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Abstract

Mixed elliptic boundary value problems are characterised by conditions which have a jump along an interface of
codimension 1 on the boundary. We study such problems in weighted edge Sobolev spaces and show the Fredholm
property and the existence of parametrices under additional conditions of trace and potential type on the interface.
Our methods from the calculus of boundary value problems on a manifold with edges will be illustrated by the Zaremba

problem and other mixed problems for the Laplace operator.
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Introduction

By a mixed elliptic problem for an elliptic differential operator A we understand a boundary
value problem on a C°° manifold X with boundary Y of the form

Au=f In intX, Tyu=gy on Yi. (1)

Here Y is subdivided into C'*° submanifolds Y with common boundary Z such that Y, UY_ =
Y and Y, NY_ = Z. The operators T+ are boundary conditions of the form r*B., where B
are differential operators in an open neighbourhood of Y. with smooth coefficients, r*
the operators of restriction to int Y, and the boundary conditions on the plus and minus side
are assumed to satisfy the Shapiro-Lopatinskij condition (up to Z from the respective sides).
The general task is to characterise the solvability of such problems in suitable distribution
spaces, to construct parametrices and to establish asymptotics of solutions near the interface
Z.

This paper is aimed at studying the Zaremba problem for the Laplace operator, i.e., T_
is the Dirichlet and 7'y the Neumann condition. Our approach is completely general and will
show that other mixed elliptic problems can be analysed in a similar way.

We assume that X is compact. Then, if H*(int X) and H*®(int Y1) denote the standard
Sobolev spaces of smoothness s on int X and int Y3, respectively, the Zaremba problem
represents a continuous operator

are

H*2(int X)
A ®
A= |T_| : H*(int X) — H* /2(int Y_) (2)
T, ®

H*3/2(int Y, )

for every real s > 3/2. It is clear that when we ask solutions of the problem (1) with arbitrary
boundary data g+ we cannot expect the existence in H*(int X'). Therefore, we need another
category of spaces which describe the solvability in a more adequate way. These are in the
present paper the so called weighted edge Sobolev spaces. Nevertheless, as we shall see,
also the behaviour of mixed problems in standard Sobolev spaces is a useful information, cf.
Harutjunjan and Schulze [10].

Mixed boundary value problems have a long history, cf. [31]. Methods from singular
integral operators and pseudo-differential analysis have been applied in many specific situa-
tions, see the work of Gohberg and Krupnik [6], Vishik and Eskin [30], [4] and of many other
authors. Mixed elliptic problems with additional interface conditions have been studied in
Rempel and Schulze [18], [19], based on the calculus of [17]. However, in contrast to pseudo-
differential scenarios for boundary value problems with the transmission property, cf. Boutet
de Monvel [2] or [16], the structure of parametrices within a suitable operator algebra with
smooth and complete symbolic structures remained to a large extent obscure. The present
paper gives a transparent description of parametrices by interpreting mixed problems as
operators on a suitable manifold with edges and boundary. What we obtain is that mixed
problems belong to a corresponding edge algebra with a hierarchy

o(A) = (o4 (A),09(A),01(A)) (3)

of principal symbolic components (and also with complete amplitude functions); here oy
indicates the interior, oy the boundary, and o, the edge symbol (os consists of two compo-
nents oy + belonging to Y4). We show in which way (and how many) elliptic extra conditions



along the interface Z have to be posed and how the operators (2) are linked to corresponding
operators in weighted edge Sobolev spaces. In contrast to [10] we avoid here reductions to
the boundary but formulate everything directly in the edge calculus.

Moreover, we characterise those weights such that our mixed problems become Fredholm
in weighted Sobolev spaces. As a corollary of the approach we obtain parametrices within
the edge algebra belonging to o ~!(A).

Acknowledgement: The authors thank T. Krainer and N. Tarkhanov (University of Pots-
dam) for valuable remarks on the manuscript.

1 Mixed problems in edge Sobolev spaces

1.1 Edge Sobolev spaces

In this paper we assume X to be compact; the submanifold Z C Y = dX will be treated as
an edge. Throughout this paper we assume dim Z > 0. By a manifold W with edge (first
without boundary) we understand a quotient space W = W/ ~, where W is a (in our case
compact) C° manifold with boundary 0W, and 0W is a fibre bundle over another smooth
manifold Z with a closed C*° manifold N as fibre. The equivalence relation wy, ~ wqy for the
quotient space means w = ws for wy,ws € W\ OW and mw; = mws for wy,ws € OW, where
m: OW — Z is the canonical projection.

Let us set N2 := (R; x N)/({0} x N) which is a cone with base N. Then an equivalent
definition of a manifold with edge starts from a topological space W with a subspace Z C W
which is the edge such that W \ Z and Z are smooth manifolds, and every z € Z has a
neighbourhood modelled on a wedge N2 x € for some open set £ C R? which corresponds to
a chart on Z, ¢ = dim Z. The associated stretched manifold W is then as before, i.e., locally
near OW modelled on Ry x N x ©, and N x  is a trivialisation of the abovementioned N-
bundle over Z. Note that spaces of the kind W are not necessarily manifolds in the standard
sense; nevertheless, for convenience we use this terminology.

For our constructions we need the variant that the base IV of the model cone is not closed
but a compact smooth manifold with boundary. We then talk about a manifold with edge
and boundary.

If X is a smooth compact manifold with boundary we first consider the double 2X (ob-
tained by gluing together two copies X and X_ of X =: X along the common boundary Y).
Then W := 2X can be interpreted as a manifold with edge Z, and there is the corresponding
stretched manifold W such that W = W/ ~.

The base N of the model cone for W near Z in this case is the unit circle S in the fibre
=~ R2 of the (trivial) normal bundle of Z in 2X. For the associated stretched manifold W we
have OW = Z x S'. Moreover, W is the union of two subspaces W1 which are locally near
W NOW modelled on Ry x I for the half-circles I = {0 < ¢ <7}, I_:={r <¢ <27}

Summing up, X can be interpreted as a manifold with edge Z and boundary, and the
associated stretched manifold X is equal to W, . Let us set

Xoing 1= XNOW,  Xpgp 1= X'\ Xing,

where Xging = Z x 1 for I := I and X,¢y = X'\ Z (diffeomorphic in the sense of C* manifolds
with boundary).

In order to define weighted cone and edge Sobolev spaces we return for a moment to the
general case. Let N be closed and compact, and let N := R, x N be the (open stretched)
cone with base N. Let Lffl(N :R') denote the space of all classical parameter-dependent
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pseudo-differential operators A()\) of order 4 € R on N, with parameter A € R', that is,
the local amplitude functions a(z,£,A) formally contain (£,A) as an (m + [)-dimensional
covariable, m := dim N, and L=®°(N;R') = S(R', L=°°(N)), where L~>°(N) is the space
of all smoothing operators on N (all manifolds in question are assumed to be equipped
with a Riemannian metric; then we have L=%°(N) = C*°(N x N) with its natural Fréchet
topology). We employ the well known fact that Lé‘l(N ;R for every 4 € R contains a
parameter-dependent elliptic family R*(A) which induces isomorphisms H*(N) — H*7#(N)
for all s € R and A € R.

Let M be the Mellin transform on Ry, ie., Mu(w) = [;°r* tu(r)dr, first for u €
C°(Ry) (which yields holomorphic functions in C) and then extended to more general
function and distribution spaces (also vector-valued ones). Then the space H®*7(N”) for
s,y € RN := Ry x N, is defined as the completion of C§°(R;, C®(N)) with respect to

the norm
1/2

{@ri)? / 1R (1 w) (M) (w) [ de}

r
WTH_,Y

with the space L?(N) = HY(N) in its standard norm and
I'g:={w e C:Rew = p}.

In this paper a cut-off function w(r) on the half-axis means any real valued w € C§°(R)
which is equal to 1 near r = 0. Let us set

KV (N = {wu+ (1 —w)v:u € H(N?), ve HS (N}

Here H .(N") denotes the subspace of all v = 9|yn, 0 € HE (R x N), such that for every
coordinate neighbourhood U on N, every diffeomorphism x : U — U to an open set Uc S,
x(7) = 7, and every ¢ € C§°(U) the function p(x~1(%))(1 —w(r))v(r, x 1 (£)) belongs to the
space H*(R™*1) (where (r,Z) has the meaning of polar coordinates in R™*1 \ {0}).

The spaces K*7(N") are independent of the specific choice of w. They are Hilbert spaces

with natural scalar products which we choose for s =y = 0 in such a way that
KON = HOONM) = r= 2 L2(R; x N)

with L2(R, x N) referring to drdz.
For the case N = 2M for a compact C'°° manifold M with smooth boundary we set

K (M) = {ulug anyn +u € K2V (NT)} (4)

endowed with the quotient topology corresponding to the identification with 37 ((2M)")/
Ky (M”). The manifold 2M is obtained by gluing together two copies My of M with
M being identified with M, and K7 (M") denotes the set of all elements of K*7((2M)")
supported in Ry x M_ which is a closed subspace. We endow the space K*7(M") with a
group of isomorphisms

kxS (MM) = K57(M1), (5)

defined by (kpu)(r,z) := )\mTJrlu()\r, x) for A € Ry, m = dim M, which is strongly continuous
for every s,y € R.
Let us now introduce the notion of ‘abstract’ edge Sobolev spaces

Wi, B), seR, (6)
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with a Hilbert space E which is endowed with a strongly continuous group {xx}ier, of
isomorphisms k) : E — E, such that kyky = rkyy for all A\ € Ry (in such a case we
simply say that the space E is endowed with a group action). The space (6) is defined as the
completion of S(RY, E) (the Schwartz space of E-valued functions) with respect to the norm

o1 1/2
Jullwe e,y = { [ () bamlian}

here @ is the Fourier transform of u, and () = (14|n|?)'/2. (Instead of (n) we can equivalently
take any function n — [n], smooth and strictly positive, satisfying [n] = |n| for |n| > ¢ for
some constant ¢ > 0). We will apply this to F = K*7(M") with the group (5) as well as to
some other cases, for instance, E = H*(RP) with (kyu)(z) = W/ 2u(Az), A € Ry, u € H*(RP).
In the latter case we have the identity

WA (RS, P (RY)) = HP (RI*?)
for every s € R. Similarly, if £ = H*(R}) with (kyu)(t) = A%u()\t), X € Ry, we have
H*(R}) = W (R HP(Ry)) (7)
for H*(RY) = {ulrr : v € H¥(R")}, R} = {z € R" : z, > 0}.
Concerning the space W9 (R?, K57 (M”")) =: WS7(M”" x R?), the property
HE o ((nt M)N x RY) C WY (M™ x RY) € HE . ((int M)" x RY)

comp

allows us to define corresponding weighted edge Sobolev spaces
WHI(W), s,y €R, (8)

globally on a stretched manifold W associated with a compact manifold W with edge Z as
the subspace of all elements of H$ (int W) which locally near 9W belong to W*7(M”" x R?),
g = dim Z; here R? belongs to a chart on Z and Ry x M x RY is the local representation
of a corresponding subset of a collar neighbourhood of OW. (It would be more consistent to
write W*7 (int W) rather than W97 (W) but we hope our notation will not cause confusion.)
In the global definitions of spaces on W we refer to local representations of W by (stretched)
wedges Ry x M x RY where the transition maps respect a chosen collar neighbourhood of 9M
in the sense that the normal variable remains unchanged and where also the axial variable
r € R, remains preserved. The spaces (8) are Hilbert spaces with natural scalar products,
chosen for s = 4 = 0 in such a way that W0 (W) = r~ 2 L2(W), m = dim M.
Applying this to W = 2X, cf. the notation of Section 1.1, we obtain the spaces

WS (X) 1= {u\ ‘ue WM(W)} 9)

int Xreg
endowed with the quotient topology from the identification with W*7(W) /W7 (X_); here
Wy T (X_) denotes the set of all elements of W*7 (W) supported in W \ int X;eg.

