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Abstract

For elliptic problems on manifolds with edges, we construct index formulas in
form of a sum of homotopy invariant contributions of the strata (the interior of the
manifold and the edge). Both terms are the indices of elliptic operators, one of
which acts in spaces of sections of finite-dimensional vector bundles on a compact
closed manifold and the other in spaces of sections of infinite-dimensional vector
bundles over the edge.
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Introduction

The present paper deals with index formulas for elliptic operators on manifolds with
edges. It is well known (e.g., see [39]) that the ellipticity of operators on manifolds with
edges is determined by two conditions, one of which refers to the interior principal symbol
defined on the smooth part of the manifold and the other to the edge symbol, which is a
family defined on the cotangent space of the edge. If we treat the manifold with edges as a
stratified space, then the ellipticity condition (which ensures the Fredholm property of the
corresponding operator) can be stated as a condition on the symbols on the corresponding
strata of the manifold. It is therefore natural to expect that an index formula contains
two terms, contributed by the respective strata. Moreover, since the ellipticity condition
on the interior stratum is determined by the principal symbol (the invertibility on the
compressed cotangent space minus the zero section), it is natural to assume that the term
corresponding to the interior stratum in the index formula is a homotopy invariant of the
principal symbol. As to the second term, corresponding to the edge, it depends on the
edge symbol and is its homotopy invariant. In other words, treating the symbol of an
elliptic operator with edge degeneracy as a pair of symbols associated to the strata of
the manifold, we focus on index formulas comprising two terms, each being a homotopy
invariant of the corresponding component of the symbol on the stratum. This will be
the idea in our constructions. Needless to say, such a representation of the index is not
possible for arbitrary operators, and we start by establishing necessary and sufficient
conditions for the existence of an index splitting. Here the situation is similar to that on
manifolds with isolated singularities (where the edge is just a point). Recall [42] that in
this case the index can be represented as the index of some elliptic operator defined on
the double of the manifold plus the index of an elliptic operator on the infinite cylinder.
More precisely, this representation holds under some additional symmetry conditions on
the principal symbol of the operator.

For the case of an edge of arbitrary dimension, we also impose some conditions like
symmetry and obtain index formulas in the desired form. The main problem here is to
single out a homotopy invariant of the principal symbol and to present the corresponding
operator, which (in contrast to the case of manifolds with isolated singularities) is no
longer an operator on the double of the original manifold in general. Moreover, the
correction terms in the index formula also are not operators on the infinite cylinder but
more complicated objects related to operators acting in sections of infinite-dimensional
bundles over the edges. Note that the index of such operators is given by the well-known
Luke formula [15] as well as by formulas in [30, 31].

Let us say a few words about papers most related to our investigation. Apart from
analytic aspects of the theory, which are well developed by now, there are only a few
papers in the literature on index formulas for elliptic operators on manifolds with edges,
namely, for model examples (the infinite wedge, see [9, 38, 30, 31]). The first three of
these papers pertain to the case in which the edge is an n-dimensional vector space, and



the last paper treats the case in which the edge is a smooth closed manifold of arbitrary
dimension. Next, in the paper [46], in spirit close to [2], an index formula is obtained for
Dirac operators in form of two terms, each of which is however not a homotopy invariant.
Finally, in [14] an index formula of Melrose-Nistor type [17] was obtained, which involves
not only principal symbols, but also lower-order symbols. Let us point out once again
that, in contrast to these formulas, our formula will be a sum of two homotopy invariant
terms, one being a homotopy invariant of the principal symbol and the other a homotopy
invariant of the edge symbol.

0 Preliminaries

We consider the index problem for elliptic problems on manifolds with edges in the
sense of [39, 8]. Analytic aspects of elliptic theory on such manifolds are comprehensively
discussed in these books and the literature cited therein. Note, however, that the general
theory of elliptic problems on manifolds with edges deals with rather complicated symbolic
structures and quantization constructions, because one aims at studying not only princi-
pal but also complete symbols of operators and obtaining asymptotic expansions of the
latter.! In the framework of index theory, there is no need to construct a “high-precision”
calculus; it suffices to have composition formulas, the construction of an almost inverse
operator, etc. modulo compact operators. Moreover, it proves useful to get rid of subtle
properties of the original operator algebra, related to the analyticity properties of Mellin
symbols in the complex plane, by embedding the original algebra in a wider algebra in
which the compactness of remainders in composition formulas is not related to shifts of
the weight exponent. The latter algebra is constructed in Appendix 2. The construction
is a specialization of a general construction pertaining to the algebra of pseudodifferential
operators on a manifold with fibered boundary [25] (see also [34]). Since the order reduc-
tion procedure (see § A.6.1) always permits one to reduce an elliptic edge problem for an
edge-degenerate operator to a zero-order problem in the main spaces of the corresponding
scales, we deal only with zero-order operators in these spaces in the main body of the
text. The main distinction of the algebra described in Appendix 2 from those considered
in [8] and, say, [9] is the fact that it contains a wider set of Green operators. Namely,
Green operators are arbitrary operators with zero principal symbol and compact-valued
edge symbol.

The technique of pseudodifferential operators with operator-valued symbols, or, in
other words, pseudodifferential operators in spaces of sections of infinite-dimensional vec-
tor bundles, plays an important role in the theory of pseudodifferential operators on
manifolds with edges. This technique, which was studied in the context of elliptic theory,
say, in [15], is recalled in Appendix 1.

!Furthermore, in applications it is often important to deal with spaces with asymptotics rather than
usual Sobolev spaces, which further complicates the symbolic structure. We do not touch these questions
in this paper.



Prior to proceeding to the results, we introduce the main notation. More detailed
explanations can be found in the appendices.

Manifolds with edges

Let M be a compact manifold with edge X, which is a smooth compact manifold of
dimension n. For simplicity, we assume that the edge is connected. (The passage to the
case of several connected components is not difficult.) A neighborhood of an arbitrary
point € X in M is homeomorphic to a neighborhood of the point (0, 3) in the Cartesian
product R* x K¢ of the n-dimensional space R" by the model cone

Ko = {2 x 0,00)} /{2 x {0}

with base € that is a smooth compact manifold of dimension & (thus, the dimension of M
is n+k + 1) and with vertex (3 obtained by shrinking Q x {0} into a point. The standard
coordinates on M in a neighborhood of a operator on the edge will be denoted by (z,w, ),
where x is a coordinate on the edge, w is a coordinate on the base of the model cone, and
r is the radial coordinate (the distance from the edge). We denote a collar neighborhood
of the edge in M by U = {r < 1}, and the smooth manifold with boundary obtained by
blowing up M will be denoted by M and called the stretched manifold. The boundary
Y = 0M of M is a locally trivial bundle

m:Y — X

with fiber 2 over X. The collar neighborhood of dM will also be denoted by U (this will
not lead to a confusion); it is isomorphic to the direct product OM x [0,1). Associated
with 7 is the infinite wedge W = W, whose stretched manifold is Y x R,. The wedge
W can be thought of as a bundle with fiber K over X. The collar neighborhood of the
edge in W will also be denoted by U and identified with the corresponding neighborhood
in M. By

M=M=M\X=M\Y, W=W\X, K=K\{Qx{0}},

etc. we denote the open manifolds obtained from the corresponding objects without circles
by deleting the edge, the boundary, or the conical singular point.
By T* M we denote the compressed cotangent bundle of M. We also write

TiM =T"M\ {0} and T;X = T*X \ {0}

(the zero section is deleted). The momentum variables dual to the coordinates x, w, and
t = —Inr are denoted by &, ¢, and p = —r(, respectively. (Here ¢ is the momentum
variable dual to r on T*M.)



