (1.52) follows from a parametrix
construction, combining a local parametrix near the tip of the cone from [20] with
a parametrix far from the tip up to infinity, using the second part of Theorem
1.7. The necessity of the ellipticity for the Fredholm property can be obtained by
writing A = Agp + Aing + Ao modulo a Green operator, where Ay is localised
near the tip of the cone, Ay, far from the tip as well as far from oo, and A,
localised near co. Now different variants of ‘Gohberg’s lemma’ allows us to treat
the principal symbolic components separately, cf. analogously [26, Section 2.2.1]
for A, [19, Section 3.1.1.1] for Ajn, and [21] for As.

2. The edge algebra with parameters

2.1. Edge-amplitude functions
Edge-amplitude functions a(y,n) as they will be defined in this section are par-
ticular operator-valued symbols in the sense of (1.12), with E and E being of the
form
KS7(XN, E) @ Ks~272 (9X)", J_) & Cl-

and

oI (XN FY @ KPR 25 ((OX)N, J4) @ O
respectively, cf. the notation of Section 1.3. The group actions in both spaces are
(2.1) ks i u(r,z) Du'(r,z') dec— 5"T+1(u(5r, x) ®u'(6r,2") D ¢),
0 € Ry. The 2 x 2 upper left corners of the operator functions a(y,n) take values

in the cone algebra on X, and there is a specific dependence on the parameter .
These amplitude functions will constitute a space

(2.2) REAUU x R, g5 w),

d € N, with weight data g = (v,v — i, ©), for a finite weight interval © = (—(k +
1),0], and tuples w = (E, F; J_, J+;1_,11), with vector bundles E, F' € Vect(X),
Ji € Vect(0X). The numbers I are the fibre dimensions of bundles L1 € Vect(Y)
in the global calculus below.
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Moreover, we will single out a subspace of so called Green edge-symbols

(2.3) REUU x RY, g3 w).
Then the elements a(y,n) of (2.2) will have the form
(2.4) a(y,n) = diag(b(y,n),0) + g(y,n)

for arbitrary g(y,n) € Ré’d(U x R?, g;w) and b(y,n) € R*4U x RY, g;v), v :=
(E,F;J_, J;) (the latter space corresponds to (2.2) for the case [ =1y =0).

Let us now turn to more details. The structure of b(y, ) is as follows. Choose
arbitrary cut-off functions o (r), & (r) and w(r),@(r),o(r), where we assume © = 1
on suppw, and w = 1 on supp@. Let us set w,(r) := w(r[y]) for some strictly
positive function [n] € C*°(R?) such that [n] = |n| for || > ¢ for some constant
c>0.

(i) We choose an arbitrary element

(2:5) p(r,y,8,7) € C®(Ry x U, B"*(X;v; R
and form the family of operators op,.(p)(y,n) for
(2.6) p(r, 0,m) :== p(r,ro,rn).

(ii) Let h(r,y,z,7) € C°(Ry x U, B*%(X;v;C x RY)) be an element such
that
op,.(p)(y,1) = opiy; (h)(y,n) mod C> (U, B~°*(X";v;RY))

for
(2.7) h(r,y,z,n) == ﬁ(r,y,z,m).
(iii) We set
@28)  mlm) =wr ™ S {onyF ()W) +onsy F (Fia) )},

o<k

with weights d;,0; as in (1.36) and functions

(29)  fia € C®U, B, X;0;0), fia € CF(U,B;°(X;v;0))

for certain Vjq, ‘7ja € V, satisfying the conditions

(2.10) Pugi 5 NVja =0 Tap_5NVie=0
for all 7, c.

(iv) The operator function b(y,n) in (2.4) has the form
(2.11) by, m) = or~"{wyopyr * (A)(y, )y

+ (1 —wy) op,.(p) (y, ) (1 — &) }& + m(y, n)

for p, h and m as in (i), (ii) and (iii), respectively.
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Let us set, for abbreviation,
E%7 := KO(X", E) & K73 ((0X)", J_) & T,
SH* =S HMXNF)eSL T E((0X)N, Jy) o C
for asymptotic types P € As(X, (vy,0)), P' € As(X, (y — %, ©)), P =(P,P'), and
FO7He = KO m( XN FY @ KO # 2 ((0X)N, J4) @ '+
Sy =8, (X" E) eS8, *((0X)",J )& C~

for asymptotic types @ € As(X, (—y + 1, 09)), Q' € As((0X)", (-7 +p — 3,0)),
Q=(Q,Q).
A Green symbol g(y,n) of type d = 0 in the sense of (2.3) is defined as a
function
n+l

. 1 . 1 nl
g(y,n) = diag(L, ()=, (M = )go(y,n) diag(1, ()=, (n) >

with an operator-valued symbol
(212) 90(.%77) € S(l;l(U X Rq;E07778%_“)(N07n0)7
cf. notation (2.16) below, such that their pointwise formal adjoint gg(y,n) in the
sense (gou, v)goo = (u, ggv)poo for all u € C° (XN, E) ® C°((0X)M, J-) & C-,
v € C(XN F)o C5((0X)™, J4) ® C'+ represents an element
(2.13) 96y, m) € SH(U x RE; F&~7HH 837 0 40y,

The asymptotic types

(214) P = (P7 P,) € AS(X7 (7 ez 9)) X AS(aXa (7 — K= 7@))7
2

(215) Q= (Q: Q,) € AS(X, (_77 @)) X AS(aXa (_7 -

1
depend on go. Subscripts ‘(k%, k%) in the relations (2.12) and (2.13) mean that
the spaces of symbols refer to the group actions

(2.16) kg cu(r,x) @' (ra’) De— (5"T+1u()\7“, ) ®ozu' (W) e,

0 € Ry, in contrast to (2.1). In this way we avoid distinguishing matrices of
Douglis-Nirenberg orders for symbols and their adjoints. Clearly, the Green sym-
bols g(y,n) themselves are operator-valued symbols with respect to the group
actions (2.1), cf. Remark 2.3 below.
Now a Green symbol g(y,n) in (2.3) of type d € N is defined as a linear
combination
d
(2.17) 9(y;m) = ho(y,m) + Y_ hj(y,n) diag(17,0,0)
j=1

with 77 being as in (1.17) and h; € Ré’O(U x R?, g;w) of type zero, j =0,...,d.
Let
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(2.18) R (U xR, g w)
be the subspace of all elements of (2.2) of the form
(2.19) a(y,n) = m(y,n) + g(y,n)

for arbitrary m(y,n) as in (iii) above, and a Green symbol g(y,n) of type d.