Recall that X is interpreted as a manifold with edge Z and boundary, and X as its
stretched space. The parts YL of the boundary of X as compact smooth manifolds with
boundary Z are themselves manifolds with edge Z (they are equal to their own stretched
spaces), and they are contained as subsets in X. In particular, we then have the spaces
W7 (YL), s,v € R Let us consider the restriction operators

1% 1 O (Xpeg) — C5°(int Ya). (10)

For every s,v € R we have C§°(X;eg) C W (X) and C§°(int Yy ) C W7 (Y4).
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Remark 1.1 The operator (10) extends to a continuous operator
LW (Kyeg) = W 3775 (Vy)

for every s,y € R, s > %

1.2 Elements of the edge calculus

By edge calculus we understand a specific pseudo-differential algebra on a (stretched) mani-
fold W with edge, cf. Sections 4.1 and 4.2 below. We recall some basic structures here which
we need in our approach to mixed problems.
Parallel to the concept of abstract Sobolev spaces we have operator-valued symbols of
the class
SM(U xR%; E,E), peR, (11)

U C R? open, where E and E are Hilbert spaces endowed with group actions {f)}xcr, and

{Kx}arer, » respectively. An a(y,n) € C®(U x R, L(E, E)) is said to belong to (11) if

sup <n>7u+\ﬁ|
yeK,neRY

~—1 @
‘K(W{Dy Dga(ya )} ) HL(E,E) < 00

for every K € U, and multi-indices « € NP, # € N?. Denoting by SW(U x (R?\ {0}); E, E)
the space of all a(,)(y,n) € C°(U x (R?\ {0}), L(E, E)) satisfying

ag (Y, An) = MExagy (y,n)ey " for all X € Ry, (y,n) € U x (R?\ {0}),

we have x(7)SW (U x (R4 \ {0}); E,E) C S*(U x RY; E, E) for every excision function x
(i.e., x € C*(RY), ( ) = 0 for |n| < ¢y, x(n) =1 for |n| > ¢ for certain 0 < ¢y < ¢1).
An element a(y,n) of (11) is said to be classical, if there are homogeneous components
A (y,m) € SUI(U x (RI\{0}); E, E), j € N, such that a(y,n) —x(n) 31 agu—j) ¥, n) €
SH=WNH)(U x RY; E, E) for all N € N.
Let Sf (U x Rq, E E) denote the space of all classical symbols; if a consideration is valid
both for the classical or non-classical case we write S’ étc ) (UxRY; B, E ). The spaces of symbols

with constant coefficients, i.e., a = a(n), will be denoted by SELCI) (R?; E, E)

If 2 C R? is some open set and U = 2 x Q we also write (y,y’) € Q x Q rather than
y € U. Analogously to standard Sobolev spaces, for every open 2 C R? we have the
spaces Weomp (2, B), Wi (2, E), where W7, (2, E) can be identified with the space of all
u € W*(R?, E) of compact support in 2, while W (€, E) is the subspace of all u € D'((2, E)
(= L(C§°(Q), E)) such that pu € Wy, (Q, E) for every ¢ € C;°(£2). The space W, (22, E)

comp
is Fréchet, while W(fomp(Q, E) is an inductive limit of Fréchet spaces.

Let Op,(a)u(y) = [[ =¥ a(y,y', n)u(y')dy'dn, dn = (2r)~9dn, aly,y',n) € S*(Q x
QxR?;EE). We will need the fact that Op(a) : C§°(Q, E) — C®(, E) (Op(a) := Op,(a))
extends to continuous operators

Op(a) : Weomp(Q, E) — W, (9, E) (12)

loc

for every s € R. This is an immediate analogue of a corresponding continuity of scalar
pseudo-differential operators. If the amplitude function has constant coefficients we have

Op(a) : W*(R!, E) — W H(RY, E) (13)
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for every s € R.

If E is a Fréchet space, written as a projective limit of Hilbert spaces E7, j € N, with
continuous embeddings E/T! < EJ for all j, we say that E is endowed with a group action
{Fr}rer,, if there is given a group action on E® which restricts to group actions on E7 for
all j.

Remark 1.2 Spaces of symbols as well as abstract Sobolev spaces can be formulated in an
analogous manner for Fréchet spaces E and E with group action, cf. [25].

An example is the space SZ(M") := @keN(rflek”“*(Hk)_l(M/\), e > 0, for a com-
pact C'*° manifold M (with or without boundary), where {r)} \cr, is induced by (k\u)(r,z) =

)\mTJrlu()\r, x), m = dim M. In particular, for m = 0 we obtain the spaces
SI(Ry), yER, >0. (14)

As noted before mixed boundary value problems will be interpreted as elements of an edge
algebra of boundary value problems on the stretched manifold with edge Z and boundary.
The edge algebra in the present case consists of 4 x 4 block matrix operators which define
continuous operators

WS (X) W=~ (X)
7 7
st%fu_,'yf%ﬂ/_ (Y,) WS*%*IL—,’Y*%*N— (Y,)
A= (Aij)ij=1,..4: @ - ® (15)
WITETRT (Y)W T (1)
57 57
H3(Z,C%) H*M(Z,C)

for certain pu,v4, putr € R and dimensions d,e. We assume this form only for simplicity; all
spaces may also be considered in the variant of distributional sections in vector bundles on the
respective spaces, e.g., trivial bundles of some dimensions, and the operators referring to Z
may also have other orders in the sense that instead of the spaces H*(Z,C%) (H*™*(Z,C*))
we have 69]‘-]:1 H% (Z,C%) (EB,?ZI H*k(Z,Ce)), or, instead of WS*%*“+’7*%*“+(Y+) the

1 1 . . .
spaces @le WOT2 TR YT TR (Y C 1), for certain dimensions my , etc. Such general-
isations are straightforward (some variants of that kind will occur below).

Example 1.3 Let A = )., o, aa(2)Dg

& be an arbitrary differential operator with coef-

ficients aq(z) € C®(X), and let Ty = rTBy be vectors of boundary operators where
By = t(Bi,l)lzl,...,L are differential operators in an open neighbourhood of Y1 of order py .
Then the corresponding mized boundary value problem (1) induces continuous operators

WS~ H(X)
A @
A= |T_ | W (X) » @F, We—a 13 -1 (Y_)
T, @

@lL:l W= 3 =B 1Y = 5 —He 1 (Yy)

for all s > max{py; + 1} and all y € R,



Other examples are various kinds of trace, potential and Green operators.
Let us fix weights 7,0 € R and consider an operator function

gz €l () C™W xR, L(L(I"),S2(1")). (16)

e>0 s>7%

In this context we denote variables and covariables by (z,() where z plays the role of
local coordinates on Z, and ¢ = n — 2 (= dimZ). We call (16) a Green symbol of order
p € R and type 0 if there is an € > 0 such that g(z, () induces elements

9(z,¢) € SH(U x R K*7(I), S (IM), g*(2,¢) € SH(U x R K °(1),8.7(IM)  (17)

for all s > —%. Here ‘#’ means the (z,()-wise formal adjoint with respect to the £%°(I")-
scalar product. The symbol spaces in (17) refer to the abovementioned group actions in the
corresponding spaces, cf. also Remark 1.2.

According to the 4 x 4 block matrix structure of our edge operators we have similar
symbols g¢;;(z,¢) for all 4,5 = 1,2,3,4, where orders ;1 and weights y,d will depend on i, j
(let us set, for simplicity d = e = 1). Set

By = KS(IM), By = K (Ry), By = K*Y(R_), Eq = C,
Fi=8(I"),F, =8 (R;),F3 =S (R_), Fy =C.

For j =1 the conditions are

gk1(2,Q) € Sglkl(U x RY; Ey, Fy), k = 2,3,4, (18)
for certain ¢ > 0 and all s > —%, and similar conditions for the formal adjoints (now
without any restriction on s). Similarly as (5) the group action on S2(R.) is given by
(kau)(zp—1) = )\%u()\xn_l) for A € Ry, while on C we take the identity map for all A € R,.
Symbols of the form (18) are also said to be of type 0.

For the entries in general we require g;;(z,() € SS” (U x RY; Ej, F;) for a certain € > 0
and all s (where s > —% for j = 1), and analogous conditions for the formal adjoints.

The elements g;; for ¢ = j = 2,3 have the interpretation of Green symbols in the calculus
of boundary value problems on Y3 without the transmission property; the elements g;; for
i > j (i < j) have the meaning of various kinds of trace (potential) symbols, while g44 is
simply a classical scalar pseudo-differential symbol.

Concerning the symbols g1 (z, () we also consider elements of arbitrary type d € N defined
as operator functions of the form gx(z,({) = Z?:o gr1;(7, g)a(; for arbitrary trace symbols
grk1,1(2,¢) of order i and type 0 (94 is the differentiation in the angular variable ¢ € I).
We then obtain classical operator-valued symbols

gr1(2,C) € S (U x RIK*(I7), F)

for alls>d—%, k=1,...,4.

All these (operator-valued) amplitude functions give rise to associated pseudo-differential
operators, first with respect to local coordinates on Z and then globally on X near Xging
by a straightforward construction with local expressions and partitions of unity, cf. also
Section 4.2 below. Modulo global smoothing operators in the edge algebra of boundary
value problems we thus have defined the Green, trace (of type d € N) and potential parts of
operators (15).



The entries of the 4 x 4 matrices of Green symbols

g(z,C) = (gij(zvg))i,jzl,...,él (19)

have orders p;; and refer to weights -;; and d;;. From (15) we see that we have to set

M1l = H41 = K14 = 44 = M,
1 1
P12 = faz = P =5 = Vo 13T 3 T 5 Ve

fi22 = fi— —V_, [32 = f4 — Vo, o3 = - — Vi, [i33 = fiy — V4, (20)
1 1
H21 = H24 = §+M—7 H31 = [34 = §+:U*+7
1 1 )
Vi1 =, Y=Y TG TV W=V 5 TV for 1=1,2,3, (21)
1 1 )
Oy =v—p Oy =7—5—p-, G=7-g5—p for =123 (22)
Let
ar(2,C) = (gijn(2:€))ij=1,..4 (23)

denote the matrix of homogeneous principal components of g;; € Sglij (U xR Ej, F).

1.3 The Zaremba problem as an edge problem

Let us first observe that the operator A which represents the Zaremba problem, extends from
C§°-functions on Xee to a continuous operator

Ws—2,7—2(X)

S2)

1 1

A WH(X) = W* 27 2 (int Y. ) (24)

« D

W5 272 (int Yy )

for all s,7 € R, s > 3/2. Instead of A we will also write A(y) if we consider different weights
v. We want to express the principal symbolic structure of A from the edge calculus. The
principal symbol consists of a triple (3). Here o,(A) = —[¢|? is the standard homogeneous
principal symbol of the Laplace operator, oy(A) = (05,—(A), 05,+(A)) is the pair of boundary
symbols on the F sides of Y, and o, (A) is the edge symbol.

Choose a collar neighbourhood = Y x [0,1) of Y in X with the variables z = (y,zy,)
and covariables & = (n,£,). Moreover, fix a tubular neighbourhood = Z x (—1,1) of Z in
Y with the variables y = (z,z,_1) and covariables ((,&,-1). We also use y and z as local
coordinates in corresponding open sets U C R,’;fl and Q C R 2 respectively.

The boundary symbols of (Ti ) over Y+ have the form

H 2 (Ry)
. (ﬁ) W) S e

for n # 0, where oy(A)(n) = —|n|> + % and oy _(T-) =1", 094+ (T4) = rﬁr%
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In the following we use the fact that the Laplacian A in R” can be reformulated (in
suitable local coordinates near the boundary Y or the interface Z) in the form

9 9* 9*
=—+A Li=—+——+A L
02 Toy i 0z2 * ox2 | +oz+ L

A

where Ay and Ay are the Laplacians on Y and Z, respectively, belonging to the metrics
induced by the Euclidean metric and certain first order operators L; and Ls in x, and
(Tp—1,%n), respectively, cf. [5]. Here x,, is a normal variable to ¥ in R and z,_; a normal
variable to Z in Y.

