Toeplitz Operators, and Ellipticity of Boundary Value Problems with Global
Projection Conditions

B.—W. Schulze

ABsTrACT. Ellipticity of (pseudo-) differential operators A on a compact manifold X with boundary (or
with edges) Y is connected with boundary (or edge) conditions of trace and potential type, formulated
in terms of global projections on Y together with an additional symbolic structure. This gives rise to
operator block matrices A with A in the upper left corner. We study an algebra of such operators,
where ellipticity is equivalent to the Fredholm property in suitable scales of spaces: Sobolev spaces
on X plus closed subspaces of Sobolev spaces on Y which are the range of corresponding pseudo-
differential projections. Moreover, we express parametrices of elliptic elements within our algebra and
discuss spectral boundary value problems for differential operators.
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Introduction

Ellipticity of differential (and pseudo-differential) operators on a manifold X with boundary Y = 0X
is connected with a specific control of data near the boundary. More generally, ellipticity on a manifold
with edges or with higher (say, polyhedral) singularities includes conditions on the lower-dimensional
strata (e.g., edges, corners, etc.) of the configuration.

Such conditions may occur as trace or potential operators, linked to the singularities.

It is a common point of view to interpret A together with the trace and potential conditions as
operator block matrices A4 (with A as upper left corner) and to construct an algebra of such block
matrices that contains the parametrices of elliptic elements, see Vishik and Eskin [50], Eskin [11], Boutet
de Monvel [6], Rempel and Schulze [30], [31], or Schulze [38]. In many known cases this is a transparent
and satisfying concept. The operators A then have a principal symbolic hierarchy o(A), and in simplest
cases, ellipticity is invertibility of all components of o(A), where parametrices belong to o 1(A).

To illustrate phenomena we first consider the case of boundary value problems for elliptic differential
operators A on a compact C°° manifold X with boundary Y with Shapiro-Lopatinskij elliptic conditions
(also called SL-ellipticity in this paper).
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By a boundary value problem in standard form we understand an equation Au = f, together with
boundary conditions Tu = g, where A : C*°(X,E) - C®(X,F) for E,F € Vect(X), is a given differ-
ential operator of order p and T' = *(T},...,Tn) a column vector of trace operators T : C*°(X,E) —
C>*(Y,G;), for G; € Vect(Y), j = 1,...,N. Here Vect(:) denotes the set of all smooth complex vector
bundles on the space in the brackets. The operators T are assumed to be given in the form T; = 1'Bj,
where 1’ is the operator of restriction to the boundary, and B; : C*°(X, E) — C*(X, CNJJ) are differential
operators of order p;, with C~¥j € Vect(X), G; := éj|y, j=1,...,N. The column matrix operator

A C®(X,F)
(0.1) A= <T> :C°(X,E) — N ®
@j:1 c(Y, Gj)
then extends to continuous operators
Hs~"(X,F)
(0.2) A:H(X,E) —» S

@, Ho " 5(Y,G))

between the respective Sobolev spaces of distributional sections for all real s > max(u; + % ). The principal
symbolic hierarchy in this case consists of two components, namely

(0.3) 0(A) = (9y(A),00(A)),

where 0y (A) := oy (A) is the standard homogeneous principal symbol of A of order p, also called the
principal interior symbol, which is a bundle morphism

(0.4) oy(A) :7xE — wx F,

mx : T*X\0— X, and 05(A) is the principal boundary symbol of A. To give a definition of the principal
boundary symbol we first look at A. Let us fix a collar neighbourhood = Y x [0,1) of the boundary in
the local splitting of variables z = (y,t) € Q x [0,1), @ C R*! open, with covariables £ = (n, 7). (For
convenience, transition diffeomorphisms near the boundary are assumed to be independent of ¢.) We then
have a family of continuous operators

(0.5) 0o (A)(y,n) = 0y (A)(y, 0,1, De) : C* @ H*(Ry) = C @ H*7H(Ry.)

for (y,n) € T*Q\ 0, acting in Sobolev spaces H*(R; ) := H*(R)|r, in normal direction to the boundary;
k and [ are the fibre dimensions of E and F', respectively. Using the invariance of (0.5) under transition
maps we obtain a bundle morphism

(0.6) oo(A) 17y E' @ H°(Ry) — 73 F' @ H°(Ry),

my : T*Y \ 0 = 0, where prime indicates the restriction of the corresponding bundle to the boundary. In
a similar manner we can proceed for the trace operators T; = r'B; and obtain

05(Tj)(y,n) := 1’0y (B;)(y,0,m,Ds) : C* © H¥ (R, ) — C
for (y,n) € T*Q\ 0, where [; is the fibre dimension of G;. Globally, we have again bundle morphisms
op(Tj) : 7y B' @ H*(Ry.) = ny Gy,
j=1,...,N, and we set altogether

, Fl o HH(R,)
(0.7) os(A) = (UZE;D vy E' @ HY(R.) — 7} g

for 05(T) := Y05(T1),...,05(Tn)) and G := B}, G;.

A boundary value problem A is called SL-elliptic, if (0.4) is an isomorphism, and if also (0.7) is an
isomorphism for any sufficiently large real s. If we talk about the operator A alone, the first condition
will also be referred to as oy-ellipticity of A.
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The choice of s is unessential for the condition of SL-ellipticity. Moreover, (0.7) is an isomorphism if
and only if

B F'® S(Ry)
(0.8) oo(A) : 7y E' @ S(Ry) — 7y ®
G

is an isomorphism, S(R;) := S (R)|R+' Simple examples for SL-elliptic boundary value problems are the
Dirichlet or the Neumann problem for Laplace operators.
Let us now observe the specific homogeneity of boundary symbols. For u(t) € H*(R}) we set

(0.9) (kaw)(t) == AZu(At),  AER,.

In this way we obtain a strongly continuous group {x }xer, of isomorphisms on the space H*(Ry ) (here,
if H is a Hilbert space, a group {kx}aer, of isomorphisms k) : H — H, A € Ry, with kxr, = k), for all
A, 0 € Ry, is called strongly continuous, if kxh € C(Ry, H) for every h € H).

It can easily be verified that

(0.10) oo(A) (Y, An) = Mrrca(A)(y,m)ky "
for all A € R;. Similarly, we have
(0.11) o (T5)(y, \p) = Y' N kxoa(B)) (y, ey = N9 205(T)) (y, 1)Ky

for all A € Ry, where we empoly the relation r’' o k) = Az’ for the corresponding operators on functions
in ¢ on the half-axis. This gives us

(0.12) 00 (A)(y, An) = diag(Mrx, AL T2, A T 2)aa(A) (y, n)ey !

as the homogeneity of boundary symbols.

On the manifold X we fix a Riemannian metric that is equal to the product metric from ¥ x [0,1) in
a collar neighbourhood of Y. We then have the absolute values of covectors on X and Y in an invariant
way.

It is often convenient to unify the orders of trace operators by composing them from the left by
classical pseudo-differential operators R; on Y of order pp — p; — % with homogeneous principal symbol
|p|hi idy; G, , such that

R : H M~ 3(Y,Gy) — H**(Y,Gy)

are isomorphisms for all s. Such a choice of R; is always possible; we then talk about a corresponding
reduction of orders on the boundary.

Set 05(R;T5)(y,n) = |n|“*“i*%03(Tj)(y,n). We now replace the former T' by *(R,Ty,..., RNIN)
and denote the new boundary value problem again by A4 = (’141) This gives us continuous operators

H*#(X, F)
(0.13) A HY(X,E)—» @
He=1(Y,G)
for all sufficiently large s.
For the boundary symbol o5(A) we have
0 —
(014 o) = (5 ) ooy

for all A € Ry, (y,nm) € T*Y \ 0, where 1 is the identity map in 7} G.

There is now the following natural question. Given a oy-elliptic differential operator A : H*(X,E) —
H**(X,F) on X, does there always exist an SL-elliptic boundary value problem A = (%) with a suitable
trace operator T'? The answer is negative, ‘unfortunately’ for many interesting geometric operators, e.g.,
Dirac operators in even dimensions, in particular, for the Cauchy-Riemann operator in the complex plane.
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For the existence there is a well known condition of Atiyah and Bott [3] that we want to recall here. First
note that when A is oy-elliptic, the boundary symbol

(0.15) 0o(4) : 7 B @ HY(Ry) = 73 F' @ H* " (Ry)

is a family of Fredholm operators (surjective in the case of differential operators). Let S*Y be the unit
cosphere bundle induced by T*Y with the canonical projection m; : S*Y — Y. The restriction of (0.15) to
S*Y gives us a family of Fredholm operators parametrised by the compact set S*Y. As such it represents
an index element in the K-group of S*Y, namely

(016) indg+y 0'3(14) € K(S*Y),

cf. [2] and Section 2.1 below. In the present case, Ly := keros(A) is a vector bundle on 7T*Y \ 0,
and we have indg«y 05(A4) = [Ly|s+y], where [...] denotes the element in the K-group on S*Y, repre-
sented by the bundle in the brackets. Now if there is an SL-elliptic boundary value problem A for A,
i.e., the corresponding boundary symbol (0.7) is an isomorphism, we have necessarily kerg-y os(A) :=

U(y,n)eS*Y kerog(A)(y,n) = G, ie.,
(0.17) indg«y 09(A4) € 1y K(Y),

where 7} : K(Y) = K(S*Y) is the pull-back of K-groups under the projection m; : S*Y — Y. In other
words, (0.17) is a necessary condition for the existence of an SL-elliptic operator A for a oy-elliptic A.

As noted before, the condition (0.17) may be violated. We also talk about a topological obstruction
for the existence of SL-elliptic boundary value problems. The criterion of Atiyah and Bott says that (0.17)
is also sufficient for the existence of an SL-elliptic A (in a slightly more general context, connected with
a stabilisation that we shall see more explicitly below in connection with pseudo-differential boundary
value problems, cf. Section 2.1 below.)

Boundary value problems for the case with non-vanishing obstruction for oy (A) have been studied by
many authors before, in particular, by Calderén [8], and Seeley [48] (more references will be given below),
and there have been discovered many relations to other classical areas, in particular, to the Riemann-
Hilbert problem (and its various generalisations), Toeplitz operators, index theory, spectral theory, and
geometric analysis.

Among the essential observations there is the aspect that Fredholm operators of the form (0.13)
(which are adequate for the SL-elliptic case) have to be replaced by Fredholm operators

Hs1(X, F)
(0.18) A:H¥(X,E) - @
Psr(Y,L)

for a new scale of closed subspaces P*(Y,L) of H*(Y,J), s € R, which are defined as the image under
a projection Py : H*(Y,J) — H*(Y,J) for a suitable element J € Vect(Y), where P, € LY (Y; J,J)
is a classical pseudo-differential operator of order zero (acting between distributional sections in J), cf.
Schulze, Sternin and Shatalov [45]. Here L denotes the triple (Py,.J, L), where L € Vect(T*Y \ 0) is
the image of w} J under the projection p; : myJ — wy J, the homogeneous principal symbol of Py; the
symbolic calculus of classical pseudo-differential operators gives us pi = p, as a consequence of P? = P, ,
such that L is a subbundle of 7j,J. A well known theorem says that for every subbundle L C 7§-J and
every choice of a projection p, : 7y J — L that is homogeneous in 1 of order zero there is an associated
projection Py € L%(Y;J,J) with p; as homogeneous principal symbol (we will give a proof in Section
1.1 below).

In the present exposition we shall extend an approach of the author [39], where operators of the form
(0.18) have been completed to an algebra of block matrix operators

HY(X,E) H*MX,F)
(0.19) A= (ﬁ g) e - @
PS(Y,L_)  Psh(Y,L,)
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by conditions of trace and potential type T" and K, respectively, connected with suitable triples Lo =
(Px,Jx, Ly) of a similar meaning as before. The operator () is a Toeplitz operator on Y, see the termi-
nology in Section 1.1 below. Starting point will be an algebra B(X) of operators of the form

4 R\ HUX.E)  HUHXF)
(0.20) A:<~ ~>: o - o
T Q) mw, 1) HY,J,)

that are (classical) pseudo-differential boundary value problems on X with the transmission property at
Y, cf. Boutet de Monvel [6] or Rempel and Schulze [30]. The operators (0.19) will be compositions

[ A KR_
(0.21) A= (Pj P@R) ,

where R_ : P*~#(Y,L_) — H*(Y, J_) is the canonical embedding, and P} : H5"*(Y, Jy) — P*#(Y,L; )
is one of the chosen projections. Operators of the form (0.21) will be called boundary value problems for
A with global projection conditions. In Section 1.2 we give a brief overview on the algebra B(X) including
its symbolic structure. B(X) will be a subalgebra of the larger algebra of operators (0.21). In fact, for
the case P+ = id, L+ = J1 we just recover the case (0.20).

Elliptic operators A on a manifold with boundary from the point of view of global projection condi-
tions are of interest on their own right. On the other hand, manifolds with boundary may be viewed as
particular manifolds with edges, where the boundary is the edge and the inner normal the model cone
of a wedge. In general, wedges with non-trivial model cones (i.e., when they have a base of dimension
> 0) locally describe manifolds with edges. In such a case ellipticity is also connected with edge operators
of trace and potential type, and there is again a topological obstruction for the existence of SL-elliptic
conditions, cf. [34, Section 3.3.5, Proposition 10]. Similar phenomena may be expected on manifolds with
higher (say, polyhedral) singularities with a hierarchy of obstructions for SL-elliptic conditions on the
lower-dimensional strata. In all those cases it makes sense to construct operators with global projection
data when the corresponding obstructions do not vanish. A joint paper of the author with Seiler [43]
treats the case of manifolds with egdes. A substructure with special features is the case of boundary value
problems without the transmission property, contained in the author’s joint paper with Seiler [44].

A large variety of examples of edge-degenerate differential operators with non-vanishing obstruction
is constructed in Nazaikinskij, Schulze, Sternin and Shatalov [26]. In another article [27] the authors
study the K-theoretic nature of the topological obstruction in general.

In the present paper we will not discuss the aspect of edge operators in detail; this is another
fascinating branch of the development of operators with global projection conditions and their index
theory. Let us conclude this introduction by references for the case of smooth manifolds with boundary,
namely Atiyah, Patodi and Singer [4], Melrose [25], Booss-Bavnbek and Wojciechovski [5], Grubb and
Seeley [16], Schulze, Sternin, and Shatalov [45], Schulze and Tarkhanov [46].

Acknowledgement: The author thanks T. Krainer and N. Tarkhanov of Potsdam as well as V.
Nazaikingkii and B. Sternin of Moscow for valuable remarks on the manuscript.

1. Elements of the classical calculus of boundary value problems

1.1. Pseudo-differential and Toeplitz operators on a closed manifold. Let M be a closed,
compact C'*° manifold, m = dim M, with a fixed Riemannian metric and an associated measure dzx.
Complex smooth vector bundles on M are assumed to be equipped with Hermitian metrics. For every
E, F € Vect(M) we then have the space L?(M, E) of square integrable sections in E with a corresponding
scalar product. Moreover, we have the scale H*(M, E), s € R, of distributional sections in E of Sobolev
smoothness s, where we identify H°(M, E) with L?(M, E).

Let EX F € Vect(M x M) be the external tenser product of bundles E, F' € Vect(M), i.e., ERF :=
(piE) ® (p5F) with the projections p; : (x1,22) = x;, M x M — M, to the j th component, j = 1,2.
We identify the space C*°(F K E*) (where E* is the dual bundle of E) with the space L=>°(M; E, F') of
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all operators K : C*°(M, E) — C*° (M, F) which have kernels ¢(z,7) in C*°(F K E*), i.e

(L.1) Ku(z) = /M(c(w,f),u(i))E dz,

where (-,-)p means the fibrewise pairing between E* and E.
We now recall some definitions and results from the standard pseudo-differential calculus on a man-
ifold.

DEFINITION 1.1. (i) The space S#(U x R™) for p € R, and U C R™ open, is defined to be the
subspace of all a(z,&) € C*°(U x R™) such that

(1.2) |DgDZa(x, )| < e 17!

for all « € N 8 € N* and (z,€) € K x R" for all KGZU, with constants ¢ = ¢(«, 3, K) > 0;
here (¢) := (1 4+ |€]*)*/2. The elements of S#(U x R") are called symbols of order .

(i) SW(U x (R* \ {0})) denotes the space of all ag,(z,&) € C®(U x (R* \ {0})) such that
agy (T, AE) = Mag,)(z,§) for all X € Ry, (z,8) € U x (R* \ {0}).

(iii) An excision function x(§) in R™ is any element of C°°(R™) such that x(§) =0 for 0 < |¢| < o,
x(&) =1 for ¢; < |€] with certain constants 0 < ¢p < ¢1.

(iv) A symbol a(z,§) € S”(U x R") is said to be classical, if there are elements a(,_j (z,§) €

S(H—j)(U x (R™\ {0})), j € N, such that
Zx Ay (@,6) € S~V x RY)

for every N € N, where x(¢) is any excision function. Let S5 (U x R™) denote the space of all
classical symbols of order p.

Let  C R™ be open, and set
Lf‘cl)(ﬂ) :={Op(a) : a(z,',§) € S(Cl)(ﬂ x Q x R")},

where Op(a) = [[ == q(z, o', E)u(a") dz' @€, A = (2m) ™ d€, subscript ‘(cl)’ means that we talk
about classu:al or non-classical symbols and operators, respectively. As usual, Op(a)u(z) makes sense in
the oscillatory integral sense, first as a continuous map: Op(a) : C§°(2) — C*°(Q), and then extended to
larger function and distribution spaces.

For A € L(Q) we set

oy (A)(,€) = ag (@, 2", &) |er=a,

(cf. the notation in Definition 1.1 (iv)) called the homogeneous principal symbol of order p of the operator
A.
Let Lf‘d)(ﬂ; ¢, CF) denote the space of all k x j matrices of elements in L( y(Q), and let £ and F

be vector bundles on M of fibre dimension j and k, respectively, with trivialisations Q x ¢ and Q x C*
for open sets @ C R™, with transition maps

(1.3) Moo X T - Qx T, ¥5,:0xCF - QxCt

for open (, Qc R™, with an underlying coordinate diffeomorphism x : 2 — Q. We then have a push-
forward

Li, (€, CF) — Ly (0,0, C)

of operators A : C5°(Q,C/) — C®(€,C*) to operators A : C°(Q,CF) — C=(Q,C*) when we set
A= TﬁQAH(;é’ where Hgq, : C5°(Q,0) = C5°(Q, T ) and Tg, : C(Q,CF) — C>°(2, C*) are the iso-
morphisms induced by (1.3). To every chart x : D — € on M we thus obtain the spaces Lfbcl) (D; E|p,F|p)
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of pseudo-differential operators on D, acting between sections in the bundles E and F'. Set

(14) Ll (M;E,F) {Z piAj; +C i Aj € Ly (D3 Elp,, Flp,),
j=1
Ce L*W(M;E,F)},
where {D1, ..., Dy} is an open covering of M by coordinate neighbourhoods (say, diffeomorphic to balls),

{¢1,...,pn} asubordinate partition of unity, and {¢1,...,¥n} a system of functions ¢; € C§°(D;) that
are equal to 1 on supp p; for all j.

REMARK 1.2. Lé‘ o (M; E, F) is a Fréchet space in a natural way.

Let A€ LY\(M; E,F), and let (A,4)1<p<j,1<q<k be a local representative of A on Q2. Then the system
of matrices (o (Apg))1<p<ji<q<k has an invariant meaning as a bundle morphism
(1.5) oy(A) : Ty E =y F,
called the homogeneous principal symbol of A; here, war : T*M \ 0 — M is the canonical projection of
the cotangent bundle of M (minus the zero section) to M.

Let S (T*M \ 0; E, F) denote the set of all morphisms P(p) : Tae B2 — my F such that pe,)(z, ) =
Aoy (w,€) for all (z,8) € T*M \ 0, A € Ry

ProprosiTION 1.3. The principal symbolic map
(1.6) oy : LM(M;E, F) — SW(T*M \ 0; E, F)
is surjective, and there is a linear map
(1.7) op: SW(T*M\ 0;E,F) - LV,(M;E,F)
such that oy o op = id.

A choice of (1.7) directly follows from the existence of local operators in L (€; T/, C*) associated

with principal symbols that correspond to local representations of a given element in S (T* M \0; E, F);
a subsequent globalisation, according to the expressions in (1.4), then gives us (1.6).

THEOREM 1.4. Let M be a closed, compact C*° manifold.
(i) Bvery A € L*(M; E,F) for E,F € Vect(M) induces continuous operators

(1.8) A:H*(M,E) — H"M(M,F)
for all s € R.
(ii)) A€ LE(M;E,F) and oy(A) = 0 implies A € Lé‘fl(M;E,F), and hence the operator (1.8) is
compact.

(iii) Ae L Cl)(M;EO,F) Be L(Cl)(M;E,EO) for E  Ey, F € Vect(M) implies AB € LfCT)V(M E F).
In the classical case we have

(1.9) 0y (AB) = oy (A)oy (B).
(iv) Let A € Lf‘cl) (M; E,F), and let A* denote the formal adjoint of A (defined by (Au,v)p2(p,F) =

(u, A*0) p2(m,p) for all w € C*(M,E), v € C®(M,F)). Then we have A* € L ( i FLE)
and, in the classical case,

(1.10) oy (A7) = 0y (4)7,
(the adjoint on the right hand side refers to the Hermitian metrics in the bundles.)
In the sequel we mainly concentrate on classical pseudo-differential operators.

DEFINITION 1.5. Let A € L, (M;E,F), p € R, E, F € Vect(M).
(i) The operator A is said to be elliptic (of order p), if oy (A) : 73, E — 7}, F is an isomorphism.
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(ii) Anoperator P € L_"(M;F, E) is called a parametrix of A, if P satisfies the following relations:
(1.11) C,=1-PAe L (M;E,E), C,:=I-AP ¢ L~®(M;F,F),
where I denotes the corresponding identity operators.

Notice that when P is a parametrix of A, we have oy (P) = oy (A) L.

Moreover, if A is elliptic, so is the formal adjoint A*.

We call an operator A € LY (M; E, F) underdetermined (overdetermined) elliptic, if oy (A) : 73, E —
iy F is injective (surjective).

REMARK 1.6. (i) A € LE(M;E, F)isunderdetermined elliptic if and only if A* € LY (M; F, E)
is overdetermined elliptic.
(i) If A is underdetermined (overdetermined) elliptic, then A*A € L2(M; E, E) (AA* € L2(M; F, F))
is elliptic.

THEOREM 1.7. Let A € LY(M;E,F), pn € R, E,F € Vect(M).

cl

(i) The operator A is elliptic (of order ), if and only if
(1.12) A: HS(M,E) - H""(M, F)
is a Fredholm operator for an s = sy € R.
(il) If A is elliptic, (1.12) is a Fredholm operator for all s € R, and dimker A and dim coker A are

independent of s. We have V :=ker A C C*°(M, E), and there is a finite-dimensional subspace
W C C®(M,F) such that

W +im A = H*#(M, F)
and W Nim A = {0} for every s € R.
(iil) An elliptic operator A has a parametriz P € Lj"(M; F,E), cf. Definition 1.5 (ii), and P can
be chosen in such a way that the remainders in the relation (1.11) are projections
C:H(M,E)—»V, C,:H MMF)—W
to subspaces V. and W as in (ii) for all s € R.

