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Abstract

In this paper, by a new constructive method, the authors reprove the global exact boundary
controllability of a class of quasilinear hyperbolic systems of conservation laws with linearly
degenerate fields. It is shown that the system with nonlinear boundary conditions is globally
exactly boundary controllable in the class of piecewise C'* functions. In particular, the authors

give the optimal control time of the system. Finally, a new application is also given.
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1 Introduction

Consider the following quasilinear system in a form of conservation laws

Ut +f(u7v)x = 07
'Ut +g (U’JU)J: = 07

(1.1)

where u = u (t,z) and v = v (t,x) are unknown functions and f, g € C? (N) for some closed

bounded domain A in R2. Let F = (f,g)" and
VF(U) = Ju o 7
Ju G

(H1) On the domain A under consideration, system (1.1) is strongly strictly hyperbolic, i.e., for

where U = (u,v). We assume that

any given U € N/, VF (U) has two distinct real eigenvalues A1 (U), Az (U):
MU)<0< X (U), YVUEWN. (1.2)

Let [; (U) = (I (U), iz (U)) (vesp. 7 (U) = (ri (U), 12 (U))T) be a left (resp. right) eigenvector
corresponding to A; (U) (i = 1,2):

L(U)VF(U) =X (U); (U)  (rvesp. VF (U) 7 (U) = X (U) 7 (U)) .
(Hz) System (1.1) is linearly degenerate:

VN (U) 7 U)=0 (i=1,2), YUEN. (1.3)

(H3) For any given real number a, let H? = {U|X(U)=a} (i=1,2). For any given U, U,

€ H{, there exists a C! curve segment U = U (1) (7 € [11,72]) in N such that
U(r)=U; (j=1,2) and U(r)e H}, V71é€[n,n] (1.4)

and

VNU (M) £0 Yre[n,m (i=1,2). (1.5)

(H4) There are global Riemann invariants for the system (1.1)
Ry =R, (U), Rs=R,(U). (1.6)

Remark 1.1 Any quasilinear hyperbolic system with two unknown functions

8ui
ot

2
+;aij(ul,u2)% =0 (i=12)



can always be reduced to a system with the diagonal form at least in a local domain. This means that
for any quasilinear hyperbolic system with two unknown functions, the local Riemann invariants
always exist. On the other hand, many physical systems (for example, the system of isentropic gas)

always possess global Riemann invariants.

By the assumptions (H;) and (Hy), in the Riemann invariants, (1.1) can be rewritten as

i+ () G =0, (L17)
B2 4 (1) 3 =,
where
(B (U)) =AM (U)  and  p2 (B (U)) = A2 (U). (1.8)

Recently, Kong [5] investigates the following Ezact Boundary Control Problem for the system

(1.1). Consider system (1.1) posed on the domain
D={(tx)|t>0, —1<x<1}

with the following nonlinear boundary conditions
Bi(u,v,t) + hi(t) =0 at = -1,
By (u,v,t) + ha(t) =0 at =1
and the initial data

(ug (z),vg (2)), Vael-1,0]

t=0: (u,v) =
(ug (2),vg (x)), VYzel0,1]

(1.10)

where B;(u,v,t) are given smooth functions, (ug (z),vy (z)) € N and (ug (z),v§ (z)) € N are

C* vector functions, defined for z € [-1,0] and = € [0, 1] respectively, satisfying

(ug (0),vy (0)) # (ug (0),vg (0)) . (1.11)
Exact Boundary Control Problem: Given

(z),v7 (2)) € CH([=1,0]) x C*([-1,0]),

s : z=0, T, 1.12
(uf (z),vf () € C*([0,1]) x C*([0,1]), (112

can we find a time T > 0 and control inputs hi(t), ha(t) in the class of piecewise C' functions
defined on [0, T], such that the boundary control system (1.1), (1.9) has a piecewise C* solution
U = U(t,x) containing contact discontinuities and satisfying the initial condition (1.10) and the

terminal condition

U(T,z) =Up(z)? (1.13)



Kong [5] proves the following theorem.

Theorem A Under the hypotheses (Hy)-(Hy), for given U,(x) (z = 0,T) (see (1.12)) and for
any T > Ty, there exist piecewise C* control inputs hy(t) and hy(t) defined for t € [0,T] such that

system (1.1), (1.9) possesses a piecewise C* solution U = U(t,x) on the domain
D(T)={(t,2)0<t<T, —-1<z<1} (1.14)
containing 4 contact discontinuities and satisfying
U0,z) =Up(z), U(T,xz)=Up(z), Vzel[-1,1], (1.15)

where Ty is defined by

- 2 2 2 2 4
Ty = —_, — —_ =, ————— 1.16
0 max{ /\17&2}+max{ /\17&2732_/\1}7 ( )
in which
AL = ﬁ%’?w“l(m)’ Ay = ‘RrﬂlgnMuz(Rl), (1.17)
here M is given by
M = max {[|Ri(u; (2),v. (@)llcog-1,0, [1Riluz (@), 02 @)oo} - (1.18)
i=1.2

Remark 1.2  Theorem A shows that the system (1.1) with nonlinear boundary conditions (1.9) is
globally exactly boundary controllable in the class of piecewise C' functions. However, the control

time Ty, defined by (1.16), is not optimal.