To express the principal edge symbol we introduce polar coordinates (r, ) € Ry x S* in
the (£n—1,%,)-plane normal to Z and write the Laplacian in R} 2 x RZ | in the form

2
A= r‘%(—r(%)? + 887)2 + 1Az + Ly).
Then
ICs—Z,'y—Z(I/\)
an(A)(C) s
on(A)(Q) = | oa(T-) | : KN = K27 2(R.) (25)
O'/\(T+) s @3
K272 (Ry)
for ¢ # 0 is given by
onA)Q) =r 2((—r 22+ T e (26)
" or’ 1 0> ’
on(T-)u - = ul|g—g, on(Ty)u:= r_l%u|¢_7r. (27)

The notation Ry for the components of 91", I = [0,2x], is motivated by the identification
between I" = Ry x I and Ki \ {0} for Ki =1{% = (xn_1,7n) € R%, 1, > 0}, where
OR. =R_ UR, for Ry = {x,_1 € R,zp_y S0}

on(A) is a family of boundary value problems on the infinite stretched cone I". For every
fixed { # 0 it has a conormal symbol from the cone algebra of boundary value problems
(which is independent of (), namely,

ormon(A) H* 2(int I)
omon(A)(w) = | opon(T-) | (w) : H¥(int I) — ® (28)
omon(Ty) CeC

where 00 (A)(w) = w? + 5%22, omon(T-)u = ulg=o, orpron (T4 )u = (%u|¢:7r.
Let us observe the homogeneities in o(A). For the interior symbol we have o, (A)(A) =
Moy (A)(€), € # 0. Concerning the pair of boundary symbols the homogeneities are

oo, (A)(An) = Ndiag (rx, \3/?)on,_ (A) (n)ky L,
0,4 (A) (M) = N2diag (x, A~2)o 1 (A) ()5
for all A € Ry, 17 # 0. For the edge symbol we have
oA(A)(AC) = Adiag (k5 A 2x, A2k )on (A) () (15) ! (29)
for all A\ € R, ¢ #0.
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Theorem 1.4 The operators (25) for ¢ # 0 form a family of Fredholm operators for all
s>3/2and ally ¢ Z+ 3.
The dimensions of kernels and cokernels are independent of s and C.

Proof. The operators (25) as elements in the cone algebra on I have the following principal
symbolic components

oyon(A), 08,501 (A), 0004 (A), Oexiton (A)(C), (30)

and we verify their ellipticities which entail the Fredholm property of (25) for every ¢ # 0.
By virtue of (29) the dimensions of kernel and cokernel are independent of . Moreover,
the independence of these dimensions of s is a general property of elliptic operators in the
cone algebra. We identify I with R% \ {0} > (z,—1,z,) where the Dirichlet condition
is given on R_ = {z,_1 < 0}, the Neumann condition on Ry = {z,_; > 0}. We have
opon(A)(€n_1,&) = —|€n—1]? — |€n|* which is obviously elliptic. Moreover,

H*72(Ry)

A s
sazon(An 1) = (7Y o) R 5 o (1)
is given by
82
Uaﬂza/\(A)(xnflagnfl) = _|€nfl|2 + 022 on  Tp-1 § 0,
09, A1) (Tn-1,&n—1)u(zn) = u(0) for z,_1 <0,
0
094+ 0nNTH) (Tp-1,&n—1)u(zy) = %u(()) for z,_1>0.

The operators (31) are isomorphisms for &,_1 # 0 on x,—1 < 0 and x,—1 > 0, respectively,
even up to z,,—1 = 0 from the respective sides. The conormal symbol, given by (28) will be
discussed below.

The exit symbolic structure consists of two components, both for the boundary symbols
on z,_1 < 0 and x,_1 > 0 as well as for the interior symbol. In the interior we have the pair

Uexito'/\(A)(CuéLnflagn) = (_|C|2 - |€nfl|2 - |§n|27 _|€nfl|2 - |§n|2)7

where the first component is the complete symbol, non-vanishing for all (£,_1,§,) € R?
(including 0) (since ¢ # 0), and the second component, the homogeneous principal part of
the first one, is # 0 for (£, 1,&,) € R? \ {0}. Moreover, on the minus and plus sides of the
boundary we have the pairs

/a T T A Ry N 8
Uex‘taA(T¢>(<’€”1) << PRI NVES \oozonTy) ) )

H2(Ry)
where the first components are bijective as operators H*(R; ) — ® forall{, 1 € R
C
(because of ¢ # 0) while the second component as the k)-homogeneous principal part of the
first component is bijective for all £, 1 € R\ {0}.
In this way we have verified the exit ellipticity of the (-dependent Zaremba problem
o (A)(¢) in the infinite half-plane R? \ {0} (concerning the general theory of boundary value
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problems on manifolds with conical exits to infinity we also refer to [12, Chapter 3]). For
the ellipticity in the cone algebra it remains to check the bijectivity of the operators (28)
forw € C, Rew &€ Z + % What we know from the ellipticity of the original problem, i.e.,
ellipticity of A together with the Shapiro-Lopatinskij ellipticity of T% is that the operators
(28) form a parameter-dependent elliptic family of boundary value problems on the interval
I with the parameter Imw. At the same time this family is holomorphic in w € C, and we
know the bijectivity of (28) for large | Im w|. Generalities on holomorphic Fredholm families
tell us that there is a discrete set D C C such that (28) is bijective for all w € C\ D.
In the present case we have an explicit information, namely,

1
D:{wEC:Rew€Z+§, Imw = 0}.

In fact, first note that for w = 0 the problem oj;04(A)(0)u = 0 has only the trivial
solution v = 0. For w = a + ib # 0 a simple argument gives us

ker(opron(A))(w) = {c1e77e? 4 e : ¢, ¢y € C}. (32)
Then from the boundary conditions u|¢—p = 0 and g_g|¢:7r = 0 we have

c1+c2=0,

cre "™ (cos am + i sinam) — e’ (cos am — isinar) = 0.
Assuming ¢; # 0 (otherwise u = 0) we obtain (e7" + e*™) cos am + i(e™"™ — ™) sinan = 0.
Since e~ 4 €™ £ 0 for all b € R it follows that e~ — ™ = 0 and cosar =0, i.e., b =0

anda:k—i—%,kEZ. O
Remark 1.5 The non-bijectivity points of opron(A) are simple.

In fact, we have ker (a0 (A))(k + 3) = {csin(k + 1)¢ : ¢ € C}, and the correspond-
ing root functions (in the terminology of [9]) at the point k + },k € Z, are csin(we).
It is now easy to show that k + %,k € 7, is a simple zero for the holomorphic function

opon(A)(w)sin(we) = (0 0 wcos(wr) ).

2 A relation to standard Sobolev spaces

2.1 Spaces on the boundary

We now construct a relation between the spaces H*(int Y1) and the weighted Sobolev spaces
W?#3(Yy), where Y, is regarded as a manifold with edge Z.

Let us first consider the local situation with R*~? x R, in place of Y. In this case we
have H*(R" 2 x R, ) = W*(R* 2, H*(R)) for all s € R, cf. the relation (7).

Let H§(R;) denote the subspace of all u € H*(R) with suppu C R;. Then for every
s > —% we have a canonical isomorphism H§(Ry) = K5(Ry ), cf. [24, Theorem 2.1.39] or
[12, Section 2.1.2].

K5 (Ry.)
For s ¢ N+ % we have isomorphisms @ — H*(Ry) for o :=[s — %] + 1.
CO'

As usual, [s] for some s € R denotes the integer part of s, i.e., the maximal integer < s.

Let us also write s = [s] + {s} for the corresponding 0 < {s} < 1.

12



For purposes below we choose these isomorphisms parameter-dependent with parameters
(¢, A) € RP=2+ | Get

o—1
9(GN)e =[G A2 Y e[ Man—1) w([C Alzn1), (33)
j=0
c=(c1,...,cq), for a cut-off function w(t) on R,. Moreover, let
11 37u(0)
— j-y = W) _
b Au: {[C’ Al 2j! oz | }j:(),...,a—l
Then we have

Observe that the functions g({,A) : C7 — H*(Ry) for s € R and b((,\) : H(Ry) — C” for
selR s> %, represent operator-valued symbols

9(¢,A) € Sy(R**75,C7, H¥(Ry.)) and b(¢, ) € SQ(R™ > HY(R,),C7),

respectively (the group action in C” is trivial, i.e., the identity for all A € Ry ).
The composition g(¢, A)b(¢,A) : H*(Ry) — H*(Ry) is then a family of continuous pro-
jections to img((,A) C C°(R4). If e : K9(Ry) — H*(R4) denotes the canonical em-

K5 (Ry)
bedding, the operator (¢ g¢((,\)) : @ — H*(R,;) is an isomorphism with inverse
CO'
1- (gb)(C7 >‘) n—2+1 1 1
< b(C)A) for every (¢,\) € R ,8>5,8¢5+N

In the following global constructions for a manifold M with boundary we choose a collar
neighbourhood of the boundary with a fixed global normal coordinate ¢ € [0, 1).

Let us set for a moment M = Y, which is a smooth compact manifold with boundary
Z, and fix a system of charts x; : U; — E?_ﬁl, j=1,...,L, x; : U - R 4§ =
L+1,...,N, with coordinate neighbourhoods U; on M, where we assume that U; N Z # @
for1 <j<LandU;NZ =@ for L+1 < 35 < N. The charts x; for 1 < 5 < L
can (and will) be chosen in such a way that the restrictions y; := Xj|U]< to U :==U;NZ
form an atlas x; : Uj — R"2 on Z. In addition the transition maps X; © (x;) ! will
assumed to be independent of ¢ (the normal coordinate to the boundary Z) for 0 < ¢ < %,
J.k =1,..., L. Choose functions ¢;,1; € Cg°(U;) for 1 < j < L such that 25:1 p; =1in
a neighbourhood of Z and 1; = 1 on supp ;. Then the functions ¢ := ¢;|z € C§°(U}),
1 < j < L, form a partition of unity on Z subordinate to the covering {U7,...,U;} of Z,
and 9} :=1;|z € C§°(Uj) are equal to 1 on supp ¢} for all 1 < j < L.

Let us form the parameter-dependent pseudo-differential operators

L
GO =3 i) Op. (9) (VW) 2 H(Z,C7) — HP(int M),
j=1

L
B(A) == 0i(x}): " Op,(b)(A\)¢p; : HE (int M) — H*(Z,C).
j=1

G(A) is a family of potential operators, B(A) a family of trace operators (of type o) in the
algebra of boundary value problems on M with the transmission property at the boundary
Z, and G(A\)B(\) is a Green operator in that algebra (of type o).
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Let E : W**(M) — H?*(int M) denote the canonical embedding. We then have the
following result:

Theorem 2.1 There is a constant C > 0 such that the operator
WS,S(M)
AN = (E G(\)): @ — H*(int M)
Hs(Z,C”)
is an isomorphism for |\| > C for every s > %, s N+ %

Proof. Let us form the operators

Ws,s(M)
_ (1= GBI | g
B(A)._( By ).H( tM)%Hs(gi(Cg). (35)

Then, according to the rules on operators with operator-valued symbols the composition
A(X)B(A) has locally near Z a (parameter-dependent) symbol of the form 1+¢(z,(, \) where
¢(z,¢,A) is a Green symbol of order —1. A similar observation is true of the composition
B(A)A(M) with respect to their operator-valued symbols as (z,(, \)-depending families of
K#5(Ry) K25 (Ry)
maps & — @ . By Leibniz inverting 1 + ¢(z,{, \) we obtain symbols d(z,{, \)
c Cc”
of order —1 such that (1 + ¢(z,{,A))#(1 + d(z,{,A)) = 1 modulo a symbol of order —oo
in (¢,A\) (here # denotes the Leibniz multiplication of symbols in (z,{)). On the level of
operators we find an operator family P(X) such that A(A)P(A) = 1 modulo a family of
smoothing operators which is a Schwartz function in A. This yields that A()\) has a right
inverse for large |\|. In a similar manner we can proceed for B(A).A(\), now in terms of the
edge algebra on M (regarded as a manifold with edge Z, cf. [25]). Thus, A(\) also has a left
inverse for large || and hence A(A) is invertible for |A\| > C for a C sufficiently large. O

2.2 Edge spaces in the stretched domain

In order to reinterpret the operator (2) in edge Sobolev spaces we also have to establish
corresponding relations between H?(int X') and W?*?#(X). They are analogues to a result of
[3] for a closed compact C°° manifold M with an embedded submanifold Z of codimension
2, where Z has a trivial normal bundle in M.