As a consequence of Theorem 1.7 (ii) we see that the index of A
ind A := dim ker A — dim coker A

is independent of s.

Theorem 1.7 (iii) yields elliptic regularity of solutions u € H~*°(M, E) to an elliptic equation Au =
feH(M,F), s € R namely u € H*T#(M, E). In fact, using a parametrix P of A as a left parametrix,
we obtain PAu = Pf € H*#(M, E), but C; = I — PA implies PAu = u — Cju where Cju € H* (M, F),
and it follows that u = Pf + Cyu € H¥ # (M, F).

The latter consideration gives us, in particular, V = ker A C C*°(M, E). Moreover, the relation
ker A* +im A = H* #(M, F) (which is a direct decomposition, i.e., ker A* Nim A = {0}) allows us to set
W =ker A* C C*°(M, F), cf. Theorem 1.7 (ii).

The assertions of Theorem 1.7 (ii), (iii) have an abstract background which will be useful in other
situations below.

We consider operators A between Hilbert spaces that belong to scales {Hf}ser, where first

(1.13) A HP - HY®

is continuous, H® := [),cg H;. To every A there is an order 4 € R and a constant ¢ > 0 such that (1.13)
extends to continuous operators

(1.14) Ay H} - Hy "

for all s > ¢ (the aspect with the constant ¢ = ¢(A) is not relevant for Theorems 1.4 and 1.7, but in
boundary value problems it will play a role). If it is clear from the context which s is considered for the
operator, we also write A instead of Ag.

We then assume the following properties:
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(i) There are continuous embeddings Hf < H? for s' > s that are compact for s’ > s.
(ii) The space H® is dense in H? for every s € R, i =1, 2.
(iii) If V. C H®, i = 1,2, is a finite-dimensional subspace and Cy : H? — V a projection, then Cy
induces continuous operators Cy : H7 — V for all s > ¢ for some ¢ € R.
(iv) (1.13) extends to a Fredholm operator (1.14) for all s > ¢, and there is a continuous operator

P:HP - H®
that extends to a parametrix
P,_,:H; " — H
of A for every s > ¢, i.e., the remainders
Csy:=1-PFP,_, Ay, Co—pri=1—-A,P_,,
induce continuous operators
Cs;: HY = H{°, Co_pyr Hy " — HY®
for all s > c.
REMARK 1.8. Under the abovementioned conditions the dimensions of ker A; and coker A; of the

Fredholm operator A : Hf — H, " are independent of s > ¢, we have V := ker A; C H{°, and there is a

finite-dimensional subspace W C H$° such that W +im A; = Hy ", W Nim A, = {0} for every s > c.
Moreover, the parametrix P can be chosen in such a way that the remainders

C,=1-PA, C.=1—-AP
are projections to V and W, respectively.

For references below we now prepare some well known material on parameter-dependent pseudo-
differential operators. First we have the Fréchet space L=°°(M; E, F') of smoothing operators on M, and
we set

L™(M; E,F;R') = S(R', L=°(M; E, F))
which is the space of smoothing parameter-dependent operators (between sections of E, F' € Vect(M)).

The space
. -l
L?(;])(MzEaFa]R)
of parameter-dependent pseudo-differential operators of order y is defined in a similar manner as (1.4),
now for C(\) € L=°(M; E,F;R') and A;(\) € Lt (Dj; E|p,, F|p,;R"), where the latter spaces are

(c1)
operator pull backs under charts x; : D;j — € of operators on (2, with matrices of amplitude functions

aj(@,a',§,A) € iy (2 x Q2 x ReED.
THEOREM 1.9. For every A(\) € L*(M; E,F;R') and v > p we have

(L+]AD* for v >0,
WA 2ts (X, ), 12— (x,F)) < C{ 1+ D) for v<0

for constants c = cs, > 0.

For classical parameter-dependent operators A(A) € LY\ (M; E, F; R') we have a parameter-dependent
homogeneous principal symbol (1.5), now for the projection
mar s (T*M x RD)\NO— M (0 means (&,)) =0).

In this case, 0y (A)(x, &, A) is defined in terms of the homogeneous principal components of local amplitude
functions in (§,A) #0 (at © = ).

DEFINITION 1.10. An A(\) € LY (M; E, F;R') is called parameter-dependent elliptic (of order y), if
oy(A) : 7y E — my F

for mps : (T*M x R') \ 0 — M, is an isomorphism.
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THEOREM 1.11. Let A(\) € L (M; E,F;R') be parameter-dependent elliptic (of order p).
(i) Then
(1.15) A\ : H3(M,E) - H* (M, F)
is a family of Fredholm operators of index 0. Moreover, there is a constant C' > 0 such that the
operators (1.15) are isomorphisms for all |\| > C. This holds for all s € R.
(ii) A(X\) has a parameter-dependent parametriz P(\) € LJ"(M;F,E;R'), i.e., I — P(\)A(\) €
L~®(M;E,E;R), I — AN)P(\) € L-®(M; F,F;R).

THEOREM 1.12. For every p € R there ewists an element Ry,(\) € LE(M;E,E;R') that induces
isomorphisms
RiE(N) : H*(X,E) - H"(X,E)
for all s € R and X € R'.

We now turn to an extension of the concept of classical pseudo-differential operators LY (M; E, F') to
so called Toeplitz operators, acting between closed subspaces of Sobolev spaces on M. A crucial technical
point is the following result:

THEOREM 1.13. Let p : wi,J — w3, J, J € Vect(M), be a projection, i.e., p*> = p, where p(z, \§) =
p(x,§) for all (z,§) € T*M\0, X € Ry . Then there exists an element P € LY (M;.J, J) such that P?> = P,
and oy (P) = p.

Moreover, if p satisfies the condition p = p*, there is a choice of the associated pseudo-differential
projection P € LY (M; J,J) such that P = P*.

COROLLARY 1.14. To every J € Vect(M) and every subbundle L C 7y, J there is an element P €
LY (M;J,J) such that P? = P, where oy (P) : wh,J — wi,J is a projection to L.

The proof of Theorem 1.13 is based on the following general construction. Let H be a (complex)
Hilbert space, £(H) the space of linear continuous operators, XC(H) the subspace of compact operators
in H. We then have the Calkin algebra £(H)/K(H) and the corresponding canonical map = : L(H) —
L(H)/K(H).

LEMMA 1.15. Let p € L(H)/K(H) be an element with p* = p, and choose any Q € L(H) such that
7@ = p. Then the spectrum o) (Q) of Q has the property that

ocm) (@) N(C\ ({0} U{1}))
is discrete.

PROOF. First observe that p? = p implies oz (p) € {0} U{1}. In fact, for A € C\({0}U{1}) =:
U there exists the inverse (Ae —p)~! = p(A — 1)~ + (e — p)A~!, where e € L(H)/K(H) is the identity,
e = «l for the identity I € L(H). Now U 3 A = A — @Q € L(H) is a holomorphic Fredholm family in
U, and AI — @ is invertible in £(H) for |A| > ||Q||z(m)- A well known invertibility result on holomorphic
Fredholm families (cf. [34, Section 2.2.5] for a proof) implies that AI — @ is invertible for all A € U \ D for
a certain discrete subset D (i.e., D is countable and D N K finite for every compact subset K C U). O

ProOOF OF THEOREM 1.13. From Lemma 1.15 we see that there exists a 0 < § < 1 such that the
circle C5 := {A € C: |A— 1| = ¢} does not intersect o, (f)(Q). Setting
(1.16) P:= i (M — Q)™ dA

211 Cs

we obtain P? = P and P € LY(M;J,J) as a consequence of the holomorphic functional calculus for
LY (M; J, J). Moreover, we have

oyp(P)==— [ (Ae—p)~td\
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The second summand on the right hand side vanishes, while the first one is equal to p by the Residue
theorem.

To prove the second part of Theorem 1.13 we suppose p = p*. Then, if P, = P? € L (M;J,J) is any
choice with oy (P1) = p, also Q := Py Py € LY(M; J,J) satisfies 0,,(Q) = p*p = p? = p. For Q we have
Q = Q* > 0. Let n be the spectral measure of Q. Then the projection P € L% (M; J,J) defined by the
formula (1.16) is equal to the spectral projection

n(Bs(1) N UL:(L2(M,J))(Q)) for Bs={AeC: |[A—-1] < }.
In particular, we have P = P* = P? and oy (P) = p as before. O

REMARK 1.16. The above construction of projections has a more general functional analytic back-
ground. If ¥ is a Fréchet operator algebra with a given ideal Z, there is a lifting of idempotent elements
of /7 to idempotent elements in ¥, provided some natural assumptions on the operator algebra are
satisfied, cf. Gramsch [14]. In particular, for ¥ = L (M;J,J) and Z = Lal(M; J, J) the space ¥/7 is
isomorphic to the space of homogeneous symbols of order zero. The general theory gives a characterisa-
tion of the space of all idempotent elements P € LY (M; J,J) which belong to the connected component
of a given idempotent P; € L% (M;J,J) and have the same homogeneous principal symbol as P;. The
result says that all those P have the form GP,G~!', where G varies over the connected component of the
identity in the group {I + K € ¥~': K € L;'(M;J,J)}, where ¥~! denotes the group of invertible
elements of LY (M; J, J).

PROPOSITION 1.17. Let H be a Hilbert space, and let P,Q) € L(H) be projections such that P — @ is
a compact operator. Then the restrictions of P to im Q) and of @ to im P are Fredholm operators

FPg :im@Q — im P, Qp:imP —imQ
between the respective closed subspaces of H, and Qp is a parametriz (i.e., a Fredholm inverse) of Pg.

PRroOOF. The operator Q) acts as the identity on im ). Therefore, we have
QPPQ —1= QPPQ — Q2 = QP(PQ — Qp) : 1mQ — iIIlQ,

i.e., QpPg —11is a compact operator in im (). It follows that Qp is a Fredholm inverse of Pg, and we see
that both Pg and @Qp are Fredholm operators. O

Let
(1.17) ind(P, Q)
denote the index of Pg :im ) — im P. We then have
(1.18) ind(P, Q) = —ind(Q, P).

For every L € Vect(T*M \ 0) there is a J € Vect(M) and a projection p : 7} J — L with the property
p(z,\, &) = p(z,€) for all (z,€) € T*M \ 0, A € R,. It suffices to set J = CV (the trivial bundle with
fibre CV) for sufficiently large N.

Set

P(M):={L:=(P,J,L): PeLY(M;J,J),P*=P,
(1.19) J € Vect(M),L =imoy(P)}.
Incidentally, the elements of P(M) will be called projection data on M.
EXAMPLE 1.18. (i) For every J € Vect(M) we have
(id, J, 7y J) € P(M).
(ii) For L := (P, J,L), M := (Q,G, M) € P(M) we have
LoeM:=(PaQ,J®G, Lo M) e P(M),

the direct sum for bundles is defined as usual. We then have LY (M,J & G) = LY (M, J) &
LY%(M,Q), and P & Q in the latter space is again a pseudo-differential projection.
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(iii) For every L := (P,J,L) € P(M) we have a complementary element L+ € P(M) in the sense
that L Lt = (id, J, w4, J). In fact, it suffices to write 7%, J in the form L@ L+ for a subbundle
L+ of w,J such that L+ = (1 — P, J,L}).

(iv) For L = (P, J,L) we can form an adjoint L* := (P*, J, L*) by defining P* € L%(M; J, J) to be
the formal adjoint of P, cf. Theorem 1.2 (iv), which is again a projection, and L* := oy (P*)7ny. J.

Every element L. = (P, J, L) € P(M) gives rise to continuous operators
P:H*(M,J)— H*(M,J),
s € R, and we set
(1.20) Ps(M,L) := PH*(M,J)

which is a closed subspace of H*(M, J). In fact, P*(M,L) is equal to the kernel of I — P : H¥(M,J) —
H (M, J).

ProrosiTION 1.19. We have continuous embeddings
(1.21) P¥(M,L) < P*(M,L)
for all s' > s that are compact for s' > s.

PRrOOF. The inclusion in (1.21) is clear; the compactness follows from the fact that (1.21) may be
written as a composition PC with the compact embedding C' : P* (M, L) — H*(M,J) and the continuous

projection P : H*(M,J) — P*(M,L). O
PROPOSITION 1.20. (i) The space P>°(M,LL) = (,cp P°(M, L) is dense in P*(M,1L) for every
s€R.

(ii) Let P°(M;L) be equipped with the scalar product from H°(M,J) = L*(M, J), let V C P>(M,L)
be a finite-dimensional subspace. Then the orthogonal projection Cy : P°(M,L) — V induces
continuous operators Cy : PS(M,L) — V for all s € R, and Cy is compact as an operator
P$(M,L) — P*(M,L) for every s € R.

Proor. (i) Every u € P*(M,L) can be written as u = Pv for a v € H*(M,J). Since C*(M, J)
is dense in H®(M, J), there is a sequence (v, )neny C C® (M, J) such that v = lim,_, v, in H*(M, J).
From the continuity of P we get u = lim, o0 uy, for u, := Pv, € P*(M,L), and hence P> (M,L) is
dense in P*(M,L) for every s.

(ii) V € C>(M,.J) is a finite-dimensional subspace. Hence, every projection Cy : H*(M,J) — V
represents a compact operator Cy : H*(M,J) — H*(M,J) for every s € R. The projection Cy :
Ps(M,L) — P*(M,L) can be extended to a projection Cy := CyP : H*(M,J) — H*(M,J) that is a
compact operator. Thus, also 5‘/:: PCy : H* (M,J) — P*(M,L) is compact. The operator C itself can
be written as a composition Cy =Cy R, where R : P¥(M,L) — H®(M,.J) is the canonical embedding.
Hence, also Cy is a compact operator. |

DEFINITION 1.21. Let Ly := (P4, J4,Ly), Lo :=(P-,J_,L_) € P(M), and let R_ : P*(M,L_) —
H?(M, J_) denote the canonical embedding (given for every s € R). Then the composition

(1.22) A:= P AR_

for A € LE(M;J_, Jy) is called a Toeplitz operator on M of order p. Let T*(M;L_,L; ) denote the set
of all Toeplitz operators (1.22) associated with Ly € P(M). Set

T=%(M;L_,L;):={PyAR_: Ae L=(M;J_,J)}.

REMARK 1.22. The space T#(M;L_, L} ) can be identified with the quotient space L!;(M; J_, J;)/ ~,
where Zl ~ Zz means P+111P_ =P, AP_.
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REMARK 1.23. Let A € L“(M;J_,J,) and form A = Py AP_ € L"(M;J_,J,). Then we have
P.AR_ =P, AR_.

REMARK 1.24. Let A € L (M;J_, Jy), and choose elements L_, L and Ly, L+ in P(M) that are
complementary in the abovementioned sense. Then, writing Ly = (Px, Jx, L) and L = (Pt, Jy, L),
we can decompose A into a block matrix operator

PY(ML) P> r(M,Ly)
> : 53] — S )

pP*(M,LL) P #(M,Ly)
where R_ : P*(Y,L_) — H*(Y,J_) and R : P*(Y,Lt) — H*(Y, J_) are the corresponding embedding
operators.

P_AR, P_AR:
PrAR_ PLAR:

Applying that for an operator of the form
A:=P, AP +PrA,PY e LX(M; T, J,)
for any Zl, A, € LE(M;J_, J;) we obtain A in the form
(1.23) diag(Py A, P, P A PYY e LA(M; T, J,).

Toeplitz operators have been studied in the literature in many variants, see, for instance, Boutet de
Monvel [7]. Note that

(1.24) PyAR_ € T™°(M;L_,L;) <& PyAP_ e L~°(M;L_,Ly).
For every A € TH(M;L_,L;) written in the form (1.22) we have a bundle morphism
(1.25) op(A): Lo — Ly

defined by the composition oy (4)(z,€) 1= p (¢, €)oy () (2, E)r_(2,€), where p, (z,€) = 0(P:)(x,£),
while 7_(z,§) : L_ 56y = (73J-)(,§) is the canonical embedding of fibres on (z,£). We then have
oy (A)(x, AE) = Moy (A)(z,€) for all (x,8) e T*M\ 0, A € Ry.

Let SW(T*M \ 0;L_,Ly) for Ly € Vect(T*M \ 0) denote the set of all bundle morphisms Plp)
L — Ly such that p,)(z, \§) = Ap(, (@, §) for all (z,£) € T*M\0; A € Ry (we hope this notation does
not cause confusion in connection with S (T*M \ 0; E, F) for E, F € Vect(M) which is an abbreviation
of SW(T*M \ 0; 7%, E, 7%, F)).

ProproSITION 1.25. The principal symbolic map

(1.26) op: TH(M;L_ Ly ) — SW(T*M\0;L_,Ly)
is surjective, and there is a linear map
(1.27) op: SW(T*M\0;L_,L,)— T*(M;L_,L,)

such that oy o op = id.

PRroOF. The map (1.26) directly follows from (1.6) when we represent elements of T#(M;L_,L; ) as
Py AP_ and write o (P AR_) as 0, (Py AP_)|;_, interpreted as a morphism (1.25). To see that (1.26)
is surjective we choose a morphism a(,) : 7y,J- — my,J4 which restricts to a given element #(,) €
SW(T*M \ 0; L_, Ly) (this is always possible), then form an operator A := oplay) € LE(M;J_,J,)

such that oy (A4) = a(,), cf. formula (1.7), and finally set A := Py AR_; then oy (A) = t(,). O
PROPOSITION 1.26. Every A € T#(M;L_ L) induces continuous operators

(1.28) A:P*(M,L_)— P "*(M,Ly)

for all s € R.

This is an immediate consequence of the definition and of Theorem 1.4 (i).
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PROPOSITION 1.27. Let A € T*(M;L_,L}) and suppose oy (A) = 0. Then A € TH1(M;L_,L,),
and the operator (1.28) is compact for every s € R.

PRrOOF. We have Py AP € L“(M;J,J) and oy(PyAP_) = 0. Hence PL AP : H*(M,J ) —
H*H(M,J;) is a compact operator, cf. Theorem 1.4 (ii). Thus Py (PyAP_) = PLAP_ : H*(M,J_) —
Ps=H(M,L;) is also compact. Finally, since R_ : P*(M,L_) — H*(M,J_) is continuous, also the

operator Py AP_R_ = P AR_ : P*(M,L_) — P*#(M,L, ) is compact. These conclusions hold for all
s eR d

THEOREM 1.28. A € TH(M;Lo,Ly), B € T"(M;L_,Ly) for L_,Lo,L, € P(M) implies AB €
THTY(M;1L_,Ly), and we have
04(AB) = 0,(A)74 (B).

PROOF. Writing Ly = (Py, Js, L), Lo = (Py, Jo, Lo), we have A = P, ARy, B = PyBR_ for certain
A€ LM(M;dy, 1), B € LY(M; J_, Jy), with obvious meaning of Ry, R_. Then AB = Py ARyPyBR_
P_AP,BR_. Since AP,B € L'\""(M;J_, Jy), cf. Theorem 1.4 (iii), we obtain AB € T*+"(M;L_,Ly
The symbolic rule is a consequence of relation (1.9).

~—

O

Given an operator A € TH(M;L_,L;), A= PJHER,, we define the formal adjoint
A* =P AR,

where A*, P* are the formal adjoints in the sense of Theorem 1.4 (iv), and R P*(M;LY ) — H*(M, Jy)
is the canonical embedding.

THEOREM 1.29. A € TH(M;L_,L;) entails
A* e TH(M;LY L)
and
oy (A7) = oy (4)7,
where the adjoint on the right hand side refers to the Hermitian metrics in the bundles LY, := oy (P} )ny-J4
and L* := oy (P*)n} J_, induced by 73 J+ and w5 J_, respectively.
PROOF. It suffices to apply Theorem 1.4 (iv) and Definition 1.21. O
DEFINITION 1.30. Let A € TH(M;L_,Ly), p € R, Ly = (Py,Jy,Ly) € P(M).
(i) The operator A is said to be elliptic (of order p), if oy (A) : L— = Ly is an isomorphism.
(ii) An operator B € T~#(M;L;,L_) is called a parametrix of A, if B
satisfies the following relations:
(1.29) Ci:=I1-BAeT ®(M;L_,L_), C,:=I-ABeT ®(M;L;,L,;),
where I denotes the corresponding identity operators.

REMARK 1.31. For every L := (P, J,L) € P(M) and every pu € R there exists an elliptic operator
R € TH(M;L,L).

In fact, let a(,) € S (T*M \ 0;.J,.J) be the unique element that restricts to the identity map on
m1J, with m; : S*M — M being the canonical projection of the unit cosphere bundle S*M to M. Set
A = op(a(y)), cf. formula (1.7). Then PAR for the embedding R : P°(M,L) — H*(M,J) is elliptic

because oy (PAR) : L — L is an isomorphism.
THEOREM 1.32. Let A € TH(M;L_,L;), p € R, Ly = (Py,Js,Ly) € P(M).
(i) The operator A is elliptic (of order u) if and only if
(1.30) A:P*(M,L_)— P "*(M,Ly)

is a Fredholm operator for some s = sy € R.
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(ii) If A is elliptic, (1.30) is Fredholm for all s € R, and dim ker 4 and dim coker A are independent

of s.
(iii) An elliptic operator A € TH(M;L_,LLy) has a parametriz B € T~*(M;L,,L_), and B can be
chosen in such a way that the remainders in the relation (1.29) are projections

Cl:Ps(M,L_)—)V, CZSPS_N(M,L+)—)W
foralls € R, for V:=ker A C P®(M,L_) and a finite-dimensional subspace W C P> (M,Ly)
with the property W +im A = P*~#(M,L; ) and W Nim A = {0} for every s € R.

The proof of Theorem 1.32 will be given below. First observe that for arbitrary L. = (Py,J1,Ly) €
P(M) there exist elements My = (Q+,C™,Ly) € P(M) such that

(1.31) TH(M;L_,Ly) = TH(M;M_, M, ).

In fact, for m sufficiently large, Ji may be represented as subbundles of the trivial bundle C™,
with complementary bundles Ji and projections 7;,C™ — 7%,.J1 along 7}, J+ and associated pseudo-
differential projections

Py € LY(M;C™;C™), Py :H*(M,C™) — H*(M, Jy).
Moreover, the compositions of projections
0y (Pe)oy(Pe) = 0y(Qx) : 73, C™ — w3y Je — L
are again projections, and Qi = Pilgi € LY%(M;C™,C™) are associated pseudo-differential pro-
jections, Q1 : H*(M,C™) — P*(M,Ly). Relation (1.31) is then obvious when we use that every
Ae LY (M;J_, J;) can be identified with an element de v (M;C™ C™) by q=ApP..

cl

PROPOSITION 1.33. Let A € TH(M;L_,L;) be an elliptic operator, and let us represent A as an
element A € TH(M;M_,My) for My = (Q+,C™,Ly) for a sufficiently large m. Then there exists an
elliptic operator A+ € T*(M; M-, M) for suitable M € P(M) such that A ® A+ € LF(M;C™,C™) is
elliptic in the sense of Definition 1.5 (i).