Function spaces

By K*7(K) we denote the function space on the model cone described in Defini-
tion A.12. Next, W7 (M) and W*7(W) are the weighted edge Sobolev spaces on the
manifold M and the infinite wedge W, respectively. For s = v = 0, these spaces will also
be denoted by W and K.

Symbol spaces

By S°(T*M) we denote the (Hormander) space of zero order symbols on the com-
pressed cotangent bundle T* M, and S%(T* M) stands for the subspace of classical (poly-

cl
homogeneous) symbols. The corresponding space of homogeneous principal symbols will

be denoted by S (T*M). We use similar notation for symbols defined on 7*X. The
bundles between which the symbols act are indicated where necessary.

Let Sy (T*X) (respectively, S% (T3 X)) be the space of zero-order operator-valued
symbols with compact fiber variation on 7% X (respectively, 75 X) acting in Hilbert bun-

dles over X, and let Sg]‘)/(T[;‘X) C S2v(T; X) be the subspace of symbols f(x, &) twisted-
homogeneous with respect to some strongly continuous group s, acting in the fibers of
the corresponding Hilbert bundles:

f@,08) = s f(2,6)", (2,6 € [3X, AeRy.
In the Hilbert spaces K*7, we use the group given by the formula

sou(r,w) = A2y (O, w).

Pseudodifferential morphisms and elliptic edge problems

A pseudodifferential morphism (an edge problem) in edge Sobolev spaces W*7(M) on
a manifold M with edge X has the form

A= (A ; G g) WML E) @ HY (X, Jy) — W™ (M, Ey) @ H™(X, Jy),
(0.1)
where E; and E, are bundles over M, J; and J, are bundles over X, and m is the order?

of the operator A. Here A is a pseudodifferential operator on M, and the matrix
G C
&= (i o)

is called a Green matriz, or a matriz Green operator. (See §A.6 for a more detailed
description of its components.) For brevity, we also sometimes write A = A + G. The

20ne can also consider the more general case of operators with components of various orders, as in
the Douglis—Nirenberg theory.



principal symbol of the problem A will be denoted by

a=0(A)(y,C)=a(A)(y,C), (y,¢) €ZM

(here T* M is the compressed cotangent bundle of M, which is a vector bundle over M,
see § A.5), and the edge symbol will be denoted by

an = 00(A)(z,€) = (aA(AU);(LBa)A(G) gﬁ%) (5,€) = an(,€) + g (2, €),

(z,§) € T5 X,
where an(z,€) = diag(on(A),0). They are related by the compatibility condition
0a(A) = o(on(A)), (0.2)

where 05(A) = o(A)|ar-m is the restriction of the principal symbol to the boundary
0T* M, which will be called the boundary symbol, and o(c,(A)) is the principal symbol of
the edge symbol of the pseudodifferential operator A. A necessary and sufficient condition
that an edge problem is Fredholm is that the principal symbol is elliptic (invertible on
Ty M) and the edge symbol is elliptic (invertible on T X).
By o.(as) we denote the conormal symbol of the edge symbol a,. It satisfies the
compatibility condition
o(0e(an)) = asle. (0.3

The order reduction procedure (see § A.6) permits one to assume when studying index
theory issues that the order m of the edge problem is zero and that it acts in spaces with
zero smoothness exponent s and weight exponent . This is assumed throughout the
following, except for examples.

1 Index formulas in the simplest cases

In this section, we present some index formulas for the simplest cases, which will be
needed in the proofs of the main results of this paper.

1.1 The index of operators on the infinite wedge

Let W = W, be the infinite wedge associated with the projection 7 : ¥ — X.
Consider an edge symbol

a/\(:v,f) = aA(x7€)+gA(x7€) : ’C(KwaEl)@'Jl — ’C(KwaE2)®J27 (l‘ag) S T(;ka (11)

where E; and F, are bundles over W, J; and .J; are bundles over X, and K, is the cone
over the point x € X in the infinite wedge W.

8



Suppose that the principal symbol of the edge symbol is equal to unity:

o(an(x,§)) = olan(z,€)) = L.

By Proposition A.31, the edge symbol a,(z,£) belongs to the space Sg, (15 X) of symbols
with compact fiber variation on 7j; X, and consequently, by Definition A.5 there is a well-
defined pseudodifferential operator

a, (x —i(%) W(W, Ey) @ LA(X, J1) — W(W, Ey) ® L*(X, J,), (1.2)

which defines an edge problem on the infinite wedge W. If a,(z, ) is elliptic (i.e., invert-
ible for all (x,&) € T*X \ {0}), then the operator (1.2) is Fredholm by Theorem A.9. The
following assertion holds.

Proposition 1.1. Let a,(x,&) be the elliptic edge symbol (1.1) with unit principal symbol.
Then the index of the Fredholm operator (1.2) on the infinite wedge W is given by the
formula

: .0 :
ind a, (x, —@a—x> = pi(ind a,), (1.3)

where inda, € K(T*X) is the element of the K-group with compact supports of the
cotangent bundle T*X and
p K(T"X) — K(pt)

is the direct image mapping corresponding to the projection p : X — {pt} into a point.

Proof. As explained in §A.4, the index inda, € K(7*X) is well defined as the index
of an arbitrary Fredholm family a,(x,£) € S (T*X) that coincides with a(x,§) for
sufficiently large |£| (and, in particular, invertible at infinity). Formula (1.3) can be
obtained by a straightforward application of Theorem A.10 to the symbol (1.1). O

1.2 The index of operators on the bundle of suspensions

In the preceding subsection, we have expressed the index of an elliptic morphism on
a special manifold with edge (the model wedge W) using the fact that this manifold is a
bundle over the edge X and representing the morphism in question as a pseudodifferential
operator on X acting in sections of infinite-dimensional vector bundles.

There is yet another case in which elliptic morphisms on a manifold with edge can
be represented as pseudodifferential operator with operator-valued symbols on the edge
and compute the index as the direct image of the corresponding element on the K-theory
of the edge. Namely, this is the case in which M is the bundle over X with fiber the
suspension over ). Recall that the suspension over €2, where €2 is a smooth compact
manifold, is the manifold with two conical points given by

SQ = {{Qx[0,2}/{Q x {0}}}/{ x {2}};

9



it can be obtained from the finite cylinder Q2 x [0, 2] with base Q by shrinking both faces
into points (conical singularities of the resulting manifold). Let 7 : Y — X be a locally
trivial bundle with fiber €2 over a smooth compact manifold X. Naturally associated with
this bundle is the bundle

7:8— X, 7T '(r)=SQ

over X with fiber being the suspension over S€2. The total space S of this bundle is a
manifold with an edge, which is the disjoint union of two copies of X. Let U be the collar
neighborhood {r < 1} of one of these copies in § (here 7 is the coordinate on [0, 2]); then
S is obtained from two copies of the closure U by gluing along the subset 2 x {r = 1}.