On M and Z we fix Riemannian metrics and assume that the metric on Z is induced by
the one on M. We interpret M as a manifold W with edge Z and then have the weighted
edge Sobolev spaces W*7(W) on the corresponding stretched manifold W, cf. the notation
in Sections 1.1 and 1.2. The proof of the following result is formally analogous to that of
Theorem 2.1:

Theorem 2.2 For every s € R, s > 1, s € N, there exists a family of isomorphisms

YW (W)
(E KO): @&  — HM) (36)
HS (Z, (CN(S) )

for N(s) =Y pene 1 forall \e R,
la|<s—1
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1—-K\T(X)

Let ( (N
is analogous to that of B(A) in the formula (35)).

As noted before we need an analogue of such a result for X in place of W, where the base
of the model cone is equal to I = I, instead S'. This requires a corresponding modification
of arguments of [3] for the case of a manifold with boundary. The interval I corresponds to
the angular interval 0 < ¢ < 7 in polar coordinates (r, ¢) in the normal plane R? transversal
to Z. Let us first locally model the manifold Z by R? (for ¢ = n — 2).

Let & = (2, 1,7,) be the coordinates in R?, and consider the family of trace operators

) denote the family of operators inverse to (36) (the meaning of T'(\)

(¢ Nu = [ AT Dgu(0), (¢ N S(R?) — €, a € N,

depending on the parameters (¢,)\) € RIT!. We can apply t*(¢, ) also to u € H*(R%) for
s>1+]al, B2 = {7 € R? : 2, > 0}, and we then obtain a symbol

t%(¢, A) € SY(RTH HP (RY), €).

The group action in H*(RZ%) is defined by (k\u)(Z) = Mu(AZ), A € Ry, and on C by the
identity for all A (as always when the respective space is of finite dimension).

Moreover, choose a cut-off function w(z) € C§° (Ei) which is equal to 1 in a neighbour-
hood of & = 0. Form the potential operators k%(¢, A)c := [¢, A} ([¢, AJ&)“w([¢, A]Z)c for any
a € N?, acting on ¢ € C. Then it follows that

k*(C,A) € Sa(RT C H* (RS))
for arbitrary s € R. For every a € N> we then have
(¢, AEY(¢A) = ide, (37)
(¢, ) € RIHL Let us set HF(R2) := {u € H*(R2) : D§u(0) =0 forall |a| <s—1} for
s > 1. In a similar manner we define the space H§(R?).
In Section 1.1 we have defined the weighted spaces K%7(N”) for any compact smooth

manifold N with or without boundary. We apply this to N = S' or N = I (as a subinterval
of S') and obtain the spaces

KSY((SYN) and  K57(IN), (38)

respectively. Identifying (S')" with R?* \ {0} and I with R% \ {0} via polar coordinates
instead of (38) we also write

YR\ {0}) and (B2 \ {0}),
respectively.
Proposition 2.3 For every s > 0, s € N we have canonical isomorphisms
K39 (RE\ {0}) = H3(RY), K°(R*\ {0}) = H§(R?).

This has the consequence that W*(R?, K% (R% \ {0})) = W*(R?, H§(R?)) and a similar
relation for the spaces for R? instead of Ri. Note that

WH(R?, H§(R2)) = {u(z,%) € H*(RI?) : D¢u(2,0) =0 forall |af <s—1}.  (39)
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Let us form the vectors of symbols
HGA) = 1(t(G ) ¢ o] <5 —1) € SHRT B (RE),CN)),
E(GA) = (K (0, ) : o] <s—1) € SYRT;CVE), H(RY)),

where N(s) is given in Theorem 2.2.

From (37) it follows that (¢, \)k(¢, A) = idews) for all (¢, A) € RIH while 1—k(¢, \)¢(¢, M) :
H*(R%) — H*(RZ%) is a family of continuous projections to H§(R%). We now pass to
parameter-dependent operators

T(X\) := Op,(t)(N) : )/VS(RQ,HS(]R2 )) — H°(R?,CNG))
K(\) = Op,(k)(\) : H*(R?,CV)) — W (RY, H¥ (RY)).
) =

?

The continuities are a special case of (13) where we use Ws(Rq ck
any k. Observe that W*(RY, H*(R%)) = H*(R? ) for g =n—2, R (z
cf. similarly, the relations (7).

Proposition 2.4 Let E : W¥(R?, H§(R%)) — W*(R?, H*(R%)) be the canonical embedding.
Then

H*(RY,CF) for
z) e R" : z,, > 0},

W*(R?, H§ (RY))
(E K(\): @ — W*(RY, H*(R%))
H*(R?, CN(s))

is an isomorphism for every A € R\ and has the inverse '(1 — K(NT'(\) T(N\)).

Proof. If a(¢,\) € SH(RI; E,E) is a symbol which is invertible for all (¢,\) € R¢H

such that a=((,\) € S‘”(R‘Hl;ﬁ, E), then the family of pseudo-differential operators

Op(a)(A) : W (R4, E) — WS*“(R‘I,E) is invertible for all A € R', and we have Op(a)~1()\) =
Op(a~')(A). This holds for all s € R.

H(R2)
We apply this to u = 0 for the case a(¢,A) := (e k((,\): @& — H*(RL) wheree:
CN(s)
H§(R%) — H*(R%) is the canonical embedding, and a (¢, A) = *(1—k({, A)E(C,A) - E(CN)).
|

Theorem 2.5 For every s > 1, s € N, there exists a family of isomorphisms

WS,S(X)
(E K(\): ) — H*(int X)
HS(Z’ (CN(S))

for all \ER, N(s) = e 1.

|a<s—1
Remark 2.6 By virtue of a global version of (39) on X the space W*%5(X) for s > 0,
s—1¢ N can be identified with the subspace H§(X) of all w € H*(int X) such that Bu|z =0
for every differential operator B of order < s — 1.

Then, if A: H(int X) — H* ™ (int X) is a differential operator of order m with smooth
coefficients, A also induces (by restriction) a continuous map

Ay : Hi(int X) — HE~™(int X)

fors >m. Let (E; K,) denote the operator of Theorem 2.5 for any fired s € R and A € R,
and denote by *(P; Ts) its inverse. Then we have the identification Ay = Ps_,, AEs, where
E,: Hj(int X) — H*(int X) is the canonical embedding and Ps_,, : H®(int X) — Hj(int X)
a projection.
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2.3 A reformulation of mixed problems from standard Sobolev
spaces

In [10] we completed the operator (2) by additional potential operators Ly to a Fredholm
operator of index 0

H*2(int X)
A 0\ H*(intX) @
Z:= |1 L_|: &) — H° 2 (int Y_), (40)
T, L,/ H*zZC ®

H*=2(int Y)

s > %,s ¢ N+ %, where [ = [s — %] From Theorem 2.1 applied to M = Y. we have

isomorphisms
W57S(Yj:)
(Ei Gi) : @D d Hs(int Y:t) (41)
HS (27 ce(s) )

for s > %, s € N+ %, where G4 is obtained from G(A) by fixing A sufficiently large, o(s) =
[s — 2] +1; here E4 : W*5(Yy) — H®(int Yy) are the respective embeddings.
Moreover, Theorem 2.5 gives us isomorphisms

Wes(X)
(E K): ®  — H(ntX) (42)
HS (27 (CN(S) )

for every s > 1, s ¢ N when we set K = K(\) for any fixed .
If we want to observe the smoothness s in the operators (41) and (42) we also write
(E+s Gi,) and (Ey K,), respectively.
Let us set (Ri’s> = (Bxs Gi4) ! and (Ps) = (Es; K,) !. From (42) we obtain
B:I:,s ’ ’ Ts
an isomorphism

WS,S(X)
® H*(int X)
.= (Es K ‘0>:H5(Z’CN(S))_) D
00 ® He(Z,Cl3))
HS(Z,(C[S_'IE])

for any fixed s > 1, s ¢ N. Moreover, (42) together with (41) gives us an isomorphism

W572,572(X)
2
P, 0 0 H572(Z’ CN(572) )
T::2 0 0 Hs_Z(iIlt X) . D .
0 R_,1 0 9 W (Vo)
. 573 Coprs—Lo.
L= 0 B,ys,l 0 H 2(111t Y,) — 1 & o)
0 0 R, h B2 (2,C77%)
973 | HS S (int V) @
00 By Wi (v
S

H* 2(Z,C°067%))
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for all s > 3, s ¢ N. This allows us to transform (40) to a Fredholm operator LZK for
s > 3,5 ¢ NU{N+ 1} between corresponding edge Sobolev spaces plus standard Sobolev
spaces on the interface Z.

After an appropriate change of rows and columns in the block matrix LZX we obtain an
equivalent operator

W572,572(X)
¥
WS’S(X) Ws—%,s—%(y_)
Ais): @ — D (43)
H*(Z,C%) Ws=35-3(Y,)
¥

@, H" (2,C%)

for s > 3,5 ¢ NU{N+1} and d = N(s
di =N(s—2),dy=0(s—3), d3 =0(s —

1 1 3
+[5—§], 51 =5—2,8 =85—35, 83 =53,
). By construction we have

N ~—

ind Z = ind A(s) = 0.

Remark 2.7 Similarly as in Remark 2.6 the 3 X 1 upper left corner of fl(s) s nothing other
but the restriction of (2) to W**(X) regarded as a subspace of H*(int X).

Proposition 2.8 The operator (43) for any fived s € R, s > 3, s € NU{N + 1} is an
element of the edge operator algebra on X (with edge Z) in the sense of Definition 4.6 below,
belonging to the weight v = s and with the boundary orders p— =0, py = 1.

Proof. The 3 x 1 upper left corner of the operator fl(s) belongs to the edge algebra, cf.
Example 1.3 and Remark 2.7. The lower right corner which defines a map H*(Z,C?%) —
@?:11‘-’ $i(Z,C%) is obviously a matrix of classical pseudo-differential operators on Z. The
remaining entries consist of operators

H*(Z,Cls=3]) o
(R_al- R_,  T-K): ® — W22 (Y0,

HS(Z, (CN(S))

H*(Z,Cls2)) L
(Rys by Ry, 50K ): © — W (YY),

HS(Z’ CN(S))

Let us characterise the operators for the plus side (those on the minus side are analogous).
From the constructions of [10] it follows that the operator L, has the form

Ly =Q.Cy : L3(Z) — H 3 (int Y,.),

where C, : L?(Z) — L?(Y,) is a potential operator from the calculus of pseudo-differential
boundary value problems on Y without the transmission property at Z, see also [24] or [26],
and @4 is a reduction of orders in that calculus of order —s + 2, see [11].

As is known from [26] all these operators belong to the edge calculus (here to the substruc-
ture of boundary value problems without the transmission property). The Green, potential
etc. operators are formulated in the category of SJ (R, )-spaces, cf. the notation in Section
1.2. Since the compositions in question belong again to the edge calculus, we immediately

obtain the desired characterisation. The composition R, 3L, is a potential operator of
T
order 2, while B 53 L isao(s—3)x[s— 1] matrix of classical pseudo-differential operators

on Z of order % O
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Let us now consider the principal edge symbolic structure of the operator .Zl/(s) with its
subordinate conormal symbol. According to the general notation the principal edge symbol
consists of an operator family

22 (B 1\ {0})

S5}
- CSREA{0)) K a(R)
on(A(8))(2,€) - ® - ® (44)
c o723 (Ry)
D
Cd1+d2+d3

parametrised by (z,() € T*Z\0 with a corresponding scheme of DN homogeneities. Because
of the Fredholm property of (43) the operator function (44) is bijective for every (z,(). That
means that the upper left 3 x 1 corner

15252 (R \ {0})
D
oA(A(5))(2,¢) KR\ {0}) = K 3% 3(R) (45)
D

o723 (Ry)

is a family of Fredholm operators for any fixed s > 3, s ¢ NU{N+ }}. Since (44) is bijective
we have
3 1

indoa(A(s))(z,() =di +dp+ds —d=N(s —2) +o(s — %) +o(s— 5) —N(s)—[s— 5]

Using the relations N(s) = £{[s]? + [s]} and o(s) =[s— 3]+ 1 it follows that

indop(A(s))(2,¢) = —[s — =]. (46)

3 Elliptic interface conditions

3.1 Mixed problems in spaces of arbitrary weights

As noted in the introduction the discussion of solvability of the mixed problem (2) in standard
Sobolev spaces rules out ‘most of the interesting’ solutions when we prescribe independent
boundary data g+ on Yi. On the other hand, because of the elliptic regularity for boundary
value problems (in this case with the transmission property at int Yy) solutions with inde-

1

pendently given boundary data in Hlsozi(int Y_) and Hlsozg(int Y, ) belong to H{ (X \ Z)
regardless of any possible jump of solutions close to Z. The role of weighted edge Sobolev
spaces W*7(X) C H{ (X \ Z) is to reflect the standard elliptic regularity outside Z and to
admit adequate discontinuities near Z. For large s the regularity in W?%#(X) is not really
different from that in H*(int X') as we saw in Section 2.3, but the ‘realistic’ situation corre-
sponds to weights v < s. In other words the main task will be to pass from the W#?*(X)-case
to W*7(X) for small weights «. This is just the program of the present section.