Remark 2.1. The space R”Mic (UxR?, g; w) is equal to the subspace of all a(y,n) €
R+4(U x R?, g;w) such that p(r,y, 8,7) € OF(Ry x U,B"x”d(X;v;]Ré}q)).

For the aspect of holomorphic dependence of symbols in (2.18) on a further
parameter it is interesting to single out Fréchet subspaces that are parametrised
by the type d € N and asymptotic types involved in (2.8) as well as P and Q in
the Green summands g(y,7). For this consideration it is not essential to fix the
carrier sets Vjq, Vjo particularly small. It suffices to choose tuples
(2.20) Vo,V1,P,Q)=:R

where Vy, V1 € V, Vo N I‘nTHJr = (), and to assume that the sets Vja,f/ja in (2.8)
satisfy the condition R
Via, Via €W

for all 0 < j + |a| < k (together with the relations (2.10)).
Lemma 2.2. For every Vi € V there exist asymptotic types P1, Q1 of the kind
(2.14), (2.15) such that for every sequence
(2.21) hja € C(U, By (X;0;C))
0 < j+|a| <k, and decompositions

hja = fia + fia
into Mellin symbols (2.9) for an arbitrary choice of Vja,f/ja C Vi, the operator

m(y,n) given by (2.8) is uniquely determined by (2.21), modulo a Green symbol
91(y,n) with asymptotic types Py and Q.

Let Aspya(X,g) denote the set of all tuples (2.20) for arbitrary Vo, V) as
mentioned before, and P O Py, Q D Q; (the latter inclusions correspond to the
inclusions of carrier sets, cf. the relation (1.45)).

Moreover, let

(2.22) RS (U X R g;w)g
for R € Asprig (X, g) be the space of all m(yN,n) +9(y,n) € RﬂiG(U x RY, g; w)
of type d, with arbitrary Mellin symbols fjqa, fjo linked to certain hj, asin (2.21),
fo € C(U, B;Ooo’d(X;v;C)), and Green symbols g(y,n) with asymptotic types
P, Q. The space (2.22) is Fréchet in a natural way. It is clear that
REL (U xR, gyw) = U RS (U x RY; g;w)g.
REASMJrG(X,g)
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Remark 2.3. Let us set

(2.23) E*7 .= K5 (XN E) e K527 2 (0X)", J_) & C-,
(2.24) B = KS(XNE) @ Ko 2772 (0X)N, J) & C-
(2.25) ST = STTHXN F) e TR E((0X)N, ) & CF
for

STH(XNF) = {wu+ (1 —wv:u€ KT #(X,F),ve SRy, C®(X, F))},

cf. also the formula (1.9). Every a(y,n) € R“MiG(UX RY?, g; w) represents operator-
valued symbols

(2.26) a(y,n) € S(U x RY; B, 87H)
and
(2.27) a(y,n) € SHU x R, ERY, S57)

of order p with respect to (the first two components of) (2.1), s > d — 3. The
relation (2.27) is valid for every pair P of asymptotic types with some resulting Q
depending on a and P.

Note that in the second components of (2.23), (2.24) instead of s — 3 we can
insert any other s’ € R.

Theorem 2.4. The space R*4(U x RY, g;w) can equivalently be described as the
space of all operator functions (2.4) where g(y,n) is a Green symbol as before, and

(2.28) by, n) = or *{wopyy 2 (h)(y, )@
+ (1 —w)op,(»)(y,n) (L — &}& + m(y,n)-

This result is a corollary of a corresponding theorem [9, Section 4.6.4] that
the n-dependent cut-off functions in (2.4) may be replaced by 7-independent ones,
modulo a Green symbol with trivial asymptotic types; concerning the boundaryless
case, see [7].

Let E*" and E3” be as in Remark 2.3, and set

Fot= RN ) @ KT (X)) @ O
Fih = Ky X ) @ Kt T2 TR (X)), Jy) @ O
P = (PP, Q=(Q,Q"), cf. the formulas (2.14), (2.15).

Theorem 2.5. Every a(y,n) € R*4(U x RY; g;w) represents operator-valued sym-
bols

(2.29) a(y,n) € SH(U x RY; B>, F*#7H)
and

(2.30) a(y,n) € S"(U xR ERT, Fo*77H)
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of order p with respect to (2.1), for every s > d — . (2.30) is valid for every
pair P of asymptotic types with some resulting Q depending on a and P (not on
s). We also get operator-valued symbols with respect to (2.16) with a scheme of
Douglis-Nirenberg orders as in Remark 2.3.

It is now essential for the applications below that the space (2.2) has a vari-
ant with a complex parameter w € C as an additional covariable, such that the
elements a(y,n,w) are holomorphic in w.

Let

(2.31) R U x R? x C,g;w)

denote the corresponding space. Ingredients of (2.31) have been investigated in
[18] and [3], namely

(2.32) or =" {wopyy * (h)(y,m,w)d + (1 - w) op, (p) (y,n, w)(1 — &)}5,

the holomorphic analogue of the first summand on the right hand side of (2.28),
and the holomorphic analogues

(2.33) g(y,n,w) and m(y,n,w)

of g(y,n) in (2.4) and m(y,n) in (2.11), respectively. In order to make the ingredi-
ents of the operator-valued symbols of the class (2.31) more transparent we now
discuss the kernel cut-off constructions.

Kernel cut-off only concerns covariables. Therefore, to simplify considera-
tions, we assume for a while that symbols have constant coefficients.

Let us first consider Green and smoothing Mellin symbols in the covariables
(n,7) € RITL, These are operator-valued symbols

(2.34) a(n,7) € S (R, E, E)

with E and E running over specific scales of Hilbert spaces. The constructions
may be performed for any fixed Hilbert spaces E, E; then they are valid also for
the projective limits involved in the definition of Green symbols.