PRrOOF. Let us write the bundles Ly as subbundles of the trivial bundle C™ on T*M \ 0 in such a
way that L_ ;)N Ly (z¢) = {0} for every (x,£) € T*M \ 0. We then have a G € Vect(T*M \ 0) such
that L_ & L1 & G = C™. Let us define an isomorphism

by diag(oy(A)|s+ar, 0,  (A)ls-m,idayg.,, ), set LY := Ly @ G, Ly == L_ ® G, and define oy(A*) €
SW(T*M \ 0; L+, Lt) to be the unique element such that oy (AL) = diag(aJl(A)|5*M, idg|g.,, ). More-
over, set

Mz = (Q+,C™, L1).
By definition, the operator A has the form A = Q+E1R, for some element A; € L* (M;C™,C™),

cl
where R_ : PS(M,M_) — H*(M,C™) is the canonical embedding. Moreover, let 01/,(22) € SW(T*M \
0; C™,C™) denote the unique element such that U¢(Avg) s+m coincides with (1.32). Then, applying (1.7)
to Uw(gz), we obtain an associated elliptic operator A, € LY (M;C™,C™) with R: : P*(M,Mt) —
H?®(M,C™) being the canonical embedding, where oy (AL) coincides with the abovementioned symbol.

The operator

A:= A A* = diag(Q A, R_, QL A,RY)
can be identified with
QA P_ + QAP H¥(M,C™) — H*™#(M,C™),

i.e., as a sum of standard pseudo-differential operators, cf. formula (1.23), and hence belongs to L’ (M; C™,C™),

and A is elliptic, since U¢(Av) =0y (Ay). O
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PROPOSITION 1.34. Let A; € THI(M;L_,Ly), j € N, be an arbitrary sequence. Then there ewists
an A € TH(M;L_,L;) such that

N
(1.33) A= A;eT NG L Ly )
7j=0

for every N € N, and A is unique mod T~°°(M;L_,L;).

Proor. By definition, every A; has the form A; = P+ﬁjR_ for suitable Zj € Lffl_j(M;J_,JJr).
A well known result on standard pseudo-differential operators says that there is an Ae LE(M;J_,Jy)
such that A — Z;'V:o Aj e Lgf(NH)(M; J_,J;) for every N € N, and A is unique mod L=°(M;J_,J,).
We set A := Py AR_; then the relation (1.33) holds. Moreover, if an element A’ € T*(M;L_,L;)
satisfies (1.33) with A’ in place of A, we have A — A’ = P, (A — A")R_, where P,(A — A)P_ €

ﬂjEN Lé‘fj(M; J_,Jy) =L">°(M;J_,J;), and hence, A — A" € T~>°(M;L_,L;), by virtue of (1.24).
(I

PrOOF OF THEOREM 1.32. First assume that A € TH(M;L_,L;) is elliptic. According to the rela-
tion (1.31), without loss of generality we may assume Ly = (Py,C™, Ly) for some sufficiently large m.
Applying Proposition 1.33 we find an elliptic element AL € T“(M;]Li,LJ_-) such that A = A ® AL is
elliptic in L" (M;C™,C™). We now choose a parametrix P € L *(M;C™,C™) in the sense of Theorem

cl

1.7 (iii) and set By := P_PR, € T~*(M;L,,L_). Writing A = P_AR_ we obtain
CY:=I1—-ByA=1—-P_PR P AR_
=1-P_PP_AR_

which yields a,,(C?) = 0, i.e., CY € T~H(M;L_,L_). In a similar manner it follows that CY := I — AB, €
Tﬁl(M;LFJLJr)'

By virtue of Proposition 1.27 the operators Cf € L(P*(M,L_)) and C° € L(P*#(M,Ly)) are
compact. Thus (1.30) is a Fredholm operator for every s € R. Applying a formal Neumann series argument
we find a K € 77" (M; L, L) such that K ~ =322 (C})?, cf. Proposition 1.34.

For B, := (I — K)By € T""(M;L;,L_) we then obtain C} := I — BjA € T~*(M;L_,L_). In
an analogous manner we find a B, € T-#(M;L;,L_) such that C, := T — AB, € T~°°(M;L_,L_).
A standard algebraic argument shows that B; is a two-sided parametrix of A. In fact, BjA = I — C}
implies ABJA = A — AC; and AB/AB, = AB/(I — C,) = AB, — AC}B,; then Theorem 1.28 and
relation AB! = I mod T~°°(M;L,,L;) yield AB} = I mod T~*°(M;L,,L,). Propositions 1.19 and
1.20 together with the first part of the proof allow us to apply Remark 1.8 to the present situation. This
gives us the assertions of Theorem 1.32 (ii), (iii).

It remains to show the second part of Theorem 1.32 (i), namely that the Fredholm property of (1.30)
for an s = sp € R implies the ellipticity of A. Without loss of generality we may assume so = g = 0. In
fact, Remark 1.23 gives us elliptic operators

RE™ : PO(M,L_) — P*(M,L_),R{> #* : P*~"(M,L;) — P°(M,Ly).

These are Fredholm operators by the first part of the proof of Theorem 1.32. Thus, also Ay : RE"J:” AR; %0

PO(M,L_) — P°(M,L) is Fredholm. If we show the ellipticity of Ay, we obtain at once the ellipticity
of A, because ellipticity remains preserved under compositions. In other words, we may consider the case
A= Ao,

(1.34) A:P°(M,L_)— P°(M,L,).
Moreover, let

(1.35) E:P°(M,Lt) — P°(M,1LY),

be the identity operator, cf. the notation in Remark 1.24.
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We have
(1.36) L*(M,J ) =P°(M,L )& P°(M,L"),
and there are continuous embeddings
(1.37) Ry : P°(M,LLy) — L*(M,Jy), R::P(M,Lt)— L*(M,J_).

Then we can pass to the operator

(R 0\ [A 0\ . )
B._<0 RL)<0 E).L(M,J)—>L(M,J+EBJ)

which is an element of LY (M; J_, J; & J_). By assumption, the operator (1.34) is Fredholm. In particular,
there is an operator @ : P°(M,L;) — P°(M,L_) such that I — QA : P°(M,L_) — P°(M,L_) is
compact.

Let S:L*(M,Jy ®J ) - P°(M,L;)® P°(M,L%) denote a projection. Then T := diag(Q, E) o S
has the property that I —T B =: K is compact in L?(M, J_). Since I — K is a Fredholm operator, we have
dimker(I — K) < 0o, and then dimker B < oo, since Bu = 0 implies 7' Bu = 0 which yields (I — K)u = 0,
i.e., ker B C ker(I — K).

The operator B := B*B : L2(M,J_) — L*(M,J_) belongs to LY (M, J_) and is self-adjoint and
Fredholm. _

From Theorem 1.6 (i) we know that B is elliptic. It follows that o (B) is injective. Hence, also oy (A)
is injective. By passing to adjoint operators, in an analogous manner we can show that oy (A) is also
surjective.

This completes the proof of Theorem 1.32. |

We now discuss the question to what extent the specific choice of projections Py in an elliptic
operator A € T#(M;L_,L;) may affect the index. This is an aspect on more general properties of
Fredholm operators and projections in Hilbert spaces, see, for instance, [44].

Let H; and H_ be Hilbert spaces, and let Py, Q4 € L(Hy) and P_,Q_ € L(H_) be continuous
projections, such that Py — )4+ are compact operators in H..

THEOREM 1.35. Let A € L(H_, Hy) such that
A:=P;A:imP_ — im Py
is a Fredholm operator. Then, also
B:=Q,A:imQ_ —imQ,
1s a Fredholm operator, and we have
(1.38) indA —ind B =ind(P-,Q-) —ind(Py+,Q+),
cf. the notation (1.17).
PRrooF. From Proposition 1.17 we know that
P_:im@_- —-imP_ and Q4 :imP; —imQ4
are Fredholm operators, and )_ is a Fredholm inverse of P_. Thus Q _P_ :im () — im @ _ is a Fredholm
operator of index zero. An analogous observation holds for the projections @, P;. Thus, the operator
D:imQ_ S imP. A impP, DhimQ,
is Fredholm of index
(1.39) indD =ind A+ ind(P_,Q_) — ind(P+, Q+),
cf. the relation (1.18). We have
D = (Q+P1)B(Q-P-)
— Q4[P,Q4]AQ P +Q Py A1-Q )P,
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where [Py, Q4] is the commutator in Hy which is compact, since
[Pr, Q4] = PrQy — QP4
= (P+ —Q+)1-Q+ — Py).

Moreover, (1—Q_)P_ = (P_-—Q_)P_ : H_ — H_ is compact. Hence the operator (Q+ P+ )B(Q_-P-)—D
is compact, i.e., (Q+P4)B(Q_P-) is Fredholm, and we have

(1.40) ind D =ind(Q+P+)B(Q_P-).
By virtue of Proposition 1.17 the operators @ _P_ :im@_ — im@Q_ and Q4+ Py : imQ; — im Q4 are

Fredholm and of index zero. Therefore, we have ind(Q)+Py)B(Q-P-) = ind B, and the assertion is a
consequence of the relations (1.40) and (1.39). O

COROLLARY 1.36. Consider elliptic operators A € TH(M;L_,Ly) for Ly := (Py,J+,Ly) and B €
TH(M;N_,N;) for Ny :=(Qx,J+,L1), and assume that o, (A) = oy (B). Then the Fredholm indices of
A and B as operators

A:P*(M,L_) —» P**(M,L,), B:P*(M,N_)— P*#(M,N,)
are related by the formula (1.38).
REMARK 1.37. Given projection data L := (P, J, L) and M := (Q, J, L) € P(M) (with the same J, L

but different projections), the operators
(1.41) P: P*(M,M) — P°(M,L), Q:P°(M,L) —» P°(M,N)
are Fredholm, and @ is a Fredholm inverse of P (and vice versa), cf. Proposition 1.17. We have
PeTM;ML), Q¢€T°M;L,M),
P and @ are elliptic of order zero, and hence, in particular, the Fredholm indices (as well as the dimensions
of kernel and cokernel) of (1.41) are independent of s.
REMARK 1.38. Let Ay, A; € TH(M;L_,L;) be elliptic, and assume that the principal symbols
op(Ai): L_ — Ly
coincide for ¢ = 0, 1. Then we have
ind Ap = ind A4;.

In fact, Proposition 1.27 gives us oy (A9 — 41) =0, ie., Ag — Ay € T*~1(M;L_,L; ), and hence Ag
is equal to A; modulo a compact operator.
Let us now assume that
Li(t) = (Pi(t)a‘LLi(t))a OStS ]-7
is a family of elements in P(M), where
P.() € O([0,1], L (M; J, J))
are families of projections, such that
Ly (t) = oy(Ps(t))mpr J+
are families of subbundles in 7},J+. Let us assume that
ag(t) : L_(t) = Ly (t)
is a continuous family of isomorphisms, smooth in (z,£) € T*M \ 0 and homogeneous of degree u. We
can complete a(,)(t) to a continuous family of morphisms
Gy =T - = Ty

such that a(,)(t) can be identified with oy, (Py (t))d(,) (t)oy (P (t)) for every t. Let us set Ay = op(a (1)),
cf. Proposition 1.3, which gives us an element of C([0,1], L% (M; J_, J})).
We then obtain a family

Ay == Py ()A(H)R_(t) € T*(M;L_(t), Ly (£))
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with R_(t) : P_(t)H*(M,J_) — H?®(M,J_) being the canonical embeddings. The operators A; are
elliptic for all ¢ € [0,1].

THEOREM 1.39. Under the abovementioned conditions on Ay € TH(M;L_(t),Ly(¢)), 0 <t <1, we
have
ind AO =ind Al,
where the index of A; refers to the Fredholm operator
Ay P_()H’(M,J_) = PL(t)H* " (M, Jy).
Theorem 1.39 has a more general functional analytic background. The following considerations up to
Remark 1.42 have been contributed to this paper by Thomas Krainer of the University of Potsdam.

THEOREM~1.40. Let H and H be Hilbert spaces, and consider families of operators (A¢)o<i<1 €
C([0,1], £(H, H)),
(Pose<s € C(0,11,£(H)) and  (Qi)ose<r € C((0, 1], L(H)).
Assume P? = Py, Q? = Q¢ for all t € [0,1]. Moreover, let
P A:Q; :imQy — im Py
be a Fredholm operator for every t € [0,1]. Then we have
ind(PyAoQo : im Qo — im Py) = ind(P1A1Q; : im @y — im Py).
To prove this theorem we first show another result. Consider the set
(1.42) I(H) x L(H,H) x II(H),
where II(L(H)) for a Hilbert space H denotes the set of all P € £(H) such that P? = P. Let & (H, H)
denote the set of all triples (P, A, Q) in (1.42) such that
PAQ :im@Q — im P
is a Fredholm operator of index k.

PROPOSITION 1.41. For every k € Z the set ®y(H, H) is open in (1.42).

_ Proor. As is well known, the set of Fredholm operators of index k between Hilbert spaces L and
L is open in £(L, L). Applying this to L := im @ and L := im P, it follows that for a triple (P, 4,Q) €
@, (H, H) there exists an g9 > 0 such that (P, A+ K,Q) € ®;(H, H) for every K € L(H,H), |K|| < €o.
We now prove that for every
(1.43) (P,A,Q) € ®(H, H)
there exist constants o > 0, € > 0, § > 0, such that
(M,B,N) € II(H) x L(H,H) x II(H)

and
M = P|| <a, [[B=Al<e, [N=Qll<p
imply
(1.44) (M,B,N) € ®,(H,H).
Let G € L(H),G € L(H) be invertible elements, such that
(1.45) IG =1l <6, IG—1]| <0

for sufficiently small 61,8, < 1. Set
M :=GPG™', N:=GQG'.
We prove that relation (1.44) holds for € and 4,02 so small that
1+ 0y 01 + 02

(1.46) =55 1=3, 1Al <o
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holds. From Neumann series arguments we obtain

(1.47) G < 25 G -1 < 2

and

(1.48) |G| < 1+ 6s.

We now reformulate the operator M BN as follows:

(1.49) MBN = GP(A+ K)QG™' = G{PKQ + PAQ}G™"
for

K:=G Y B-A)G+ (G '-DA+AG-DI)+ (G ' —DAG -1I).
Let us verify that |K|| < €o. In fact, using (1.45), (1.46), (1.47), (1.48), we obtain
1Kl < IG7HHIB - Al G|

+ G =TI A+ 1A 16 - 1)

+ G =1 Al G - 1]
1 01

<

< 1_515(1+52)+1_61

Thus, from the first part of the proof it follows that (P, A+ K, Q) € ®,(H, H). Moreover, (1.49) together
with the isomorphisms

0
IA[] + 8[| Al + === 1 4]] < eo-
1-01

é’:imP—)imM, G:imN —im@
gives us the relation (1.49).
Let us finally consider the map
s:1(H) — L(H),

defined by s(M) := M P+ (I — M)(I — P). The map s is continuous, and we have s(P) = I. Let us choose
6 > 0 in such a way that ||s(M) — s(P)|| < 6, holds when ||[M — P|| < 8;. Since 8, < 1 is very small,
we have the inverse s(M)~! € £(H) for |M — P|| < &,. We then obtain Ms(M) = MP = s(MP), i.e.,
M = GPG for G := s(M). In a similar manner it follows that ||N — Q|| < 8, for a suitable small 85 > 0
implies N = GQG~! for an invertible G € L(H), ||G — I|| < 2. This completes the proof of Proposition
1.41. (|

ProOF OF THEOREM 1.40. By virtue of Proposition 1.41 the map [0,1] — Z defined by t —

ind P; A¢Q); is continuous and hence constant.
O

REMARK 1.42. Theorem 1.40 can be generalised to the case when [0, 1] is replaced by any connected
topological space X . It follows that the index of Fredholm operators P, A, Q. : im ), — im P, which are
continuously parametrised by = € X, is constant.

1.2. Operators with the transmission property at the boundary. In this section we prepare
some necessary material on symbols and operators with the transmission property at the boundary and
establish a connection with operators on the boundary with operator-valued symbols.

Let Q CR? 5y be open, and let U :=Q x R> z = (y,t),§ = (1, 7).

Set

Hyy(U) = {u € H{, (U) : pue H*(RT)for
every p(y) € C° ()},
and define

Hgomp(y)(U) = {u € H) .(U) : vue Hgomp(Rn+1)for
every (t) € C°(R) }.
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Moreover, set,

Hlsoc(y) (Q X ]Rﬂ:) = ITZ’lsoc(y)(Q X ]R)|Q><R;L7
Hcsomp(y) (Q X ]Rﬂ:) = Hgomp(y) (Q X ]R)|Q><R;L .

DEFINITION 1.43. A symbol a(z,§) € S5(U x RI*!) for p € Z is said to have the transmission
property at ¢ = 0, if the homogeneous components a(,_;)(z, &) satisfy the following relations:

Df‘Dg{a(/—L*]’) (yatanaT) - (_l)u_ja(u*j) (yata -1, _T)} =0
foryeN,t=0,np=0,7€ R\ {0}, forall k€ N, « € N?, and for all j € N.

Let SY(U x R?*);, denote the space of all symbols a(z,£) € S4(U x RY™!) with the transmission
property at ¢ = 0. Moreover, set

SEHQ X Re x RIT )4 = {alg,m, wratr : 0 € SH(U x R}

REMARK 1.44. S/ (U xR?T),, is a closed subspace of S (U x R?*1); analogously, S5 (2 xRy x R1H ),
is closed in S%4 (9 x Ry x ReFL).

To illustrate the structure of the transmission property we want to have a look at the one-dimensional
case, say on Ry x R (the case R_ x R is analogous; the transmission property is an invariant condition
with respect to the reflection map t — —t).

DEFINITION 1.45. Let a(t,7) € S4 (Rt x R), pu € Z, and write the component a,_; (t,7) of a(t, )
of homogeneity p — j in 7 # 0 in the form
a(—j) (t,7) = {07 (1)a* (1) + O (T)ay (t)}"77,
j € N; here ©F is the characteristic function of Ry > 7. The symbol a(t, 7) is said to have the transmission
property at ¢ = 0, written a(t,7) € S¥(Ry X R)¢r, if
(1.50) Dfal(t)|i=o = Dfa; (t)li=o forall jkeN

REMARK 1.46. Definition 1.45 can also be written as follows. A symbol a(t,7) € S4(Ry xR), u € R,
belongs to S’ (R+ x R)y, if and only if the coefficients aji(t) € C*°(R;4) in the expansion

o0
a(t, ) ~ Zaji(t)r’“j for 77— o0
7=0

satisfy the condition (1.50).
PROPOSITION 1.47. Let a(y,t,n,7) € SH(Q2 x Ry x R11), and set

ay:TI(t7T) = a(y7t7n77—)
for every fized (y,m) € Q x RY; then we have ay,(t,7) € SH(R4 x R). The following conditions are
equivalent:
(D) a(y,t,n,7) € SH(Q x Ry x R+ )y,
(i) ayn(t,7) € SH(R4 x R)y, for every (y,n) € 2 x RY.

PROOF. Let us first assume the condition (i). Then the symbol ay (¢, 7) belongs to S (R4 x R)r
in the sense of Definition 1.45 if and only if (x(1, T)a(u—j) (y,t,n,T))y,n has this property for any excision
function x, for all j € N. Since x is equal to 1 for |n, 7| > const for some constant > 0, it suffices to show
that the symbol (a(,—;)(y,t,n,7))y,n for n # 0 has this property. Let v := p — j for any j € N. Let us
consider, for simplicity, the case of symbols which are independent of (¢,y); the general case is easy as
well and left to the reader.

By assumption, we have

(1.51) Dyag)y(m, 7)ly=0,r20 = Dy ((=1)"ag) (=, —7))ly=0,r20
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or, equivalently,
(152) (D?a(u))(oa 1) = (_1)V+‘a|(D?a(u))(07 _1)

for all & € N?. Set p := |7|™!, and consider the expansion of (1, ) for 7 — £oo. We have

aw)(m,7) = ap)(ptpm, p’l) = p ag)(p,1)
la|

[e3

f){ > L Dfa)O,D )t for >0,

oz|=lc

and

apy(n,7) = ()(p‘lpn,—p‘l)Z/f”a(u)(pn,—l)
la|
PN 77
~ Z a(,))(0, 1)

= Z{ Z V+|ot\77 D77 (,,))(0,—]_)}7-”*’“ for r<0.

k=0 |a|=k

By virtue of (1.52) we then obtain (i) = (ii). On the other hand, (ii) gives us immediately the relation
(1.51), i.e., we have also proved (ii) = (i). O

Let e be the extension operators of functions on ]Ri by zero to the opposite sides (applied to
clements in Hg (2 x Ry) for s > —1). Moreover, let r* denote the operator of restriction to Q x Ry

(applied to distributions in 2 x R).
Set

(1.53) Op™(a)u(x) :=r* Op(a)etu(x)
for a € SH(Q x Ry x R )4, @ € SH(Q x R x RIH )y, such that alg, g, ,pes = a- Clearly, (1.53) is
then independent of the speciﬁc choice of @. We form (1.53) first for v € C§°(Q2 x Ry ) and then for

Comp(y (Q xRy), s %, cf. Theorem 1.55 below. Similarly, we consider operator families on the
half axis

(1.54) op™ (a)(y,n) =17 op(a)(y,n)e",

where op(@)u(t) == [[ =) 7a(y, t,n, T)u(t')dt'dr, @ € SH(Q x R x RITL),,.

opT(a)(y,n) will be regarded as an operator-valued symbol.

Let H be a Hilbert space, and let {kx}xcr, be a strongly continuous group of isomorphisms & :
H — H,ie., kxh € C(Ry,H) for every h € H, and k\k, = Ky, for all A\,p € Ry. To have a simple
notation, we say that H is endowed with a group action. As is known, there are constants ¢ > 0 and M
such that

(1.55) el < c(max(\,A)M forall AeRy.

More generally, if F' is a Fréchet space, written as a projective limit of Hilbert spaces F' = l&n e Hk

with continuous embeddings H**! < H* for all k, and if H° is endowed with a group action {Eataers,
such that {k|yx}rer, is a group action on H* for every k, we say that F is endowed with a group
action.

EXAMPLE 1.48. (i) The space H*(Ry) (:= H®(R)|r,) is endowed with the group action
(kaw)(t) = Azu(At), A € Ry. The same is true of the spaces (t) *H*(R;) := {(t) *u : u €
HY(Ry )},
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(ii) The Fréchet space S(Ry) (:= S(R)|g, ), written as
S(E,) = lim () ~FHE (R, ),
keN
is endowed with the group action defined as in (i).
DEFINITION 1.49. Let {H,{rx}xcr,} and {f], {Fa}rer,} be Hilbert spaces with group actions,
moreover, let 2 C R? be open, and p € R.

(i) The space S#( x RY; H, H) is defined to be the set of all a(y,n) € C®(Q x R, £(H, H)) such
that

IR DS D2 aly, m) bl g iy < clm

for all « € N?, f € N? and (y,n) € K x R? for all K&, with constants ¢ = ¢(«, 8, K) > 0.
The elements of S#(Q x RY; H, H) are called operator-valued symbols of order p (associated
with the given group actions).