From Example 1.3 we know that the operator A= *( A T_ T, ) induces an operator

A(7y) in the edge algebra on X for an arbitrary weight v € R. For the ellipticity it is important
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to identify those v such that the associated principal edge symbol

o202 (R2.\ {0})
D
oA (AM))(2,¢) : L (RE N\ {0}) — K537 3(R_) (47)
D
Ko (Ry)

represents a family of Fredholm operators (parametrised by (z,() € T*Z \ 0; in the present
case (47) is independent of z).

The operators (47) belong to the cone algebra on the infinite cone R% \ {0} with cor-
responding mixed Dirichlet and Neumann conditions on R_ and R, respectively. From
the cone algebra it is known that the Fredholm property of an operator in K*7-spaces is
equivalent to the bijectivity of all its principal symbols, cf. the formula (30).

The components oyoa(A(7)), 09,401 (A(7)) and oexitoa(A(y))(¢) are independent of the
weight . For v = s their bijectivities have been checked in the proof of Theorem 1.4. In
other words, it remains to recall the properties of the conormal symbol and to identify those
w € C such that the operators (28) are bijective. This has been answered by Theorem 1.4.

Theorem 3.1 For every s > 3 and v € Z + % there are dimensions d(7), e(y) such that the
operator

W572,772(X)
©®
A(y) s WHI(X) & WP 375 (Y0) = WP 204 YL, YY) (48)
©®

WHTEITE (YY)

can be completed by extra conditions IC, T and Q with respect to the interface Z to an elliptic
operator in the edge algebra

s, 5—2,7—2(¥Y.
H¥(Z,CH0) H=2(Z,CeM)

Proof. The existence of elliptic interface conditions depends on some topological property
of oA(A(y)). In this proof we interpret o (A(7))(z,¢) as a family of Fredholm operators
parametrised by the points (z,() of the unit cosphere bundle S*Z induced by 7%Z. The
criterion is an analogue of the Atiyah-Bott condition for the existence of Shapiro-Lopatinskij
elliptic boundary value problems, cf. [1]. An analogous condition for the existence of elliptic
edge conditions in the edge algebra (for a closed base of the model cone) is obtained in [23],
see also the papers [27] or [14]. In the present case the base I = [0, 7] of the model cone has
a boundary, but the situation is very similar.

First recall that a continuous family F : X — F(H, H ) of Fredholm operators between
Hilbert spaces H and H, where X is a compact topological space (for simplicity, arcwise
connected), generates an index element indx F' € K(X) in the K-group of X. If dimker F'(z)
and dim coker F'(z) are constant the families kerx F' and cokerx F' of kernels and cokernels,
respectively, are (continuous complex) vector bundles on X, and we have indx F' = [kery F]—
[coker x F], where [...] denotes the class in K (X) represented by the bundle in the brackets.
If the dimensions are not constant it suffices to pass from F' to a surjective operator family
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H
(F C): @ — H for a suitable constant map C : CN- — H for a sufficiently large choice
(CN,
of N_. Then we can set
indy F':= [ker(F" C)] —[N_]

where N_ stands for the trivial bundle on X with fibre N_ (it is well known that this
construction does not depend on the choice of N_ or C).

In our case we have X = §*Z and F' = o5(A(y)). The condition for the existence of
‘Shapiro-Lopatinskij’ elliptic interface conditions is now

inds-z oa(A(7)) € T K(Z), (50)

where 77 1 K(Z) — K(S*Z) is the pull back of the corresponding K-groups under the
canonical projection 7y : S*Z — Z (induced by the bundle pull back). More precisely, the
relation (50) is necessary and sufficient. For s = > 3, s € NU{N+ 1}, the operator (43) as
an element of the edge algebra (cf. Proposition 2.8) is Fredholm and hence elliptic (different
orders of smoothness in the Sobolev spaces on Z do not affect this; we can always unify
the orders by composing our operators by suitable elliptic order reducing pseudo-differential
operators on Z). Thus the property (50) holds for oA (A(s)). To discuss arbitrary weights
v we recall that (47) is a family of elliptic operators in the cone algebra of boundary value
problems on the infinite cone @i \ {0}. In this situation the property (50) is independent of
7y as soon as (47) is Fredholm for different . The technique to prove this is similar to that in
boundary value problems without the transmission property, cf. [24], or [28]. An inspection
of the details shows immediately that the ideas also apply in the present situation. In other
words, (50) is satisfied for all v & Z + % This completes the proof. O

3.2 Construction of elliptic interface conditions

Our next objective is to obtain more information on the numbers d(y) and e(y) of extra
interface conditions in the sense of Theorem 3.1.

Theorem 3.2 Let s > 3,s ¢ NU{N + %},’y <sandy ¢&7Z+ %, and let n(s,vy) denote the
number of non-bijectivity points of opron(A)(w) in the strip

{weC:1-s<Rew<1-—7~}

Then we have

indoa(A(v)) = indon(A(s)) +n(s,7)
(which is independent of s).

Proof. The assertion of this theorem can be interpreted as a relative index result on bound-
ary value problems in an infinite cone when the weight 8 = s is replaced by . The strategy
of the proof is based on index formulas of boundary value problems B and B, on the infinite
cone which are of Fuchs type both with respect to » = 0 and r = oo, operating in weighted
Sobolev spaces with weight at zero and infinity, cf. Gohberg and Sigal [7], and the applica-
tions of [29], [9]. However, the original operators (for convenience composed with suitable
powers of ) act in other scales of spaces; we denote them by Kz and K., respectively, cf.
the formula (51) below. We therefore compare ind B, — ind Bg with ind K., — ind Kz. The
details are as follows:
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H'=2(int I)
For abbreviation let X := H'(intI), X := @ for any fixed ¢t > 3 and a(w) :=
CoC

opon(A)(w), cf. the formula (28). Then a(w) is a holomorphic family of Fredholm operators
X — X with Z + % as the set of points where a(w) is not bijective. Since the index of a
continuous Fredholm function is constant, we have ind a(w) = 0 for all w € C. From Section
1.3 it follows that dimker a(w) = dim coker a(w) = 1 for all w € Z + . These properties are
independent of ¢.

Let us fix { # 0, t > 3, and write
K = diag(r”,v2,72)05 (A1) (0)- (51)
This induces a Fredholm operator
K, : KW — K720
for the spaces K7 := K"(RZ \ {0}) and
K27 = r2 K20 2(R2\ {0}) @ r2 KI 3073 (RL) @ ra K 2773 (Ry).

We then have
indop (A(y))(¢) = ind K.

2112
aq
By definition the operator K, has the form K, = op}{/fl(a) + 0 with the
0
Mellin symbol a(w) = I{$p=0} , where ryy_,1 denotes the restriction operator to
Ho=r}0¢
p=a,a=0,m.
1 —r7|gP
Let us now set B, :=op}; (a) +w(r) 0 for some cut-off function w. Then
0

ny . Hta(776) N ﬁt_27(7a6)

is continuous when we set H%(19) 1= w;HH7(RZ \ {0}) + (1 — wi)HH(RZ \ {0}) and

H' (R \ {0}) HI2O(RA\ {0})
D &)
HE209) = I3 (R) +(1-w) HI=O(R_)
D &)
HIZ2T(Ry) HIZ2O(Ry)

for every ¢ > « and any cut-off function w; (the choice of the cut-off function does not
affect the spaces). The second summand in the expression for B, is a compact operator in
these spaces. Therefore, ellipticity and Fredholm property are determined by a(w) alone. By
assumption a(w) has no non-bijectivity points on the weight line I'i_, (in the sense of the
weight shift corrections below, cf. the formula (78)). Since the non-bijectivity points form
a discrete set, here the real half-integers, we can choose ¢ in such a way that a(w) is also
bijective on I';_;.

22



In a similar manner we now form the operators
Kﬂ . ’Ctzﬁ — ’ét_%ﬁ, Bﬁ :th(ﬂzd) — ﬁt_Zz(ﬂzd) (52)

for another weight § € R and ¢ > max (v, ), such that I'; 5 does not contain non-bijectivity
points of a(w). Then the operators (52) are also Fredholm.

We are now in a situation of Fredholm theory on manifolds as is studied by Nazaikinskij
and Sternin in [15]. The operators K., By and Kg, Bg satisfy the compatibility conditions

K’y|0<r<R = B’y|0<r<R7 K,B|0<T<R = B,B|0<T<R and K’y|R<r<oo = K,B|R<r<oo; B’y|R<r<oo =
Bg|r<r<oo for every R > 0 such that w =1 on [0, R). Here 0 < r < R (R < r < 00) indicates

those points (zy,—1,zy) € @i \ 0 such that 0 < |zp—1,2n] < R (R < |zp—1,2n| < 00). The
corresponding result from [15] now reads as follows:

ind K, — ind Kg = ind B,, — ind Bg. (53)

As noted before the operators B, and Bg coincide modulo compact operators with
op"]{/fl(a) and opﬁ/; 1(a), respectively. This gives us

indB, —ind B = indop];'(a) —indop’; ' (a)

The second equation is a consequence of the results of [8] which is a version of [29] for
boundary value problems, for the technique see also [9], using the fact that the non-bijectivity
points of a in the respective weight strip are all simple. To complete the proof it suffices to
combine the relations (53) and (54). O
Corollary 3.3 For every k € Z we have

indop(A(y)) = k. (55)

for all v € (% —k,

N

—k), i.e., e(y) —d(y) = k for the dimensions e(7y),d(y) of Theorem 3.1.

In fact, for a given weight v ¢ Z + 1 we can choose any s > 3,s ¢ NU{N+ 1}, and apply
Theorem 3.2 combined with the relation (46). This gives us indoa(A(7)) = —[s—]+n(s, 7).
Then (55) follows from n(s,y) = k+[s] — 1, —[s — 3] = —[s] + 1 for 0 < {s} < } and
n(s,y) =k+[s], —[s— %] = —[s] for % <{s} < 1.

3.3 Parametrices and regularity of solutions for the Zaremba
problem

We now pass to parametrices in the edge calculus and obtain regularity of solutions to our
mixed problems.