In the following we admit symbols to be classical or non-classical. Let a(n, 7) €
Sél) (Ret'; B, E), and set

(2.35) k(a)(n, o) := /ﬂ{eiQTa(n,T)dT.
Then, for every (o) € C§°(R) the function
(2.36) W)@ m7) = [ e vk ode

has a holomorphic extension h(v)(a)(n, ) into the complex plane of the variable
¢ =T1+10.

Theorem 2.6. Let a(n,T) € Sél) (Rt B, E) and ¢(o) € Cs°(R).
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1. We have
h(¥)(a)(n,¢) € A(C;,C=(R?, L(E, E)),
and
(2.37) h(¥)(a)(n, T +i0) € Sfy (RLL'; E, E)

for every § € R, uniformly in ¢ < 6 < ¢ for arbitrary ¢ < .
2. The map ¥ — h(vp)(a)(7+1i0) given by (2.37) defines a continuous operator

C5°(R) = Sy (R B, E)

for every § € R, uniformly continuous in ¢ < § < ' for arbitrary ¢ < .
3. If ¥(o) is equal to 1 in a neigbourhood of o = 0, we have

(2.38) 9(n,7) = h(¥)(a)(n,7) mod S™(RT*"; E, E).

The map

h(y) = Sfeyy (RIS B, E) = S,

will be called a kernel cut-off operator; the notation is motivated by the relation
between (2.35) and the distributional kernel k(a)(n,t — t') of the (n-dependent)
pseudo-differential operator Op,(a)(n).

(RIHY; B, E)

Remark 2.7. Under the assumptions of Theorem 2.6 for every 3, € R there are
coefficients ¢, (5, 0) (depending on %) such that

h(W)(@)(m, 7 +i8) ~ Y cx(8,8)DEH () (a)(n, T + i)
k=0

in the sense of an asymptotic sum in Séf:l) (Ret1; B, E). If 4(0) = 1, it follows that
co(B,0) =1 for every 8,0 € R.

A particularly simple proof of Theorem 2.6 may be found in [13].

In our applications, the complex variable plays the role of a Mellin covariable
with imaginary part 7. Therefore, we now slightly change the notation and pass
from ( = 7+ to w = § + ir. Instead of Theorem 2.6 we could consider an
antiholomorphic variant as well by talking about 7 — i rather than 7 + iJ; the
change to w then gives us an analogue of Theorem 2.6 with interchanged real and
imaginary parts.

Definition 2.8. Let S(”CD(U x R? x C;E,E) denote the space of all a(y,n,w) €
A(Cy,,,C>(U x R?, L(E, E)) such that

a(y,n,d +ir) € S(”CD(U X qj;l;E,EN)

for every ¢ € R, uniformly in ¢ < § < ¢ for every ¢ < ¢.
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The space S (‘; N (R? x C; E, E) is Fréchet in a natural way. In the following we
write

I
(2.39) St

for symbols of the form a(y,n,d + i) that belong with respect to (y,n,7) to the
space Sé‘d)(U x R ER).

(UxR! xT5; E,E)

Corollary 2.9. Setting

H(y)(a)(y,n, B +iT) := h(Y)(a)(y,n, T — if)

for a(y,n, 1) := a(y,n,it), ¢ € C(R), where h(y) refers to the cut-off opera-
tor with respect to covariable T, the assertions of Theorem 2.6 (combined with a
translation in direction of Rew) can be interpreted in the following way:

1.
(2.40) H(y) : Sfy, (U x R? x T'5; E, E) = S{;) (U x R x G, E, E)

1§ a continuous operator. R
2. The map ¥ — H(Y)a for fived a(y,n,w) € S(’fsl)(Ux R? xTs; E, E) defines
a continuous operator

C5°(R) = S{y (U x R! x G E, E).

3. For every a(y,n,w) € S(”CD(U x R? x Is; E,E) there is an h(y,n,w) €

S(“CI)(U x R! x G, E, E) such that

a(y,n,w) = h(y,n,w)| g, s € S~ x R x I's; B, E).

Remark 2.10. a(y,n,w) € S’f‘cl)(Ux]Rq xC; E,E) and a(y,n,w)|Rew:6 € Sé‘d_)l(Ux

R¢ x I'y; E, E) for some ¢ € R implies a(y,n, w) € Ség)l(U xR x G E,E).

We now apply the kernel cut-off operator H (¢) with respect to the covariable
7 =Imw,w € [y, to symbols of the space

(2.41) Rit (U xR x T, g;w) g

for R = (Vp,V1,P, Q) € Aspyria(X,g); the meaning of I'y in (2.41) is analogous
to (2.39).

There is a specialisation of Definition 2.8 for the symbol space (2.41) which
yields a corresponding space of holomorphic symbols in w € C:

(2.42) R (U xR x C, g;w)g.

This is studied in detail in De Donno and Schulze [3]. The definition of the subclass
R’C‘;’d(U x R? x C,g;w)p,q is straightforward, and we can set

R G(U xR x C,g;w)p = {H®)a+g: aly,n,w) €
Rit o(U x RY x D5, g;w)r, g(y,n,w) € REYU x R x C, g;w)p,o}
for any ¢ € C§°(R) which is equal to 1 in a neigbourhood of 0.
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More generally, we have a map
(243)  H(): Ry (U x R? x Ts,g;w) g — Rl (U x R? x C,g;w) g

for every ¢ € C§°(R), that may be obtained in analogy of the preceding assertions
on the abstract context.

Theorem 2.11. For 1) € C§°(R) and every element a(y,n,w) of (2.41) we have

h(y,n,w) == H()aly,n,w) € R o(U x R! x C,g;w)r,
where

G(?J;ﬂaw) = h(yanaw)|Rew:5 mod R;}OO7d(U x R? x Féagaw)P7Q
when ¥ = 1 in a neighbourhood of 0.