(i) S (Q x (R? \ {0}); H, H) denotes the space of all agy(y,n) € C(Q x (R \ {0}), L(H, H))
such that a(,)(y, An) = AExay) (y,mey " forall A € Ry, (y,n) € Q x (R {0}).

(i) A symbol a(y,n) € S#(Q x R?; H, H) is said to be classical, if there are elements au—j(y,n) €
Sw=9)(Q x (R? \ {0}); H, H), j € N, such that

N
a(y,n) = > x(mag—j(y,n) € S*" N (Q x RY; H, H)
j=0

for every N € N, where x(n) is any excision function. Let S/ (Q x R?; H, ﬁ) denote the space
of all classical symbols of order pu.

Let us extend this notation to the case of Fréchet spaces with group actions as follows: If F =
@jeN HJ is a Fréchet space with group action {kx}rer,, we set

(1.56) Sty (@ x R H, F) o= () Sty (2 x RY H, HY).

JEN

Moreover, if also F' = @keN H* is a Fréchet space with group action {ky}rer +» we first fix a function
r: N — N and set

(1.57) S

fey (2 R F F), = () Sty (2 x RY; H™D) | HY),

JEN
Then we define S(”d) (2 x R F, f) to be the union of (1.57) over all r. Similarly, we have the spaces
S (Q x (R \ {0}); F, F).

THEOREM 1.50. Let Q@ C R? be an open set, and fix a symbol a(y,t,n,7) € SL(Q x Ry, € Z,
that is independent of t for t > ¢ for a constant ¢ > 0.

(i) We have
(1.58) op™(a)(y,n) € S"(QAx R H*(Ry ), H* "(Ry.))
for every real s > —%, and
(1.59) op*(a)(y,n) € S"(2 x R; S(R4), S(R4)).

The operator-valued symbol op™ (a)(y, ) is classical, when the symbol a is independent of ¢.
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(ii) Let aqu—j(y,t,n,7) € S=(Q x Ry x (RIT! \ {0})) be the homogeneous component of
a(y,t,n,7) of order p — j. Then we have

op* (s le=0) (y,m) € SU(Q x (RI\ {0}); H*(Ry ), H* ™+ (Ry))

1
for every s > —35, and

op™* (agu— ) le=0)(y, 1) € SV (2 x (R \ {0}); S(R+), S(R+)).
The technicalities to prove Theorem 1.50 can be found in [38].
We now turn to pseudo-differential operators associated with symbols a(y,y’,n) € Séﬁ:l) (Q x Q x

RY; H, H ) (for simplicity, generalities will be formulated for the case of Hilbert spaces H, H with group
actions; the case with Fréchet spaces is analogous and will tacitly be used below).
Let

(1.60) L{y, (2 H, H) := {Op(a) : aly,y',n) € S{y) (2 x @ x R; H, H)},

where Op(a)u(y) := [f e"® =¥ a(y,y', n)uly)dy'dn, dn = (2m)~*dn.
DEFINITION 1.51. Let {H, {skr}xrer,} be a Hilbert space with group action. Then W?*(R?, H) for

s € R is defined to be the completion of S(R?, H) (or, equivalently, of C§°(R?, H)) with respect to the

norm
1
2

ity = {/<">28||"“<771>@(n)||%{dn} :

(ti(n) denotes the Fourier transform of u with respect to y € R?).

The spaces W*(R?, H) have been introduced in [33] in connection with operators on manifolds with
edges, see also [32], and their properties are studied, for instance, in [34], [38], [20], [49]. Let us summarise
some results in the following theorems.

THEOREM 1.52. Let H be a Hilbert space with group action {kx}rer,, and let s € R.

(i) We have
W (RS H) = {u € S'(RY H) : (n)" s, 5(n) € L*(RY, H) |
where S'(RY, H) := L(S(R?), H). The space W?(R?, H) is a Hilbert space with the scalar prod-
uct
(0w ) = (KT, ) myam) o
(ii) The operator of multiplication M, by a function ¢ € S(R?) induces a continuous operator
My :WHRT, H) = WH(R!, H),
and o — M, represents a continuous operator S(R?) — L(W*(R?, H)).
(i) (xau)(y) := kaA7?u(Ny) for A € Ry, u € S(RY, H), extends to a group action on W*(RY, H),
and we have
(1.61) WE(RP,WH(RY, H)) = W (RPT? H),
where the space on the left of relation (1.61) refers to {xx}rer, on W?(R?, H) and that on the
right of (1.61) to {kx}rer, on H.
(iv) For H := H*(RY) with the group action (kxu)(y) := A\/?u(\y) we have
We(RP H(RY)) = H*(RPH).
Let us set for any open 2 C R?, s € R,
(1.62) WE(LH) :={ueD (,H) : puecW (R, H)
for every p € C3°()}
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and
(1.63) Weomp( H) := {u € W, .(Q, H) : suppu  compact }.

The space (1.62) is Fréchet, and (1.63) is an inductive limit of Fréchet spaces.
In particular, we have

(164) Hlsoc(y) (Q x ]R) = WISOC(Q7 Hs( )) )(Q X ]R) Wgomp(ﬂ7 HS(R))

Comp(y
for any open set 2 C R?, as well as

(1.65) Hlsoc(y) (@ x R) = Wi (2, H*(R+)), Hc QxRy)= Wgomp(ﬂaHs(]R:I:))'

omp(y) (

THEOREM 1.53. Let a(y,y’,n) € S*(Q x Q x R?; H, H), Q CR? open, p € R, with H and H being
Hilbert spaces with group actions. Then

) =//6i(’"”’"")"a(y,y’,n)U(y’)dy’dn

Op(a) : C§°(, H) — C>(Q, H)
which extends to continuous operators

OD(a) : Weomp (2 H) = Wi (2, H)

loc

induces a continuous operator

for all s € R. In particular, for a(n) € S#(R?; H, H) we obtain continuous operators
Op(a) : W*(R?, H) — W* *(R?, H)
for all s € R.

REMARK 1.54. The notation (1.62) and (1.63) as well as the results of Theorems 1.52, 1.53 extend
in a natural way to the case of Fréchet spaces H or H with group actions.

THEOREM 1.55. Let a(y,t,n,7) € SH(Q x Ry)i be a symbol which is independent of t for t > ¢
for some ¢ > 0. Then Op™*(a) := 1™ Op(a)e* (for any a € S4(Q x R)¢x with a = a for t > 0) induces
continuous operators

Op+(a’) comp (v) (Q X ]R‘F) — Hlsoc(y (Q X ]R‘F)
foralls e R, s > —%.

This result is a consequence of Theorem 1.50 (i), the relations (1.65), and Theorem 1.53.

Let X be a compact C*° manifold with boundary Y, and let 2X denote the double of X, obtained
by gluing together two copies X1 and X_ of X along their common boundary Y by the identity map;
we then identify X with X ,. Moreover, let et denote the operator of extension of functions on int X,
by zero to the opposite side X_, and let r* denote the operator of restriction of distributions on 2X
to int X, ; analogously, we have operators e and r~ with respect to the minus-side of 2X. Let 2X be
equipped with a Riemannian metric that equals the product metric of Y x (=1, +1) in a neighbourhood
of Y for some Riemannian metric on Y.

Given an E € Vect(X) we fix any E € Vect(2X) such that E = E|x. For E and F in Vect(X)
with fibre dimensions [ and k, respectively, we now consider the space LH(2X; E F) For every chart
xX:V—=>Uon2X,UCR" open, and trivialisations E|V UxC, F|V =~ U x C*, the push-forward . A
of an operator A € L (2X; E F) belongs to LY (U; C',C*). By notation, the push-forward y, also takes
into account the chosen trivialisations of E |v and F|V, for simplicity they are not explicity indicated
(this should not cause confusion).

Let VNY # 0,V := V' x (=1,41), where V' is a coordinate neighbourhood on the boundary
Y, and assume that y restricts to charts x+ : Vo — Q x Ry on X4, Vi := X4 NV, and to a chart
X =xlv: V' =-QonY, QCR L,
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_ DEFINIT19N~1.56. The space L51(2X;E';ﬁ')tr for 4 € Z is defined to be the set of all elements
A € L¥(2X; E, F) such that for every ¢,1 € C5°(Q X R) and e := ¢
a(z,§) = e—c{o(x« A }eg
is an k x [ matrix of elements in S/ (Q x R)¢,; here, x is an arbitrary chart of the described kind.
Moreover, set,
(1.66) LM(XGE, F)y = {rT A : A€ LX(2X; E, F)y,}.

REMARK 1.57. The space L51(2X;E,ﬁ')tr is a closed subspace of L51(2X;E,ﬁ'), cf. Remark 1.2.
Moreover, the space

(1.67) {A € LY(2X; E, F)y : r7 At =0}
is closed in L} (2X; E,F):, and we have
(1.68) LM(XGE, F)y = LM2X;E, F)/ ~,

where / ~ indicates the quotient space with respect to (1.67). In this way, in the space LY (X; E, F), we
obtain a natural Fréchet topology.

THEOREM 1.58. Every A € L!\(X; E, F)y, induces continuous operators
A:H¥(X,E) — H* "X, F)
foralls e R, s > —%.

PRrROOF. Let w,® be a functions supported in a collar neighbourhood of Y such that w = 1 on supp w.
Then A can be written as A = wAD + (1 —w)A(1 — @) + C, where C has a smooth kernel up to the
boundary. The continuity C' : H*(X, E) - C*(X, F) for s > —1 is then evident, while the continuity of
(1-w)A(l—-@): H(X,E) - H**(X, F) for all s is a consequence of Theorem 1.4 (i). The continuity
of wAw : H¥(X,E) - H**(X, F) for s > —% follows from Theorem 1.55 by a simple partition of unity
argument and from Theorems 1.52, 1.53. d

Let us look at a special kind of order reducing symbols. Choose a function ¢ € S(R) such that
©(0) =1 and supp F 1y C R_ (here F is the Fouier transform on the real line). Set

(1.69) rl(n,7) = (w(%) - w)”

for any € R and a constant C' > 0. We then have 7 (n,7) € S¥(R"), and the symbol 7 (1, 7) is elliptic
for a sufficiently large C' > 0, cf. Grubb [15]. It is well known that

(1.70) r™ Op(r”)ef : H*(R}) — H* *(RY})

is continuous for every s, € R, with e} : H*(R) — H*(R") being a continuous extension operator, i.e.,
r*e] = idy.(ry). Moreover, for s > —3 we may replace e by eT, and (1.70) is independent of the choice
of the specific extension operator. For 1 € Z we have " (n,7) € S¥(R" ). Order reducing operators also
may be formulated globally on a compact C* manifold X with boundary.

THEOREM 1.59. The space L', (X; E, E)y, for E € Vect(X) and arbitrary p € Z contains an element

cl

R = r*l%%eJr for some ﬁ% € L51(2X;E,E)tr, E = E|x, such that
RY : HY(X,E) - H""(X,F)
is an isomorphism for every s > —%.

This result can be proved in different ways, cf. Boutet de Monvel [6], or Grubb [15]; the latter paper
employs order reducing symbols of the kind (1.69). Such symbols for arbitrary u € R have been used
for an analogous order reducing result for the case without the transmission property in the author’s
joint paper with Harutjunjan [19]. Other constructions in this direction (more general in different ways)
may be found in Duduchava and Speck [9]. A completely different method to reduce orders in general
boundary value problems is given in [42], based on ideas of the edge pseudo-differential calculus.
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REMARK 1.60. The operators in [19] are obtained in a slightly more general form, namely as r*ﬁ%eJr

for operators é% e LY(M; E,E) on any closed compact C* manifold M which contains X =: X, and
X_ := M\ int X; as submanifolds with common boundary Y, with an evident generalisation of the
meaning of operators r*, e (and r—,e” with respect to the minus side). We can also construct an
operator 5% of similar meaning for X _, such that

roShe” : HY(X_,E|x_) = H™"(X_, E|x_)

are isomorphisms for s > —%. The local symbols of S % in a collar neighbourhood of Y are just '} (y,7) :=

1’/ (y,n), the complex conjugate of (1.69).

cl

Given an operator A € L*(X;E, F)y, A := rtAet for an A € L51(2X;E,ﬁ)tr, cf. formula (1.66),

we have the homogeneous principal symbol oy, (A4) : W;‘XE — w3 F, cf. (1.5), and we set oy(A) =
Uw(A)|T*X\0:

(1.71) op(A) :mx E = nx F,
mx : T*X \ 0 - X. With (1.71) we associate a family of operators
(1.72) oo (4)(y,m) "oy (A)(y, 0,7, De)e”
T op(oy (A)le=0) (v, me”
for (y,n) € T*Y \ 0. This gives us a bundle morphism
o9(A) iy E' @ H*(Ry) = my F' @ H**(Ry)

for every fixed s € R, s > —%, my : T*Y'\0 = Y, where E' := E|y, F' := F|y. Alternatively, we consider
os(A) as a family of maps

(1.73) os(A) iy E' 0 S(Ry) — m3 F' @ S(Ry),

=TI

SRy) := S(R)|g, - We call oy (A) the principal interior symbol, o5(A) the principal boundary symbol of
the operator A.

REMARK 1.61. For (kxu)(t) := Azu(\t), A € R, , we have

(1.74) ao(A)(y, M) = Nraoa(A)(y,n)ky "
for all A € R;.

We now pass to the algebra of boundary value problems on X with trace and potential conditions,
cf. [6]. First, for E, F € Vect(X), J_,J+ € Vect(Y), v := (E, F; J_, J}), by B~°(X;v) we denote the
space of all

a K C*(X,E) C>®(X,F)
Gg:= <T Q) : @ — @
Co(YV, ) C%(Y,J)

such that G and G* extend to continuous operators

H*(X,E) C*®(X,F) H*(X,F) C*(X,E)
Gg: &) — b , g*: &) — &)
H3(Y,J_) C>(,J;) Hs(Y,Jy) C=(Y,J.)

forall se R, s > —%. Here G* is the formal adjoint of G in the sense
(L.75) (u,G*0)2(x,BypL2(v,J_) = (GU, V) L2(X,F)oL2(Y, )

for all u € C®(X,E) & C>®(Y,J_), v € C®(X,F) & C>®(Y, J;); the L? - scalar products refer to the
chosen Riemannian metrics on X and Y and to the Hermitian metrics in the respective vector bundles.
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For every E € Vect(X) we fix a first order differential operator T : C*°(X,E) — C>(X, E) that
is equal to 0y ® idg in a collar neighbourhood of the boundary, with ¢ being the normal variable. Then
B=>-4(X;v) for d € N\ {0} is defined to be the space of all operators

d
(1.76) G=Go+ > Gjdiag(T7,0)

j=1
for arbitrary G; € B~°°%(X;v). The elements of B=°¢(X;v) are called smoothing operators of type d.
We now turn to Green symbols that are operator-valued symbols in the sense of Definition 1.49 (iii)
for Hilbert spaces
H=L*R:,C)oC-, H=LR,C)aC+
or Schwartz subspaces, where k) as well as K, are defined by u ® ¢ — )\%u()\t) ®ec, A € Ry, for a
vector-valued function u(t) and a vector ¢ of complex numbers.
DEeFINITION 1.62. Let [, k,j_,j+ € N, p € R, and 2 C R? open. An element
9(y,m) € SH(QA x RG LA(R;.,C) & O, L*(R;,C") & C¥)
is called a Green symbol of order 1 and type 0, if it has the properties
9(y,n) € SH(Q xR, L*(R;,C') © T, S(R+,C") & T+)
and ' B '
9*(y,m) € SH(A xR L*(Ry,C*) & T+, S(R4,C) 9 T-),

where g*(y,n) denotes the pointwise adjoint in the sense

(L.77) (U,g*(yaW)U)L2(R+,cl)@cf— = (g(y’n)u’v)Lz(R+7C’“)€9Cj+
for all u € L*(Ry,C) @ O, v € L*(Ry,CF) @ T+ . Let R (Q x R w), w = (I, k;j_,j4), denote the
space of all such symbols.
REMARK 1.63. It can be proved that every g(y,n) € Ré’O(Q x R?; w) induces elements
g(y,n) € SHOQUx RG H (R, C) o T~ SRy, C¥) & T+)
forall s e R, s> —%.

This is a consequence of a kernel characterisation of [36, Theorem 3.1], cf. also [38, Section 4.2.3].

Note that the differential operator ag' on R, represents an operator-valued symbol
9] € SHQ xR H* (R, C), H (R, C'))
for every s € R; there is in this case no dependence on (y,n) €  x R?.

DEFINITION 1.64. By Ré’d(Q x R?;w) for p € R, d € N, we denote the space of all operator functions
d
9(y,n) := go(y,m) + Y 9;(y,n) diag(d;,0),
j=1
for arbitrary g;(y,n) € R*74(Q x R?,w). The elements of Ré’d(ﬂ x R?;w) are called Green symbols of
order p and type d.

Notice that g(y,7) € R%%(Q x RY;w) implies
(1.78) g(y,m) € SHQ x R H*(R;.,C) & T, S(Ry,C") @ TF)

for every s € R, s>d—%.
The nature of Green symbols as operator-valued symbols in the sense of Definition 1.62 has been
first observed in [36, Theorem 3.1]. A similar characterisation holds for Green operators belonging to

boundary value problems without the transmission property, see [37]. In this case, the space S(R,)
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is to be replaced by a space of functions with more general conormal asymptotics rather than Taylor
asymptotics at t = 0 (and Schwartz function behaviour for t — 00).

THEOREM 1.65. For every g(y,n) € Ré’d(ﬂ x R w), w = (I,k;j—,j+), the associated (so called
Green operator) G := Op(g) induces continuous operators

(1.79) G Hp() (X Ry, C) @ HE, L (2,007
= Hyp £ (@ x Ry, ) @ Hy " (Q,C%)

loc(y loc
for all s € R, s>d—%.
ProoF. We have
9(y,m) € SHOQ xR H* (R, ,C') & T, H* (R, C*) & C+)
(which is more crude than (1.78) but sufficient for the moment), and then

G Weomp( H* (R, C') © T ) = Wie M (Q, H (R, CF) © TF)

loc

is continuous for s > d — %, cf. Theorem 1.53 (the W?-spaces refer to the same group actions as in

Definition 1.62.) Now we have
Weomp(t H Ry, C) © T~ ) = H; (2 xRy, C) & Hippp (2,07)

comp(y)

and, similarly, which subscripts ‘loc’, cf. Theorem 1.52 (iv). d

By definition, the symbol g(y,n) has a homogeneous principal component g(,)(y,n) of order p, cf.
Definition 1.49 (iii). It will be interpreted as the boundary symbol

(1.80) 05(G)(y,n) : H¥ (R, C") o U~ — S(Ry,Cr) o U+
of the associated pseudo-differential operator G = Op(g). Alternatively, we also write
(1.81) 05(G)(y, 1) : SR+, C) @ T~ — SR+, C*) & T+.

Now let E, F € Vect(X) and J_, J; € Vect(Y), and consider trivialisations
(1.82) Ely 2QxRy xC, Fly=2QxRy xCF,
(1.83) Jily =0 x C*

on a coordinate neighbourhood V' on X near the boundary Y, such that V=V NY # 0, and let
X:V = Qx Ry and X' : V' = Q be corresponding charts on X and Y, respectively.
Green operators (1.79), interpreted for a moment as operators

G:CPOxR,,C)dCRQ,T-) = C®(Q x Ry,CH) o C™(Q,T+)
can be pulled back to X with respect to the mapping (1.82), (1.83) as operators
Gv : G (V,Elv) @ Cg°(V', J-|y7) = CZ(V, Flv) & C=(V', Jy|y).

Let us write, for simplicity, Gy = (x 1)« Op(g); the pull back also refers to the cocycles of transition maps
of the involved bundles. Let us now fix a finite system {V;};=1, . of such coordinate neighbourhoods
on X near Y such that {V{};=1 .. 1 form an open covering of Y, and choose functions ¢;,; € C5°(V;),

j=1,...,L such that Zle ¢j =1 in a collar neighbourhood of Y and #; = 1 on supp ¢; for all j, and
set @} 1= @jlvr, ¥ 1= Yjlvr.
DEFINITION 1.66. (i) The space Bg’d(X;'U) forv:=(E,F;J_,Jy), p € Z,d € N, is defined
to be the set of all operators
L
G = diag(j,%;)(x; )« Oplg;) diag(;, ;) +C

j=1
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for arbitrary g;(y,n) € Ré’d(Q x Ry;w), 1 <j < L,and C € B~°X;v). The elements of
Bé’d(X ;v) are called Green operators on X of order u and type d. The families of maps (1.80)
or (1.81), applied to localisations of Green operators G in a coordinate neighbourhood V', have
an invariant meaning as bundle morphisms

E'® H*(Ry) F'o H*H(Ry)
(1.84) 05(9) : 7} @ — Ty @ ,
J_ Ji

Ty :T*Y\0 =Y, s >d— 3, (alternatively, we may write S(R;.) instead of H* #(R;) on the

right hand side, or S(R) on both sides).
(ii) The space B*»4(X;v), u € Z, d € N, is defined as the set of all operators

(1.85) A= (6‘ 8) +G

for arbitrary A € L¥(X; E, F);; and G € B%%(X;v). The elements of B*%(X;v) are called
(pseudo-differential) boundary value problems for the operator A, of order p and type d.
(ili) We set oy (A) := oy (A), called the (homogeneous principal) interior symbol of A of order p,

and
( 0) +05(0),

called the (homogeneous principal) boundary symbol of A. Set
(1.86) o(A) := (o4 (A),09(A)),
called the principal symbol of the operator A.

The homogeneity of o, (A) is as usual, i.e., oy (A)(x, ) = Moy (A)(z,§) for all X € Ry, (z,§) €
T*X \ 0. For 05(A) we have

(1.87) oo(A)(y, An) = M diag(rka, id)os(A)(y, n) diag(k} ", id)
forall A e Ry, (y,m) € T*Y '\ 0.

By
(1.88) BYYX;E,F) and BMY(X;E,F)

we denote the space of upper left cornes of 2 x 2 block matrices in Bg’d(X; v) and B*4(X;v), respectively.
Given an element A € B*¢(X;v) in the form A = (Aij)ij=1,2, we also set Aq1 := ulc A. The operator A
is often called a trace and A;» a potential operator in B#4(X;v). Note that As» belong to Lk (Y5 J_, J4).

REMARK 1.67. The following conditions are equivalent:
(i) G € BH4(X;E,F) and Gt € L=>(int X; E, F) for every ¢, € C§°(int X),
(i) G € BYY(X;E,F).

REMARK 1.68. Every G € Bg’d(X; E, F) has a unique representation
d—1
(1.89) G:Go-f-ZKjOTj
j=0
for a Gy € Bg’O(X; E, F) and potential operators K; € B“_j_%’O(X; 0,F;E',0) and Tju = r'T7, cf. the
notation of (1.76).
THEOREM 1.69. Let X be a compact C*° manifold with boundary Y .
(i) Every A € B»4(X;v) for v := (E,F;J_,J.) induces continuous operators
H*(X,E) H*MX,F)
(1.90) A: @ — ®
Hs(Ya J—) Hs—u(y’ J+)
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for all s € R, s>d—%.