Let A be an elliptic morphism on §. We assume that the principal symbol o(A) is
independent of the radial variable r in the neighborhoods {r < €} and {r > 2 — ¢} of
respective components of the edge. (The following assertion remains valid without this
assumption, but the proof becomes technically more complicated.)

Proposition 1.2. Under the above-mentioned conditions, the operator A can be repre-
sented modulo compact operators as a pseudodifferential operator

.0
A= F(x, —@%>

on the manifold X with elliptic operator-valued symbol
F(z,§) € Sey (5 X)

ranging in the space of conically degenerate pseudodifferential operator on the suspension
SQ plus the space of matriz Green symbols on each of the two components of the edge.
The index of this operator is given by the formula

ind A = p(ind F(z,€)), (1.4)

where ind F'(z,£) € K(T*X) is the element of the K-group with compact supports of the
cotangent bundle T* X, and
pr: K(T"X) — K (pt)

is the direct image mapping corresponding to the projection p : X — {pt} into a point.

Proof. To avoid clumsy notation, we assume that Y is the direct product X x €2. The
spaces in which the operator A acts are

W(S) ® L*(X, ) @ L2(x, JP) = L2(X, K(59) @ L2(X, J) ® L2(X, JD),

where Jiu) are finite-dimensional bundles over X. Thus, A can be interpreted as an
operator acting on sections of infinite-dimensional bundles over X with fibers being Hilbert
spaces of the form

ks eV e P =5m2r250) e g0 @ g2,

10



where 7 is a nonnegative smooth function on the interval [0,2] equal to r near zero,
equal to 2 — r near r = 2, and nonvanishing at the interior points of the interval. Let
us represent it (modulo compact operators) as a pseudodifferential operator on X with
operator-valued symbol. Indeed, note that if the principal symbol o(A) is independent of
r in an e-neighborhood of the edges, then A can be expressed via the principal and edge
symbols as follows (cf. Remark A.34). We take a partition of unity

3
1= in(r), supp x1 C [0,¢], suppx2 C [6/2,2—¢/2], suppxs C [2—¢,2].
j=1

A= (Xl(r)o/\(A)Xl(r)) <x, —z%) + (XQ(T)O—(A)XQ(T))/\

ox

where the hat " in the second term stands for the usual pseudodifferential quantization
on the infinite cylinder X x Q x R,. Here 0,(A) and o,(A) are the edge symbols of A
on the first and second component of the edge, respectively. The second term, which is
a pseudodifferential operator on the product X x €2 x R,, can be rewritten in a standard
way as a pseudodifferential operator on X with operator-valued symbol f(x,&) that is a
pseudodifferential operator with parameter £ € T X (e.g., see [43]), depending on x € X,
on the cylinder €2 x R,.:

+ (xs(r)an(A)xs(r)) (:c —i3>, (1.5)

(a(r)o(A)xa()" = f<:r, —83)

As a result, we obtain
A= (o (Apa() (5. -130 )+ £ (i)
+ )z @) (o -ig- ) = F(o i),

where

F(z,€) = (xa(roa(A)xi(r)(,€) + f(2,€) + (s (r)an(A)xs(r) (@, €).

All three terms in the latter expression are zero-order symbols with compact fiber vari-
ation, and so the same is true for F: one has F € S, (T*X). For large |£|, the symbol
F(z,€) is invertible. Indeed, F(z,£) has an almost inverse G(x,&), which can be con-
structed in a standard way from local (almost) inverses with the help of a partition of
unity:

G(z,8) = (xa(r)oa(A) " xa(r) (@, €) + g(z, &) + (xa(r)on(A) 'xs(r)) (2, €),

11



where the operator-valued symbol g(z,§) is defined (by analogy with f(z,&)) from the
condition

g(x, 4%) = (xa(r)o(4) xa(r))".

Using the twisted homogeneity of the edge symbol and the fact that f(z,&) and g(z,€)
are pseudodifferential operators with parameter &, one can readily show that the products
F(z,8)G(x,€) and G(z, &) F(z,€) have the form 1+ K;(z,§), j = 1,2, where the norm of
the remainder Kj(x, &) tends to zero as |{| — oco. Hence F'(z, &) is invertible for large |£|.
Now the assertion concerning the index of A follows from Theorem A.10. U

1.3 The relative index theorem

Let A be a pseudodifferential operator M with edge. Suppose that the principal
symbol of A is invertible on TG M (that is, A is formally elliptic) and that A admits
elliptic edge problems. Next, let A and B be two such problems. Then we arrive at the
natural question of obtaining an analog of the Agranovich-Dynin theorem [1] in this case,
that is, of computing the relative index

ind(A,B) = ind A — ind B. (1.6)
First, suppose that problems A and B act in the same spaces. Then the relative index is
ind(A,B) = ind(AB™}),

where B™! is the almost inverse of B. (In particular, the principal and edge symbols of
B~! are the inverses of the corresponding symbols of B.) The morphism AB~! has a
unit principal symbol; applying the surgery [24], we can assume that it is defined on the
infinite wedge W. By applying Proposition 1.1, we arrive at the following assertion.

Theorem 1.3. The relative index of problems A and B s equal to
ind(A, B) = pi(ind(on(A)oA(B) ™)), (1.7)

where ind(ox(A)on(B)™') € K(T*X) is an element of the K -group with compact supports
of the cotangent bundle T*X and

p K(T"X) — K(pt)
is the direct image map corresponding to the projection p : X — {pt} into a point.
Now suppose that problems A and B act in distinct spaces, namely,

AWM, E)® L*X,J)) — WM, F) & L*(X, J,),
B: W(M,E)® L*(X, J;) — W(M, F)® L*(X, J»).

12



We embed J; and J, as well as (71 and (72 in an infinite-dimensional Hilbert bundle H
over X. The orthogonal complements Ji- and J3 are infinite-dimensional and hence
isomorphic. Let

X:JE — Jy

be an isomorphism, and let B B

N — Ty
be a similar isomorphism for the bundles with tildes. Then problems A & x and B & x
act in the same spaces

WM, E)® L*(X,H) — WM, F)® L*(X,H),

are elliptic, and have the same indices as the original problems. Accordingly, the above
argument applies (since the finite dimension of bundles over X was not used in it), which
shows that Theorem 1.3 remains valid for this case provided the construction of the
operator o,(A)ox(B)~! uses the infinite-dimensional bundle H. Moreover, the assertion
remains valid even if one is allowed to change the edge symbol of the operator A itself
(provided that the edge symbol remains Fredholm) and only the principal symbol of A
remains unchanged.