Theorem 3.4 For every fized v ¢ Z + % the operator A := fl(’y) of Theorem 3.1 has a
parametriz P in the edge calculus, cf. Definition 4.6 below, i.e., we have PA=TI-C, AP =
Z—D, where C and D are smoothing operators as in Definition 4.6 (iv), and Z is the identity
operator in the corresponding spaces. The operator P is (1, 0) regular (cf. the terminology
of Section 4.2 below) and has the type 0 (both on the Dirichlet and the Neumann sides).
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Proof. By Theorem 3.1 the operator A is elliptic in the calculus of Section 4.2, i.e., all
symbolic components are bijective. Thus the existence of a parametrix is a consequence
of Theorem 4.11 below. The resulting type follows from the corresponding generalities on
boundary value problems, cf. [12, Section 1.2.7]. In fact, the type of the parametrix of an
elliptic boundary value problem of order p and type d is equal to max (d — x,0). In the
present case we have 4 = 2 and d = 1 on the Dirichlet and d = 2 on the Neumann side. The
(1, ) regularity of the parametrix follows from the fact that A itself is (1, d) regular and
that the inversion of symbols from the edge calculus is compatible with the Leibniz inversion
of smooth complete symbols, relevant for the (1, 0) regularity. O

Corollary 3.5 The operator (49) is Fredholm for every v ¢ 7 + %,S > %, and kernel and
cokernel are independent of s. Moreover, Au € W*=27"2(X;Y_,Y,) ® H*2(Z,C) and
uw € W=2(X) @ H=°°(Z,CU)) implies u € W (X) @ H*(Z,CH)),

3.4 Jumping oblique derivatives and other examples

Let us now consider other examples for the Laplace operator A , namely mixed conditions
with jumping oblique derivatives on Y. In this case we have

H*~2(int X)
A @
A= | 7_ | : H*(int X) » H*2(intY_) (56)
T, @

H*=2(int Y,)

s>3 for T_:=1r"B_, Ty :=r"B,. Here By are locally of the form

n—2 n—2
B_=) oD, +aD,, , +ADy,, Bi =Y D, + Dy, , +0D,,.
i=1 i=1
with coefficients «;, 3; smoothing depending on z = (z1,...,2,-2), and constants «, 3, A, d

such that X # 0, # 0. We always assume n > 3; the operators T then satisfy the Shapiro-
Lopatinskij condition. In [10] for the case .7 2 o;(2)D,; |z = S22 Bi(2)D,,)z = 0 and
a = [ =)X=7§=1 we completed the operator (56) by additional potential operators L to
a Fredholm operator of index zero

H*2(int X)
A 0\ H(intX) @
Z=|T- L |: & —H 2(ntY), (57)
T, L. H*ZC) ®

H* 2 (intYy)

for s > 2,5 ¢ N, where [ = 0 for 3 < s <2 and [ = [s — 1] for s > 2. The operator (57)
can equivalently be reformulated as an operator fl(s) of index zero in the edge algebra, by
applying the same technique as before for (43). In the present case this holds for s > 3,s ¢ N,
and we have d = N(s) + [s — 1],s2 = s — %,dQ =o(s— %), and d;, s;,7 = 1,3, are as in (43).
Similarly as in Section 2.3 we can express the principal edge symbol of the upper left 3 x 1
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corner A(s) of A(s)

K22 (R {0))
oA(A)() , 2,
) | RSE(O) - KT (R)
52
K2 (Ry)

for oA(A)(¢) as in (26) and

0 A0
on(T-(z,¢) = 7”71{—%(—7”5) + ?a—¢}|¢:0,
0 d 0
on(Ty(2,¢) = Tﬁl{g(—rg) - {8—¢}|¢:n,

is a family of Fredholm operators for any fixed s > 3,s ¢ NU {N + %} with index

ind o (A(s)) (2, ¢) = —[s].

The conormal symbol

5%2 + w? H™2(I)
omon(A)(w) = | Hgh —w)le= | H (D)= @ (58)
H(—g5 + 0)|p=r CeC

defines a family of bijective operators for all w ¢ Z. In fact, first observe that w = 0 is a
simple non-bijectivity point of op;on(A)(w). Now let w = a + ib # 0. Then the boundary
conditions give us

Cl(i — 1) = Cg(i + 1),
c1(1 —i)e ™ (cosam + isinar) + ca(1 + i)’ (cos ar — isinar) = 0.

Assume that ¢; = 0. Then we obtain (e’ —e~™) cos am —i(e’™ + e ™) sinan = 0, and hence
b=0,a =k,k € Z. We have ker opror(A)(k) = {c(cos k¢ + sink¢) : c € C}.
Using oprop(A)(w)(cos wh+sinweg) = *( 0 0 Zwsinwn ) we see that the non-bijectivity

points are simple. Similarly as for the Zaremba problem we thus obtain for the edge symbol
indop(A(y)) = indoa(A(s)) + n(s,7)
for all v < s,7 ¢ Z. More precisely, we have
indoa(A(7)) = k

for all v € (—k, —k + 1). This follows from n(s,y) =k + [s].

As another example we take the Laplace operator with the Dirichlet condition 7 on Y_
and the condition 7', on Y, as above in this section. Applying a result of [10] for the case
E?:_f Bi(2)D,|z = 0 and f = § = 1 the corresponding operator A can be completed to a
Fredholm operator (40) for all s > 2,5 ¢ N+ 2, where in this case [ = [s — 2]. Introducing
again A(s) as a realisation of A in weighted Sobolev spaces for s > 3,s ¢ NU{N + 2} we
obtain in this case oa(A(s))(¢) = —[s — 2]. The set of non-bijectivity points of opron(A)
coincides with {w € C: w € Z—i—i}, and the points are simple. In fact, for w = 0 the operator
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omon(A)(0)u = 0 has only trivial solution. If w = a + ib # 0 the boundary conditions give
us

c1+co=0
(1 — i)e_l”rei‘”r + (1 + i)eb”e_i‘”r =0’
cf. (32). Let us assume that ¢; # 0 (otherwise u = 0). Then we obtain
(cos am + sinam)(1 — €2’™) + i(sinaw — cos an)(1 + e2™) = 0

which implies that b = 0 and a = k+1, k € Z. We have ker op704 (A)(k+1) = {csin(k+1)é :
c € C},k € Z, and using

%(—w cos(wm) + wsin(wm)) )

ormon(A)(w)sin(we) = (0 0
we see that the non-bijectivity points are simple. Similarly as before it follows that

ind o (A(7))(¢) = ind o (A(s))(C) + n(s, )

forally <s,1—vy¢7Z+ i. More precisely,

ind o, (A(7))(¢) = k

for v € (3 — k, T — k). This follows from n(s,y) =k +[s] -1, [s—3]=[s] -1 for {s} <3
and n(s,y) = k+[s], [s— 2] =[s] for {s} > 2.

4 Boundary value problems on manifolds with edges

4.1 Edge amplitude functions

The specific nature of parametrices of mixed elliptic problems is determined (modulo suitable
smoothing operators) by a category of amplitude functions of the classes Sflij (U xR?; Ej, F)
in the variables and covariables (z,(), U C R? open, ¢ = dim Z (cf. Section 1.2). The orders
pij are defined by the spaces

By = K (R2\{0}), By = KF737V 7737V (R_), By = K¥"3 "+ 7173 % (R,),
Fy = LRI HRE \ {0}), Fp = K*73 #0371 (R), Fy = K73 M0737 e (R,)

for certain p,va,pus € R and By = C¢, Fy = C° for some dimensions d,e (recall that the
latter spaces are endowed with the trivial group actions). As already noted in connection
with the operators (15) we can also start from vector-valued functions with different orders
of the components; for simplicity we content ourselves with the scalar case. In Section
1.2 we already introduced Green, trace and potential amplitude functions. The remaining
ingredients of the complete edge symbolic calculus which we discuss in the present section
only refer to the spaces Ej, F; for 4,5 = 1,2, 3; so we may set d = e¢ = 0.

In order to have a convenient approach we first ignore the orders p;; but formulate symbols
in terms of parameter-dependent families

B(r,2,8,C) € C®(Ry x U, BH(I; R;%q))

forpyeZ,d eN, or ) B
g(r,2,8,C) € C*(Ry x U, BG (R )
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for 1 € R, d € N, where we then insert § = ro, ¢ = r¢. For the definition of B4 (I;R!*Y)
and Bg’d(I . R'9) the specific meaning of (3,¢) € R'? is unimportant; so we first denote
these parameters for a while by (g, ().

Let B(_;OO’O(I ) defined to be the space of all 3 x 3 block matrix operator functions

He(intI)  C°(I)
g9="(9ij)ij=123: & — @
C2 C?

s> —%, where g1 is an integral operator with kernel in C*°(I xI), g1jc¢ := f1(¢)c for j = 2,3,
c € C, gau:= [] fu(P)u(¢p)dg for i = 2,3, with arbitrary functions fi;, fu € C°°(I) for
Jj=2,3and ¢ =2,3, and (gj); j—2,3 is an arbitrary 2 x 2 matrix with entries in C. To avoid
confusion let us note that the components of (co,c,) € C? are related to the end points {0}
and {r} of the interval I.

The space 8500’0(1 ) is Fréchet in a natural way (as a direct sum of its 9 components),
and we set BZ V(I RIY) == SR, BL(I)). Moreover, let B, >9(I;R7) for any

d € N be the space of all operator families g(p, () := go(0,¢) + 2?21 gi(0,¢) diag(@é, 0,0) for
arbitrary g; € B&OO’O(I; RI+4),
Let us now consider 2 x 2 block matrix symbols g(p, () of the class

SERYG LA Ry ) @ C, S(Ry) @) (59)

(with group actions {x)}rcr, being defined by xy(u(¢) ® ¢) := )\%u(kgb) ®c for u@cin
L?(R,)®C or S(R;) @ C) such that also g*(o, () (the pointwise adjoint with respect to the
L?(R, ) ® C scalar product) belong to the space (59).

With every such gy (0, () we can associate an operator family

Hé(intI)  C>(intI)

a(e,€) == wygy(0,Q)w: &  — & (60)
C C

s > —%, for any fixed choice of cut-off functions w,& on R, supported by [0,¢) for some
0 < e < m. Here I is assumed to be embedded in Ry with {0} € I corresponding to the
origin in R,

In a similar manner we can form operators wg()(e, ()@ for another symbol g (e, () of
the abovementioned kind and then obtain operators

He(intI)  C>(I)

b(0,¢) == xs(wyg(m) (0, Q)0): & = & (61)
C C
where x, is the push forward under the map x : I — I for x(¢) := —¢ + w. Observe that

the direct summands C in the spaces of (60) belong to {0} € I, those of (61) to {7} € I.
Writing (60) and (61) as 2 x 2 block matrices with entries a;; and b;j, respectively, we now
form

He(intl)  C(I)
a1 +bi1 a2 b2 ® @
9(0,¢) :== a1 azy 0 ] (0,0): C - C (62)
ba1 0 b ® @
C C
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More generally, we consider operator families

g( C) - gU ga + Zg] ga dla’g(a(]paovo) (63)
j=1

for any d € N, where g;(p,() are of the kind (62), of order yx — 5 (with x from (59)).

Definition 4.1 The space Bg’d(I; R;ng) for w € R, d € N is defined as the space of all
operator functions g(o,¢) + c(o,() for arbitrary families of the form (63) and c(p,() €
- ad . 1+
B> (I,Rg,gq).
Let Bg’d(I; Rt denote the space of upper left corners of elements of Bé’d(I; RI+4),

Remark 4.2 The space Bg’d(I; R4 has a natural Fréchet topology. So we can form spaces
of the kind C*°(R, x U, Bg’d(I;RHq)) or A(D,Bg’d(I; R'*9)); here A(D, E) for an open
set D C C and a Fréchet space E denotes the space of all holomorphic functions in D with
values in E.

Let S%(I x Ry x thq)tr denote the space of all classical symbols of order p € Z in the
variable gb € I and covariables (9, g,() (with ¢ being the dual variable to ¢) and constant
coefficients with respect to the variables (r, z) which have the transmission property at the end
points {0} and {7} of the interval I. Recall that the transmission property (for instance, at
¢ = 0) of a symbol a(¢,V, o, () requires from the homogeneous components a(,_;)(¢,9, 0,()
that

DZZDZL,({G(M—]') (()Z’)7 v, 0, C) - (_]—)“_]a(u—j) ((tba —4, —0, _C)} =0
on the set {(¢,9,0,¢) : ¢ =0,9 € R\ {0}, (0,¢) =0} forall k € N, « € N'*7 and all j € N.
Given a symbol a € S4(I x Ry x R;:Eq)tr we set

op’ (a)(e, Q)u(9) := rop(a)(e, ¢)eu(d), (64)

where a(¢, 9, o, () is any element of S (Ry X 2;‘2) such that a = @|;,g2+¢ and e the operator
of extension by zero to R\ (int I), r the operator of restriction to int I, op(a)(e,{)u(¢p) =
[[ =90 a(p, 9, 0,C)u(@)dg'dd. As is known, (64) represents a (o, ¢)-dependent family of
continuous operators op!(a)(o,¢) : H*(int I) — H* #(int I) for every real s > —1 (which is
independent of the extension a of a).

Definition 4.3 The space B“’d(I;Rngq) for uw € Z, d € N is defined to be the set of all
operator families of the form

op’ (a)(e,¢) +g(0,¢)
Jor arbitrary a € S4(I x R¥T4)y. and g € Bg’d(I; R 7).
Let us set BM4(I; R11Y) := {diag(p,0,0) + g : p € BH4([;R*Y) g € Bg’d(I;RHq)}. In
the case p # 0 we assume u € 7, otherwise u € R.
Also the space B4 (I;R'*7) is Fréchet in a natural way.