(ii) A € B*Y(X;v) and o(A) = 0 imply A € B*~14(X;v), and hence the operator (1.90) is
compact.

(iii) A € B»4(X;v) for v := (Eo, F;Jo,J+) and B € B"¢(X;w) for w := (E, Eo; J_, Jo) implies
AB € B (X v ow) forvow = (E,F;J_,Jy) and h = max(v + d, e), and we have

o(AB) = o(A)o(B)
(with componentwise multiplication).
(iv) The formal adjoint A* (cf. formula (1.75)) of an operator A € B®°(X;v) forv := (E,F;J_,J;)
belongs to BY°(X;v*) for v* := (F,E;Jy,J ), and we have

o(A*) =o(A)"
(with componentwise adjoint, cf. formulas (1.10) and (1.77)).

THEOREM 1.70. Let v := (E,F;J_,J;) for E,F € Vect(X), J_,Jy € Vect(Y), and let A; €
Br=34(X;v), j €N, be an arbitrary sequence. Then there exists an element A € B*%(X;v) such that

N
A=) Ay e B WX y)

j=0
for every N € N, and A is unique mod B~¢(X;v).
1.3. SL-elliptic boundary value problems.

DEFINITION 1.71. Let A € B*4(X;v), p € Z,d € N, v := (E,F;J_,J;) for E,F € Vect(X),
J_,J+ € Vect(Y).
(i) The operator A is said to be SL-elliptic (of order u), if both
(1.91) oy(A) i mxE = X F,
mx :T*X \0— X, and

E'®SR;) F'®S(Ry)
(1.92) os(A) : 7y @ — Ty ®
J_ Ji

my : T*Y \ 0 = Y, are isomorphisms.
(ii) An operator P € B~*¢(X;v ') for some e € N, v~ ! := (F,E; Jy,J ), is called a parametrix
of A, if P satisfies the following relations:
(1.93) C:=I-PAecB ®UX;v), C :=I-AP¢cB ¥ (X;v,)
for certain d;, d,. € N, v; := (E,E;J_,J_), v, := (F, F;Jy, Jy), where Z denotes corresponding
identity operators.

REMARK 1.72. If (1.91) is an isomorphism, a bundle morphism (1.92) for A € B*?(X;wv) is an
isomorphism, if and only if

E'® H*(Ry) F'o H*7H(Ry)
(1.94) os(A) : 7§ @ — Ty ®
J_ Ji

is an isomorphism for any fixed s = 59 € R, sp > max(u,d)— % (or, equivalently, for all s > max(u, d)— %)

REMARK 1.73. If A € L',(X; E, F)y, is elliptic, i.e., (1.91) an isomorphism, we have

cl

(1.95) E ~F
In fact, let us consider the composition Ag := ARZ", cf. Theorem 1.59. Then we have Ay € B*9(X; E, F),
and oy(Ao) : 7% E — 7% F also is an isomorphism. Let = := S*X|y U N with the conormal interval

{ty,(n, 7)) :n=0, -1<7<+1}
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The transmission property of symbols of order zero has the consequence that

oy (Ao)

for my : S*X|y — Y extends to an isomorphism 73E’ — 7wiF, where m3 : = — Y is the canonical
projection of Z:= S*X|y UN to Y.
Since Y C E, the latter isomorphism then restricts to an isomorphism (1.95).

. * ! * !
s X|y Ml = mF

THEOREM 1.74. Let A € B*4(X;v), p€Z,d €N, v:= (E,F;J_,J,).

(i) The operator A is SL-elliptic (of order p), if and only if (1.90) is a Fredholm operator for an
s =350 € R, sop >max(p,d) — 5.
(ii) If A is elliptic, (1.90) is a Fredholm operator for all s > max(u,d) — %, and dimker A and
dim coker A are independent of s.
(iii) An elliptic operator A has a parametriz P € B’”’(d*“)Jr(X;'U*l) (p™ := max(p,0) for any
p € R) which can be chosen in such a way that the remainders in the relation (1.93) are
projections

C, : HYX,E)eH'(Y,]_)—V,
C, : H"MX,F)@H MY,J) =W

for all s > max(u,d) — % and are of type d; = max(u,d) and d. = (d — p)*, respectively, for

Vi:i=ker AC C®(X,E)®C>®(Y;J_), and some finite-dimensional subspace W C C*®(X,F)®
C>(Y;Jy) such that

W+imA=H"*X,F)e H*Y;J;)
and W Nim A = {0} for every s > max(u,d) — L.
An operator A € B*%(X; E, F) will be called oy-elliptic (of order p), if (1.91) is an isomorphism.

REMARK 1.75. Let A € B4(X; E, F) be oy-elliptic. Then
(1.96) oo(A)(y,n) : B, ® H* (R} ) — Fy © H*"(Ry)

2
are independent of s. For every G € Bg’d(X;E,F) we have indoy(A)(y,n) = indos(A + G)(y,n) for
all (y,n) € T*Y \ 0. Moreover, by virtue of the homogeneity (1.87) it follows that ind o5(A4)(y,n) =

ind oa(A)(y,n/Inl)-

Thus it makes sense to interpret (1.96) as a family of Fredholm operators, parametrised by (y, )
S*Y, the unit cosphere bundle. As such there is an index element

is a family of Fredholm operators for all s > max(u,d) — %, and kerop(4)(y,n), cokeros(A)(y,n)
)

m

(1.97) indg-y 0s(4) € K(S*Y),
cf. Atiyah and Bott [3], Boutet de Monvel [6].

REMARK 1.76. Let A € B*?(X;v) be SL-elliptic. Then, in the notation of Definition 1.71 for A :=
ulc A we have

(1.98) indg+y 09(A) = [n7J4+] — [71J_],
where 71 : S*Y — Y is the canonical projection. In other words, SL-ellipticity of A entails the relation

(199) indg+y U@(A) € ﬂ'IK(Y)
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2. Ellipticity with global projection conditions

2.1. The index obstruction. We first discuss the problem, whether a oy-elliptic operator A €
B*4(X; E, F) admits SL-elliptic boundary conditions.

THEOREM 2.1. Let A € B*4(X;E,F) be oy -elliptic. Then the following conditions are equivalent:
(i) There is an SL-elliptic element A € B»4(X;v), v := (E,F;J_,J}) for certain Jx € Vect(Y)
such that A = ulc A.
(il) A satisfies the relation (1.99).

Remark 1.76 shows that (1.99) is necessary for the existence of an SL-elliptic operator .4 with A as
upper left corner. For the converse direction we first establish a result on general families of Fredholm
operators.

In the following consideration we assume M to be a compact topological space. In this connection
by Vect(M) we understand the set of complex vector bundles on M in the continuous category, i.e.,
with continuous transition maps between local trivialisations. Moreover, let H; and H, be separable
infinite-dimensional Hilbert spaces. For every function

a € C(M,L(H,Hs))
with values in the set F(Hy, Hy) of Fredholm operators between Hy, Hy there is an index element
(2.1) indar a € K(M).
The construction is based on the following observation. There exists a finite-dimensional vector space and
an injective linear map k : W — H, such that

H,
(2.2) (a(m) k): & — H»

w
is surjective for all m € M. Then (2.2) is again a continuous family of Fredholm operators, now surjective.
Hence the family of kernels {ker(a(m) k) : m € M} represents a finite-dimensional subbundle V of
M x (Hy ® W). In other words, there is a V' € Vect(M) and a continuous family of isomorphisms

(2.3) U @ ker(a(m) k) = Vi,

(with V,,, being the fibre of V over m). Let p,,, : H; @ W — ker(a(m) k) denote the orthogonal projection
and set (t(m) g(m)) := vy © P,

Then
alm) k A H,
tm) gm)) 0 7
Wm Vi
is a continuous family of isomorphisms, and we define
(2.4) indpa:=[V]-[W] e K(M),

where W is identified with the trivial bundle M x Cdim W,

REMARK 2.2. Let a € C(M,F(H;, H2)) be as before, and let V,W € Vect(M) such that there is a
continuous family of isomorphisms

H,y H,
@Wkav:@_+@, me M
Wi Vi
for suitable operator functions k,t and g. Then we have
indpra =[V] = [W].

In other words, the element indy; a is independent of the choice of the bundles V, W and of the operator
families &, t, q.
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REMARK 2.3. Let ¢ € C(M, L(H;, H3)) be a family such that ¢(m) is a compact operator for every
m € M. Then we have
indps(a + ¢) = indys a.

For purposes below we need the following more specific construction.

PROPOSITION 2.4. Let a € C(M,F(Hy,Hsz)) be a Fredholm function, and let Ly € Vect(M) be

a fized choice of vector bundles such that indyra = [Ly] — [L_]. Then there exists an element ¢ €
C(M,L(H,, H2)) with values in operators of finite rank such that @ := a + ¢ has the following properties:
(i) kera = Ly, cokera = L_, i.e., there are subbundles Z+ C MxHy, L ~ L. and L. C M x Hs,
L_=L_, such that Ly ,, = kera(m), L_ ,, +ima(m) = Hs, and L_ ,,, +ima(m) = {0} for

allme M
(ii) There are (continuous) bundle morphisms
(2.5) k:L_—MxH,, t:MxH, —L,
such that
~ ’]‘C’ H1 H2
(2.6) (fzv 0) N
L. L,

18 an tsomorphism.

PROOF. As before we first pass to the surjective family (2.2). By assumption, we have
indyra = [V] - [W]=[Ly] - [L-]

in K(M). We can choose dim W as large as we want, and we now replace W by W @& W; for another
finite-dimensional Wy, and together with k& we choose a k; : Wi — Ho, and such that k° := diag(k, ki) :
W @& W, — Hs is injective. Let p : Hy — im k° denote the orthogonal projection, and write a® := (1—p)a.
Then, for W° := W & W; the operator family

H,
(@® k% : o — H
WO
is surjective, and VO := kerp; a® is a subbundle of H; isomorphic to a bundle V° € Vect(M) where

V0 >V ¢ W, (here vector spaces F' are identified with the respective trivial bundles M x F). By the
formula (2.4) applied to a® we obtain
(2.7) indy a® = [VO] = [W°] = [L4] — [L-]
for VO := V @ W;. We may assume that the given bundles L+ are both subbundles of the trivial bundle
W for a sufficienty large choice of dim Wj.
There are then complementary bundles L of Ly in V° and WP, respectively, i.e., we have
Ly®Lt=V" L_oLt=w"

Then the relation (2.7) implies [L1] = [L%] in K(M), i.e., there is an R such that L+ & C* =~ L+ & CF.
Replacing W, by W; @ CF in the construction before and returning to the former notation, we thus
obtain L 2 L*. By construction there are subbundles L_, L= C H, such that L_ 2 L_, Lt = L* wich
L_® Lt =imk°, and subbundles L+,~LJ+- C Hy such that Ly = Ly, Lt = Liand Ly ® Li = kera®.
Choose any isomorphism A : Li — L%, and let 7+ : H, — Li denote the orthogonal projection,
vt : Lt — H, the canonical embedding. Then ¢ := > o Aot : H — H, is a continuous family of
operators of finite rank, and a® + ¢ satisfies the relations
kerps(a® +q) = Ly, cokerpy(a’ +¢q) = L_.

Because of a® = (1 — p)a we may set @ := a + ¢ for ¢ := —pa + ¢q. Then a satisfies the relations of
Proposition 2.4 (i). To construct the isomorphism (2.6) it suffices to choose isomorphisms h : L_ — L_
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and [ : er — L., and to set k= th, t := Im, where s : L_ — H, is the canonical embedding, 7= : H; — Z+
the orthogonal projection. |

REMARK 2.5. Let A € B»%(X; E, F) be oy-elliptic, and consider the Fredholm operators (1.96) for

any fixed s > max(u,d) — %. Then there is a subbundle W c 71 F' @ S(R4) of finite fibre dimension such
that

Wy n+imos(A)(y,n) = F, @ H*7*(R;.)
for all (y,n) € S*Y.

Choose a vector bundle W € Vect(S*Y'), and let

kW =W
be an isomorphism. Then
E, ® H(R:) .
(2.8) (co(A)(y,m)  k(y,m): @ — F, @ H"(Ry.)
Wy

is a surjective family of Fredholm operators. W can be chosen as the pull-back of a bundle on Y with
respect to mp : S*Y — Y (in fact, we may assume that it is trivial).
Let —~
p:mF'@H *(Ry) > W
be a projection (orthogonal with respect to the F, ® L?(Ry) - scalar product in the fibres). Then
(1 —plog(A) : m{E' © H (Ry.) = 7] F' @ H™H(Ry)
is again a Fredholm family such that
V :=kerg-y (1 — p)oa(4) C 77 E' @ S(Ry)
is a subbundle, and
inds-y (1 —p)oa(4) = [V] - [W]
for any V € Vect(S*Y) which is isomorphic to V.

PROPOSITION 2.6. Let A € B44(X; E, F) be oy-elliptic, and let Ly € Vect(S*Y) such that

(2.9) indg«y 09(A) = [Ly] — [L_].
Then there exists an element G € Bg’O(X; E F) such that
(2.10) kerg-y (ca(A+ G)) = Ly, cokerg-y (0p(A+G)) = L_.

Proor. The construction of G may be given along the lines of Proposition 2.4 (i). Let us fix some

s € R such that s > max(u,d) — 3 (the specific choice of s will be unessential), and let

a:mE' @ H*(Ry) > 7 F' @ H* *(R})
for m : S*Y — Y denote the restriction of o5(A) to S*Y. According to Remark 2.5 there is a surjective
bundle morphism
B @ H*(R})
(a k): ® > F'@ HH(Ry)
w

for a W € Vect(S*Y), where k : W — W is an isomorphism to some subbundle W of 7} F' @ S(R,.).
Without loss of generality, we assume W to be trivial. Let p : 7} F' @ H* (R} ) — W be a projection that
is orthogonal in the fibres with respect to the scalar products of £ ® L?*(R,). By adding, if necessary,
another finite-dimensional subbundle to W (and denoting the new bundle again by W) we obtain the
following properties: There are subbundles L_CW and

L. CV :=kers-y((1—pa) CntE' @ H*(Ry),
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such that L_ = L, L = L4. In addition, choosing complements Lt in W and zi in ‘7, we have
Lt =~ Li‘, provided the fibre dimension of W is sufficiently large. If A : Li — Lt is an isomorphism, and
if

VL - wrF 9 HOM(RY)
is the canonical embedding, and

B @ H*(Ry) — Ly
the orthogonal projection, the operator family ag := (1 — p)a + ¢ for ¢ := 11 o A o 71 has the property
(2].].) L+ = keI‘S*y ap, L_ = COkeI‘S*y agp.
The operator function g := —pa+q: 7 E'QH*(R}.) — i F'@ H*#(R) can be extended by homogeneity
1 to a morphism

9 Ty E @ H* (R} ) = ny F' @ H7H(Ry ),

Le., g (s An) = MErg(u (y,n)ky " for all X € Ry, (y,n) € T*Y \ 0, and g,

s+y = g. Now we may set

L
(2.12) G =3 @il Oplgi)vs,

cf. Definition 1.66, where g;(y,n) are local Green symbols of order x which have g(,,)(y,7) as homogeneous
principal components (in local coordinates it suffices to set g;(y,n) = x(1)g(u) (y,n) for any excision
function x(n)). Because of ag = 05(A + G)|s=y, the assertion follows from the relations (2.11). O

THEOREM 2.7. Let A€ B»4(X;E,F) be a oy -elliptic operator. Then there exist vector bundles
Jy € Vect(Y) and Ly € Vect(T*Y \ 0)
and an operator A € B4(X;v) for v := (E,F;J_,J.) such that (1.94) restricts to an isomorphism

Ty E @ H(Ry)  wyF' @ H* H(Ry)
(2.13) @ - ®
L_ Ly

Proor. If A € B*Y(X;E,F) is oy-elliptic, the boundary symbol 5(A) represents a family of
Fredholm operators (1.96), and there is an index element (1.97). Choose any L+ € Vect(S*Y') such that

indg«y 09(A) = [Ly] — [L_].
For abbreviation, Ly will also denote the pull-backs of these bundles to T7*Y \ 0 under the canonical
projection 7*Y \ 0 — S*Y". Applying Proposition 2.6 we find a Green operator G € Bg’O(X; E, F) such

that the relations (2.10) hold.
Choose arbitrary bundle morphisms

ki :L —mfF@S[Ry), t:7E' @S[Ry)— Ly,

such that k; represents an isomorphism L_ — E_, and t; restricts to an isomorphism Z+ — Ly, cf. the
notation in the proof of Proposition 2.6. Then the block matrix

E' @ HS(Ry) 7 F' @ HH(R,)
(2.14) <U‘9(‘i+ @) ]Bl> : @ - ®
! L_ L,

is an isomorphism for every s > max(u,d) — 1. Now let Ji. € Vect(Y) be arbitrary bundles such that L
are subbundles of 7} Jy (for J+ we may always take trivial bundles of sufficiently large fibre dimension).
We then obtain a bundle morphism

Bl s * S—p
10 &) SEO IR A O 1R
o 0 -y i

(2.15)
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when we set ko := k; o w_ for a bundle projection n_ : #7J_ — L_ and o := t4 o t; for the canonical
embedding ¢y : Ly — 77 Jy. By construction, (2.15) restricts to the isomorphism (2.14). Next we extend
(2.15) by kx-homogeneity p to a boundary symbol of the form (1.94), which has the form

(Ua(A + G) k(u)>
tu) 0

for unique k() (y,n) and t(,)(y,n) satistying k) (y,n/|nl) = ki(y,n/In|) and ¢, (y,n/Inl) = t(y,n/n)),
respectively. Similarly to the construction of (2.12) we find potential and trace operators K and T,
(

respectively, such that o5 (K) = k(,), 05(T') = t(,).

Setting
_(A+G K
(2.16) A= ( T 0>
we obtain an element in B*?(X;v) as desired. O

REMARK 2.8. For indg«y 05(A4) € 77 K(Y) we can carry out the construction in the latter proof with
bundles 7} Jy for suitable Jr € Vect(Y) in place of Li. Then (2.13) shows that the operator (2.16) is
SL-elliptic.

PROOF OF THEOREM 2.1, (ii) = (i). If the relation (1.99) is satisfied, the family of Fredholm op-
erators (1.96) for any fixed s > max(u,d) — 1 can be completed to a block matrix (1.94) that is an
isomorphism. For the construction we first restrict oy(A) to S*Y (denote it again by os(A4)) and set

J_ := /- . For a sufficiently large j_ there is an injective bundle morphism
ko :miJ_ — nfF' @ S(Ry)

such that
B @ H*(Ry)
(ca(A) ko) : @ =i F' @ H " (Ry)
mJ_

is surjective. Then kerg-y (c9(A) ko) is a finite-dimensional subbundle of

WTE, ® S(K+)
(2.17) ®
mrJ_

As we saw by the above constructions, for a sufficiently large choice of j_ the bundle kerg-y (0o(A4) ko)
is isomorphic to 7§ J; for some Jy € Vect(S*Y).
Now let
Ko : kel“g*y(a'a(A) ko) — 7'(';.]4_
by any isomorphism, and let

T E'© H*(Ry.)
(218) 7o - S¥) — kers*y(a@(A) ko)
mrJ_

be the orthogonal projection with respect to the (Ej @ L*(Ry)) @ J_ y-scalar products in the fibres, first

for s > max(u, d) and then extended by continuity to all s > max(u,d) — L.

2
Setting (to qo) := ko © mp we obtain an isomorphism

E'® H*(R;) F'o H"(Ry)
(2.19) <”8t(‘4) ko) o @ — ®
0 qo J. I,
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There is then a unique extension to an isomorphism

E'® H*(Ry) F'o@ H7M(Ry.)
oo(A) := <08(A) k(u)) :oomy ) — Ty ® ,
b A J I,

homogeneous in the sense
a9 (A)(y, M) = N diag(1, kx)os (A) (y, ) diag(1, £} ")
for all (y,n) € T*Y \ 0 and all A € R;..

We finally pass to an element
A K d
A= € B X;v)

T Q
for v = (E,F;J_, J;) that has 05(.A) as homogeneous principal symbol. The construction of the entries
T, K and Q in terms of ¢(,), k(,) and g(,), respectively, is analogous to that for (2.16). O

2.2. A Toeplitz algebra of boundary value problems. For every L € Vect(T*Y \0) there exists
an element J € Vect(Y") such that L is a subbundle of 7} J. In fact, we may choose J as a trivial bundle
Y x CN (also written as CV) for a sufficiently large N. Let

Po) * W;J — L
be a bundle morphism that is a projection to L, such that p()(y, An) = p(y,n) for all X € Ry, (y,n) €
).

T*Y \ 0. Then, by Theorem 1.13 there exists a P € LY(Y’; J,J) such that P? = P and p() = oy (P
Recall that triples of the form

(2.20) L:=(P,J,L)

are called global projection data and recall that P(Y") denotes the set of all such triples, cf. (1.19).
DEFINITION 2.9. Let

(2.21) L, := (Py,J;,Ly), Lo :=(P_,J_,L_) € P(Y)

be projection data, and let R_ : P*(Y,L_) — H?®(Y,J_) denote the canonical embedding, s € R.
Moreover, let v := (E,F;J_,Jy), and set | := (E, F;L_,L,). Then S*¢(X;l) for p € Z, d € N, is
defined as the set of all operators

(2.22) A= <(1) ]9+> /T(é RO_>

for arbitrary A € B4(X;v).
THEOREM 2.10. Every A € S*4(X;1) (with notation of Definition 2.9) induces continuous operators
H*(X,E) H*"(X,F)
(2.23) A ® - ®
Ps(Ya L,) PS_N(Y7L+)
for all s € R, s>d—%.

PRrROOF. It suffices to apply Theorem 1.69 to the operator Ain (2.22) and to employ the definitions
of R_ and Py, cf. (1.20). O

We now introduce the principal symbolic structure of S*¢(X;1). By definition, elements in that space
are 2 x 2 block matrices A = (A4;j); j=1,2 with A;; =ulc A€ B*4(X; E, F). We then call
(2.24) oy(A) i=oy(ulc A) : 7y E = 7\ F
the (homogeneous principal) interior symbol of A. Furthermore, the operator family
(2.25) os(A) = o5(A) : @ — ®
0 0 r_
L_ L,
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is called the (homogeneous principal) boundary symbol of A. Here p4 (y, n) is the homogeneous principal
symbol of order zero of the projection Py € LY%(Y;Jy,Jy), and r— : L_ — w}J_ is the canonical
embedding.