2 Index as the sum of stratum contributions

The index of the elliptic problem (0.1) is a homotopy invariant of the compatible pair
(0(A),on(A)) of elliptic symbols:

ind A = F(0(A),o(A)). (2.1)

The manifold M with edge X can be viewed as a stratified space with two strata, namely,

the interior stratum M = M = M\ X and the boundary stratum X (the edge). Associ-
ated with each stratum is a component of the symbol. (The principal symbol is related to
the interior, and the edge symbol is related to the edge.) The compatibility condition for
the symbol components can be viewed as naturally related to the adjacency of the strata.
Since the stratification of the manifold is naturally reflected in the symbolic structure, it is
logical to ask if the index of problem (0.1) can be represented as the sum of contributions
corresponding to separate strata, or, which is the same, to separate components of the
symbol. Hence the following statement of the problem can be considered. Compute the
functional on the right-hand side in (2.1) as the sum of two terms, one of which depends
only on the principal symbol o(A) and the second only on the edge symbol o,(A). More
precisely, we wish to represent the index in the form

ind A = f(o(A)) + g(on(A)), (2.2)

13



where f(o(A)) is a functional depending only on the principal symbol and homotopy
invariant on the class of elliptic principal symbols and g(o.(A)) depends only on the edge
symbol and is homotopy invariant on the class of elliptic edge symbols. The problem of
representing the index of problem (0.1) in the form (2.2) will be called the problem on a
(homotopy invariant) splitting of the index (into stratum contributions). This problem is
the subject of the present paper.

Remark 2.1. The homotopy invariance requirement in this setting is very natural, since
the left-hand side of (2.1) is homotopy invariant. However, this requirement is much
stronger, for we assume the homotopy invariance of each term separately, so that the sum
proves to be homotopy invariant on the set of all pairs (0(A),ox(A)) rather than only
pairs satisfying the compatibility condition (0.2). Hence it is not surprising at all that
(as we shall see in the next subsection) certain additional conditions are needed for the
existence of a homotopy invariant splitting (2.2).

Remark 2.2. The problem stated above can be interpreted as a problem on an index
defect, that is, the problem of finding a functional that depends only on the edge symbol
and restores the homotopy invariance (which anyway holds if the edge is empty) of the
index of problem (0.1):

ind A + ind-def o5 (A) = f(o(A)). (2.3)

In other situations, index defects occurred, say, in [35] and in the survey [33]. Here we do
not discuss this interpretation.

2.1 A criterion for the existence of invariant splittings

First, we note that the problem on a homotopy invariant splitting of the index into
stratum contributions has no solution in the class of all elliptic edge problems in general.
A similar situation takes place for spectral boundary value problems [32] or for operators
on manifolds with conical singularities (e.g., see [20]). Namely, consider a class X of
elliptic symbols on T* M for which the obstruction (A.44) is zero. By X5 we denote the
set of restrictions of symbols o € ¥ to T* M. We assume that the class ¥ is completely
determined by these restrictions; in other words, if o5 € ¥y, then o € X. Let {og} C Xp
be a continuous periodic family. It can be interpreted as a symbol on T*(0M x S') and
determines, via the difference construction, an element

[0a:] € K(T*(OM x S')) (2.4)
of the K-group with compact supports. The following theorem holds.

Theorem 2.3. There exists an invariant® splitting (2.2) for the class of Fredholm edge
problems with principal symbols in X if and only if

ploa] =0, p:OM xSt — {pt} (2.5)

3Here we mean that the second term must be defined and homotopy invariant on the class of elliptic
edge symbols with principal symbols in 5.
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for each continuous periodic family {0 }iest C To.

Proof. Consider a periodic family {0 }ses1 C 39 and two elliptic principal symbols o and
o such that o5 = 05 = 059, 0 = 0 outside T*U, o is independent of the radial variable r
in 7*U, and

o(z,w,1,&,q,p) = 0925 (7,w,, ¢, D).

(In other words, & can be obtained from o by attaching the periodic family in the collar
neighborhood T*U.) We can equip o and ¢ with the same elliptic edge symbol o,. Then
we obtain two Fredholm edge problems, which will be denoted by A and A. These prob-
lems have principal symbols homotopic in ¥ and the same edge symbols. The difference
of indices of these problems is given by the formula
indA — ind A = ind B,

where B is the edge problem with principal symbol o(B) = 7 - 0! and with unit edge
symbol. Note that the principal symbol is equal to unity on 07T*M as well as outside
T*U. By applying surgery and the relative index theorem in [24], we find that the index
of problem B is equal to the index of an elliptic operator on OM x S' whose principal
symbol is equal to oy, multiplied by the family 08_01, which is independent of . Applying
the Atiyah—Singer theorem, we see that this index is equal to the left-hand side of (2.5).
The necessity of condition (2.5) is now clear, and the sufficiency can be proved in the
same way as in [32]. O

Remark 2.4. This theorem is essentially the same as the corresponding theorems for
spectral boundary value problems and for operators on manifolds with conical singulari-
ties [32, 20]. (Indeed, pi[oa] is equal to the spectral flow of the periodic family of operators
elliptic with parameter p on M with symbols og;. In contrast with the cited papers, we
do not use the spectral flow neither in the statement, nor in the proof, nor in applications
of this theorem.) We note especially that the edge structure of the manifold (i.e., in terms
of M, the projection 7 : 9M — X)) plays no role in this theorem at all: the obstruction
to the existence of homotopy invariant splittings of the index is the same for the manifold
M with boundary and for the manifolds with conical or edge singularities for which M is
the stretched manifold.

Now if ¥y is the set of restrictions to 0T*M of all elliptic symbols for which the
obstruction (A.44) to the existence of Fredholm problems is zero, then the assumption of
the theorem is in general not satisfied, and so there are no homotopy invariant splittings.
To solve the problem, one has to single out narrower classes of elliptic symbols. In the
subsequent sections we explain how this can be done.
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2.2 A relationship with the splitting problem on a manifold with
conical singularities

Remark 2.4 suggests that the index splitting problem for a manifold with edges and
the corresponding index splitting problem for a manifold with conical singularities are
closely related. This is indeed the case. In a sense, the former problem can be reduced
to the latter. Let us explain this assertion. Along with M, consider the manifold 9t
with conical singularities that has the same stretched manifold M as M. The compressed
cotangent bundles 7*M and T*9 are (noncanonically) isomorphic to 7*M and hence
isomorphic to each other. Let us choose an isomorphism. Then to each class ¥ of symbols
on 1" M satistying the criterion in Theorem 2.3 there corresponds a class of symbols on
T*9t with the same property. We denote it by the same letter (or, in other words, identify
T* M with T*9 via this isomorphism). Let ¥ be such a class, and suppose that the index
splitting problem has been solved for 9 in the class of operators with principal symbols
from Y. In other words, we have two explicitly written out homotopy invariant functions
f and ¢ such that for an elliptic operator

A HYOO0) — H™0(9) (2.6)

with principal symbol o(A) € ¥ and conormal symbol o.(A) the index formula

ind A = f(o(A)) + g(0.(4)) (2.7)

is valid. (The weight exponent in (2.6) is taken to be zero without loss of generality. The
passage to any other exponent merely changes the second term on the right-hand side
in (2.7) by a summand given in closed form by the relative index theorem for pseudod-
ifferential operators on manifolds with conical singularities; e.g., see [42] and references
therein.)