In this paper, by a new constructive method, we reprove the global exact boundary controlla-

bility of the system (1.1) with the optimal control time. The main result is the following theorem.

Theorem 1.1  Under the hypotheses (Hy)-(Hy), for given U.(x) (z = 0,T) (see (1.12)) and
for any T > Ty, there exist piecewise C' control inputs hy(t) and hy(t) defined for t € [0,T]
such that system (1.1), (1.9) possesses a piecewise C* solution U = U(t,z), containing 4 contact

discontinuities and satisfying (1.15), on the domain D(T), where Ty is defined by

2 2 4
Ty = _ =, ——— 7. 1.19
0 max{ )\17 A27 A2_>\1} ( )

Remark 1.3 Comparing (1.16) with (1.19), we observe that Ty > Ty. The condition T > Ty in
Theorem 1.1 is sharp and Ty is optimal in the sense that, if T < Ty, we may find a pair of initial

and terminal states such that no matter what control inputs we choose, the system will not go from



the given initial state to the desired terminal state during the time interval [0,T]. In this sense, Ty

defined by (1.19) is called the optimal control time of the system (1.1).

Remark 1.4 The hypothesis (Hs) is a technical assumption only for constructing contact dis-
continuities, Kong [5] gives two examples to show that some physical systems always satisfy it.
Moreover, if the initial and terminal data are C* smooth, then the hypothesis (Hs3) is not needed.

In this case, Theorem 1.1 is nothing but the result given in Li and Zhang [8].

The paper is organized as follows. Theorem 1.1 will be proved in Section 2 by a new constructive
method. Section 3 gives some important remarks as well as a new application to extremal surfaces

in the (1 + n)-dimensional Minkowski space.

2 Proof of Theorem 1.1
For readers’ convenience, before starting the proof of Theorem 1.1, we first recall the definition of
contact discontinuity.

Definition 2.1 U = U(t,x) is called a piecewise C* solution containing a k-th (k = 1,2) contact
discontinuity x = xx(t), if U = U(t,x) satisfies the system (1.1) out of x = x(t) in the classical

sense and satisfies the Rankine-Hugoniot condition on x = xy(t), i.e.,
o-[U]=[F], (2.1)
o=\ (U+) =\ (Ui) s (22)

where U:t = U(t,.’]]k(t) + 0) and o = :L';c(t)

Let
A=(0,-1), B=(0,1), C=(T,1), D =(T,-1), (2.3)
02(070)7 N:(T70)7 E:(te,&?e), F:(tf,ﬂ?f), -
where E is the intersection point of the lines
Li: z=Mt+1, and Ly: z=)\t—1 (2.4)
and F' is the intersection point of the lines
Li: 2=Mt—-T)—1 and Ly: x=X(t-T)+1. (2.5)
Noting (1.19) and T > Tp, we observe that
te <ty. (2.6)



Step 1: Generalized Riemann problem (1.1), (1.10)
First, we solve the generalized Riemann problem for the system (1.1) with discontinuous initial

data (1.10). The following lemma comes from [7].

Lemma 2.1 Under the hypotheses (Hy )-(Hy), the generalized Riemann problem (1.1), (1.10) has
a unique piecewise C1 solution (u,v) = (u(t,z),v(t,z)), containing two C* contact discontinuities
starting from O, on the mazimum determined domain )y enclosed by the characteristics x =

x1(t), v = x2(t) and the x-axis:

Q= {(1,2)|0 <t <ty, z(t) <z <71 (1)), (27
where x = 1 (t) satisfies
DO @), m) =1 (28)
x = x5(t) satisfies
dx;t(t) — o (wo), 22(0) = -1, (2.9)

and while t, is the time coordinate of the intersection point, denoted by P = (tp,x,), of the

characteristic x = x1(t) with the characteristic x = x2(t). See Figure 1.

The solution (u,v) of the generalized Riemann problem (1.1), (1.10) is denoted by U = Uy (¢, z)
on the domain ), its two contact discontinuities are denoted by = = £ (t) and z = &(t) respec-
tively. By the definition of contact discontinuity, = &;(¢) (i = 1,2) satisty

SO _nwf), &0=0 (=12 (2.10)

Moreover, let Py = (tp,,p,) (resp. P» = (tp,,%p,)) be the the intersection point of the character-
istic ¢ = x2(t) (resp. = x1(t)) with the contact discontinuity x = & (t) (resp. = = &(t)). See

Figure 1.