Let us set

(2.26) o(A) := (oy(A),09(A)).
REMARK 2.11. Let A € B»4(X;v) forv = (E,F;J_,J;), and form the operator

z 1 0\ ~+/1 O

i=(o 2)a6 2)
(with notation of Definition 2.9). Then we also have j € B»4(X;v), if we interpret P, as a map
He#(Y,Jy) = H (Y, J;) (not as H*#(Y, Jy) — P #(Y,L;) as in (2.22)), and the operator (2.22)

can also be written as
1 0 1 0
o) e (b YAl )

(with Py : H*#(Y,Jy) — P*#(Y,L;)). Then o(A) = 0 in the sense of B*%(X;v), cf. (1.86), is
equivalent to o(A) = 0 in the sense of S*?(X;1).
THEOREM 2.12. (i) A € S»4(X;l) (cf. Definition 2.9) and o(A) = 0 imply A € SF~H4(X;1),
and (2.23) is compact for every s > d — .
(i) A € S*U(X;ly) for ly := (Eo, F;lo,Ly), B € 8¥¢(X;ly) for ly := (E, Ep;L_,Ly), Ly, Ly €
P(Y), implies AB € SFT"(X;lgoly) forlpoly := (E,F;L_,Ly), and h = max(v + d,e),
and we have

Lll

o(AB) = o(A)o(B)
(with componentwise multiplication).
(iii) A € S¥°(X;1) forl:= (E, F;L_,L;), implies A* € S*O(X; ") for I" := (F, E; L5 LX) in the
sense of
(u, A*U)L2(X,E)@P0(Y,1L_) = (Au, U)L2(X,F)@P0(Y,L+)
for all w € L*(X,E) @ P°(Y,L_), v € L*(X,F) @ P°(Y,L;), and we have o(A*) = o(A)*
(with componentwise adjoint, cf. Theorem 1.69 and Theorem 1.29).

Proor. (i) Let us write A in the form (2.27) and apply Remark 2.11. Then we have o(A) = 0.

From Theorem 1.69 (ii) we then obtain A € B*~1¢(X;v) which implies A € S#~14(X;1). Moreover, A
is compact and so is A.
(ii) The operators A and B can be written in the form

1 0\ ~+/1 0 1 0\z/1 O
=0 )40 =) 5= )56 )
with Py from Ly = (Py,Jy,Ly), Py from Ly = (P, Jo, Ly), and R_ : P°(Y,L_) — H*(Y,J_) and

the corresponding canonical embeddings Ry : P*~¥(Y,Ly) — H®* ¥(Y, Jy), moreover, A€ B*4(X;vp),
vo := (Ey, F; Jo, J1), and B € B"4(X;v1), vy := (E, Ey; J_, Jy). Then it follows that

1 0\ ~+/1 0\s/1 O
5=y 2) 40 5)56 2)
From & := /Tdiag(l,Po)E € B (X; vy 0vy), cf. Theorem 1.69, we obtain AB € S¥t¥"(X;l50l;). In
addition, we have

o(€) = o(A) diag(1, po)o(B)
where pg is the homogeneous principal symbol of Fy, and hence oy (AB) = oy (A)oy(B). Moreover, from

o5(€) = oo(A)diag(l,po)oa(B)

= o09(A) diag(1, 7o) diag(1, po)os(B)
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with ry : Ly = my-Jy being the canonical embedding, it follows that

op(AB) = diag(1,p+)os(A)diag(l,ro) diag(1, po)os(B) diag(1,r-)
= oo(A)as(B).

(iii) Writing A in the form (2.22) for A € B®9(X;v), v := (E, F;J_, J,), we have

. (1 0\ /1 0
w0 )26 )

with A* € B%°(X;v*) as in Theorem 1.69 (iv) and P} as in Theorem 1.29, where RY : P°(Y,L%) —
H*(Y,J;) is the canonical embedding. This yields A* € S%%(X;l*), cf. also the notation of Theorem
1.29. Moreover, we have

05(A”) = diag(1,pZ)oa(A)" diag(1,r7}),
where p* is the homogeneous principal symbol of the projection P* and r} : L% < 7§ J, the canonical
embedding. From o5(A)* = 05(.A*) we then obtain the assertion. O

THEOREM 2.13. Letl := (E,F;L_,L;) for E,F € Vect(X), Ly € P(Y), and let A; € S*34(X;1),
j €N, be an arbitrary sequence. Then there exists an element A € S*4(X ;1) such that

A- EN: Aj € PN+ ()
j=0
for every N € N, and A is unique mod S—°4(X;1).
PRrOOF. The assertion is an immediate consequence of Theorem 1.70 and Definition 2.9. ]
Given A € S*4(X;1), B € S»%(X;m) for
l:=(E,F;L-Ly), Li:=(Ps,Js, Ls),
and
m = (V,W; M., M), Mz :=(Qx,Gx, M),
Ly, My € P(Y), we can form the direct sum
(2.28) A®BeSHX;ladm)
for
lem:=(EaV,FeW;L_ & M_,L; &M,),
L &My = (P ®Qux,Js PGy, Ly & My).
We then have
0u(A®B) = 0y (A) & 0y (B), 0(A®B) = 05(A) & 05(B)
with an evident meaning of ‘@’ for the symbolic components.

2.3. Ellipticity, parametrices, and the Fredholm property. Our next objective is to study
ellipticity with global projection conditions.

DEFINITION 2.14. An operator A € S#4(X;l) for l := (E,F;L_,L, ), Ly := (Py, Jx, L), is called
elliptic, if
(i) the interior symbol

(2.29) op(A) :mxE = F

is an isomorphism, and
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(ii) the boundary symbol
ME @ H R, mF @ HH(R,)
(2.30) oo(A): ® — ®
L_ Ly

is an isomorphism for every s € R, s > max(u,d) — %

REMARK 2.15. Condition (ii) in Definition 2.14 holds if and only if it is satisfied for any fixed
so > max(u, d) — % Moreover, this is equivalent to the bijectivity of

B @ SRy) b F' @ S(Ry)
(2.31) oa(A) : ® — ©®
L L.

THEOREM 2.16. For every operator A € LY\ (X; E, F )y (cf. notation (1.66)) such that oy (A) : 7% E —
% F is an isomorphism there exist projection data Ly € P(Y) and an element A € S*O(X;l) for
l=(E,F;L_,Ly) which is elliptic in the sense of Definition 2.14.

PRrOOF. Let us choose elements Ly € Vect(S*Y') such that the relation (2.9) holds, and let G €
Bg’O(X;E,F) be an operator as in Proposition 2.6. We can apply the construction of the proof of

Theorem 2.7 and denote the operator (2.16) by A instead of A. This shows that the operator (2.16) has
the asserted properties. O

PROPOSITION 2.17. For every p € Z, E € Vect(X) and L € P(Y) there exists an elliptic element
R%JL € S#O(X;1) forl := (E,E; L, L) which induces Fredholm operators
HY(X,E) H*"(X,E)
Rer: & = ®
Ps(Y,L) P R(Y,L)

for all s > max(p,0) — L, such that (R% )L € S—m(=m"(X;1).
2 EL

RY 0
RN = ( E >
E,L 0 R]lﬁ

with Rl from Theorem 1.59 and R} from Remark 1.31. O

Proor. It suffices to set

REMARK 2.18. Let R/, be as in Theorem 1.59. Then
oo(RY) :my B' @ H*(Ry ) = 7y E' @ H7H(Ry)
is an isomorphism, s > max(u,0) — % This implies
indg~y oo(Rl) = 0.
t(X5E,E)q, in terms of the local symbols 1% (n,7) =

" (n,7) (the complex conjugate), cf. Remark 1.60. The operator Sf, € B*°(X;E, E) can be chosen in
such a way that

Similarly to R, we can form an operator S% € L

o9(SE) 7y E' @ H*(Ry) = my B' @ H*™H(Ry)
is surjective and kerg«y 05(S%) = p[ri E']; this yields
(2.32) indg-y 09(S%) = plrT E'].
THEOREM 2.19. For every elliptic operator A € S*4(X;l), 1 := (E,F;L_,Ly), there exists an
elliptic operator B € S*°(X;m) for m := (F, E;M_, M, ), for certain projection data M.y € P(Y) of the

form My := (Q+,CN, M) for some N € N, such that A®B € B»(X;v),v:= (E®F,FoE;CV,CV)
is SL-elliptic
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PROOF. Choose any s € N, s —p > 0, and form the operator Ay := Ry "ARZ® : L*(X,E) —
L*(X, F), cf. Theorem 1.59. Then we have 4y € B*°(X; E, F) and
inds*y U@(Ao) - inds*y U@(A) = [L+] - [L_]
For the L?-adjoint Ay € B%°(X; F, E), cf. Theorem 1.69 (iv), we have
indg«y 09(A5) = [L-] — [L+]
as well as indg-y 05(B1) = [L_] — [L4] for By := R;°T" A5 RS € B*¢(X; F, E) with some type e € N.
The operator B; can be written as B + G for a certain B € B*°(X;F,E) and a Green operator
G1 € BE°(X; F,E), and then
indg«y 09(B) = [L_] — [L4],
because 05(G1) is a family of compact operators in the respective Sobolev spaces on R .
There are bundles M, M_ € Vect(S*Y) such that M & L_ = M, ® L,y = CV, and we obtain

inds*y U@(B) - [M+] - [M_]
Applying Theorem 2.7 and the proof of Theorem 2.16 we find an elliptic operator B € S*°(X;m) for

m = (F,E;M_,M, ), My = (Q+,CN, M), such that kerg-y o5(B) = M, cokerg-y o5(B) = M_. The
operator B is then as desired. O

DEFINITION 2.20. Let A € S*4(X;l) for | = (E,F;L_,L;), Ly € P(Y). An operator P €
T—He(X;17Y for 17! := (F, E; L, ,L_) and some e € N is called a parametrix of A, if the operators

(2.33) C:=7-PA and C,:=1-AP

belong to S™°% (X;m;) and S™°% (X ; m,), respectively, for m; := (E, E;L_,L_) and m, := (F, F;L,,L,),
and certain d;, d, € N.

THEOREM 2.21. Let A € S*4(X;l), p € Z,d € N, v := (E,F;L_,L,) for E,F € Vect(X),
Ly € P(Y)
(i) The operator A is elliptic if and only if
H’(X,E) H*HX,F)
(2.34) A: ® — D
PS(Y,L.) P*H(Y,L.)

is a Fredholm operator for an s = sg € R, so > max(u,d) — %

(ii) If A is elliptic, (2.34) is a Fredholm operator for all s > max(u,d) — %, and dimker A and
dim coker A are independent of s.

(iii) An elliptic operator A has a parametriz P € S~ (X 17Y) (in the sense of Definition
2.20) for d; = max(u,d),d, = (d—p)™, and P can be chosen in such a way that the remainders
in the relation (2.33) are projections

G HY(X,E)®PS(Y,L_) >V, Cp:H(X,F)® P~ (Y,Ly)— W
for all s > max(u,d) — %, for V:=ker A C C®(X,E) ® P>(Y,L_) and a finite-dimensional
subspace W C C®(X, F)®P>®(Y, Ly ) with the property W+im A = H~#(X, F)®eP* *(Y, L, ),
W Nim A = {0} for every s > max(u,d) — .

PrROOF. Let A € S#%(X;l), 1 := (E,F;L_,L,), be elliptic. Choose an elliptic operator B €
SHO(X;m), m := (F,E;M_,M,) as in Theorem 2.19 such that A ® B € B*?%(X;v) is SL-elliptic.
Applying Theorem 1.74 (iii) we find a parametrix (A @ B)(=Y € B_”’(d_“)+(X;v_1), such that the re-
mainders Z — (A®B) (A2 B) and Z— (A B)(A®B)(Y are of type d; = max(u,d) and d,. = (d—p)*,
respectively. For the principal symbolic components of (A @ B)(~Y) we have

oy (A®B) ) = 0y (A) ' ® oy (B)™

and

oa((A@B) ) =0s(A) ! @oa(B)L.
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In particular,

@ HH(Ry)  my BT e HY(Ry)

©® ©®

Ly L_

(2.35) o—a((A@B)(‘l)) : ® - ®
Ty E'@ H* MRy )  wypF o HY(Ry)

©® ©®

M, M_

is an isomorphism which induces isomorphisms o5(A)~! and o5(B)~! between the respective bundles
separately. In particular, by omitting the third row and column of (2.35) we obtain a morphism

Ty HTHRy)  aypE' @ HY(Ry)
(2.36) g(Po) : ® — @
(G cN

which is the boundary symbol of an operator Py € B~#(@=m" (X;w) for w := (F, E;CN ,CN) such that
oy (Po) = oy (A)7!, and (05(Pp)) restricts to

Ty '@ H MRy ) 7wy E' @ HY (R4 )
oa(A)~t <) - @
Ly L_

1 0\z (1 0
o n )G n)

with the projection P_ : H*(Y,CN) — P*(Y,L_) and the canonical embedding Ry, : P*~#(Y,L;) —
H*(Y,CVN), we obtain an operator Py € 37“7(d’”)+(X; I™!) such that

0u(Po) = oy (AL, aa(Po) = oa(A) L.

Thus we have CP := Z — Py A € S7H4(X;my), and C° := 7 — APy € S~14(X;m,), cf. Theorem 2.12
(1), (ii).

Let us form K ~ -7, (CP)?, cf. Theorem 2.13, and set P, := (Z — K)Po which belongs to
S—md(X;1Y). Then it follows that Z — PpA € S™°%(X;my). In an analogous manner we find an
operator P, € S% (X;1 !) such that Z — AP, € S~ (X;m,). In other words, there is a left
parametrix P; and a right parametrix P, of A4, i.e., we may set P := P;. From Theorem 2.12 we thus
obtain that (2.34) is a Fredholm operator for every s > max(u,d) — 1. The assertions of Theorem 2.21
(ii) and (iii) now follow in a similar manner as the analogous ones of Theorem 1.32 (ii), (iii), again by
applying Remark 1.8 to the present situation. Thus, to complete the proof of Theorem 1.32 it remains to
show that the Fredholm property of (2.34) for an so > max(u,d) — 1 entails the ellipticity.

If (2.34) is a Fredholm operator for s = sy > max(u,d) — 3, also

Thus, if we set

-1
A= RETMA(RE, ) € S™(X50)
is a Fredholm operator

L*(X,E) L*X,F)
(237) Ao : S¥) — ©® ,
P POYLy)

cf. the notation in Proposition 2.17. If we show the ellipticity of A4y, we also obtain the ellipticity of A
itself, because the order reducing operators are elliptic, and compositions of elliptic operators are again
elliptic. To simplify notation we write 4 := Ag. We now proceed in a similar manner as in the proof of
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Theorem 1.32 and use the same notation as in (1.35), (1.36), (1.37) (with Y in place of M). Then we can
form the operator

1 0 0 A 0 L*(X,E) L*(X,F)
B:=|0 Ry 0 <0 E): @ — ®©
0 LAY,J) L*Y,Jy®J.)

0 Rt
p (2.37). Hence there is a

LX(X,F)  L*(X,E)
Q. D — D
PY(Y,Ly)  PY(Y,L.)

The operator A is Fredholm as a ma

such that
L*(X,E) L*(X,E)
I-0QA: @ — ®
P°(Y,L_) P°%Y,L.)
in compact. Let
L*(X,F) L*(X,F)
S: & — &
LX(Y,Jy ®J_) PY,Ly)@® PO(Y,LLt)

denote a projection. Then

o o LX,F)  IXX,E)
T = <0 E> 0S: & — ®
LAY, Jy @ J.) LAY, J.)

has the property that Z — 7B =: K is compact in the space L?>(X,E) @ L*(Y,J_). Since Z — K is a
Fredholm operator in the latter space, it follows that dimker(Z — K) < oo, and hence dimker B < oo
since
ker B C ker(Z — K).

The operator B*B : L*(X,E) & L*(Y,J_) — L*(X,E) ® L*(Y,J_) belongs to B*°(X;w) for w :=
(E,E;J_,J_) and is Fredholm. From Theorem 1.74 (i) we know that B*B is elliptic. It follows that both
oy(A) and op(A) are injective. By passing to adjoint operators in an analogous manner we can show
that oy (A) and 05(A) are also surjective. This completes the proof of Theorem 2.21. O

2.4. Reduction to the boundary. Let

(2.38) A = <£> € Sm(X;1)

forl := (B, F;0,L;),L; € P(Y),4 = 1,2, be two elliptic boundary value problems for the same oy-elliptic
operator D € B*4(X; E, F) (without loss of generality we assume the type d in A; to be independent of

We want to reduce the operator As to the boundary by means of A;. By virtue of Theorem 2.21 (iii)
there are parametrices P; € S*‘“(d’”ﬁ(X; I™'). They have the form of row matrices

(2.39) P =: (Gz Ki),

where G; is an analogue of Green’s function of the boundary value problem A;, and K; is a potential
operator. Using

A1 P = <(1) 2) mod S_Oo’(d_“)+(X;m,)

for m,. := (F, F;1;,L,), we obtain

1 0

(2.40) APy = (T2G1 K

) mod 87007(d*”)+(X;m),
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for m := (F,F;L;,Ly), and we have
Q:=TK, € T°(Y;L;,Ly),

cf. Definition 1.21. Because both A and P; are Fredholm operators, also
Q:P*(Y,Ly) = P*(Y,Lp)

is Fredholm, and ind R is independent of s, cf. Remark 1.37.

The operator R is called the reduction of A to the boundary by means of A;. The following result
is an analogue of the Agranovich-Dynin index formula.

THEOREM 2.22. Let A;, i = 1,2, be two elliptic operators (2.38). Then we have
ind A; —ind A; =ind Q.

ProoF. The assertion follows from the relation (2.40), using the fact that smoothing remainders are
compact operators and ind P; = —ind A;. O

REMARK 2.23. Let A;, be two elliptic operators (2.38) for L; = (P;, J,L) with the same bundles
J, L but different projections P;, i = 1,2, and assume T; = P;T for the same trace operator T'. Then, if
Ry : P5(Y,1Ly) — H*(Y,J) is the canonical embedding, we have (in the notation of (2.40))

2Ky = 2Ry
modulo a compact operator and hence, using Proposition 1.17 and notation (1.17)
ind Ay — ind A; = ind(Py, P).

This is a consequence of the fact that when K denotes the potential operator that appears in the

parametrix construction for A; as in the proof of Theorem 2.21 we have 05(T)os(K) = id as a map
L — L.

REMARK 2.24. The procedure to reduce elliptic elements of S*?(X,l;) with the same upper left
corners to the boundary can be generalised to arbitrary I = (E, F;L_;,Ly ;), ¢ = 1,2. The algebraic
technique is the same as in [30, Section 3.2.1.3]. There is then an immediate analogue of Theorem 2.22
for the general case.

3. Transmission operators and Cauchy data spaces

3.1. Transmission operators. Let M be a closed compact C*° manifold which is subdivided into
compact C'*° manifolds X; and X_ with common C* boundary Y, i.e.,

M=X,UX_, Y=X,NnX_.

An example is M = 2X, the double of X, where two copies of X are glued together along Y = 9X.
Given an elliptic operator A € L' (X;V, W), V,W € Vect(M), we can consider the restrictions

cl
Ai = A|int X4 € Lgl(lnt Xﬂ:;vﬂ:awi)a

Vi = Vline x4, Wt := Wlint x,. - We want to study the question to what extent the index of the Fredholm
operator

A:H°(X,V) - H "X, W)
can be compared with Fredholm indices of elliptic boundary value problems for AL on the *-sides X4
with respect to Y.

At first glance, such a problem appears very natural, for instance, when A is an elliptic differential
operator. However, in the pseudo-differential case there is a basic analytic problem: The operators A4
have not necessarily the transmission property at the boundary Y (which is, in fact, the exception).
Moreover, in general there do not exist Shapiro-Lopatinskij-elliptic boundary conditions for A4 (also for
differential operators), although there are always elliptic projection conditions, cf. Theorem 2.16, when
the transmission property is satisfied.

For convenience, we first consider the case M = 2X and assume that A has the transmission property
at Y. Let r* denote the operator of restriction from M to int X4 and e* the operator of extension by



46 B.-W. SCHULZE

zero from int X4 to M. Moreover, let € : M be the reflection map that maps a point ;. € X to its
counterpart x_ € X_ and conversely; then Y remains fixed. We use ¢ as a diffeomorphism ¢ : X, — X_
as well as e : X_ — X (this should not cause confusion).

We then have

(3.1) rtAet € B#Y (X Vo, W), 1" Ae” € B*(X _;V_,W_).
and

(3.2) rtAe e*, e*r~ Aet € BL (X V., Wy),

(3.3) r-Aete*, et Ade” € BLO(X V., W).

Let us first assume that Ay € LY (M;V, W) is an elliptic operator. The ellipticity of Ay is equivalent to
the Fredholm property of the operator

Ao : LA(M,V) = L*(M, W),
cf. Theorem 1.7 (i), or, equivalently, of
2 2
<r+A0e+ r+A0e> .L (X4, Vi) LA(X4, V5

: B N e .
— + —_
rApe™ rmAge- LX(X_,V.) L(X_,V.)

Writing X := X4, Ey .=V, Ey :=€e*V_, F} := W4, Fy := ¢*W_ this is equivalent to the Fredholm
property of

2 2
rT Age™ rTAge~e* LBy L R)
(3.4) A= Aot e Anem—et ) ® — ® .
0 0 LZ(XaEZ) LZ(XJFZ)

By assumption, Ay has the transmission property at Y'; recall that this condition is symmetric with respect
to both sides X. Thus we have A € B%%(X; E; ® Fs, F1 ® Fy). Because of the Fredholm property of
(3.4) the operator A is elliptic in BY%(X; E; ® E», Fy ® F3), cf. Theorem 1.74 (i). In other words, the
symbols O'QP(A) : W;((El D E2) — W;((Fl D Fg) and
(3.5) oo(A) iy (B' O EY® L*(Ry) = 3 (F' @ F') ® L*(Ry)
are isomorphisms. Here we use that E' := E{ = Ej and F' := F| = Fj. Let us write A := (Ay;); j=12.
The boundary symbols o5(A;2) : 73 E' ® L*(Ry) — 73 F' ® L*(R;) and
oo(Any) Ty E' © LA(R:) = mi F' @ LA(Ry)

take values in compact operators, because

Aip € BYY(X;E1, Fy), As € BYY(X; By, F),
cf. the relations (3.2) and (3.3). Since (3.5) is a family of isomorphisms, we therefore have
(3.6) indg«y Ua(A) = indg+y Ua(An) + indg«y UB(AZQ) =0.
Let us also consider the boundary symbols o (+)(-) of r* Age® with respect to the plus - and the minus

- side, i.e., in the sense of B®?(X,; Ey, F}) and B%?(X_; E», F3), respectively.
Let e, denote the operator push-forward under the reflection diffeomorphism e : M — M. We have

All = I‘+A06+ and Agz = I'+(8*A0)e+
and
inds+y op,(4)(r* (64 Ao)e™) = inds+y o9 () (r Aoe™).
Together with the relation (3.6) we thus obtain the following result.