Now let us construct the solution of the problem on a homotopy invariant splitting of
the index in the class X of principal symbols for a manifold M with an edge. We take an
arbitrary order problem A with principal symbol o(A) € ¥ and edge symbol o, (A). Using
a homotopy if necessary, we can assume that o(A) is independent of the radial variable
r over U. We cut U away from M and shrink the cut hypersurface OM x {r = 1} into
a conical singular point on both resulting parts. Then one of the parts, M \ U, becomes
a manifold with conical singularities, which can be identified with 91. The second part,
U, becomes a more complicated manifold with singularities, which will be denoted by 1.
The smooth part of 4 is just the direct product OM x (0,1), but for » = 0 is has the
same edge X as the original manifold M, and for » = 1 it has a conical singular point.
Let us take an arbitrary elliptic conormal symbol o. compatible with o(A). The pair
(0(A), o) determines (modulo compact operators) a Fredholm operator A on 9, and the
triple (09(A),0x(A), 0.) determines a Fredholm problem A on 4. (Here the boundary
symbol 0y(A) is extended to the entire Tysh = ((T*0M x R) \ {0}) x [0,1] as a function
independent of r € [0, 1].) We note that, up to the ambiguity in the choice of a compatible
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conormal symbol o., the problem A is determined modulo compact operators by the edge
symbol o, (A), since 0y5(A) = o(or(A)) by the compatibility condition.
We apply surgery and the index locality principle in [24], thus obtaining

ind A = ind A + ind A.
Next, we combine this with (2.7) and see that
ind A = f(o(A)) + [ind A + §(o,)]. (2.8)

The first term is a homotopy invariant of the principal symbol, and we set

To show that the expression in brackets is an invariant of the edge symbol, we choose an
arbitrary quantization that assigns a compatible conormal symbol o, to each boundary
symbol 05(A) and set

oc(p) = a.(p + i),

where v € (0,1) is so small that o.(p) is invertible on the lines {Im p = §} for all § € (0,~].
By the relative index theorem for pseudodifferential operators on manifolds with conical
singularities, neither of the two terms in brackets depends on the specific choice of 7,
and we see that each of them, as well as the sum, is completely determined by the edge
symbol. Thus, we can set _

9(on(A)) = ind A + g(o). (2.9)

The homotopy invariance of this functional follows from the index formula and the ho-
motopy invariance of the first term.

Remark 2.5. Needless to say, our argument in this subsection is somewhat abstract,
since the functional (2.9) has a complicated structure depending on an arbitrary (though
fixed) quantization

(oF;} (A) — 50-

Note that the index formulas given further in this preprint are derived from completely
different ideas, without using (2.9) even as an intermediate result.

3 The homotopy invariant functional of the principal
symbol

In the preceding section, we have shown that under the necessary and sufficient condi-
tion given by Theorem 2.3 the index of an elliptic problem on a manifold with edges can
be represented as the sum of a homotopy invariant functional of the principal symbol of
the problem and a correction term that depends only on the edge symbol. In this section,
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we compute the main term in the index formula, namely, the above-mentioned homotopy
invariant functional. Needless to say, this is hardly a tractable problem for general symbol
classes satisfying the criterion given by the theorem. Hence we introduce quite natural
symmetry conditions guaranteeing that the criterion holds and compute the homotdopy
invariant of the principal symbol for symbol classes satisfying these conditions.

3.1 Symmetry conditions for the principal symbol at the edge

The criterion in 2.3 for the existence of a homotopy invariant index splitting is stated
in terms of the boundary symbols o5(A). Hence it is natural to single out symbol classes
satisfying this criterion with the help of conditions imposed on the boundary symbol.
Since the criterion is independent of the structure of the edge, we use the idea in [20] (where
the case of manifolds with conical singularities was considered), generalizing the parity
conditions in [36, 37], and consider symbols invariant with respect to some involution in
the real vector bundle

OT"M ~T*OM x R=T*0M & 1

(here 1 is the trivial one-dimensional real bundle) over the base dM. Thus, consider an
involution
a:T"OM &1 —T"0M & 1, (3.1)

that is, an automorphism of the vector bundle T*0M & 1 over OM such that o = 1.
We separately consider the following two cases:

e « reverses the orientation (deta = —1);
e « preserves the orientation (det o = 1).

Definition 3.1. Let « reverse the orientation. By X, we denote the set of triples of the
form (a,ep, ), where

a: B — 1yl mpmiIgM— M

is an elliptic symbol acting between the lifts to 7% M of vector bundles £ and F' over M
and
er: Eloyy — Elomr, €r: Flonr — Flon

are involutions acting in the restrictions of these bundles to OM; moreover, the boundary
symbol ay = a|sr-\ satisfies the symmetry condition

epa*(ag)ep = ag, (3.2)

or, in other words, is equivariant with respect to the representations of the group Z, given
by the involutions «, eg, and ep. B

The set X, will be referred to as the set of a-symmetric elliptic symbols. By ¥, C ¥,
we denote the subset of symbols for which the obstruction (A.44) is zero.
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Remark 3.2. We point out that admissible homotopies in ¥, are not just homotopies of
the symbol a itself but rather homotopies of the entire triple; in other words, ex and cp
must also vary continuously, and condition (3.2) must hold for all values of the homotopy
parameter. Throughout the following, homotopy invariance is understood as invariance
with respect to admissible homotopies. Thus, formally we deal with a situation slightly
more general than the one considered in Theorem 2.3. However, the theorem remains
valid in this case. We have simplified that statement only on order not to make the
exposition awkward.

Definition 3.3. Now let « preserve the orientation. By X, we denote the set of pairs
(a,€), where
a:my B — 1y F mpm i TgM — M
is an elliptic symbol acting between the lifts to 7% M of vector bundles £ and F' over M
and
[ E|3M — F|3M

is an isomorphism of the restrictions of these bundles to 0M; moreover, the boundary
symbol ay = a|sr-\ satisfies the antisymmetry condition

o*(ap) = cay'e (3.3)

on the unit spheres in 07* M. N
The set ¥, will be called the set of a-antisymmetric elliptic symbols. By ¥, C X, we
denote the subset of symbols for which the obstruction (A.44) is zero.

Remark 3.4. Note that, by passing to the symbol ae™!, one can assume without loss

of generality that ¢ is the identity isomorphism. (This passage can be made only in a
neighborhood of the edge in the general case.)

Remark 3.5. If the bundle FE is equipped with an inner product, then one can also
consider the class of symbols a : 73, F — 7}, F satisfying the condition

aay = aj,

where a} is the adjoint symbol. This condition obviously coincides with the preceding
condition (with identity isomorphism £) on unitary symbols. In the general case, the
relationship between the two conditions is given by the polar decomposition theorem.
More precisely, one can verify that the validity of one of these conditions for an elliptic
symbol implies the other condition for the isometric part of the symbol.

The following proposition shows that homotopy invariant index splittings for problems
with principal symbols in ¥, exist in the symmetric (« reverses the orientation) as well
as the antisymmetric (« is orientation-preserving) case.

Proposition 3.6. The criterion (2.5) in Theorem 2.3 holds for an arbitrary admissible
periodic homotopy of elliptic symbols in ¥, (and so much the more in ).

The proof reproduces that of Theorem 9 in [20] word for word. O
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3.2 The Hirzebruch operator associated
with the principal symbol

The desired homotopy invariant of the principal symbol is given by the index of some
elliptic operator on a smooth closed manifold, more precisely, the Hirzebruch operator
with coefficients in the bundle determined by the principal symbol. In this subsection, we
describe this smooth closed manifold and construct the Hirzebruch operator. Note that
the construction is defined for arbitrary principal symbols in X, even though elliptic edge
problems exist only for symbols in the subclass ¥,,.