Note that, although the map (2.43) is formally analogous to (2.40), it may
appear surprising that operator-valued symbols which contain the 7-variable in
the form wy ,(r) = w(r[n, d +i7]), for a cut-off function w, cf. the expression (2.8),
can be transformed into holomorphic ones, modulo smoothing symbols, cf. also
[3].

To complete the structure of (2.31) it remains to explain (2.32). Starting
from arbitrary elements

ﬁ(raya é:ﬁ:w) € COO(R+ X U; Bu7d(X;U;R1+q X Fa)),
h(r,y,2,7,®) € C*(Ry x U, B"(X;v0;C x R x Ty))

for any fixed § € R and setting

(2.44) p(r,y,0,m,6 +it) := p(r,y,ro,r(6 +1i71)),

(2'45) h(T;?J;Z;ﬂ;fS‘HT) = (r,y,z,rn,r(6+iT)),

it suffices to apply a kernel cut-off operator (2.43) with respect to the variable 7,
in order to generate the required holomorphic dependence in w. The new element
here, compared with the analogous procedure of Remark 1.6, is the extra degener-
acy in the variable r € Ry . Details are elaborated in [18], see also [8]. Concerning
the present situation, to generate the space (2.31), it suffices to insert

(H()h)(r,y,z,m,w) and  (H()p)(r,y, 0,n,w)

in (2.32) in place of h and p there, for arbitrary families (2.44) and (2.45), respec-
tively.

This definition is correct; the choice of the cut-off function ¢ only affects
(2.32) modulo a remainder of the kind (2.33).
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2.2. The edge algebra

Let W be a compact manifold with edge Y and boundary and W its stretched
manifold. Concerning notation, in particular, for the double 2W = W, we refer to
Section 1.1. In the present section we study parameter-dependent edge-boundary
value problems. These will be families .A(\) of operators, with parameter A € R,
constituting a vector space

(2.46) VoUW, g;w; R,

with ¢ € Z as order and d € N as type, and weight data g = (y,7 — ,0), v € R,
with a (finite or infinite) weight interval ©, and a tuple w = (E, F; J_,Jy;L_,L;)
of vector bundles E,F € Vect(W), Jp € Vect(W'), Ly € Vect(Y). Here W'
is the stretched manifold associated with the boundary W' of W (in the sense
W'=90(W\Y)UY). Also W' is a manifold with edge Y, now without boundary;
the base of the model cone near Y is 0X.

In local considerations vector bundles E € Vect(W) will be restricted to Wieg
or to neighbourhoods of Wg;,, . To simplify notation we will denote them again by
E. Moreover, if

(2.47) X:[0,1) x X xU" - Ry x X x 0
is a ‘singular chart’, we assume x to be of the form

X(r,ﬂf,y) = (XO(T)Jmaxll(y))

for a diffeomorphism xo : [0,1) = Ry, xo(r) =7 for 0 < r < ¢ for some € > 0, and
a chart ¥ : U” — Q on Y. The pull back of E under x~! will also be denoted
by E; also for the restriction of E to X for any fixed y € ) we use the same
letter. Similar notation will be applied for bundles over W'. Clearly, in pull backs
of operators on Ry x X xto (0,1) x X x U", we take into account transition maps
from the bundles, using corresponding invariance properties of our constructions.
Choose an open covering of a neighbourhood V of Wi, in W by charts

(2.48) Xk [0,1) x X x Ul = Ry x X x Q,

k=1,...,N, Q C R? open, such that {U{',...,Ux} is an open covering of Y
by induced charts xj : U/ = Q. Let {¢1,...,on}, {¢1,...,¥n} be systems of
functions g, ¥ € C§°([0,1) x X x U}!) such that ) ¢, =1 in a neighbourhood
of Wiing, and 1 =1 on supp g

Set ¢}, = ‘Pk|[0,1)x(ax)xu,;" by, = ¢k|[o,1)x(ax)xU,;" ¥k = @rly, and v =
Yr|y. Then, using edge-amplitude functions

ak(yJTI?A) € Ru7d(ﬂ X ]jor}\lag;wk)a

wy = (B, F;J_,Jy;1_,11), we can pass to operator pull backs A (\) of pseudo-
differential operators Op, (ax)(A) to [0,1) x X x Uy with respect to (2.46) (which
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also take into account the transition functions of the involved bundles) and form

N
(2.49) Acage(N) 1= _ diag(, 0}, ok )Ar (V) diag(thr, ¥, P7)-

k=1

By definition, the local amplitude functions aj contain certain fixed cut-
off factors o(r) and &(r), cf. the formula (2.11). For the global construction we
assume them to be independent of k. Without loss of generality, let 6 = 1 on
supp 0. Moreover, choose another cut-off function ¢ such that ¢ =1 on suppé.

The space (2.46) is then defined as the set of all operator families of the form
(2.50) AN) = Aeage(A) + diag((1 = 0)Breg(A)(1 = 0),0) +C()

where Agdqge(A) has the form (2.49), further Breg(A) is an arbitrary element of
B* Y (Wyeg; v; R for v = (E, F; J_, Jy), and C(\) belongs to

(2.51) Yool (W, g5 w; RY).

The latter space of smoothing operators is defined as follows:

First recall that in Section 1.1 we introduced the spaces W#7(W). For every
E € Vect(W) there is a straightforward generalisation to spaces W (W, E) of
corresponding distributional sections. In E we fix a Hermitian metric and on W a
Riemannian metric, where W is treated as a compact C'*° manifold with boundary.
We then have a natural scalar product in the space L2(W E).

Let A denote any strictly positive function in Cc>=( reg) that is equal to r”
in a small neighbourhood of Wsmg. The multiplication by A~ % induces a bijection

h™% . L2 (W, E) - WO%(W, E)
which gives us a scalar product also in W%° (W, E). This gives rise to non-degenerate
sesquilinear pairings

WY (W, E) x W™ (W, E) - C

for all s,v € R.

Also for arbitrary s, € R the space WS”(W, E) is a Hilbert space. To define
a scalar product, we consider the double 2W of W which is a closed compact C>
manifold. Let 2F denote any vector bundle on 2W such that 2E’|W = E. We then
have the standard Sobolev space H*(2W, 2E) of sections of smoothness s € R.