PROPOSITION 3.1. Let Ay € LY (M;V,W) be an operator with the transmission property at Y. Then
we have

(3.7) indg+y 08,(+) (r+Aoe+) + indg+y 0’37(,)(1“714067) =0
((3.7) is interpreted as a relation in K(S*Y)).
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Let us now consider an arbitrary elliptic operator A € L¥,(M;V,W),. We use the fact that there is
an operator Ry, € LY{(M;V,V);, such that
Ry =r"Rie: H"(X,, Vi) - L*(X4,Vy)
is an isomorphism with the inverse rﬂ%(,“ e™, cf. Remark 1.60. Let us set Ag := AR;*. We then have
1t Aget = (T AeT) TRy eT) + G
for some G € Bg’(Xy;Vy,W,). Because of inds-y o5(r* R,"et) = 0, cf. Remark 2.18, and since
05(G)(y,n) is compact for every (y,n) € S*Y, it follows that
(3.8) inds-y op,(4) (" Age™) = inds-y g (1) (T AeT).
On the other hand, we have
r-Age” = (17 Ae”)(r" Ry M)
which implies
(3.9 inds+y 0g,(—)(r” Age”) = indg-y oy —)(r” Ae")
+ indgey 05, () (r” RyMe)
= indg-y op ()(xT AeT) — p[rTE'],
cf. (2.32). Moreover, the relations (3.8) and (3.9) yield
inds+y 0,(1) (rtAge™) +indg-y 0g,(—)(r” Age™)
=inds-y 0y, (4)(rt Ae?) +inds-y 0p—)(r” Ae”) — p[r E'].
Together with Proposition 3.1 we thus proved the following theorem.
THEOREM 3.2. For every elliptic operator A € L¥,(M;V,W )i we have

cl

indg«y 05,(+) (r+Ae+) + indg«y 09,(—) (rfAef) = M[WIE’]

for E' :=V|y.
We want to specify the latter result for the case that A := D is an elliptic differential operator
(3.10) D:H*(M,V)— H*"H(M,W)
of order 4 € N on M. In this case we know that
(3.11) oo, ) (D) my E'@ H* (R ) = ny F' @ H7H(Ry)
and
(3.12) oy, (—)(D) 7y E' @ H*(R_) = 7y F' @ H *(Ry)

are both surjective, s — u > —%. (Recall, cf. Remark 1.73, that we always have E' = F’.) The kernels

kers*y 0’@7(_,_) (D), kers*y 06,(—) (D)
are then subbundles of 7} J for J:= E' @ ... ® E' (u summands).

PROPOSITION 3.3. The Cauchy data spaces
— J .
Litn) = {(Dlulo)
we B @ SEy), 0p)(D)y,mu=0}
for, Dy := %% and
L_(y,m) = {(D{uh:o)

weE'@SE® ), oy (D)y,nu=0},

7=0,...,u—1

(y,n) € S*Y form complementary subbundles Ly of @;-‘:_OIE', i.e. we have
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(3.13) kerg*y 09,(+) (D) S¥) kers*y 03,(—) (D) = 69?:17TIEI-

The proof of this result will be a consequence of Lemma 3.4 below. In the splitting of variables
z = (y,t) €Y x (—1,1) in a tubular neighbourhood of Y we write the operator D in the form

w
(3.14) D= a;(t)D]
=0
with coefficients a;(t) € C®((—1,1), Diff* 7 (Y; E', F")), D; = %%. We then have
IJ .
(3.15) oo,+) (D)) = Y oy(a;(0))(y,m) Dy
7j=0

on Ry 3 ¢, where oy (a;(0)) is the homogeneous principal symbol of order u — j of the operator a;(0) €
DIff*~ (Y B, F"), (y,n) € T*Y \ 0, j = 0,..., .

LEMMA 3.4. Let
o
A:=>"bDf,
k=0
be an m X m system of operators on R with constant coefficients. Assume that
(i) by € GL(m,©),
(it) D25 by is invertible for all T € R.
Then for
Ly = {1)fu(0))k:0,,,,,”_1 € C :y e S(Ry,C™), Au = o}
we have L ® L_ = C™*,
Proor. Without loss of generality we assume b, = idcm, otherwise we pass to a new system with
coefficients b;lbk. The equation Au = 0 is equivalent to the system

n—1
Dyuy 1+ Y bruy, =0,
k=0

DtUj—Uj_H:O for jZO,...,/I,—2,

or
(Dt—A)U:() for U :="(ug,...,uy—1),
for

0 1 0 0

0 0 1 0

A= : : : :

0 0 0 1

—bo —bi by ... —by_1

We then have
Li= {U|t:0 e ™ . U e §(Ry,Cm™), (Dt - A)U = 0}.
The matrix 7 — A is invertible for all 7 € R if and only if condition (ii) is satisfied, i.e., if spec(A)NR = 0.
Let A € spec(A) and set S,(A\) := {z € C: |z — A| = p}. We have (Dt - A)U =0 and Ul;—o =: Uy if and
only if U(t) = AUy, and
A= Y (% /SP(A) it (¢ — A)—ldc) Uy

A€espec(A)
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for every sufficiently small 0 < p < 1. Let us set specy (A) = {\ € spec(A) : Im A 2 0}; then spec(A) =
spec, (A) Uspec_(A). Since, by assumption, spec(A) NR = 0, we have

_ 1 itCo g =1
U0 = X (g [, AT
A€spec (A) 4
1 it _ g1
DY (m‘/s(x)e (¢ = Ac) Ui
A€spec_ (A) 4

and
U0)=Uo= Y MU+ Y. L,
Aespec (A) A€spec_(A)

where Iy := (27i)~ fs ) (¢ — A)~1d( is the projection to the eigenspace of A to the eigenvalue \.

We have
(Dt - A) {% /s,,(x) et (¢ — A)—ldg} =0

for every A € spec(A) and
1 . )
[ Ay = ()
270 Js,(0)
for a suitable polynominal p(t) (with mu x my matrix-valued coefficients) of order m(\) — 1 where m(\)
is the multiplicity of A. This gives us

L+:( 3 HA)(C””‘, L_:( 3 H,\)Cm“

A€specy (A) A€spec_(A)
and hence Ly ¢ L_ = C™#, O
REMARK 3.5. We also have
1 ; _14d¢

3.16 D;— A —/ e(C-—A T2 =0
(3.16) (D1 >{2m oy €A
for every A € spec(A) and 0 < p < dist(A, 0), i.e
(3.17) I, = (2m‘)—1/ (¢ —A)~td¢ = (2mi)™t A ¢—A 14

5,(0) $5() <

Thus, if we set I'y := {{ € C : Im( = £4} for some sufficiently small § > 0, I'; (I'_) oriented with
increasing (decreasing) Re ¢, it follows that

(3.18) Pei= Y = %A ¢ - A)_l%.
AEspecy (A) T

Moreover, every solution of
(3.19) (Dt = AU =0, Ul=o=Up
can be written in the form
(3.20) U(t) = 2—mA . et (¢ — A CCU +—A/ e (¢ —A)~ dg

Now let D be as before an elliptic differential operator of order u, regarded as a map
(3.21) D:H"(M,V)— L*(M,W),

cf. formula (3.10). Choose arbitrary elliptic elements

Dy = <?I> S SH’H(Xi;li),
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for Dy = r¥De* 1, := (V,,W,;0,Ly), I := (V_,W_;0,._) for suitable projection data Ly =
(Px, J, Ly); according to Theorem 2.16 there always exist such operators T¢. Recall that trace operators

T+ have the form Ty = P.T, for suitable trace operators fi € BMHM(X4; Ve, Wy;0,J). In view of the
ellipticity we have the Fredholm operators (3.21) and

L* (X4, W)
(3.22) Dy : H¥( Xy, Vi) — S¥) .
PO(Y, Ly )

We now derive a relation between their indices. To this end we consider the following diagram
0 — HMV) -5 MiaM_ L L2Y,]) — 0
(3.23) |p |5 K
0 «— LXM,V) <= N,oN. <~ L}Y,J) «— 0
for My := H*(X4,Vy), and Ny := L3( X4, Wy) ® PY(Y,Ly). The maps i and j are defined as follows:
i) = ulx, Sulx_, jluyu)=f g AFTTE (phu —yFu)

for vk f := 0F fly,, with OF being the derivative in normal direction to Y and |y, the restriction to
Y from the + side. The symbol AY,, denotes any element of L (Y;E', E') that induces isomorphisms
H*(Y,E') - H*7V(Y,E') for all s € R. The map a is the canonical embedding, where we use

HE(Y,J) = P5(Y,Ly) ® P5(Y,L_)

for s = 0. The map b is the canonical projection, using L? (M, W) = L*(X,, W, )®L*(X _,W_). Moreover,
we set

(3.24) D:=D,aD_ and B:=B,®B_,
where By € S7#0(Xy; l;l) are parametrices of Dy. Finally, we define
(3.25) R:=joBoa:L*Y,J)— L*(Y,J)
which is an elliptic pseudo-differential operator on Y and, as such, Fredholm. The rows of the diagram
(3.23) are exact, and we have
D=boDoi.
The assumptions of an abstract lemma (see, e.g. Rempel and Schulze [30, Section 3.1.1.3]) are satisfied,
and we thus obtain the following index formula.
THEOREM 3.6. With the notation of (3.25) we have
indD =indD; +indD_ +ind R.

3.2. Examples. We now turn to a number of specific observations and examples. Consider the unit
circle

St:i={weC:|wl =1}
27 RN

in the complex plane, and write the space L?(S*) (with the scalar product (u,v)2r,) = [; u(e)v(e)dy)
as a direct orthogonal sum

L*(SYH=wtrtew"
for
Wt =[w :jeN], W =[w’t:jeN]
(where [[...]] denotes closed subspaces spanned by the elements in the brackets.)
THEOREM 3.7. The orthogonal projections
Py L*(SY) - W=

are elements of L% (S*).
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PROOF. Let us set
VT = {(Fsre™ f1)(7) : f1(t) € L2 (R4 )},
V™ i= {(Frore f2)(r) (1) € L*(R )},
where F' = F;_,, is the standard Fourier transform on R. The canonical projections

I* : L*(R) — V¥,
can be written in the form
I* = Fe*r="
with the characteristic function ©F of Ry. If x(t) € C*(R) is any excision function in ¢ (i.e., x(t) = 0
for |t| < co, x(t) =1 for |t| > ¢; for certain 0 < ¢y < ¢1) we have

It = FYOFF~ ' + F(1 - \)O*F 1,
where the operators F(1 — x)©TF~! are smoothing. Since x0* € SY(R), it follows that
(3.26) I+ € LY(R).
We now consider the isomorphism
T:L*SY — L*(R)
by setting (Tu)(7) := 2(1 + i) "tu(w(r)) for

1—r
w(r) = i
We then have ( ) ( )i
; 1—ir)’ ; 1+ir)’
Tw)=2"——""— Twi™)=2—"—
(U} ) (1 + ,L'T)]+1 ’ (w ) (1 _ ,L'T)]+1 ’
for j € N, TW* = V* and
(3.27) Py =T7HI*T.
Using (3.26) we see that the operators Py belong to LY (S*) because of the invariance of pseudo-differential
operators under diffeomorphisms. O

REMARK 3.8. Let a(r) € SY(R) be a symbol with constant coefficients. We then have continuous
operators
(3.28) opt(a) :=rtop(a)e™ : L*(Ry) — L*(R,)
and

op~(a) :==r"op(a)e” : L*(R_) — L*(R_).
The operator (3.28) can equivalently be formulated as
M, : VE = VE,

where M, is the operator of multiplication by the function a. In particular, together with the following

Remark 3.9 we see that boundary symbols (1.54) can be reformulated as ((y,n)-dependent families of)
Toeplitz operators on the circle.

REMARK 3.9. An operator of the form
(329) A= P+M5P+ Wt s wt

for an a(w) € C*°(S!) is a Toeplitz operator (in classical notation). Mj is the operator of multiplication
by @ in L?(S'). We have (in the terminology of Definition 1.21) a canonical identification of (3.29) with

(3.30) PAR € T°(S%; L, L).

Here, A := Mg, P := P,, R: W+ — L2(S') is the canonical embedding, and L = (P,C, L) € P(S*) for
a bundle L € Vect(T*S* \ 0) that is isomorphic to (S* x Ry ) x C, where S! x R, is the plus-component
of T*S'\ 0= (St xRy )U (St xR_), and P°(St,L) = W. Ellipticity of (3.29) in the sense of Definition
1.30 (i) is equivalent to a(w) # 0 for all w € S*.
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Clearly, if we admit arbitrary operators Ae LE(S 1), we obtain much more general operators than
(3.30) (also for pp = 0).

3.3. Spectral boundary value problems. We now consider general (non-homogeneous) elliptic
boundary value problems for differential operators as a special case of our pseudo-differential calculus,
where we have more explicit information (the material of this section is based on the author’s joint papers
[45], [29] with Nazaikinskij, Sternin, and Shatalov.) They are a natural generalisation of (homogeneous)
boundary value problems, studied (in an L? set-up) by Atiyah, Patoti, and Singer [4].

Let X be a compact C°° manifold with boundary Y, n = dim X, and let A be an elliptic differential
operator on X of order p with smooth coefficients up to the boundary,

(3.31) A:C®(X,E) —» C®(X, F)

for E,F € Vect(X). In a collar neighbourhood of Y in the splitting of variables z = (y,t) € Y x [0,1)
the operator A can be written in the form

”w
(3.32) A=>"A;(t)D],
7j=0
Dy == 12 with coefficients 4; € C>([0,1), Diff* 7 (Y)). The ellipticity of A implies that
(3.33) A,(0): E' - F'

(for E' := E|y, F':=F|y) is an isomorphism. The boundary symbol
”w
(3.34) 0o(A)(y,m) = Y 0y (4;(0)(y,mD] : H* Ry, E') — H**(Ry., ')
j=0

(with oy (A; (0)) iy BN — w3 F' being the homogeneous principal symbol of order u — j of the operator
A;(0) € Diff* 7 (Y; E', F")) is a surjective family of Fredholm operators, parametrised by (y,n) € T*Y \ 0.
Thus, as in the general calculus of boundary value problems, there is a kernel bundle

(3.35) L, :=keros(A) € Vect(T*Y \ 0).
Let us consider the family of differential operators on Y
o
(3.36) oe(A)(w) =y Aj(0)w’,
j=0

parametrised by the complex variable w € C.
REMARK 3.10. We have
oc(A)(B +iv) € Ly (Y5 E' F's Rg)

for every v € R, and o.(A4)(B + i7y) is parameter-dependent elliptic with parameter 8 € R, cf. Agranovich
and Vishik [1]. Moreover, there exists a countable set D C C such that

DN{w: ¢c<Imw < '}
is finite for every ¢ < ¢’ and
(3.37) oc(A)(w) : H*(Y,E') - H* "(Y,F")
is an isomorphism for every w € C\ D and s € R.

The bijectivity of (3.37) for large | Re w| is a well-known phenomenon of parameter-dependent elliptic
operators, holomorphically dependent on w. First, (3.37) is a holomorphic family of Fredholm operators
(kernels and cokernels are independent of s), and for large | Rew| the operators are isomorphisms, cf.
Theorem 1.11 (i). Then there is a countable set D C C of non-bijectivity points with the asserted
properties, cf. also [34, Section 2.2.5].
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Let us set

(3.38) B:=Y A;(0)Di,
=0

regarded as a differential operator on the infinite cylinder ¥ x R. The coefficient 4;(0) : E' — F' is an
isomorphism. For convenience, we set J := E' = F' and assume A, (0) = 1 (otherwise we compose (3.38)
from the left by A;'(0)). Let us write B in the form

p—1
(3.39) B=D}'+) bDi
7j=0

for b; := A;(0) € Diff* 7 (V). The pull-back of the bundle J to ¥ x R will be denoted again by J.
Let H*(Y x R, J) denote the (cylindrical) Sobolev space on ¥ x R, of smoothness s € R, defined as
the completion of C§°(Y x R, J) with respect to the norm

1/2
/”Rs )72 YJ)dT} )

where R*(7) € L5(Y;J,J;R;) is any classical parameter-dependent elliptic pseudo-differential operator
of order s on Y, with parameter 7 € R. Moreover, set

H(Y xR, J) = {e"u(y,t) :u € H(Y xR J)}
for every v € R. The operator B then defines continuous maps
(3.40) B:H*"(Y xR, J) - H"7(Y xR, J)

for all s,v € R.
Let us reformulate the equation Bu = f as

(3.41) DU — AU = F
for U :=*(ug,...,u, 1), F:=%0,...,0, f) and u; := DJu, j =0,...,u— 1, and
0 1 0o ... 0
0 0 1 ... 0
(3.42) A= | : : ; ;
0 0 0o ... 1
by b —by ... —b

Note that det(w — A) = w* + Z;Zol bjwl.

LEMMA 3.11. The operator

p—1 Iz
(3.43) w—A:@PHT(Y,T) - PH Y, J)
7j=0 k=1

is invertible for a w € C if and only if so is

pn—1
(3.44) wh + Y bjwl  HY (Y, J) » H* (Y, )
7j=0
for any s € R. In other words, we have spec A = {w € C: o.(A)(w) is bijective}. Moreover, we have
(3.45) (w—A) ! =0.(4)"Hw)Q(w)
for a matriz Q(w) = (Qjr(w )) Bl of differential operators polynomially dependent on w, where
—1

sl

Qjr(w) is parameter-dependent wzth parameter 3 (for w = f +1ivy) of order p —k+j fork=1,...,pu,
j = 07 sy B 1.
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Proor. Formula (3.45) is elementary, and the proof gives the asserted characterisation of the entries
of the matrix Q.

As a consequence of (3.45) we see that the operator (3.43) is invertible if so is (3.44). Conversely,
the inverbility of (3.43) entails that of (3.44) because o.(4)~!(w)f is equal to the first component of
(w—B)~1%0,...,0, f). O

REMARK 3.12. The set spec(A) is countable, and every strip {w € C: ¢ < Imw < ¢'} only contains
finitely many elements of spec(.A) for arbitrary reals ¢ < ¢’. The operator function (w —.4)~! is meromor-
phic with poles of finite multiplicity at the points of spec(.A), and the Laurent coefficients of (w — .A)~!
at (w —p)~*+) k€ N, are operators in L=°°(Y’;.J, J) of finite rank.

In fact, o.(A)(w) is parameter-dependent elliptic with parameter Rew on every line Imw = const,
and invertible for large | Re w|. Then the asserted properties follow from the relation (3.45) together with
classical results of Agranovich and Vishik [1], cf. also [38, Section 1.2.4].

Similarly to the considerations in Section 3.1 we want to formulate a relation between the spectral
points of the operator A (which is the same as the set of non-bijectivity points of (3.37)) and Cauchy
data spaces of Sobolev distributions on X at Y. To this end we interpret (3.39) as a continuous operator

B:H(Y xRy,J) = HTHY xRy, J),

where H*(Y xRy, J) := H*(Y xR, J)|r, xvy, and H*(Y xR, J) is the cylindrical Sobolev space on Y x R.
The latter space is defined as the completion of C§°(Y x R, J) with respect to the norm

{/ ||RS<T>a<T>||i2<w>dr}é

for any choice of an order reducing family R*(7) € L (Y;J,J;R) in the sense of Theorem 1.12. An
equivalent definition for s € N is

H*(Y xR, J) = {u(y,t) € L*(Y xR, J) :
D;Dfu(y,t) € L*(Y xR, J) forall |af+k< s}
Here Dy runs over the set of all differential operators on Y of order |a, acting between sections of J.
For convenience, we assume that the set D of Remark 3.10 does not intersect the real line Im w = 0.
Otherwise, we can pass to a translated operator (D; —iy)* + Z;‘:_()l bj(Dy —i7)7 for a suitable real v with

a corresponding shifted set D, in the complex plane which does not intersect the real line.
For any integer s > u we form the Cauchy data space

CoMY,J) = {(Dfu(y,O))kzov,,_,“_l tu € H(Y xRy}
We then have

-1
(3.46) Cor(Y,J) = é} H b 3(v,J),
k=0

and the operator 7# :=*(r',r' Dy, ...,t' D*™") with r'u := u|,—o defines a continuous map
(3.47) THH(Y xRy, J) = Co*(Y, J).

We want to formulate results on the solvability of the boundary value problem
(3.48) Buy = fr € H7HY xRy, J),
(3.49) THuy =gy € CPH(Y, J).

It turns out that, in general, not the whole space C%# (Y, J) of boundary data g+ on the right hand side
of (3.49) is induced by solutions uy € H*(Y xRy, J), but a subspace which is the image under a suitable
pseudo-differential projection P.

Similarly to (3.48), (3.49) we can also consider a boundary value problem on the negative half-cylinder

(3.50) Bu_=f_ € H MY xR_,J),
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(3.51) Thu_ = g_ € CoMY, ).

The admissible boundary data g_ are then determined by the corresponding complementary projection
P_.

The projections P+ are obtained as follows. First recall that the spectrum spec(A) = D (in the
notation of Remark 3.10) does not intersect the real line Im w = 0. Therefore, we have

(3.52) spec(A)N{w: —c<Imw <c} =0
for some ¢ > 0. Let us fix some 0 < € < ¢, set
Iy ={w=7=xi(c—¢): 7€ R},

oriented in direction of increasing 7 on I';, and descreasing 7 on I'_, and form

(3.53) Py = 2%” A Fi(w - A)*l%".
Note that the operator A can be written in the form

(3.54) A=RAR?

for

(3.55) R = diag(R},RY,...,R¥)

where RE : H*(Y,J) — H®*7F(Y,J) is an order reducing operator of order —k in the sense of Theorem
1.12, and A; is a system of operators of order 1. Then Py takes the form

1 dw
3.56 =R{ =— —A)Tt— RN
(3.56) Py {2m.A1/Fi(w Ay w}
LEmMMA 3.13. (i) The integral (3.53) stronly converges in C**(Y, J) on the dense subset C*T1:+ (Y, J)

for every s € R. _
(ii) The operators P+ form a matriz (P jik)o<j<u—1,0<k<u—1 of elements of LT (Y3 J,J). Thus
P1 extend to continuous operators

Py : CHH(Y,J) = CHH(Y, J)
for all s € R.

PrOOF. (i) From Lemma 3.11 we know that the entries of the matrix (w — A)~' are classical
parameter-dependent pseudo-differential operators of order < —1, with parameter 7 € R (when we
identify R with 'y or ' via 7 = w = 7 £i(c — ¢)). In fact, 0.(4)"!(w) is parameter-dependent of
order —pu, and the orders of the entries of Q(w) are < p — 1, cf. formula (3.45). By virtue of Theorem
1.9 the L(H*TX(Y, J), H*T1(Y, J)) - norm of every entry of (w — A)~! can be estimated by ¢s(1+ |w])™?,
w € 'y, for a constant ¢g > 0.

This gives us immediately assertion (i).

(ii) Let us write Py in the form (3.56). Then it suffices to observe that

1

1 d
P (w — A1)71 w
2 Jp, w
is a matrix of classical pseudo-differential operators of order —1. The technique of the proof is similar to
[47]. O
Let us write the operator (3.42) in the form A = (Ag;j)1<k<p,0<j<u—1,
p—1 ' I
A:@HTI(Y,])» @HTHY, ),
j=0 k=1

and interpret the orders ord Ay; = k — j in the Douglis-Nirenberg sense, with homogeneous principal
symbols oy (Ag;)(y,n) of order k — j. Setting

oy (A)(y,m) = (oy(Akj) (Y M) 1<k<p0<j<p—1
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we then have

0 1 0 0
0 0 1 0
Uw(A)(ym) = : : : :
0 0 0 1
—oy(bo)(y,m) —oy(b)(y,n) —oy(b2)(y,n) ... —oy(bu—1)(y,n)

Moreover, set
La(y,n) = {u(0) : u(t) € SR, Ey), (D — oy (A)(y,m) Ju =0},
E=el,J.