The closed manifold. Consider the Atiyah-Bott-Patodi space [5]

def

DM E S(T*M @ 1)

of the compressed cotangent bundle T*M. The Atiyah—-Bott—Patodi space is a bundle
over M with fiber S"***! and is a smooth even-dimensional manifold with boundary.
(More precisely, the dimension is equal to 2(n + k + 1)). It can also be viewed as the
gluing of two unit disk bundles for 7*M along the unit spheres. The desired closed
manifold is the gluing of two copies of the Atiyah—Bott—Patodi space along their common
boundary, the gluing being constructed as follows with the use of the involution «. It will
be more convenient for us to glue not the Atiyah-Bott-Patodi spaces themselves, but the
bundles T*M @ 1, and only then pass to the spheres.

We extend the involution « : T*M|gpr — T* M |sps to the orientation-reversing invo-
lution

where the plus sing is taken in the symmetric case (where det @« = —1) and the minus
sign in the antisymmetric case (where det a = 1). In both cases, we obtain deta = —1.

The involution « permits one to glue two copies of the vector bundle T*M &1 along their
common boundary by identifying the points (y, ,t) and (y, @((,t)) in the first and second
copies of T*M @ 1, respectively, in the fibers over the same boundary point y € OM. As
a result, we obtain the vector bundle

(T"M®1)U(I"M & 1) € Vect(2M) (3.5)

over the double 2M of M. Since a reverses the orientation in the fibers, it follows that
the total space of this bundle is oriented by the canonical orientation of the compressed
cotangent bundle on each of the two copies of 7* M. (The change in the orientation under
« when passing from one copy to the other is compensated for by another change in the
orientation caused by the opposite direction of the r-axis.) Finally, consider the bundle

def

D*MUD'ME s((T*M 1) U(T*M @ 1))
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of unit spheres in the vector bundle (I*M @ 1)U (T*M & 1). Its total space is also

oriented and is an even-dimensional smooth closed manifold.

The vector bundle corresponding to the principal symbol. On D*MUD*M,

we now construct a vector bundle corresponding to an a-(anti)symmetric principal symbol
a. Just as in the standard Atiyah—Bott—Patodi construction [5], the symbol a determines
a vector bundle

[a] € Vect(D* M)

by the gluing of the lifts of £ and F' to the unit ball bundles in 7% M via the isomorphism
a defined on the unit spheres.

A straightforward computation shows that the restriction of the bundle [a] to the
boundary 0D*M is a Z,-bundle with respect to the natural action of the involution a.
Consequently,

[aUa] € Vect(D* MU D*M))
is a well-defined vector bundle on D*M U D*M.

The Hirzebruch operator. Using the bundle thus constructed, we define an elliptic
operator on D* M U D* M corresponding to the elliptic symbol a. By

H =Hp-mup M
@

we denote the Hirzebruch (signature) operator (e.g., see [28]) on D* M U D* M. We define
[0}
an operator H, by setting

Ho=H AN (2M)®C) ' ®[aUd], (3.6)

[0}

where the second factor is a virtual bundle (a formal difference of ordinary bundles)
determined by the exterior form bundle A*(2M) as the right-hand side of the expression

* -1 _— 1
(A*(2M))~" = Qutktl _ (Qn+h+l — Ax(2)]))
— ﬁ (1 + ;(1 — 2”k1A*(2M))l> EK2M)®Z B} . (3.7)

On a finite-dimensional space, this series has only finitely many nonzero terms in the
following sense: for sufficiently large [, the element (2""**! — A*(2M))! is zero in the
K-group (see [4]). The second factor can also be described in terms of the Grothendieck
operations in K-theory:

A(B)™ = 4(E), where %(2) = Ay ().
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Remark 3.7. In fact, our Hirzebruch operator is an element of the group

* * 1
EI(D'MUD'M) ®Z M :

i.e., is represented by a formal difference of two elliptic operators with dyadic coefficients
(rationals whose denominators are powers of 2).

3.3 The index of the Hirzebruch operator as a homotopy invari-
ant functional

By construction, the index of H, is determined by the symbol a and is a homotopy
invariant of @ in the class X,. First, let us compute it in cohomological terms.
By[D*MUD*M] € Hopyop10 (D*M U D*./\/l) we denote the fundamental cycle.
« «

Proposition 3.8 (the cohomological formula). One has
ind M, = (ch[aUa]m*Td(T(2M) ® C),[D* MU D*M]),
where ™ : D*M U D*M — 2M s the natural projection.

Proof. 1. We us the cohomological expression
(ch(A*(2M) @ ©)~'ch[aUa] L(T(D*M U D*M)), [D* MU D*M))

for the index of the Hirzebruch operator. In view of this formula, it suffices to prove the
relation

T Td(T(2M) ® C) = L(T(D"MUD"M))ch(A'(2M) © C) * € H'(D'MUD"M)

between the Todd class and the L-class of a real vector bundle. (In the Borel-Hirzebruch
formalism, the latter class corresponds to the function z/tanh(xz/2); e.g., see [28].) We
establish this relation in the subsequent two items.

2. First, we note that the tangent bundle 7'(D* M U D* M) and the bundle 7*(7'(2M)®

T(2M)) determine the same element modulo 2-torsion. To prove this, we recall the stan-
dard isomorphism
Tsvel~r"(I'BeoV), =w:SV — B,

which is valid for an arbitrary vector bundle V' € Vect(B) over a smooth base B. (To
establish the isomorphism, one decomposes tangent vectors into horizontal and vertical
components and realizes the one-dimensional trivial bundle as the tangent bundle to the
sphere.) Using this result, we obtain the isomorphism

T(D'MUD'M) &1 =7 (T(2M) & (I"Me)UT" Me 1))).
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But the bundle (T"M @& 1) U(T*M & 1) is obtained from the bundle 7%(2M) @& 1 by

e
twisting with the use of the involution ae. Hence the two bundles coincide in the K-group
modulo 2-torsion, and we obtain the desired relation

[T(D*MYUD"M)] = [*(T(2M) @ T(2M))] € K(D'MUD'M) @ L E] .

3. By virtue of item 2, to verify the equality of characteristic classes in item 1, it suffices
to prove the following relation on the base 2/ :

Td(T(2M) ® C) = (L(T(2M)))*ch(A*(2M) @ C) . (3.8)

In the Borel-Hirzebruch formalism, the left- and right-hand sides of the formula corre-
spond to the functions

/2 \° and x ? 1
— n
sinh z /2 tanhz/2) (14 e*)(1+e?)’
which coincide identically. The proof of the proposition is complete. O

Now we shall prove that the homotopy invariant thus constructed (and multiplied by
1/2) is indeed the main term in the index formula for an elliptic edge problem. We need
the following lemma.

Lemma 3.9. 1) Let P be an elliptic pseudodifferential operator on the double 2M.
Then

ind P = ind (Hp-em) ® (A*2M)® C) ' @ [0(P)]), [0(P)] € Vect(D*(2M)).