Let 0 € C>°(W) be any function that is equal to 1 on [0, $) X X xY and

vanishes outside [0, 3) x X x Y. Let us identify (1 — o)u for u € H}  (Weeg, E)

with an element, of H*(2W, 2E) (vanishing on 2W \ W,e, ). Then a scalar product
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in W (W, E) is

N
R D (I (CAR N IE
k=1

<yw<>>wwwmmmp@w
+((1-0)u,(1 -0 )Hs(2W2E)
Analogously to the constructions of Section 1.1 we have the spaces
Wo (W, E) = {i € W (W, E) : supp i C W }

and

(2.52) W (W, E) = {a|imwwg L0 € WS (W, E)}
for E|w = E, with a natural identification
(2.53) WS (W, B) = We (W, )Wy (W_, E);

this gives us a Hilbert space structure also in W*7(W, E).

Let us now pass to subspaces with asymptotics. First, on X" x R? we can
form the spaces

S,V ( wA o . s, Y (wA I
W (XN xR, E) = W7 (R, K37 (XM, E))

for every P € As(X,g), g = (v,0). Then WS’W(W E) is defined as the subspace
of all u € HE (Wyeg, E) such that wpu = x*v for some v € W ’V(X/\ x R?, E) for

every x of the kind (1.1). Then, by the same scheme as (2.52), (2 53) we can form
Fréchet spaces

(2.54) WS (W, E)

with asymptotics of type P € As(X, g) where we use the fact that _every P can
be obtained from some P = {(p;,m;, L;)} by restricting the spaces L; from X to
X.

Analogous constructions apply to W', vector bundles J € Vect(W') and as-
ymptotic types P’ € As(0X,g’) for weight data g’ = (7', 0), i.e., we have the
spaces

(2.55) WY (W ,J) and WS (W, .J),

respectively, s,7’ € R.
For every 7, 0 € R we have non-degenerate sesquilinear pairings

WET=W' | J) x W™= 7= 2(W' J) = C,

s € R, induced by the W%~ ¢(W', J)-scalar product. We will apply this to ¢ = %. In
the following E, F, J_, J; are bundles as before, and we assume L_, L1 € Vect(Y').
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Given an operator

wW=1(W, E) W (W, F)
b b
(2.56) AW (W, J2) = W3~ A= 3 (W', ], )
b b
H* "3 (Y,L_) Hs= "3 ~n(Y,L_)
that is continuous for every s > —% we define its formal adjoint A* in the sense

(.AU, U)Qﬂg_ = (’U,, A*U)Qﬂfl

for WO = WOO(W, F) @ WO—3 (W', J,) & HO(Y,Ly), WO = WOO(W,E) &
WO (W', J_) @ HO(Y,L_), for all u € C§°(int Wieg, E) & C§° (Wi, J_) &
C®(Y,L-),v € C5°(int Wreg, F)®CG* (Wi, J4+)OC(Y, L) An operator (2.50)
is said to belong YW, g; w) forg = (v,y—p,0),w = (E,F;J_,Jy;L_,L.),
if there are asymptotic types (P, P') € As(X, (v — 1, 0)) x As(0X, (y—p—1,0))
and (@, Q") € As(X, (—7,0)) x As(dX, (—y — £,0)) such that A and A* induce
continuous operators

W (W, E) W (W, F)
fast 5%
(2.57) AW (W J2) = Wi H T2 (W gy
® ®
H(Y,L) C>=(Y,Ly)
and
W=+ (W, F) Wo (W, E)
st ©®
(2.58) A* WS s (W L) — ng—v—%(WI,L),
® ®
H?® (Y7L+) COO(YaL—)

respectively, for all s > —1, s',s" € R. Moreover, Y~ °>%(W,g;w) denotes the

space of all operators
d
(2.59) C=Co+ ) C;jdiag(17,0,0)
j=1
for arbitrary C; € Y °0(W,g;w) and differential operators 77 of order j on
W, T = T |y for differential operators 77 on W with smooth coefficients up to
OW = Wsing which are in the splitting of variables (r, x,y) near Wsing of the form
8%]]; ®idg for all j. Elements of Y~ °¢(W, g;w) are said to be of type d.
Let Y °4(W, g;w)p o denote the set of all C € Y~ >¢(W, g;w) such that
the summands C; in (2.59) satisfy the continuity properties (2.57) and (2.58) for
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fixed pairs of asymptotic types P, Q, j = 0, ..., d. This space is Fréchet in a natural
way, and we set

(2.60) VoUW, g w, R)p g = SR, YUW, g;w)p o)

Moreover, let Y~°°4(W, g; w;R') be the union of all spaces (2.60) over P, Q, and
set
Y R(W,g;w;R) = [ Yy~ UW, g;w; R).
deN
Thus the class of parameter-dependent operators (2.46) is completely defined.
Parameter-dependent operators will also be employed in the variant

(2.61) VH(W,g;w; s x R)
which is defined as the space of all operator families A(w,\), parametrised by
(w,\) € ['s x R, such that A(J + i, \) belongs to Y*(W, g; w; ]Rif)\l).

Given a pair of vector bundles € := (E, J) for E € Vect(W), J € Vect(W'),
we set
(2.62) WS (W, €) := WS (W, E) ® W 3773 (W' J),
(2.63) WET(W, €) == W5 (W, E) @ Wa >3 (W', J)

for asymptotic types P = (P, P') € As(X, (7,0)) x As(0X, (y — 3,9)).
In the following theorem we set g = (7,7 — 1,0), © = (—(k + 1),0], k €
NU {00}7 and w = (EaFa J—7J+;L—7l+)7 ¢_= (Ea J—): €+ = (F J+)

Theorem 2.12. Every A € Y*(W,g;w;R!) induces families of continuous opera-
tors

WS (W, €2)  WEmI=r(W, €,

(2.64) AN : < - ®
H*"(Y,L_) H*r"F(Y,L,)
and
Wi (W, €)W (W, ¢y)
(2.65) AN : < - ®

H™=" (Y,L_)  H*"“F(Y,L,)
fors>d— %, d = d 4 (the type of A) and every pair P of asymptotic types, with
some resulting pair Q, depending on A and P (not on s).