Step 2: Backward generalized Riemann problem (1.1), (1.13)

Similar to Step 1, we can solve the backward generalized Riemann problem for the system (1.1)
with discontinuous initial data (1.13). We have.
Lemma 2.2 Under the hypotheses (Hy)-(Hy), the backward generalized Riemann problem (1.1),
(1.13) has a unique piecewise C' solution (u,v) = (u(t,z),v(t,r)), containing two C* contact
discontinuities starting from N, on the mazimum determined domain Qo enclosed by the charac-

teristics x = 1 (t), € = Z2(t) and the linet =T

Oy = {(t,2)|ty <t < T, #1(t) <z < Bo(t)}, (2.11)



where x = &1 (t) satisfies

d&?l (t) - ~ -
dt AL (u,v)) ) xl(T) =-1, (212)
x = x5(t) satisfies
diz(t) . B
e A2 (u,v)), @(T) =1, (2.13)

and while ty is the time coordinate of the intersection point, denoted by Q = (t4,x4), of the

characteristic x = &1(t) with the characteristic v = &2(t). See Figure 1.

The solution (u,v) of the backward generalized Riemann problem (1.1), (1.13) is denoted by

U = Us(t,z) on the domain Q, its two contact discontinuities are denoted by z = & (t) and

x = &»(t) respectively. By the definition of contact discontinuity, z = & (t) (i = 1,2) satisty

&)
dt

=X\ (Uf), &0)=0 (i=12). (2.14)

Moreover, let Q1 = (tq,, %4, ) (resp. Q2 = (tg,,Tq,)) be the the intersection point of the character-
istic z = &, (t) (resp. & = &»(t)) with the contact discontinuity & = &(t) (resp. = = & (t)). See

Figure 1.

Remark 2.1 From the Steps 1-2, we observe that
0<ty<te, ty<t;<T. (2.15)
Step 3: Mixed initial-boundary value problem for the system (1.1)

Let Q3 be the domain enclosed by the characteristics PP» and ()@, and the straight line

segments PQ and P»(Q),. It is easy to see that the straight line P can be expressed by
A
z=uap+alt—t,) =c(t), te/ltpt,, (2.16)
where « is the slope of the line PQ
a = (zq —zp)/(tg — tp)- (2.17)
Similarly, the straight line P>()> can be expressed by
A
T =Tp, + aZ(t - tp2) = CZ(t)a te [tp27tQ2]7 (218)
where as is the slope of the line P,(Q»

s = (Tgy — Tpy)/(tgy — tps)- (2.19)



Noting (1.7), the system (1.1) can be equivalently rewritten as

ORy 1 OR:1 __ 0
— Y

ox /_Ll(RQ) ot
R + 1 ORy __

oz p2(R1) Oz

(2.20)

for smooth solutions.
Consider the mixed initial-boundary value problem for the system (2.20) (equivalently, (1.1))
on the domain 23 with the boundary conditions

on the characteristic PPy: © = z1(t) (¢t € [tpy,tp])
A
Ry = Rz(Ul (t,l‘l (t))) = Tz(t), te [tpzatp]a (221)

on the characteristic QQ2: © = &2 (t € [tq,%g,])

- A
Ry = Ry (Us(t, 32(t)) = 71(t), ¢ € [tg,tq] (2.22)
and the initial condition on the line segment P@Q
Ry =s1(t), Rz =s2(t), tE€/ltp,tql, (2.23)

where s1(t), s2(t) are C* functions of ¢ € [t,,t,]. Here we have interchanged the role of z and
t variables. In order to ensure the mixed initial-boundary value problem (2.20)-(2.23) have a C*
solution on 3, the initial data (s1(t), s2(t)) must satisfy certain compatibility conditions. First of

all, it is required that
s1(tp) = Bi(Ui(tp, ap)), s2(tq) = Ra(Ua(ty, 2q))- (2.24)
Moreover, it also require that
s1(tg) = R1(Uz(tq, zq)) = T1(ty), s2(tp) = Ra(Ur(tp, 2p)) = ra(ty). (2.25)

Notice that along the characteristic QQ2: = = Z2(t)

) = T 4 o (R G = (o (R) — ()
Then,
” OR,
F(t0) = o (Ut ) = s (Ra Uty ) G2 1) (2.20

On the other hand, along the line PQ: x = ¢(t)

8R1 8R1 aRl
! — —_— —_ - _—
51 (t) - at ta al_ - (O{ M1 (Sz)) 633 .



Then,

$4(t0) = (o= pa(52(0))) 32 (1, ). (2.27)
Therefore we need that
(a = p1 (R2(Us(ty, 74)))) ”

Sll(tq) = 71 (tq)- (2.28)

(p2(Ry(Us(tyg, 24))) — pa (Ra(Uz(tyg, 24))))

Similarly, at (¢,,z,) we require that

o (0 — po(Ry (Ui (1, 7,)))) y
20) = B U ) — i (B (U (i) 207 (2.29)

On the other hand, we have

Proposition 2.1  The angles formed by the line segment PQ and the characteristic QC, by the

line segment PQ) and the characteristic PB are less than w.