2) Let a be an elliptic symbol on T* M equivariant with respect to either of the involu-
tions ag : p — —p and a. Namely, writing out the equivariance conditions explicitly,
aja = gopacop, and either a*a = epacy (in the symmetric case) or a*a = ca e
(in the antisymmetric case). Furthermore, let one of the following two conditions
be satisfied:

1) the restriction a|gr«p is a bundle isomorphism lifted from the base;

2) the involutions oy and o commute, and the bundle morphisms occurring in the
definition of equivariance are compatible in the sense that

E0EEE = €EE0E, CE0FEF = EFEOF

in the symmetric case and
EQFE = €EOE

wn the antisymmetric case.
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Then

ind (K p-ean @ (A*(2M) @ €)' ® [a U a])
— ind (HD*MQD*M ® (A 2M)®C) ® [agaD = indH,, (3.9)

where U stands for the gluing corresponding to the involution p — —p.

Proof. 1) The Atiyah-Singer formula on the smooth closed manifold 2M/ in the (cohomo-
logical) Atiyah—-Bott—Patodi form reads

ind P = (chlo(P)|m*Td(T(2M) @ C), [D*(2M)]) .

On the other hand, let us apply the cohomological Atiyah—Singer formula to the Hirze-
bruch operator on the right-hand side of the relation to be proved. The index of the
Hirzebruch operator is equal to

<L(TD*(2M))ch,(A*(2M) ® C)~chlo(P))], [D*(2M)]>.

Now the desired relation follows from the equality of characteristic classes in item 1 in
the proof of Proposition 3.8 (with the involution p — —p).

2) The manifolds on which the operators on the left- and right-hand sides of the desired
relation are defined are obtained from each other by one-codimensional surgery along the
submanifold D*(2M)|sn. It is well known (e.g., see [7] or [24]) that the difference of
indices of operators under such surgery is equal to the index of a certain elliptic operator
Tg on the mapping torus

31 D*(2M)|ons — D*(2M) o,

where # = aga. The principal symbol of Tg is constant along the generator of the cylinder
and coincides with the restriction of the symbol a of the original operator to the boundary
D*(2M)|sp- In the first of the two cases indicated in the lemma, this symbol is equal to
a bundle isomorphism lifted from the base, and so ind Tg = 0. In the second case, we use

the relation
ind ng = 2ind Tg

But §2 = Id, since o commutes with ag. The gluing of the bundles for T§2 is also by
the identity morphism by virtue of our conditions. Hence the index of T} is zero, and the
index is not affected by the surgery.

The proof is complete. 0

Now we can state and prove the main theorem of this section.
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Theorem 3.10. Let A be an elliptic edge problem of the form (0.1) with principal symbol
o(A) € X,. The difference

1
ind A — 5 ind HU’(A) (3.10)

is independent of o(A) and is completely determined by the edge symbol op(A). Thus,
half the index of the Hirzebruch operator Hy(ay (3.6) is indeed the main term in the index
splitting formula (2.2).

Proof. Consider two edge problems A and A with the same edge symbol

an =o0x(A) =0ox(A)

and with principal symbols o(A4) and o(A) € £,. We must prove that
~ 1
ind A —ind A = i{ind H,q) — ind Hoa)}- (3.11)

Consider the problem B = Ao AL (By A™!, as usual, we understand the almost
inverse problem, i.e., the problem whose principal and edge symbols are the inverses of
the corresponding symbols of A.) Its edge symbol is

b, = (aA 0 ) , (3.12)

0 a;!
and the boundary symbol is
[ as 0
by = <0 a(gl) . (3.13)

The (anti)symmetry condition for by can be written in the form

a*ba = 61[)362, where €1 = <€(§? 60 > , €Eg9= <€0E 60 > , (314)
E F

in the symmetric case and

a*by = g9by'eg, where gy = (8 _21> , (3.15)

in the antisymmetric case.
Let us perform a homotopy of the problem B as follows. We consider the compatible
homotopies

_ (apcost sint ~ (bycost  sint
ba(t) = (—sint a,! cost) - bo) = (—sint by! cost) , tel0m/2] (3.16)
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of its edge and boundary symbols and take an accompanying homotopy of the principal
symbol. (Note that the ellipticity condition is not violated for any ¢.) The resulting
problem will be denoted by B(¢) and the pseudodifferential operator on M involved in
this problem by B(t).

The (anti)symmetry condition (3.14) or (3.15) holds for each ¢. (This can be shown by
straightforward computation.) Thus, we have a have a continuous family of Hirzebruch
operators Hq(p(1))-

Problem B(7/2) has the property

on®(/2) = (1) ). eae= () o). (3.17)

We can assume without loss of generality that B(7/2) is a bundle isomorphism in a
neighborhood of the edge. By symmetry, we continue B(7w/2) to the double 2M, and
then

1
ind B(m/2) = 3 ind 2B(7/2),
where 2B(7/2) is the continuation. Now we apply Lemma 3.9. By item 1 of this lemma,

ind 2B(7/2) is equal to the index of a certain Hirzebruch operator on D*(2M). By item 2,
the index of the latter is equal to ind H,(p(x/2)). Thus, we have

ind B(¢) = ind Ho(B(t)) (3.18)

for t = 7/2. Now we apply the homotopy invariance of the index and find that (3.18)
remains valid for ¢ = 0, that is, with regard to the fact that for ¢ = 0 our operators are
direct sums,

LT L. .
ind A —ind A = i{md H, o +ind Hoga)-1 }. (3.19)
Setting A = A in (3.19) shows that
ind HO-(A)—I = —ind HO’(A))

and we substitute this into (3.19) to obtain the desired equation (3.11). The proof is
thereby complete. O

4 Classification of boundary symbols

In §3.1, we introduced symmetry conditions for the restriction of a pseudodifferential
operator A on a manifold M with edge X to the boundary 01T*M ~ T*0M & 1 of the
compressed cotangent bundle 7% M. In this section, we study the classification of bound-
ary symbols ay satisfying these condition with respect to stable homotopy equivalence.
The results will be needed in the next section in the derivation of index formulas for
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elliptic operators on manifolds with edges, more precisely, in the proof of Lemma 5.10
and Corollary 5.18. The results of this section will be needed nowhere else, and so the
reader interested only in index formulas may well skip this section.

Note that we carry out the homotopy classification of all (anti)symmetric boundary
symbols ay regardless of whether they can be extended as elliptic symbols to the entire
manifold, that is, whether ay = algr- for some elliptic symbol a on the entire 75 M.
Thus, thee classification of extendible symbols is a subset (depending on the choice of
a manifold M with given boundary OM) of our classification. (Indeed, stable homotopy
does not violate the extendibility of symbols, since the stabilization is by identity symbols,
which are obviously extendible.)

Thus, in this section we consider symbols defined on a vector bundle over an arbitrary
compact smooth manifold B. In the above-mentioned lemmas, the results will be used
for B = 0M, and the bundle will be 0T*M ~ T*0M & 1.

4.1 Symmetric symbols
4.1.1 Zs-equivariant symbols

Let V' € Vect(B) be a real vector bundle with projection m over a compact manifold
B. We assume that the bundle is the direct sum

V=Vi,eV., VoCV
of two subbundles. On the total space of V', we define the involution
a:V —V al, ==£ld

From now on, for a bundle £ equipped with an involution by £, we denote the subbundles
corresponding to the eigenvalues +1 of the involution. If E is not equipped with an
involution, then by E, (respectively, E_) we denote the same bundle equipped with the
identity (respectively, antipodal) involution.