The proof of this result can be obtained by considering the summands of
(2.50) separately. C()\) is clear by definition, and the second summand is essentially
a variant of (1.14). The first term on the right of (2.50) is a finite sum of local
operators with amplitude functions as in Theorem 2.5. It is now sufficient to apply
the Theorem 1.4 to our specific situation, taking into account the definition of the
edge Sobolev spaces and their subspaces with asymptotics.
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Parameter-dependent edge boundary value problems A € Y*(W,g;w;R')
have a parameter-dependent principal symbolic structure

(2.66) o(A) = (oy(A),05(A),0n(A)).

To give a definition we write A = (A;;)s,j—1,2,3 and observe that
(2.67) A1 € LV (int Wyeg; E, F; RY),

(2.68) A" = (Aij)ij=12 € B“7d(Wreg;U§Rl)

for v = (E,F;J_,J;). We then set oy (A) := 0y (A11) which is the standard ho-
mogeneous principal symbol of order p with parameter A € R ; moreover o5(A) :=
o5(A") is the principal boundary symbol of A’ with parameter A € R', cf. Section
1.2, in particular, the generalisation of (1.22) to the non-compact manifold W;ee
with boundary Wi, (and with the corresponding vector bundles).

Because of the edge-degeneracy in the splitting of variables (r,z,y) € R} x
X xY we can write
op(A)(r,z,y,0,&n,A) =1 6y (A)(r,z,y,r0,& 10, TA)
where y R
5—1/1(“4)(7'7377:'3’7@767777/\)7 (é;f:ﬁ;A)#Oa
is smooth in 7 up to 0. Analogously for (r,z',y) € Ry x 9X x Y we have
0'3(./4)(7", mla Y, 0, fla m, /\) = ’I"_N&B(A) (T', $I7 Yy,ro, fla rn, ’I"/\)
with } }
&Q(A)(T,l'l,y,é,fl,ﬁ,A), (é:flaﬁaA) 750
being smooth in r up to 0.
Finally, on(A)(y,n,\) denotes the parameter-dependent homogeneous prin-

cipal edge symbol which is an operator family that can be expressed in terms of
the local amplitude functions

a(y,m,A) € R (U xR! xR, g;w),

cf. the notation in the formula (2.2). Here U C R? is open and corresponds to a
chart on the edge Y. Applying (2.4) in the variant with (7, A) in place of 1 we set

on(A) Y, A) = onla)(y,n, A)
for oa(a)(y,n,A) := diag(oa(b)(y,n,A),0) + oa(g)(y,n,A). Here oa(g) is the ho-
mogeneous principal part of g as a classical operator-valued symbols, while
oA®)wmA) = T Hw(rln, A oply  (ho)(yn, N@(r|n, Al)
+ (L= w(rln, Al) op,(po) (y, 1, M) (1 = & (r|n, Al))
+  oa(m)(y,n, )

with oa(m) being the homogeneous principal part of m as a classical operator-
valued symbol, and

ho(r,y,2,m,A) = h(0,y,2,1m,TX), po(r,0,m,A) == p(0,r0,1,TX),
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cf. the A-dependent analogue of (2.6) and (2.7).
Theorem 2.13. A € Y*(W,g;v;R!) for
g=0-v,y=(u+v),0), v=(EF;J J;L L)
and B € Y’ (W, h;w;R') for
h=(v,y—v,0), w= (E,E; J,,j;L,,z)
inplies
AB € YV (W, g o h;v ow; RY)

fOT’ go h = (777 - (/I’ + V)7®)7 vow = (EaF;J—7J+;L—7L+)7 and dap =
max(v + da,dg), and we have

o(AB) = o(A)o(B)
with componentwise composition (cf. the formula (2.66)).

Theorem 2.13 is a parameter-dependent analogue of a corresponding compo-
sition result on edge boundary values problems, cf. [9, Section 4.5.2]. The proof in
the parameter-dependent case does not contain additional difficulties.

2.3. Ellipticity of edge-boundary value problems

This section studies parameter-dependent ellipticity of edge-degenerate boundary
value problems on a (compact) manifold W with edge Y and boundary. As usual
we formulate results on the associated stretched manifold W.

Let w = (B, F;J_,J4;L-,Ly), g = (v,7 — 1,0), © = (—=(k+1),0], k €
NU {oo}.

Definition 2.14. An element A(\) € Y*(W, g; w; R!) is called parameter-dependent
elliptic of order p, if

1.
(2.69) oy (A): W{;VregE — W{MegF
for my,., : (T*Wieg X R') \ 0 = Wieg is an isomorphism and, near Wying

in the splitting of variables (r,z,y) € Ry x X x Y,
&¢(A)(Taxay7 é:g:ﬁa’j\)

are isomorphisms between the respective fibres of E and F over all (r, z,y),
including r = 0, for all (g,&,7, \) # 0.

H*(Ry, E') H* (R, F')
(2.70) oo(A) : T, ® = T ®
J_ I,
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for myr ., ¢ (T*Wiee X R') \ 0 = W, is an isomorphism for any s >
max(p,d) — 5, d = da, and near W, ., in the splitting of variables

(r,z',y) € Ry x (0X) x Y,

&6('/4) (T7 x’) y7 @7 g” ﬁ’ 5\)
are isomorphisms between the respective fibres of H*(R;,E') @ J_ and
Hs=#(Ry, F')®J; over all (r, 2, y), including r = 0, for all (g,&’,7,\) # 0.

3.
(XM € ) (XN €4)
(2.71) on(A) : 7y ® — 7y ®
L_ L.

1

for my : (I*Y x R')\ 0 — Y is an isomorphism for any s > max(, d) — 5,

d=da.

Conditions (ii) and (iii) are independent of the choice of s. Note that in (ii)
the spaces may equivalently be replaced by S(Ry,E) ® J_ and S(Ry,F) © J,,
and in (iii) by S7(X",€_)® L_ and 87 7#(X", €,) & L., respectively. Here, for
instance, for €_ = (E, J_),
ST(XN el) = 8(XNE) & STTEH((9X), J-),

cf. also the formula (2.25).
In the sequel we also talk about ellipticity rather than parameter-dependent
elllipticity of order p.