Proof. Consider the angle between P and QQC. The worst case is given by

2 A+ A 2 A+ A
P — 21 22 — T _ _ 21 22 .
<&—Af&—3)’ Q ( P &—A)

In the worst case, the slope of PQ is

de 2(A +2)
W T 10— A

In order to ensure the angle formed by the line segment P() and the characteristic QC is less than

m, it is sufficient to require that the slope of the line segment P(Q is less than the slope of the

characteristic QC), i.e.,
2(A1 +2y)

Noting (1.19) and T > Tp, we have
4

T > —.
A2_>\1

Hence, in order to guarantee the validity of inequality (2.30), it suffices to require that

2
T>—.
Ay

This is true because of (1.19) and the fact 7" > Tj.

Similarly, consider the angle between P(Q) and PB. The worst case is given by

P:< 2 ,A1+>\2>7 Qz(T— 2 ,_>\1+>\2>'
)\2—)\1 )\2—)\1 >\2_>\1 >\2_>\1




A similar argument yields that

2
T>—=.
A1

This is also true because of (1.19) and the fact 7" > Tp. Thus, the proof of Proposition 2.1 is
completed. O

Therefore, using Lemma 2.3 and Remark 2.1 in [8], we obtain

Lemma 2.3  Under the hypotheses (Hy)-(Hy), the mized initial-boundary value problem (2.20)-
(2.28) admits a unique C* solution (Ry1, Ry) = (Ri(t,z), Ra(t,x)) on Qs, provided that the com-
patibility conditions (2.24)-(2.25) and (2.28)-(2.29) hold.

By Lemma 2.3, let U = Us(¢, x) be the solution of the system (1.1) corresponding to (Ry (¢, ), Ra2(t, z))

given by Lemma 2.3 on the domain (2s.

Step 4: Mixed initial-boundary value problem for the system (1.1) — Continuous
Let Q4 be the domain enclosed by the characteristics PP, and @, and the straight line

segment PQ: = c(t) = zp + at —tp), t, <t < t, and the straight line segment P, Q1:
A
L= Tp, + al(t - tp1) =C (t): te [tputlh]: (2'31)
where ay is the slope of the line P, Q)
a1 = (wa - wpl)/(tlh - tpl)'

On the domain 4, we consider the mixed initial-boundary value problem for the system (2.20)
(equivalently, (1.1)) with the boundary conditions

on the characteristic PPi: @ = z2(t) (¢t € [tp,,tp])
Ry = Ry (Us(t,72(1) S 7a(0), 1€ [, 1) (2.32)

on the characteristic QQ1: © = Z1(t) ¢ € [ty, 14, ]

- .
Ry = Ry(Us(t, 21(1))) = 72(t), t € [tg,tq] (2.33)
and the initial condition on the line segment PQ
Ry = s1 (t), Ry = Sg(t), t e [tp,tq]. (234)

As Step 3, we choose s1(t), s2(t) to satisfy the compatibility conditions (2.28)-(2.29) and

(o = 1 (R2 (Ui (tp, 7p)))) (k)

(2(R1 (Ur(tp, p))) — pa (R (Ui (tp, zp)))) (2.35)
s (t ) _ (a_uz(Rl(UZ(tQqu)))) ! (t )
2 (11 (Ra(Us(tg, q))) — p2(Ra(Us(tyg, q)))) 2°

10



On the other hand, similar to Proposition 2.1, we have

Proposition 2.2  The angles formed by the line segment PQ and the characteristic QD, by the

line segment PQ and the characteristic PA are less than .
Therefore, using Lemma 2.3 and Remark 2.1 in [8] again, we have

Lemma 2.4  Under the hypotheses (Hi )-(Hy), the mized initial-boundary value problem (2.20),
(2.82)-(2.34) admits a unique C* solution (Ry, R2) = (Ri(t,z), R2(t,x)) on Qy4, provided that the
compatibility conditions (2.24)-(2.25), (2.28)-(2.29) and (2.85) hold.

Similar to Step 3, we denote the solution of the system (1.1) corresponding to (R (¢, z), Ra(t, x)),

given by Lemma 2.4, on the domain Q4 by U = Uy(t, ).

Step 5: Cauchy problem for the system (2.20)
Consider the Cauchy problem in the z-direction for the system (2.20) with the following initial
condition on the line segment P>Q)>:

R1 (t, C2 (t)) = Rl(Ug (t, C2 (t
R2 (t, C2 (t)) = RQ(Ug (t, C2 (t

~
~—
~—

A
é te [tpzatqz]' (236)

~
~—
~—

Similar to Proposition 2.1, we have

Proposition 2.3  The angles formed by the line segment P>Q)o and the characteristic Q2C, by

the line segment P>()y and the characteristic PyB are less than .