THEOREM 3.14. (i) The operators Py are complementary projections, i.e., P3 = Py, Py +
P_ =1, and have the property

(3.57) PiAd=AP..

(ii) The homogeneous principal symbols oy (P+ ji) of order j — k of Py ji € Lifk(Y;E,E) (cf.
Lemma 3.13 (ii)) form projections

(Uw(?i,jk)(y,n))OSjSN_LOSkSN_l =0y (P£)(y,n) : By = Lx(y,n)

along L<(y,n).
(iii) The operator functions (w — A)~* P are holomorphic in spec(A) N {w : Imw = 0}.

Proor. (i) First note that the relation (3.57) is evident. Moreover, to verify that P. + P_ =1, it
suffices to observe that

1 dw

Py+Po=A— -A)t—

++ 2ri /FO (w=A)"

for a small circle 'y clockwise surrounding the origin; by Cauchy’s residue theorem the integral is equal

to 2mi AL,
Let us now calculate P3 (the consideration for P_ is analogous and left to the reader). Set I, :=
[} + ie for some sufficiently small ¢ > 0. Then, using the relation (3.57) and the resolvent identity we

have
o= (2 {/ w}w(w’—A)l(w—A)ldw}dw’
- () . {/F oty (0 A =) ‘““}‘““'
= L+ 1L ' '
for

b= ‘(ﬁf/p;{/rfw‘f‘flﬁ}f
- (%) /m“”‘“““{/mwji%}%

which vanishes, since the inner integral is zero, and
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e {/%} v
() o [ -

A P -1 dw' |
- 2 /F+(w A) w,+/r+—(w,)2}_7v+.

In the first line of the latter relation we inserted [.. ﬁ
A=A-vw +u'.
(ii) is simple after the considerations in the proof of Lemma 3.4.
(iii) Let Im w > 0. Then we have

= 2mi(w')™!, and in the second line

A dw'
-t _ T DA
(w—A)"Pt a7 Jr, (w' = A) " (w—A) o
' -1 '
_ A. (W — A)-1 dw _ Aw A) / dw ‘
2mi Jr, w'(w — w') 2mi r, w(w—w)

The second integral on the right hand side vanishes, and the first one is holomorphic for Imw > 0. O

In the following we employ the Fourier-Laplace transform

(Fu)(¢) = W(¢) = / e~ Cu(t)dt,
0
Im ¢ < 0, with the inverse

1 co+if
(F10)(t) = — / ¢Mii(y)dy, t>0
21 J—ootis

for 6 < 0,y = ReC.

Let us define the maps

E:C—>C" FEz:=(0,...,0,2)
and
Q:C"=C, Qz0,...,2u—1) = 20.
THEOREM 3.15. The boundary value problem

(3.58) Bu=feH "Y xR,,.J)

(3.59) PiTHu=g e PLCY(Y,J)
has a unique solution v € H*(Y x Ry, J), given by

2T r_

(3.60) u:QF*{m—Arl

BGw) —ig— = [ (- 4B f(z))dz] } |

The corresponding map R : (f,g) — u is continuous as an operator
(3.61) R:H MY xRy, J)®PLCH(Y,J) = H (Y xRy, J).

PROOF. We show that R is a right inverse of the operator *(B, Py TH); the consideration for the left
inverse is left to the reader. Concerning the continuity (3.61) we refer to [29].

It is convenient to pass from B to the operator D := D; — A with A being given by (3.42) and the
vector function U as in (3.41). Then we can omit the mappings ¢) and E which only single out the first
components of U and replace 7 by 1’, the restriction to ¢ = 0.

Let us set

R=(S K)
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for
Sf = Flw—A)" {f(w) - %/ (z — A)lf(z)dz}
i -1 _
Kg = ZtLHEOF (w—Ag.
We then show the relations
(3.62) DSf=f, DKg=0,
(3.63) Py lim Sf=0, PiKg=yg
t—+0
for f and g belonging to the respective spaces.
We have
(3.64) DSf = {F Y w—-AFHF Y(w—A)f(w)}
_ L pptw— 4y / (2 — A" f(2)dz.
2

The first summand on the right hand side of (3.64) is equal to f. So it remains to observe that
DF*(w—-A)"th=0,

h=—5 [. (z—A)"'f(2)dz (the latter vector is independent of w). For similar reasons it follows that
DKg = 0.
For P, K we have
i 10 oay-1
(3.65) PiKg = Ztkglo PiFHw—A)""g

1 iwt -1
Jm o— . e'Pyr(w — A) g dw.
For t > 0 the exponent in e has a negative real part in the upper complex w half-plane. Therefore, we
can deform the contour of integration to a curve ‘surrounding’ spec, (A) := {\ € spec(A) : Im A > 0}
(which is a countable set which intersects every strip {w € C: ¢ < Imw < ¢’} in a finite set for arbitrary
¢ < d, cf. Remark 3.12. An elementary consideration shows that the limes on the right hand side of (3.65)
is just P4 g. By assumption we have P, g = g, so it follows the second relation of (3.63). In remains to
check the first equation of (3.63):

Py Jim Pt (w = A)~ {f(w) - % /F (z—A)! N(z)dz}

= F 1Py (w— A) " f(w)]mo — %/r Pi(z = A) f(2)dz = 0.
]

Let us now consider the operator (3.31) on a compact C*° manifold with boundary V', where we fix
a collar neighbourhood 2 Y x [0,1) 3 (z,t) of Y. As in the cylindrical situation we then have for the
Cauchy data spaces C**(Y, E') for any integer s > u, E' = Ely, a continuous operator

T":H*(X,E) = C*"(Y,E"),
and a pseudo-differential projection
Pr:Co"(Y,E") = C*M(Y,E).

Concerning the non-bijectivity points of the induced operator family (3.37) we make the same as-
sumptions as before, i.e., that there are no such points on the line Rew = 0.
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THEOREM 3.16. The spectral boundary value problem

(3.66) Au = f € H "X, F),

(3.67) PyThu =g € PLCH(Y, E')
defines a Fredholm operator

( 4 ) H* (X, F)
(3.68) ) HY(X,B) > ®
PsT PLCom(Y, ')

for every s > p.

More general boundary value problems with a modification of the trace operators P 7* are studied
in [45]. Boundary value problems of type (3.68) as well as those of [45] are special cases of elliptic
problems of Section 2.3, up to a slight modification of the orders of the trace operators which may consist
of components of different order. In fact, similarly as (3.56) we can form

_ 1 L dw
Pj: = Ro o - Ao(’w Ao) w RO

with a diagonal matrix R = diag (RIE_%) L and Ao =Ry LAR,.

Set

k=0,...,u—

1 dw
Pi:T AO(W—AO)_l—
e 'y w

which are pseudo-differential projections

r.: @ H'Y,E)-» P H(YE)

0<k<p—1 0<k<p—1
of the class LY (Y; @0<k<“_1 E', @0<k<“_1 E’). The operator Ry
Ro: € H(V,E)—CMY,E),
0<k<p—1
and (3.68) can be transformed to an equivalent boundary value problem

| Ho=(X, F)
(3.69) ( - ) . H(X,E) - ®
PyH? (Y, ©o<k<pu—1E")

for T = Ry PLTH.
Setting

Ly=(P, @ E, imo, P F
0<k<p—1 0<k<p—1
we have
PH|Y, @ E'|=P(¥L),
0<k<p—1

and the operator (3.69) is elliptic in the sense of Definition 2.14. Thus, Theorem 3.16 is an immediate
consequence of Theorem 2.21 (i).
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3.4. Calderdén-Seeley projections. In the present section we discuss another way of constructing
pseudo-differential projections to Cauchy data spaces of solutions to elliptic differential equations, cf. also
the author’s joint paper [46] with Tarkhanov.

Let

A:C®(X,E) - C®(X,F)
be a differential operator on a compact C'* manifold X with boundary Y; E, F € Vect(X). Moreover, let
M be a C*° manifold (countable at infinity with a Riemannian metric) containing X as a submanifold
with boundary. Let E, F' € Vect(M) such that E = E|x,F = F|x, and let

A:C®(M,E) — C®(M,F)
be a differential operator with A = Z| X-

Let © :=int X, and interpret the characteristic function yq as an operator of multiplication

XQ - Hlsoc(Ma E) - D’(M7 E)

for s > p = ord A. Then the distributional kernel of the commutator
[, xa] = Axa — xo A

(as a map CSO(M,E) — D'(M, ﬁ)) is supported on Y x Y. Moreover, f € HISOC(M,E), s > p, and
THf=01imply [4, xa]f = 0. _ o

We now assume that there is an operator P € L_"(M; F, E) such that
(3.70) APf=f, PAu=u
for all (distributional sections in the respective bundles) f and w, supported in an e-neighbourhood of X
in M for all 0 < € < g¢ for some g9 > 0.

In the following we employ the operators et and rt in the same meaning as in Section 3.1. Set

A= r+ge+, P:=1TPet,

PROPOSITION 3.17. Let A be an elliptic differential operator with the abovementioned properties.
Then
G:=1-PA
(as an operator on H*(X, E), s > n = ord A) belongs to the space Bg’“(X; E,F) (cf. the notation (1.88))
and satisfies

(3.71) G*=G
PRrROOF. By virtue of Theorem 1.69 we have G € B%#(X; E, F)). We then obtain G € B%“(X; E,F)

from Remark 1.67.
Let us now verify (3.71). First we have the relation

(3.72) AP =1

as a consequence of (3.70) and of the fact that A is a differential operator. Thus P : H* #(X,F) —
H?(X,E) is aright inverse of A. This yields a projection PA, and @ is just the complementary projection.
(I

REMARK 3.18. Let s > p, and set
ker; A={ue H*(X,E) : Au=0}.
Then
(3.73) G:H°(X,E) > ker; A
is a projection to ker, A.

In fact, u € kery A gives us Gu = u, and for arbitrary f € H*(X, E) we have AGf = A(1 - PA)f =
Af —(AP)Af =0.
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PROPOSITION 3.19. The operator (3.73) can be written in the form
n—1
(3.74) G=) K;oT;
j=0

with (unique) potential operators K; € BO’_j_%(X;O,F;E',O) (¢f. Remark 1.68). Thus f € H*(X, E)
and THf =0 entails Gf = 0.

PrROOF. We have G = 1 — PA € BG"(X; E,F), and Remark 1.68 gives us a representation (1.89).
Since PAp = ¢ for every p € C§°(1, E), the operator G vanishes. This yields the relation (3.74) which
implies the second assertion. O

THEOREM 3.20. Let A satisfy the abovementioned assumptions. Moreover, let T * be any right
inverse of the map

(3.75) TH: H*(X,E) — Co*(Y, E'),

cf- (3.46), (3.47) for E' = J.
Then
:=THtGT *:C"(Y,E") = C*"(Y,E")
is a projection to the Cauchy data space of solutions of Au =0, v € H*(X, E) (called the Calderdn-Seeley
projection).

PRrOOF. Let g = T*u for some u € kers A. Then we have T#(u—T ~*g) = 0 and hence, by Proposition
3.19, G(u — T *g) = 0, which entails GT #g = Gu = u (by Remark 3.18) and IIg = T#u = g. For
arbitrary h € C5*(Y, E') we have T *h € H*(X,E) and GT *h € kers A by Remark 3.18. This yields
IIh € THker, A. O

REMARK 3.21. (i) The operator II is independent of the choice of 7~#. In fact, if 7,  is
another right inverse of 7# we have

THGT * —THGT " =THG(T *-T,7")=0
because TH(T~# — T, *) = 0, cf. the second assertion of Proposition 3.19.
(ii) The operator II is also independent of the specific choice of P, because for another P; the

associated projection Gy = 1 — P} A has the property that G177 #g € kers A has the Cauchy
data g; the same is true of GT ~#g, i.e., TH({G — G1)T * =0.

REMARK 3.22. Assume that the operator A has the unique continuation property of solutions. Then
T" :kers A — C**(Y, E')

is injective, i.e., there is a unique solution u € kers A for every g € IIC*#(Y, E') such that THu = g.

4. Remarks on the edge calculus with global projection data

4.1. Boundary value problems without the transmission property. In this section we want
to make some remarks on the role of the transmission property of boundary value problems in connection
with Chapter 2 . Pseudo-differential operators that appear as parametrices of elliptic differential operators
have always the transmission property, cf. Definition 1.43. On the other hand, there are interesting cases
of pseudo-differential operators on a manifold with boundary, where the transmission property is not
satisfied, for instance, for operators obtained by a reduction to the boundary of some mixed elliptic
problem.

A classical example of a mixed problem is the Zaremba problem for the Laplace operator with jumping
boundary conditions, with Dirichlet conditions on one part, Neumann conditions on the other part of the
boundary.

In mixed problems the boundary is subdivided into (smooth) submanifolds with an interface of
codimension 1 as the common boundary. The solvability can be discussed in terms of boundary value
problems (or transmission problems) on the boundary with respect to the interface. Typical operators in
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this context have || (the absolute value of the covariable 7 on the boundary) as the principal symbol;
those fail to have the transmission property at the interface. In general, operators with principal symbols
[n|#, 1 € R, have the transmission property with respect to any interface of codimension 1 if and only if
[ is an even integer.

This shows, in particular, in a situation as at the beginning of Section 3.1, that the transmission
property of the operators Ay only holds in exceptional cases (although always in the case of differential
operators).

The general program to construct an operator algebra of boundary value problems for the case
without the transmission property and with global projection conditions at the boundary is carried out
in Schulze and Seiler [44]. This paper also contains an analogue of Theorem 2.21 for elliptic operators
without the transmission property.

The pseudo-differential analysis of boundary value problems and parametrices for the case of Shapiro-
Lopatinskij ellipticity are studied in Rempel and Schulze [31], and further in [37] and [42]. Another
(earlier) approach of Vishik and Eskin [50], [51], [11], is not organised in terms of operator algebras with
complete and smooth symbolic structures.

The algebra property for boundary value problems with or without the transmission property fits
into the concept of edge problems with a specific kind of operator-valued symbols, see also Section 4.2
below. This point of view has been developed in [37], cf. also [32]. Let us also note that mixed and crack
problems have been systematically investigated in a new monograph jointly with Kapanadze [21] and in
the author’s joint papers with Harutjunjan [17], [18]. More details in the context of parabolic mixed and
transmission problems may be found in Krainer, Schulze and Zhou [23].

4.2. Edge problems. Boundary value problems for differential (and pseudo-differential) operators
on a smooth manifold with boundary have much in common with problems for operators on a manifold
with edges. This is based on the fact that the ‘half-space’ 2 x R, for an open set Q C R? can be regarded
as a wedge with model cone R and edge Q. To illustrate this, let A = > la|<p %()Dg be a differential
operator in Q x Ry with coefficients a,(Z) € C®(Q x Ry). Inserting 7 = (y,t) for y € Q, t € Ry, the
operator A takes the form

(4.1) A=t > agi(y,t)(tDy) (—t%)

|B]4+i<u

with coefficients ag;(y,t) € C(Q x Ry) for all 4, 3.

A differential operator A in @ x Ry of the form (4.1) will be called edge-degenerate. Clearly, the class
of such operators is much larger than that induced by operators with smooth coefficients.

One may ask, whether the calculus of boundary value problems with the transmission property
at t = 0 in the sense of Section 1.3 has an analogue for edge-degenerate operators, with an adequate
substitute of the standard Sobolev spaces, a corresponding generalisation of trace and potential boundary
conditions at t = 0, Shapiro-Lopatinskj ellipticity, etc. Such a calculus is possible, indeed, and for the
wedge Q x R, or, more generally, a C> manifold X with boundary, it is just a special case of a
corresponding calculus on a manifold W with edge Y. Geometrically, such a W is a space such that both
WA\Y and Y are C* manifolds (dimY = ¢, dimW \Y = n + 1 + ¢), and every point y € ¥ has a
neighbourhood V' which can be represented (via a ‘singular chart’) in the form Q x N2 for an open set
2 C R? and a model cone

N2 = (N x By) /(N x {0})
with base N which is a closed compact C'°° manifold. The nature of transition maps and other details
may be found, for instance, in [41].

Note that the class of edge-degenerate operators of order 2 contains the Laplace-Betrami operators
(as well as other geometric operators) when W \ Y in the local splitting of variables into (y,t, ) is
equipped with a ‘wedge metric’, e.g.,

dt* + 29N (t,y) + dy?,

where gy (t,y) is a family of Riemannian metrics on N smootly depending on (¢,y) up to ¢ = 0.
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An example is W = X for a C*° manifold X with boundary 0X. In this case we have Y = 90X, and
N is a single point, i.e., N = R,.

The pseudo-differential algebra of edge problems (say, for the case that W is compact) consists of
2 x 2 block matrix operators

WY (W, E) WI—RI=I(W, F)
(4-2) A: D — D
Hs "3 (Y,J_) H "3 (Y, J))
of order p € R. Compared with (1.90) the shift of smoothness by (n + 1)/2 on the edge is not essential
for the calculus; a reduction of order on Y allows us unify the orders of the spaces on Y to H*(Y, J_)
and H* H(Y,Jy) respectively. The spaces W7 (W) (for the trivial bundle E on W with fibre C) are
contained in H{ (W \Y). Near Y in the variables (y,z,t) € R x N x R} the spaces W*7 (W) are of the

form
(4.3) W?(R?, K57 (N7)),

cf. Definition 1.51, for a certain scale of weighted Sobolev spaces K*7(N") on the infinite stretched cone
N =N x Ry, cf. [34], [38], or [10]. The group action on the space K*7(N") is given by &y : u(z,t) —
A u(z, A\t), A € Ry. An easy modification of this construction for the case of arbitrary E € Vect(W)
then gives us the spaces W7 (W, E). The operators (4.2) form a so called edge-algebra that contains all
edge-degenerate pseudo-differential operators in the upper left corners, cf. [33], [38], [10].

If W = X is a C* manifold X with boundary, the edge-algebra contains all pseudo-differential
boundary value problems without the transmission property as a subalgebra, cf. [37] or [42]. Similarly
to the calculus in Sections 1.2 and 1.3, the 2 x 2 block matrix structure reflects additional trace and
potential conditions with respect to the boundary which satisfy an analogue of the Shapiro-Lopatinskij
condition in the elliptic case.

In the general case, on a manifold W with edge Y, we have corresponding edge conditions of trace
and potential type, again with an analogue of the Shapiro-Lopatinskij condition as an ellipticity condition
for the so called principal edge symbol o (A) which is the second component of the principal symbolic
hierarchy

o(A) = (04 (A),07(A))

in the edge algebra (the first component o, (A) is the edge-degenerate principal interior symbol of A).
Ellipticity of A in the edge algebra requires the bijecticity of both components.

The edge symbol g (A) is an analogue of the boundary symbol o5(.A) from the situation of boundary
value problems. In the edge algebra it consists of a family of operators

EL®@ K5 (NN Fl@ K5 w1 #(NN)
(4.4) on(A)(y,m) ® — ®
J J.

parametrised by (y,n) € T*Y \ 0; here E' = E|y F' = F|y. Similarly to the relation (1.87) we have
homogeneity of order p in the sense

(4.5) on(A)(y, ) = N diag(sa, A5 id)on (A)(y, ) diag(s5!, A% id)

forall A\ e Ry, (y,m) € T*Y '\ 0.

The Shapiro-Lopatinskij condition is just the bijectivity of (4.4) for any s € R (it entails the bijectivity
for all s € R; the weight v € R is kept fixed). We also talk about oa-ellipticity of the corresponding
operator A.

Now, for a oy-elliptic operator

(4.6) AW (W, B) — W11 (W, F)

we can ask the existence of a 2 x 2 block matrix operator A in the edge algebra, containing A in the
upper left corner, with suitable bundles Ji € Vect(Y'), such that A is ox-elliptic.
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The answer is similar as in the case of boundary value problems, cf. the Introduction. First, because
of the relation (4.5), it suffices to look at (y,n) € S*Y. Then

(4.7 on(A)(y,n) : B, ® K7 (N") — F,® KEHT—H(NY)

is necessarily a family of Fredholm operators, parametrised by the compact space S*Y. An analogue of
the Atiyah-Bott condition (0.17) in the present case is then

(4.8) indg-y on(A) € 7T K(Y),
m : S*Y — Y. We then have the following theorem.

THEOREM 4.1 ([34]). Let (4.6) be a oy-elliptic operator for which (4.7) is a family of Fredholm
operators. There is then a o -elliptic operator A in the edge algebra containing A in the upper left corner
if and only if condition (4.8) is fulfilled.

THEOREM 4.2 ([38]). (i) Every (oy,0n)-elliptic operator A in the edge algebra has a parametriz
within the calculus.
(ii) The ellipticity of A entails the Fredholm property of the operator (4.2) for every s € R.

Index formulas for elliptic operators in the edge algebra have been constructed in Fedosov, Schulze,
and Tarkhanov [12], and Nazaikinskij, Savin, Schulze, and Sternin [28].

Nazaikiskij, Savin Schulze, and Sternin [26], [27] constructed large classes of oy-elliptic operators on
manifolds with edge for which the condition (4.8) is not satisfied.

It is now again an interesting problem to extend the edge algebra to an edge-Toeplitz algebra such
that every oy-elliptic operator A admits an elliptic problem with global projection conditions on the edge
Y.

Such an algebra was constructed in Schulze and Seiler [43]. All essential elements of the calculus of
Section 1.3 have a natural analogue in the edge-Toeplitz algebra.

4.3. Analysis on manifolds with singularities. Ellipticity of (pseudo-) differential operators and
parametrix constructions within a calculus with symbolic structures are an interesting program also on
manifolds with higher (say ‘polyhedral’) singularities. Locally, such spaces can be generated by iteratively
forming cones and wedges, starting from smooth compact base manifolds. The corresponding analysis
refers to specific geometric properties, for instance, whether edges and corners are regular or cuspidal.
Let us make here a few remarks on the case of regular polyhedra with their system of lower dimensional
edges. An example is a cube in R® with its two-dimensional faces, one-dimensional edges, and corner
points. Outside the corner points close to the one-dimensional edges the configuration is a manifold with
edges (with boundary), outside corners and one-dimensional edges it is a C'° manifolds with boundary.
Thus, a calculus in the cube should contain both edge and boundary conditions.

Operator algebras on manifolds with ‘higher’ singularities have been constructed and investigated in
many variants, cf. [35], [13], [40], [41], [22], [24]. The operators are connected with trace and potential
operators on the lower-dimensional strata, and ellipticity of corresponding higher edge/corner problems
contains a hierarchy of Shapiro-Lopatinskij conditions.

There is then also a hierarchy of topological obstructions for such edge conditions, and it would be
necessary to study Toeplitz extensions of the corresponding operator algebras, in order not to rule out
(‘most of the’) interesting operators.

In this connection, the basic questions are still open, and the analysis of elliptic operators and their
index theory on stratified spaces is an awarding task for future activities.
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