Remark 4.4 The space B4(I; R'™19) is a particular case of the parameter-dependent algebra
B&Y(M;RY) of pseudo-differential boundary value problems on a smooth manifold M with
boundary OM, here for I = M,0M = {0} U {7}, and R'* > (p,{) as the parameter space.
For I = 0 this corresponds to Boutet de Monvel’s algebra [2|; material for arbitrary | may
be found in [16], see also [12]. We will use here elements of this calculus in a variety of
other special cases, in particular, for M = I" (or M = Ei \ {0}) and for M = X \ Z. In
both cases M 1is not compact, and the boundary has two components, namely Ry and int Y,
respectively, with different boundary conditions.
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Let M’é’d(I; ]Rg) denote the space of all f(w,() € A(C, B*4(I; RZ)) such that

F(B+ie,¢) € BHY(I,R,TY)

for every 8 € R, uniformly in ¢ < 8 < ¢ for every ¢ < ¢.
In order to express edge amplitude functions we employ the Mellin transform, cf. the
notation of Section 1.1, and associated (weighted) Mellin pseudo-differential operators

!/

[rry-Gotio o
vty (Nutr) = [ [(5) T st G =+ iehuten) o
R 0

for a weight v € R, with scalar or operator-valued amplitude functions f(r,r’,w). Their pre-
cise nature will be explained below; we also will have several parameter-dependent variants,
e.g., f(r,7',z,w,(); in that case we write op},(f)(z, ().

For pseudo-differential actions on R based on the Fourier transform we write op(p)(z, ()
(or also op,.(p)(#,¢)). Concerning the amplitude functions we take them in the form

p(razagag) :ﬁ(razaéag)b:rg,é:rg (65)
for p € C°(Ry x U, B“’d(I;Ré"Eq)), U € R open.
Theorem 4.5 For every p(r, z,0,() of the form (65) there exists a Mellin symbol

h(r, z,w,Q) = h(r,z,w,0)lz_,. (66)
associated with an h € C®(R x U, M’é’d(I; Rg)) such that
op,(p)(2,¢) = op} (k) (2,¢) mod C®(U, B~>%(I"; RY)) (67)

fOT every y € R. SZleG/I“ly, fOT pU(TazMQaC) = ﬁ(O,Z,T.Q,'f‘C), h()(’f‘,Z,U),C) = E(O,Z,U),’I"C)
we have op, (po) (2, ¢) = 0ply (ho)(2,¢) mod C(U, B-=(I; RY)).

If (66) is related to (65) as in the previous theorem we will say that A is a (holomorphic)
Mellin quantisation of p.

Let us now choose arbitrary cut-off functions o(r), o (r) and wo(r),wr(r), ws(r) such that
wy =1 on suppwy and wy = 1 on suppwy. Moreover, let ( — [(] denote any strictly positive
function in C*°(R?) such that [¢] = |{| for all |(| > ¢ for some ¢ > 0. We now form operator
functions of the kind

a(z,¢) := o(r){am(z,¢) + ay(z,()}o(r) (68)
for
an(z€) == Fwo(rl¢])op}; " () (2, Qwi (r[C]),

ay(2, ) :=r (1 — wo(r[¢]))op, (p) (2, O) (1 — wa(r[C])),

where h is a Mellin quantisation of p.

Let us set
onla)(z,¢) = 7““{WU(TICI)OPXZI(ho)(Z,C)wl(TICIH(l—wo(T|C|))0pr(po)(Z,C)(l—wz(rlél())})-
69

Observe that
on(a)(z,A) = Mraon(z, (), (70)
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for A € Ry, (2,¢) € U x (R?\ {0}), where k) := diag (k}, kx, %), cf. the notation in the
formula (29). Comparing the relations (29) and (70) we see a difference in homogeneities
which comes from the assumed unified orders in the construction of (68). Moreover, set

O'MO'/\(G)(Z,'LU) = h[](O,Z,’U),O), w € Flf’y' (71)

By definition (68) is a 3 x 3 matrix of operator functions a(z,{) = (a;;(2,())ij=1.23
associated with an order ;4 € R and a weight v € R.

For our calculus we choose orders and weights for the entries a;; individually, namely, as
in Section 1.2 by (20) and (21), respectively, for 7,5 = 1,2,3. We then obtain

aij(z,¢) € 8" (U x RY; Ej, Fy) (72)

for the abovementioned spaces Ej, F;, for s > d — % (cf. the general definition (11). The

technique for proving relations of the kind (72) may be found in [22].

In order to express the complete edge amplitude functions we need a further category
of operator-valued symbols, the so-called smoothing Mellin symbols. They also only occur
for the indices 7,5 = 1,2,3. Similarly as before they refer to orders j;; and weights -y;;, but
again for convenience we first consider 7j-independent orders and weights.

Let Mgoo’d(I ) for f € R,d € N, denote the space of all operator functions

fw) € A{B —e <Rew < B +¢}, B °04I))

for some € > 0 which may depend on f, such that f(n + ip) € B °>(L;R,) for every
n € (B —e¢, B +¢), uniformly in compact subintervals. Denoting for a moment by Mgoo’d(l )e
the subspace of all f € Mgoo’d(f) belonging to a fixed € > 0, we obtain a Fréchet space.
This gives us C*(U, Mz>(1)) = U, C®(U, Mz (1).).
Setting
m(z,¢) i=r Fw(rl(])op),  (F)(2)(r[¢])

for an f € COO(U,MI_Ofy’d(I )) and any choice of cut-off functions we obtain a 3 x 3 block
matrix of classical operator-valued symbols.
The homogeneous principal component of m(z,() of order p has the form

on(m)(z,¢) = rw(rl¢lop}, " (f)(2)@(r[¢]). (73)
Let us set
omon(m)(z,w) = f(z,w), wel'i_,. (74)
We now assume 1 as well as the weight v to depend on 7,5 as in (20) and (21) which
yields a matrix m(z,() = (mi;(2,())ij=1,23 of elements

for arbitrary s > d — % (clearly in the target spaces F; the finite smoothness may be replaced
by oo in this case).

An edge amplitude function is defined as a 4 x 4 block matrix operator function of the
form

ll(Z,C) = p(Z,C) +m(Z7C) +9(Z7C) (76)

for p(z,¢) = (a(zo,g‘) 8), m(z, () = (m(g,@“) ) with a(z,{) = (ay(2,())ij=1,23

0

0
being given by (72), m(z,() = (m4;(2,())i,j=1,2,3 by (75), and g(2,¢) = (gij)ij=1,..,4 as in
(19).
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From (23), (69) and (73) we obtain a 4 x 4 matrix of homogeneous principal symbols
on(a)(2,€), (2,¢) € U x (RT\{0}),

on(a)(z,¢) : @§:1Ej — ®j 1 F; (77)
with the abovementioned spaces Ej, Fj, i, = 1,...,4, for s > d — %, with entries of order
pij as in (72). The 3 x 3 upper left corners of the operators (77) form a family of boundary

value problems on the infinite cone R% \ {0} with the boundary components Ry. As such
they have a 3 x 3 matrix of subordinate conormal symbols

H*(int 1) Hs=k(int I)
oyon(a)(z,w): &  — @
CeC CaC

depending on z € Z and the complex variable w. According to (71) and (74) the entries
omon(ai) of opron(a) are given for w on the weight lines I'y_,; for i,5 = 1,2,3. Tt is
convenient to normalise the representation by setting

oyonlaij)(z,w) == ononlaij)(z,w +vij — ) (78)

such that all entries are defined on I'1_,.

4.2 Operators on manifolds with edges

The following definition and the subsequent remarks introduce a new variant of edge bound-
ary value problems. The role of these operators is to express parametrices of mixed elliptic
problems. Compared with the calculus of [12] the main difference is that we employ here
a more general class of Green and smoothing Mellin amplitude functions, cf. Section 4.1,
encoded by ‘small weight improvements’ ¢ > 0 (depending on the operator) rather than
asymptotics. From this point of view the operators of [12] with (discrete or continuous)
asymptotics in the Green and smoothing Mellin terms form a subcalculus, cf. also the re-
marks in Section 4.3 below. It is not our intention to present a full edge calculus here because
the formal part is close to that of [12], see also [25] for the case without boundary.

Definition 4.6 The edge algebra of boundary value problems on X is defined as the space
of all 4 x 4 block matriz operators (15), i.e., A= (Aij)ij=1,..4 with orders (j1;;)ij=1,..4, cf.
(20), which have (modulo smoothing operators to be described below under (iv)) the following
properties:

(i) A is locally in coordinates (2,2, 1,7,) € R*™2 x R? of the form Op,(a) for an edge
amplitude function as in (76),

(i) The 2 x 2 submatrices (A;j)ij=12 ((Aij)ij=13) locally near intY_ (intY,) belong to
Boutet de Monwvel’s calculus of boundary value problems with the transmission prop-

erty at intY_ (int Yy) and with the respective DN order conventions for the trace and
potential parts.

(iii) Ai1lingx belongs to Ll (int X).
(iv) In the sequel, for convenience, in contrast to (15) we formulate the operators for spaces

over Z for the dimension 1; the general case is completely analogous.
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An operator C is called reqularising Green operator in the edge algebra of boundary value
problems and of type 0 if C induces continuous operators

WS (X) Woo,’y—u-l—e (X)
2 @
N R S S
C: @ — @
WIS (Y)W (Y )
2 2
H"(Z) H>(Z)

for some £ = €(C) > 0, for all 5,5',s",s" € R;s > —L, and if also the formal adjoint

C* has analogous continuity properties, now with respect to the modified weights —y +
My —Y — % +p_,—y— % + p4 in the preimage and —vy, —y — % +v_,—y— % + vy in the
target spaces. The formal adjoint is defined via

(Cu,v) = (u,C*v)

for all u,v € W°(X) @ W>(Y_) @ W>>(Y}) @ H*(Z) with the scalar products
of WOO(X) @ W03 (Y_) @ WO 3 (V) @ HO(Z).
An operator C is called smoothing and of type d € N if C has the form

d
C=Co+ Y Cjdiag(17,0,0,0)
7=1

for arbitrary smoothing operators C; of type 0 as before and a differential operator T' on
X of first order (with smooth coefficients up to the boundary) which is equal to % ma
collar neighbourhood of Y = 0X (where x,, is a global coordinate in normal direction).

Remark 4.7 Definition 4.6 is adapted to the case of mized problems for second order elliptic
operators A with conditions Ty of arbitrary order; this is just the structure of the Zaremba
problem for the Laplacian (where some of the entries are simply zero). There is also a more
general version with block matrices A;j rather than ‘scalar’ entries and vectors of orders
vy and py, respectively, and we can also have schemes of DN orders for the operators on
Z as in (43). As before some components may be zero, so there are also row and column
matriz versions, cf. Example 1.3. Another variant concerns operators between distributional
sections of vector bundles on the various components X, Yy and Z of the configuration. Such
generalisations may be subsumed under the notation ‘edge algebra’.

The upper left corners Ay of our edge algebra have a rich structure. By Definition 4.6
(iii) they induce elements of L (int X), and by (ii) those operators have the transmission
property at int Y. They also contain Green terms near int Yy with the same behaviour as
Green operators of some type d in Boutet de Monvel’s calculus. Near the interface Z the
operators 417 have an edge-degenerate non-smoothing part, cf. the requirements (65) for
the local symbols, and they contain also the other ‘smoothing’ ingredients such as Green and
Mellin operators in X \ Z from the edge algebra, cf. (76). In our application the original
operator (the Laplace operator) has a smooth symbol across the interface Z; the symbol
becomes edge-degenerate of the form (65) when we transform it to polar coordinates in the
(Zn—1, %) plane normal to Z. In other words, there is a ‘smooth’ symbol behind the edge-
degenerate structure with the transmission property everywhere at Y = 0X. Let us call
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an element A of the edge algebra 1 regular at Y if it has such a classical interior symbol
which is smooth across Z. The requirement of regularity singles out a particularly convenient
substructure. Those operators 4 have a standard homogeneous principal symbol of order p

oy (A)(2,§) == oy (A11)(z, ), (79)

(z,8) e T*X \ 0.