Proof. Consider the angle between P>, and ()>C. The worst case is given by

1 A 1 A
P, = =2 =T - ——=L )
. (AQ—AJAZ—&)’ @2 < oA Az—Al>

In the worst case, the slope of P>()5 is

de NN
@t 2T (-2

In order to ensure the angle formed by the line P,@2 and the characteristic @Q2C is less than =,

it is sufficient to require that the slope of the line P>()> is less than the slope of the characteristic

QzC, i.e.,
ALt
— < A\ 2.37
2Ty ) (230
Noting (1.19) and T > Tp, we have
T> 1 .
A2 - /\1

11



Hence, in order to guarantee the validity of inequality (2.37), it suffices to require that

1
T>—.
” N

Of course, this is true because of (1.19) and the fact T' > Tj.

Similarly, consider the angle between P»(Q)2 and P>B. The worst case is given by

1 /_\2 1 /_\1
P=|= — = = o= T — = —, —= = .
? <A2—A1’A2—Al>’ @ < X2 — Ay AZ—A1>

A similar argument gives

1
T>—=.
A1

Obviously, this is true because of (1.19) and the fact 7" > Tj. Thus, the proof of Proposition 2.3
is finished. O

Using the Corollary 2.1 in [8], we have

Lemma 2.5 Under the hypotheses (Hy )-(Hy), the Cauchy problem (2.20), (2.36) admits a unique
C*t solution (Ry,R2) = (Ri(t,z), R2(t,x)) on the mazimum determined domain Qs enclosed by
the straight line segment P>y, the straight line segment P3Qs3, the characteristic PoP3: © =
Cao(t) (t € [tpy, tps]) and the characteristic Q2Qs: @ = (i (t) (t € [tys,ty]), where Py = (tpy, 1) is the
intersection point of the characteristic x = (2(t) with the line BC, Q3 = (t4,,1) is the intersection

point of the characteristic © = (; (t) with the line BC, while the characteristic { = G (t) satisfies

dé (t)

7 = M1 (R2) ’ 61 (tQZ) = Lygy (238)
and the characteristic ( = (2(t) satisfies

d(s(t

Gl (B, Golt) = 2. (2.59)

See Figure 1.

We denote the solution of the system (1.1) corresponding to (R (¢, ), Ra(t, x)), given by Lemma
2.5, on the domain Q5 by U = U;(t, ).

Similarly, we consider the Cauchy problem in the anti-z-direction for the system (2.20) with

the following initial condition on the line segment P} Q1:

Ri(t,e1 (1) = Ry (Us(t, 1 (1)) =

Ro(t,c1(t)) = Ra(Ua(t, 1 (1))

Similar to Proposition 2.3, we have

0
S et ty,). (2.40)
92 (t)a

e

12



Proposition 2.4  The angles formed by the line segment P,(Q)1 and the characteristic Q1D, by

the line segment P, ()1 and the characteristic PiA are less than .
By the Corollary 2.1 in [8], we have

Lemma 2.6 Under the hypotheses (Hy )-(Hy), the Cauchy problem (2.20), (2.40) admits a unique
C* solution (Ry, Ry) = (Ry(t, ), Ra(t,x)) on the mazimum determined domain Qg enclosed by the
straight line segment P11, the straight line segment PyQy4, the characteristic PLPy: ¢ = (1(t) (t €
[tprtps]) and the characteristic Q1Qq: © = Co(t) (t € [tyurtq]) (see Fig. 1), where Py = (t,,,1)
is the intersection point of the characteristic ( = (1(t) with the line AD, Qi1 = (tg,,1) is the

intersection point of the characteristic ( = fg(t) with the line AD, while the characteristic { = (1(t)

satisfies

d

Gl _ (B, Glt) = (2.41)
and the characteristic { = fg(t) satisfies

dc. -

Gl (), Golt) =20 (2.42)

See Figure 1.

Let U = Ug(t, x) be the solution of the system (1.1) corresponding to (Ry (¢, z), R2(t, x)), given

by Lemma 2.6, on the domain (2.

Step 6: Goursat problem for the system (2.20)
We next consider the Goursat problem in the z-direction for the system (2.20) with the following
characteristic boundary conditions:

on the characteristic PaB: x = 1(t) (t € [0, ¢p,])

Ry = Ro(Us (1,01 (1)) 2 a(t), ¢ € 0,155], (243)
on the characteristic PoPs: @ = (2(t) (t € [tp,, tps))

Ry = Ry(Us(t, (1)) Emi(8), € [t ty). (2.44)
By the Lemma 2.2 in [8], we have

Lemma 2.7  Under the hypotheses (Hi)-(H,), the Goursat problem (2.20), (2.43)-(2.44) has

a unique C' solution (Ry,Rs) = (Ri(t,z),Ra(t,x)) on the domain Qy enclosed by the straight

13



line segment BPs, the characteristic BPy: © = x1(t) (t € [0,tp,]) and the characteristic P, Ps:

x = C(t) (t € [tpy,tps]). See Figure 1. Moreover, it holds that

Ry (t:C2(t)) = (t)a Vie [tpzatps]a
Rz(t,l‘l(t)) = T]Q(t), Vte [O,tp2].

(2.45)

Let U = Ux(t, z) be the solution of the system (1.1) corresponding to (R;(t,x), R2(t,x)), given

by Lemma 2.7, on the domain ;.