Theorem 2.15. Let A € Y*(W,g;w;R) be elliptic. Then A has a parametriz
Pey (W,g hwR) forg™t = (y—p,7,0), w ' = (E,F;Jy, J 5Ly, L)
of type dp = max(d4 — p,0) where

I-PA=C €Y ™(W,g;w;R),
fOT g, = (7777@)7 w) = (EaEa J—7J—;L—7L—)7

I-AP = Cl‘ € yioo(Wagr;wr;]Rl);
and g, = (v — i,y — 1,0), wy = (F,F;J4,J4; L4, Ly) and we have de, =
maX(lla d.A)7 dCr = IIlaX(dA - ,LL,O)

Theorem 2.16. Let A € Y*(W,g;w;R') be elliptic. Then A induces a family of
Fredholm operators (2.64), s > max(u,d4) — %, of index zero. There exists a

constant ¢ > 0 such that (2.64) is invertible for all |A| > c.

Theorem 2.17. [14] For every p € Z, v € R, E € Vect(W), there exists an elliptic
operator

R € Y*(W,g; (E,E);R')
of type 0, g = (7,7 — i1, (=00, 0]), such that
RM(N) : WY (W, E) — WP HTH(W, E)
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is a family of isomorphisms for all s > max(u,0) — % and all X € R, and we have
(R*(\)~H e Y™(W,g; (E,E);R),
gi1 = (7 -7, (_007 0])’ also Of being type 0.

Remark 2.18. Theorems 2.15 and 2.16 generalise analogous results for a manifold
W' with edge Y and without boundary, cf. [2] and [4]. Also Theorem 2.17 has
a corresponding analogue for the boundaryless case. Moreover, in a refined ver-
sion, order reducing results also hold for boundary value problems without the
transmission property, see [31].

3. Corner conormal symbols

3.1. Meromorphic families

We now introduce families A(w, \) of elements in Y*4(W, g;w;R') holomorphi-
cally depending on a parameter w € C.
The definition of the corresponding space

(3.1) VHUW, g;w; Cyp x RY)
will be given along the lines of the expression (2.50). The space (3.1) is defined as
the set of all operator families
(3.2) A(w, A) = Aedge(w, A) + diag((1 — 0)Breg(w, A)(1 — 5),0) + C(w, A),
where the summands are defined as follows: We begin with the smoothing part
Cw,\) € Y4 (W,g;w;C x R). The latter space is defined to be the set of all
(3.3) C(w,\) € AC, YW, g;w; R')p o)
for any d € N and asymptotics P and Q as in (2.60), such that

C(0+im,A) € Y UW,g;w; RIN )p o

for every § € R, uniformly in ¢ < § < ¢ for arbitrary ¢ < ¢'. The space
V™2 (W, g;w; CxR') is then defined as the union of all spaces Y ~°>4(W, g; w; Cx
R')p g over all d € N and P, Q. The operator family C(w, ) in (3.2) is assumed
to belong to that space.

Furthermore, by (1.24) (in the version of a non-compact C'* manifold with
boundary) we have the space

(3.4) B (Wieg; v;C x RY).

In (3.2) we assume that Breg(w, ) is an element of (3.4).

The operator family Aecqge(w, A) is defined in terms of summands A (w, M),
similarly as in (2.49). Locally, these operator functions have the form Op, (ax)(w, \)
with ag(y,n,w, \) belonging to the space of edge amplitude functions

(3.5) R*UQ x RE x Cy x RY, g5 w)
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for w = (E,F;J_,Jy;l_,l+) and some type d = dy4, cf. Section 2.1 (recall that
the local amplitude functions a, contain cut-off factors o(r) and &(r) with 6 =1
on supp o, similarly as in (2.11)). This completes the definition of (3.1).

Remark 3.1. A(w,)\) € Y»4(W, g;w;C x R') and
A + i, A) € YFLUW, g; w; ]R:S\l) for any fixed § € R implies A(w, \) €
Yumbd(W, g;w; C x R).
Let us set
(W, g;w;Cx R) = ] y*(W,g;w;C x ).
deN
Let us fix an element R € Asyya(X,g9), R = (Vo,V1,P,Q). Then

VLW, g;w;C x R)g

denotes the subspace of all elements A(w,\) € Y*4(W,g;w;C x R') such that
the smoothing family C(w, \) is as in (3.3), and the local amplitude functions ay,
belong to

R“M‘iG(Q xR! x C x R;g;w)p
for all k. A similar notation will be used for spaces of (w, A)-dependent families
with w varying on I's instead of C.

Remark 3.2. Every A(w,)\) € Y*(W, g;w;C x R) induces a family of continuous
operators (2.64), s > d4 — %, which is holomorphic in w € C.

Theorem 3.3. For every A(w,\) € Y*4(W,g;w;TsxR) g, 0 €R, R € Asyria(X,g),
there exists an H(w,\) € Y4 (W, g;w;C x R) g such that

Hw, )|, e — Alw, A) € Y7UW, g5 w; T x R').

Proof. Comparing (2.50) in the version with parameters (w,\) € I's x R and
the expression (3.2) we see that we may consider the summands separately. The
smoothing summand can obviously be ignored. To treat Breg(w, A) in the middle
we can apply kernel cut-off to the involved local (interior and boundary) amplitude
functions with respect to w € I'y, cf. Corollary 2.9. The first summand can also
be modifed by kernel cut-off that we apply to the amplitude functions, (cf. also
Theorem 2.11) as well as the other amplitude functions coming from the non-
smoothing contributions, cf. also [18] and [3]. O

Proposition 3.4. A € Y4 (W, g;w; CxR!)g and A(0+it,\) € Y H4(W, g; w; 5 x
R g for some fired § € R implies A € Y*~H4(W, g;w;C x R)g.