In general, near Z the operators A of Definition 4.6 have edge-degenerate homogeneous
principal interior symbols, coming from the representation of local symbols in the upper left
corners which have the form

Tﬁp‘a(r7 (1257 Z7 IQ? 197 C)

where
a(r7 ¢7 Z7 97 197 C) = d(r7 ¢7 Z7 TQ7 197 TC)
for an a(r, ¢, z, p,9,¢) € C°(R x U, SHT x Ry x R;Eq)tr), cf. Section 4.1. In this case we
set ’
Oy ('A) (7”, ¢7 Z5 0, 197 C) = 7”7“6—1# (A) (Ta (tba 2,70, 197 TC)

for

&TZJ(A)(T7 ¢7 2, 57197 6) = 6i(u) (TJ ¢727 57197 5)

(@(y) denotes the homogeneous principal component of @ of order p in (g,, ¢) #0).

Let us also consider the operators B_ := (A;j); j—1,2 and By := (A;j); j—1,3 of Definition
4.6 (ii). In differential mixed problems such as the Zaremba problem they can be regarded as
restrictions to int Y5 x [0, 1) of corresponding operators B¥ in Boutet de Monvel’s calculus in
a collar neighbourhood = Y x [0, 1) of the boundary Y. In the pseudo-differential case we can
ask a similar property, modulo the contributions of the smoothing Mellin and Green operators
near Z and the smoothing operators from Definition 4.6 (iii). Let us call an element A of the
edge algebra (1), 0) regular if it has this property (clearly any such operator is necessarily 1
regular). In that case we have pairs of boundary symbols

i H(Ry)  H7M(Ry)
oo (A)y,m) :=0a(Bg)(y,m): &  — o (80)
Cr* Cm

for (y,n) € T*Y \ 0, smooth up to Z. In the latter relations we assume on the operator A
that the boundary problems B+ contain ns+ potential and m+ trace conditions with respect
to int Y.

In general, near Z the operators A of Definition 4.6 have edge-degenerate homogeneous
principal boundary symbols, coming from (65) together with the corresponding weight fac-
tors. For instance, for the upper left corner A;; we have

09,+ (.AH)(T, 250, C) = 7‘7“6—8;#("411)(747 2,70, TC)

for
6’37+(¢411)(T,Z, éa 5) = I'+C~I,(“) (O,Z,T,Q, D¢,TC)6+ : HS(R—F) - Hs_#(RF) (81)

and similarly for the — sign, where a(,) is to be frozen at ¢ = 7 and D, replaced by —Dy
(because of the opposite orientation of the ¢ half-axis in this case).

For the other components of the boundary symbols near Z (i.e, trace and potential parts
as well as standard pseudo-differential symbols on the boundary) we have similar expressions
(with exponents in the weight factors being linked to the orders of the boundary operators).
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Operators in the edge algebra of type d define continuous operators
A: @§:15j — ©i—1 Fi (82)
for & = W(X), Fp:= WS #7H(X),

2 im Wb (1 ),y im Wb (v o),

£ = WS_%_”*”_%_”(YJF,C”*), Fy = Ws—%—u+,7—%—u+(y+’CM+)’

Ey = H*(Z,C% Fy:= H M(Z,C),s >d— % Here, for simplicity, the upper left corners
are assumed to be scalar, while the other entries A;; of A are now block matrices, e.g., A2
an m_ X n_ matrix, etc. Clearly, as in Example 1.3, the orders v+ and p+ may also assumed
to be vectors, according to the components of C*F and C™F, respectively.

A is called elliptic, if the components of

o(A) = (oy(A), 09,(A), oA (A))

are bijective in the following sense:

(i) oy(A) := oy(Ai1) does not vanish on T*X,e \ 0, and y(A) does not vanish for
(6,9,C) # 0 up to r = 0.

(ii) The boundary symbols (80) are isomorphisms for all (y,n) € T*(intYy) \ 0, and

- H(Ry) H7H(Ry) .
Go,5(A)(r,2,0,Q) : @ — @ are isomorphisms for (9,() # 0 up to r = 0;
C+ Cr=

these conditions are required for any s > d — %

(iii) The edge symbol (77) is an isomorphism for every (z,() € T*Z\ 0 and s > d — 1;
in the present notation the spaces Ej, F; are vector-valued, and of different smoothness and
weight, i.e., By = K7 (R% \ {0}), Fy = KS~#7H(R2 \ {0}),

By =K' 2 V=13 (R, C'-), Fp= K>3 H-7"37h-(R,C"),

By = [C5— 53— V=5Vt (R_,C"+), F3= JC5—5 KAV~ 5 —H (R_,C™),
E, =C% F; =C¢, and the homogeneities in ¢ correspond to the scheme of DN ordes.

Remark 4.8 Every operator A in the edge algebra is determined by o(A) modulo a compact
operator @§:15j — @;}:1};’,8 >d-— % This is an analogue of a corresponding property in
edge algebras in the boundaryless case, cf. [25].

Remark 4.9 The principal symbols o(A) of operators A in the edge algebra form an algebra
under componentwise composition. For the components coming from boundary problems with
the transmission property this is known from the calculus of [2]. The edge symbols are families
of boundary value problems on the infinite cone Ri \ {0} with the boundary components R .
Their composition behaviour is known from the corresponding calculus, cf. [21].

Remark 4.10 The notation ‘algebra’ in Definition 4.6 is justified by the fact that the com-
position of two elements A and B belongs to the calculus again (provided that the spaces in
the image of A fit to those of the domain of B), and we then have

o(AB) = o(A)o(B)

with componentwise composition. This result is analogous to a corresponding composition
property for the subclass with asymptotics as is analysed in [12, Chapter 4].
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If A and P are operators in the edge algebra we call P a parametrix of A if ZT—PA and Z—
AP are regularising Green operators in the sense of Definition 4.6 (iv).

Theorem 4.11 Every elliptic operator A has a parametriz P in the edge algebra where
o(P) = 071 (A) with componentwise inversion.

Proof. If A is elliptic we can first pass to 0~!(A) and associate it with an element Py in
the edge calculus, i.e., 0(Py) = o~ 1(A). We then obtain PypA = I — Cy for an operator
Co in the edge calculus such that o(Co) = 0. Let us consider the formal Neumann series
(Z—-Cy)~t~ZI—CiforCy~— >0 C}. Similarly as in [12] the asymptotic summation for Cy
can be carried out within the calculus; so we may set P := (Z —C;)Py which has the property
that PA — 7 is smoothing. The same can be done from the right; thus P is a parametrix as
desired. ]

Corollary 4.12 The ellipticity of A entails the Fredholm property of (82) for every s > d—%
(where d is the type of A), and kernel and cokernel are independent of s. Furthermore, we
have elliptic reqularity in our weighted Sobolev spaces.

4.3 Asymptotics of solutions

From elliptic boundary value problems in domains with conical singularities it is known (cf.
Kondratyev [13]) that solutions have asymptotics of the form }, S, cik(z)rPiloghr for
r — 0 modulo flat remainders. Here r € Ry is the distance variable to the singularity. The
coefficients cj; are smooth on the base of the local cone. The exponents —p; € C and the
number of logarithmic terms are determined by the non-bijectivity points of the conormal
symbol of the given elliptic operator. For the Zaremba problem these points are calculated
in Section 1.3 and for other mixed problems in Section 3.4. In general we have to expect
a dependence on the interface variable z (also the multiplicities may change under varying
z). Such phenomena can be described in terms of continuous asymptotics (cf. [25] and the
references there). Here we content ourselves with the case of constant discrete asymptotics.

The structure is as follows. Let M be a compact C'°®® manifold with boundary. Denote
by P = {(pj,m;)}jen the sequence of data which characterise asymptotics for r — 0, with
pj € C, Repj - —o0 as j — oco,mj € N. Then the space K37 (M") is defined to be the
set of all u(r,z) € K*7(M") having such asymptotics with coefficients ¢;, € C*°(M) for all
0 <k <mj,j €N; (for the given weight ~ this implies Rep; < 3(1 +m) —v,m = dim M,
for all j). For every v > 0 there is then an N = N(v) such that

N myj
K31 (M") = {Z ch-k(a;)r*pjlogkrw(r) tcjr € CP(M),0 <k <mj,j€ N} ST (M)
§=0 k=0

for a cut-off function w. Applying the construction (6) to E = K37 (M"), cf. Remark 1.2, we
obtain weighted spaces

WET(M» x R?) := W(RY, K37 (M),

or spaces Wi (W) globally on a (stretched, say compact) manifold W with edge. In this
construction we assume that the transition diffeomorphisms between local wedges are inde-
pendent of the axial variable r for 0 < r < ¢ for some € > 0. The dimension of M may be
zero; so the same can be done for the half-space Ry x RY, or, globally, on a manifold with
boundary, such as the manifolds Y.

35



Note that the singular functions of edge asymptotics in the space Wi (R x R?) are
a generalisation of the ‘Taylor’ edge asymptotic terms of standard Sobolev distributions
H?(Ry x R?), cf. the formula (33). In the present case from the definition of (6) we see that

N my
WpT(Ry x RY) = {F{iz[c’]%Zchk(C)(r[C])*”flog’“( [Nw(r[]) : ¢jr(¢) € H¥(RY)}
j=0 k=0
+ WEITY(R, x RY), (83)

where H*(R?) := {i(¢) : v(z) € H*(R?)}. In a similar manner we can express the asymptotic
terms of the edge asymptotics for a non—trivial (stretched) wedge M” x R?; it suffices in
(83) to formally replace Ry by M” and [C] by [(] 2 e ; the coefficients c;, now belong to
C>°(M, H*(RY)).

In the case of our mixed problems we have M = I = [0, 7]. The result on elliptic regularity
from Corollary 3.5 then specifies to spaces with asymptotics as follows:

Theorem 4.13 Set

$—2,7—2 5—2,7—2 s—Ly—1 s—3,y-2 5—2 e(7y)
WP ’ (X7 Y77Y+) = WPO ’ (X) @WP_Z Z(Yf)GBWP_FZ 2(Y+)®H (Z,C ')’ )
(84)
for a triple P = (Py, P_, Py) of discrete asymptotic types (constant in z € Z). Then Au €(84)
for v ¢ Z—I—% and s > % and u € W (X) @ H-®(Z,CU) entails u € W ( ) @
H*(Z,C4) for some resulting (constant in z € Z) asymptotic type Qo.

Proof. First we apply a parametrix P on both sides of Au = f. This yields PA = 73f
where C =7 — PA is a smoothing operator. We then obtain asymptotics of solutions if P
can be chosen in such a way that Pf € W re (X) and C(W (X)) € Wg7(X) for certain
asymptotic types Ry and Sy, respectively. Parametrices of that kind can be constructed in a
refined version of the edge algebra, namely with Mellin and Green symbols with asymptotics.
Such a calculus in the framework of the so called continuous asymptotics is developed in [12,
Chapter 4]. This concept contains asymptotic types of the present constant discrete type as
a special case. If we know that the non-bijectivity points of the conormal symbol o704 (A)
of the given operator A are independent of z € C, the poles of the conormal symbol o MUA(P)
of the parametrix P are also independent of z € Z because UMU/\(75) is simply the inverse
of opr07(A) (up to a translation in the complex w-plane). An inspection of the arguments
of [12] shows that then the operators P and C have the desired mapping properties. In the
case of the Zaremba problem we have proved in Section 1.3 that the non-bijectivity points
of the conormal symbol are just as we want. U

Remark 4.14 The mechanism to compute Qg in terms of the given (Py, P—_, Py) and of the
poles of UMU/\(75) 1s the same as in the theory of boundary value problems on manifolds
with conical singularities, cf. [20, Theorem 3.3.12]. The result is that the solutions have the
asymptotic types from the data (together with possible translations to the left in the complex
plane by integers) and in addition the poles plus multiplicities from UMJ/\(75), in this case
Jj+ %,j € Z. Thus the specific extra singular functions for the Zaremba problem in the space
W?HT are locally near Z of the form

HZ{ Jeik (9 I )}, —7 -5 <17,

cik(¢,¢) € C=(I, H*(RY)), modulo remainders of flatness v+ v, N = N (v) (cf. the formula
(83)). Analogous relations hold for the mized problems of Section 3.4.
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