Similarly, consider the Goursat problem in the z-direction for the system (2.20) with the fol-
lowing characteristic boundary conditions:
on the characteristic Q2C: = = &3(t) (t € [tg,,T])

2

R =R (UZ (tJjZ (t))) ﬁl (t)a te [tlh:T]: (246)

on the characteristic Q2Qs: = = (1 (t) (t € [tys,te])

1>

Ry = Ry(Us(t,G1(1)) S (1), € [tgg,tgs]. (2.47)

Similar to Lemma 2.7, we have

Lemma 2.8  Under the hypotheses (Hy)-(Hy), the Goursat problem (2.20), (2.46)-(2.47) has
a unique C' solution (Ry,Rs) = (Ri(t,z),Ra(t,x)) on the domain Qs enclosed by the straight
line segment Q3C, the characteristic Q2C: x = &2(t) (t € [tg,, T]) and the characteristic Q2Qs:
2 =C(t) (t € [tgs,tq,]). See Figure 1. Moreover, it holds that
Ry(t,22(t) = (), Vi€ [ty,,T],
Ry(t,Gi(8) = 7i2(t), V1E [tgs,tg]-

(2.48)

Let U = Us(t, z) be the solution of the system (1.1) corresponding to (R;(t,x), R2(t,x)), given

by Lemma 2.8, on the domain {2g.

On the other hand, we consider the Goursat problem in the anti-z-direction for the system
(2.20) with the following characteristic boundary conditions:

on the characteristic Q1 D: x = &1 (t) (¢t € [tg,,T])
Ry = Ry(Us(t,21(1)) 2 A2(0), ¢ € [t4,, T, (249)
on the characteristic Q1Qa: @ = C2(t) (t € [tgs,ty])

=

Ry = Ry(Us(t, (1)) S A1(1), ¢ € [ty tq,]- (2.50)
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Similar to Lemma 2.8, we have

Lemma 2.9  Under the hypotheses (Hi)-(Hy), the Goursat problem (2.20), (2.49)-(2.50) has
a unique C' solution (Ry,Rs) = (Ri(t,z),Ra(t,x)) on the domain Qg enclosed by the straight
line segment Qa4D, the characteristic Q1D: x = &1(t) (t € [tg,,T]) and the characteristic QaQ1:

x=Co(t) (t € [ty,,ty]). See Figure 1. Moreover, it holds that

l

Rl(tv Z(t)) = ’?1(t)7 Vie [tQ47tQ1]7
Rz(tajl(t)) = ’72(75)7 Vite [tQIJT]‘

(2.51)

Let U = Uy(t, z) be the solution of the system (1.1) corresponding to (R;(t,x), R2(t, x)), given

by Lemma 2.9, on the domain 2.

Finally, we consider the Goursat problem in the anti-z-direction for the system (2.20) with the
following characteristic boundary conditions:

on the characteristic AP;: x = x2(t) (t € [0,p,])

Ry = Ri(Un(t,22(1) S (), te0,,], (2.52)
on the characteristic Py Py: = (1(t) (t € [tp,, tp,])

Ry = Ra(Us(t, i (1)) S (), t€ [ty 1] (2.53)
Similar to Lemma 2.9, we have

Lemma 2.10  Under the hypotheses (Hi )-(Hy), the Goursat problem (2.20), (2.52)-(2.53) has
a unique C solution (Ry,Ry) = (Ri(t,z), R2(t,x)) on the domain Qo enclosed by the straight
line segment APy, the characteristic APy : © = x2(t) (t € [0,t,,]) and the characteristic Py Py:
x=C(i(t) (t € [tp,,tp.]). See Figure 1. Moreover, it holds that
Ri(t,z2(t) =n(t), Vte0tp],
Ry(t,Gu(t) = 72(t), Vi€ [ty tp]

(2.54)

Let U = Uso(t, z) be the solution of the system (1.1) corresponding to (Ry (t,z), R2(t,x)), given

by Lemma 2.10, on the domain Q.

Step 7: Piecewise C! solution with four C' contact discontinuities

Now we choose s1(t), s2(t) in (2.23) from the space C1[t,,,] so that the compatibility condi-
tions (2.24)-(2.25), (2.28)-(2.29) and (2.35) are all satisfied and the C° norms of s (t), s2(t) are
bounded by M.
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Define the piecewise C* function

and the piecewise C! curves

Up(t,z),
U=U(t,z) =
Uro(t, ),
{(t2)|z=2&(@) fortel0,t];
={@tz)[z=§(@) fortel0,tp];
{(t,z)| x =& (t) fort € [ty,,T];
{(t,z) |z =&(t) fort € [ty,,T];

for (t,z) € Oy,

(2.55)
for (t,z) € Q10
x=C(t) fort€ [ty tp,]}
T = §~2(t) for t € [tp,,tps]}, (2.56)
x=C(t) fort€ [ty tel}
x=Cot) fort € [ty ty]}-

By the construction of U; (i = 1,---,10), we observe that U = U(t,z) defined by (2.55) is a C!

function out of curves ¢y, ¢, ¢, and f»; meanwhile ¢, (i.e., OFy), L5 (ie., OP;), A (i.e., NQ3) and

0y (i.e., NQ4) are C' smooth curves. See Figure 1.