Proof. The proof follows by applying Remark 2.10 to the various local amplitude
functions which played a role in the proof Theorem 3.3. |

Definition 3.5. 1. Let R € Asy1q(X,g), and let As(W)%, denote the system
of all sequences

(3.6) T :={(pj,mj,L;j)}jez,
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with p; € C, m; € N, such that ncT" := {p; }jen intersects the strip {w :

¢ < Rew < ¢'} in a finite set for every ¢ < ¢, and L; C Y~4(W, g;w)p

is a finite-dimensional subspace of operators of finite rank, for some d € N.
2. Let

(3.7) M (W, g5 w)

for R = (Vo,V1,P,Q) € Asyia(X,g), and T = {(pj,mj,Lj)}jez €
As(W)%, denote the space of all operator functions

(3.8) A(w) = H(w) + C(w)
for arbitrary H(w) € Y*4(W,g;w;C)g and
C(w) € A(C\ T, Y~>UW,g;w)p o)

such that C(w) is meromorphic with poles at p; of multiplicity m; + 1
and Laurent coefficients at (w —pj)*(’““) belonging to L; for all 0 < k <
mj, j € Z,and

X(6 +im)C(6 +i1) € Y™UW, g;w; R, )p o

for every mcT-excision function x(w), and every 6 € R, uniformly in ¢ <
6 < ¢ for every ¢ < ¢.

Let us write M%”% (W, g; w) for the space (3.7) when 7T = 0 (this coincides
with Y*4(W, g;w; C)r). Moreover, set

(3.9) M, (W, g;w) = MES(W,g;w),

where the union is taken over all d € N. We finally write M*(W, g;w) for the
union of the latter spaces over all R € Asyya(X,g), T € As(W)%,.
By definition there is a decomposition as a non-direct sum

(3.10) My (W, g;w) = Mi (W, g;w) + Mz (W, g;w),
cf. analogously, for the case without boundary [15, formula (2.5.2)].
Theorem 3.6. Let A € M*(W,g;v) for
g=0-v,7—(n+v),0), v=(EF;J,J;L,Ly),
and B € M*(W, h;w) for
h=(y,y-v0), w=(EFE;J ,J;L_,L).

Then we have
AB € MFTY (W, g o h;v o w)

forgoh = (y,y— (p+v);0)), vow = (E,F;J_,J;L_,L}), and dag =
max(v + da,dg).
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This theorem can be regarded as an application of Theorem 2.13 to meromor-
phic parameter-dependent families. If both families are holomorphic this is fairly
straightforward. In the general case we can apply the decomposition (3.10) which
leads to the case that one factor is meromorphic and of order —oo with finite rank
Laurent coefficients. The desired composition behaviour also this case can easily
be obtained.

3.2. Ellipticity and meromorphic inverses

Definition 3.7. An element A € MgT(W,g;w) for g = (v,7 — 1, 0) is called
elliptic of order , if for some f € R with 7¢7' N Tz = 0 the family A(S + iT) €
YH(W,g;w; R, ) g is parameter-dependent elliptic in the sense of Definition 2.14.

Remark 3.8. Definition 3.7 is independent of the choice of 3.

In fact, writing A in the form (3.8), the ellipticity of A(8 + i) only depends
on H(B+ir), since C(8+1i7) is of order —oco in 7. Proposition 3.4 then shows that
the principal symbols which determine the ellipticity are independent of 5.

Theorem 3.9. Let A € M%’T(W,g;w) be elliptic. Then there exists a countable
set D C C, such that DN {w € C:c < Rew < '} is finite for every ¢ < ¢, and

WHT(W,E) W I(W, F)
(3.11) Aw): @& = ®
HS(Y,L_) Hs—u(y’ L+)

is invertible for all w € C\ D and for all s > max(p,da) — 5.

Proof. Because of Remark 3.2 and Definition 3.5 the family of operators (3.11)
is holomorphic in U := C \ n¢T. At the same time it is elliptic in the space
YW, g;w) for every w € U. Thus, (3.11) is a holomorphic Fredholm family
in U. Let us write A(w) in the form (3.8). Then, by virtue of the parameter-
dependent ellipticity of H(w) |FB for every 3 € R, there is a C' > 0 such that H(w)

is invertible for |Imw| > C and Rew = § for any fixed 8 € R. Since § is involved
as a parameter that only affects lower order terms and because of the continuity
in g, for every ¢ < ¢’ we can choose a constant C = C(c,¢') such that A(w) is
invertible for all |Imw| > C(c,c¢’) and ¢ < f < ¢’. We are now in a well known
situation of a holomorphic Fredholm family A(w) in an open set U C C which is
invertible in at least one point wy € U; it follows then that A(w) is invertible for
all w € U\ D, except for a countable subset of U that intersects every KU in
a finite set. It remains to note that the points of w¢T" are not accumulation points
of D. The technique is the same as in [22, Lemma 4.3.13]. O

Theorem 3.10. Every elliptic element A € MY, (W, g;w) has an inverse
Ale M;fé?(W,gfl;wfl), d -1 = max(dg — p,0),
for suitable asymptotic types
PecAsyia(X,g7Y) and Q€ As(W)%.
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Proof. We invert A with respect to the multiplication of Theorem 3.6. Let us
first apply Theorem 2.15 to A|Fﬁ € VMW, g;w;T'g)g for any B such that ncT N
L = (. Then there is a parametrix P, € Y #(W,g 1w 1;T3)p, for some
Py € Asyic(X,g71). Theorem 3.3 applied to P; gives us an element Py €
YV H(W,g~ 1 w™1;C)p, such that 790|Fﬂ coincides with P; modulo a family of
order —oo. It follows that P0|F5 is also a parametrix of A|Fﬁ. We now apply

Theorem 3.6 and obtain Pop A € M®(W,g;w)) (cf. the notation of Theorem
2.15). Moreover, we have 7 — P0A|FB € Y °(W,g;;w;'s). From Remark 3.1

we obtain N := 7 — Py A € Y (W, g;w;C)p, = Mp (W, g;w) for some
P € Aspryg(X, g)). It remains to observe that there is an £ € M 5(W, g5 w1)

such that (Z—N)~! = Z — L. Then it follows that A~ = (Z — £)Py which belongs
to the space Mp/o(W,g~;v~") by Theorem 3.6. O
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