Figure 1: Domains Q; (i = 1,---

ﬂfzfz(t), P2P3 .

i(t)

D N c
Q
Q 2 Q@2
Q4 Qs
QG Q4 Q3 95
P4 P P3
Qo PN 0, P W
A (0] B

z = ((t), NQi :

z=6(t), Q1Q4

,10); Characteristics: AP : x = x2(t), BP :
x = I2(t), DQ : = = Z,(t); Contact discontinuities: OP; : = = & (t), PLPy :
L= Ez(t), NQZ :

x = x1(t), CQ :
r = Cl(t); OPZ .
r=6(1), QQs: w =

Obviously, U = U(t, z), defined by (2.55), satisfies the system (1.1) on the domain D(T'), but

out of the curves £y, {5, 1 and 5, in the class sense. On the other hand, it is clear that U = U (t, z)

satisfies the condition (1.15).
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In what follows, we show that the curves /; and l71 (resp. €2 and ZZ ) are contact discontinuities
corresponding to A; (U) (resp. A1 (U)).

In fact, we only need to prove that the Rankine-Hugoniot conditions (2.1)-(2.2) hold on the
curves 2 = (1 (t) (t € [tpy,tps])s T = Cot) (t € [tpystps]), T = Ci(t) (t € [tys,ty]) and z = (o(t) (t €
[tgsrtar])-

It follows from (1.8) and (2.53) that

4

A1 (Us (£,6i(1)) = A1 (Ui (,Ci(1) = a(t), V€ [tp,tpl (2.57)

This is just the desired (2.2) for the case k =1 and = = (3 (¢).
We next show that the Rankine-Hugoniot condition (2.1) holds on = = (; ().
By (Hs), we know that, for any fixed ¢ € [t,,,t,,], there exists a C! curve segment U = U (1)

(r € [11,7]) in AV such that
U(n)=Us (t:¢ (1), Ul(r) = Ui (1, (1))

and

M(U((T)=0(t), V7TE€[m,mr]. (2.58)

Differentiating (2.58) with respect to 7 gives

dUu

VAL () o

(r)=0, V7€, (2.59)

By (1.3), (1.5) and (2.59), we observe that %Z (7) is proportional to 7 (U (7)). Then we have

U(t)% (1) =VF (U (1)) % (), V7e[n,mnl.

Integrating this yields the Rankine-Hugoniot condition (2.1) on z = (3 (¢).

Others are similar.

Step 8: Control inputs h;(t) and hy(t)

Finally, we define h; () and hs(t) as follows

—B,(Uio(t,—1),t), as te0,t,],
hi(t) = —By(Us(t,—1),t), as t€ [tpsrtel, (2.60)
—B(Ug(t,—1),t), as tE€ [tg,T]
and
—By(Uz(t,1),t), as te€[0,tp,],
ha(t) = —Bo(Us(t,1),t), as t € [tpy,tel, (2.61)
—By(Us(t,1),t), as t€ [ty,T].



hi1(t) and ha(t) are just the desired control inputs such that the system (1.1), (1.9) possesses a
piecewise C! solution U = U(t, ), containing 4 contact discontinuities and satisfying (1.15), on

the domain D(T'), provided that T' > Ty. Thus, the proof of Theorem 1.1 is completed. O

3 Some remarks and a new application
In this section, we give some important remarks as well as a new application of our theory.

Remark 3.1  Some physical systems always satisfy the hypotheses (Hy)-(Hy), for example, the
system of isentropic gas with the Von Kdrmdn-Tsien pressure law, the system of relativistic gas

dynamics with the relativistic counterpart of the Chaplygin pressure law, etc. (see [5]).

Remark 3.2 Consider general quasilinear system of conservation laws

ou  Of(u)

— =0 3.1

ot + Ox ’ (3.1)
where u = (uq,- - ,un)T is the unknown vector function of (t,z), f: R* — R" is a given C? vector

function of u. Suppose that on the domain under consideration, (3.1) is a non-strictly hyperbolic
system with two characteristics, and each characteristic has a constant multiplicity, say, on the

domain under consideration,

A (1) £ A (u) < ji(u) S Agr (W) = - = Ay (w),

>
flary
—~
<
~—
1l
1l

where 1 <m < n—1. When m > 1 or m < n — 1, the system (8.1) is non-strictly hyperbolic.
In particular, when n >4 and 1 < m < n — 1, the system (3.1) is rich, and A (u), p(u) must be

linearly degenerate (see [9] and [1]-[4]). In this case, the system (3.1) can be rewritten as

6Ri 8Ri — y —
W‘F}\(U Dz =0 (z-l,---,m), (32)
OR; OR; . '
@) B =0 (G=mt L),

where R; (i =1,---,n) are Riemann invariants. For the present situation we have a similar result.

Remark 3.3 Hypothesis (Hs) is a geometric assumption for constructing contact discontinuities
with non-small jumps. It is needed since we do not require that the oscillations ofu(jf(:n), vgt(:n), u% (z),
vE(z) and the jumps |ug (0) —ugd (0)], |vg (0) —vg (0)], [uh(0) —uk(0)], v (0) — v (0)| are small.
If the above jumps are small, then the hypothesis (Hs) is not needed. Moreover, in Theorem 1.1, a
part of contact discontinuities in the solution U = U(t,x) may disappear. If the initial and terminal

functions are continuous at x = 0, then the contact discontinuities in U = U(t,x) degenerate weak
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discontinuities. If the initial and terminal functions are C* smooth on [—1,1], then the solution

U =U(t,x) is also C* smooth, in this case Theorem 1.1 is nothing but the result given in [8].

Remark 3.4  The hypothesis (Hy) is also needful since we do not require that the oscillations
and jumps of the initial and terminal functions are small. If the oscillations and jumps of the
initial and terminal functions are small, then the hypothesis (Hy) is not needed. Moreover, it is
also required in the proof of Theorem 1.1 that the mapping defined by (1.6) is inverse, i.e., we can
solve U from (1.6).

Application to the extremal surfaces in (1 + n)-dimensional Minkowski space-time
We next give a new application of Theorem 1.1.
Let (¢,z,y) be points on (1 + 2)-dimensional Minkowski space-time. A time-like surface takes

the form
y = o(t, ). (3.3)

This surface is called to be extremal surface if ¢ is the critical point of the area functional

1:// 1+ ¢2 — ¢2dudt. (3.4)

The corresponding Euler-Lagrange equation is as follows

<¢> - (L> =0. (3.5)

Notice that, if \/1+ ¢2 — 2 # 0, then (3.5) is nothing but the Born-Infeld equation (see [2]).
Recently, Brenier [3] suggests an equation for extremal surfaces in the 5-dimensional Minkowski
space, which is related to classical Electrodynamics. By prescribing (¢,s) — (¢, s, X(¢,s)) to
be an extremal surface in the 5-dimensional Minkowski space (t,s,x1,x=2,x3) with the signature

(=, +,+,+,+), we know that the area functional is

I= / V10X — 0. X% — |0, X x 0, X |?dsdt. (3.6)

The corresponding Euler-Lagrange equation is

(rar=treeem). (o).
VIH16 P~ 18~ 160 x 6. ) \VI+10al —[8 ~ 160 x 6. ), 57)
( b X (91 X B:) ) _( b0 X (91 X B2) ) o
VI P =10 100 x 6:P ), \VI+10aP — 0P o x 0P ),

where x stands for s in (3.6), and ¢ = (¢1, ¢, ¢3)? represents X in (3.6).
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More generally, we consider a vector function ¢ = (¢ - -+, #,)?, which is the critical point of

the area functional

I'= / V11602 = 16u]? = 102|622 + (t, 6.) 2ddt, (3.8)
where (-, -) stands for the inner product. The corresponding Euler-Lagrange equation is as follows
< o1 ) B
V3I+10e? = [6e]> = 16 [6a]? + (be, 62)? ],
P

V11627 =162 — [0 P16 + (1, 00)
( |9a 2 — (1, 82) e >
V3I+10e? = [0e]> = 166l + (be, 62)? ],
< (D1, )bt — |01 b )
VIH10a — 0P — [0 Pl6al + (912 02)° ) .

Remark 3.5 Whenn =1, the equation (3.9) is nothing but the equation (3.5); when n = 3, the

(3.9)

equation (3.9) becomes the equation (3.7).

Let
U= ¢y, U= (3.10)

Then (3.9) can be equivalently rewritten as

4
ug — v, =0,

v
<¢1 TTaP — 0P —oPF +
u
(\/1 + [uf* = |v]* = [of? |U|2
|u?v — (u, v)u
VI+[uf = o2 = [vl|ul® +
(u, v)v — v[u
V3I+[uP =2 = v [ul? +

(3.11)

V\_/V\_/
+

for smooth solutions. The following lemma comes from [6

Lemma 3.1  If A(u,v) 21+ [u? — |v]? — |v]*|u]® + (u,v)? > 0, then (5.11) is a non-strictly
hyperbolic system with two n-constant multiple eigenvalues:

A

AlE"' A = <)\+—>\n+1E"'E>\2TL7

where
1
1+ |ul?

s = (— () & VT uP? = 0P = [oPTuP + (,0)?) ,

moreover, the system (3.11) is linear degenerate.
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Noting Remark 3.2, under suitable assumptions we can obtain the global exact boundary con-
trollability for the system (3.11) (equivalently, the equation (3.9)) in the class of piecewise C!

functions. For the limited space, we omit the details.
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