On the manifold B, we consider Zs-equivariant symbol. These are quintuples

(E7F78E76F70’)7
where E, F' € Vect(B) are vector bundles over B,
SEZE—)E, €FZF—)F

are involutions, and
a:myll — myF, m:SV — B

(where SV is the sphere bundle for V' with respect to some metric) is a Zs-equivariant
isomorphism:
epa’(a)ep = a.
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4.1.2 The difference construction

By Lz,(V') we denote the group of stable equivalence classes of such quintuples modulo
trivial quintuples. (A quintuple is said to be trivial if the isomorphism a is induced by a
bundle isomorphism on the base B.)

In a standard way (see [4]), one defines a mapping (the equivariant analog of the
difference construction)

X LZ2(V) — KZ2(V)7

where Ky,(V) is the equivariant K-group of the Zy-space V.
For completeness, we recall the construction. To define the difference mapping, we consider

a quintuple of the form*
(BE,C""™ ep, 1, ® (—1)m, a).

The clutching of the bundles 7*E and C**™ via a determines a Zo-bundle on the Thom space
VT of V. The corresponding element will be denoted by

(B,C""™ ep, 1, @ (—1)m,a) € Vectz, (V).
We define a mapping x by the formula
X(E,C™ g, 1, & (=L)m,a) = [(B,C""" g, 1, ® (—1)m,a)] — [CL @ C"] € Ky,(V?).
This difference is an element of the K-group of V.

Proposition 4.1 ([4]). The difference construction is an isomorphism
Ly,(V) & Kz,(V).

4.1.3 Computation of the equivariant K-group

Until the end of this item, we assume that the involution v on the bundle V =V, @ V_
has a negative determinant. In other words,

dimV_=1 mod 2.

This condition is known as the evenness condition. We shall show that in this case the
equivariant K-group is isomorphic to a usual (nonequivariant) K-group.

“An arbitrary quintuple (E, F,eg,cr,a) can be reduced to this form by the addition of a trivial
quintuple (F+, F+ ef,ef,1d), where (F4,eF) is the complementary bundle of F (F & F+ ~ CV)
with involution chosen in such a way that the eigenspaces corresponding to the same eigenvalues of the
involutions eF and 5# are complementary.
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The sequence of the pair in K-theory. . The natural embedding i : V, — V
induces the exact sequence of the pair in equivariant K-theory:

o K (V) S K (V) S KT (VA V) = KETY(V) = KT (VL) (4.1)
The action on V. is trivial, and we obtain the decomposition
Ky,(Vi) = K*(V4) @ K*(V4),

corresponding to the trivial and nontrivial irreducible representations. The projections
on these direct summands will be denoted by 7, and 7_. On the other hand, the action
on V'\ V is free, and hence the equivariant K-group is equal to the usual K-group of the
quotient space:

KZ,(V\ Vi) = K*((V\ V4)/Zs).

The quotient space is a bundle over B with fiber over a point b € B diffeomorphic to
the product V, x (0,00) x P(V_,). (Here P stands for the projectivization of a linear

]

space.) Here the diffeomorphism is given by the formula

v_
(U+,U_) = <U+7 |U—|7 m) :

Byp: (V\V})/Zy — Vi x(0,00) we denote the projection on the first two components.

Lemma 4.2 ([10, 36]). Under the evenness condition, the projection p induces an iso-
morphism in K-theory modulo 2-torsion:

K*(V, x (0,00)) & 7 B] LK (V\V,)/Z) @ Z B] ,

where Z, [%] s the ring of dyadic rationals.

Proof. In the special case of zero bundle V., the corresponding homomorphism is
K*(B) — K*(PV_).

It corresponds to a locally trivial bundle with fiber homeomorphic to an even-dimensional
projective space. The isomorphism modulo 2-torsion is well known in this case [10].

The proof in the general case (V. # 0) follows if we note that the fiber of the projection
p is still an even-dimensional projective space O

Now let us apply the result to the exact sequence (4.1). We multiply it by Z[1/2];
then one can show that the coboundary mapping 0 viewed as a homomorphism

0: K*(Vi) & K" (Vi) = K,(Vy) — K (VA VL) @ Z[1/2] = K* (Vi) ® Z[1/2]

29



is defined by the formula (7 x,7_x) — 7,z + 7_x. This can be shown as follows. By
the definition of the coboundary map, one shows that O first takes the element 7,z to
its product by the Bott element 3 € K*(R). The product is then lifted to the bundle
V\V; — V. with fiber the sphere and is treated on that space as a Zo-difference element
with fiberwise involution +1. One can readily see that by applying the isomorphism of
Lemma 4.2, we map the element mrz, ¥ € K7 , to the underlying element with the
equivariant structure forgotten. It follows that 7, is an isomorphism onto the antidiagonal
subgroup. We have thereby proved the following assertion.

Proposition 4.3 (the homotopy classification of symmetric symbols). If the evenness
condition s satisfied, then the mapping

(mp —m_)i* - Ky (V) — K*(Vy)
18 an 1somorphism modulo 2-torsion.

Let us construct the inverse mapping modulo 2-torsion. For a sufficiently large NV,
there exists an element (see [10])

[c] € Kz,(V-),
determined by a linear Hermitian symbol
c: ﬂ(CiN — WT(CZ_N, m Vo — B,

invertible outside the zero section. (One can define such a symbol by embedding the
bundle in a trivial bundle and by considering Clifford multiplication.)

Proposition 4.4. The mapping

K(Vy) — Kz (V),
o:msE — s F  —  [c#o],

where my 1 V. — B and # is the external tensor product

<C®1 1® o C%rN@E C'®F
cHo = : o) — S
1® —c"®1 >

o ¢'or G OF

18 an 1somorphism modulo 2-torsion.

Proof. We denote the mapping by 7. The desired assertion follows from the easy-to-verify
relation
(my — 7 )i*r =28+ 4.
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4.2 Antisymmetric symbols
4.2.1 The difference construction

We consider a bundle V=V, @ V_ € Vect(B) with involution « as in the preceding
subsection: aly, = £Id.

Definition 4.5. An isomorphism ¢ : 7*F — 7*FE, where 7 : SV — B is the natural
projection and E € Vect(B) is said to be antisymmetric with respect to the involution «
if

oo =0t (4.2)

The group of stable homotopy classes of odd pairs (E, o) modulo pairs lifted from the
base B will be denoted by L™ (V).

Remark 4.6. Using Remark 3.5, one can readily show that the condition a*oc = o*
results in an isomorphic group.

Let us define the difference construction
X - L%dzd(v) — KZZ(S(V 87 R*))a

where S is the spherization of a real vector bundle, for odd symbols. (The action on the
spheres is induced by the action on the vector bundle V& R .)
The difference construction can be described as follows. We treat the space S(V & R)

as the gluing of two copies of the unit ball bundle BLV S BinV along the common
boundary 9(B.V) =SV C S(V & R):

S(VeR) = BJUB,V.
SV

Then each isomorphism o determines a vector bundle on S(V @ R) as the clutching of
two copies of the lift 71 E of E to B4V via 0. The resulting vector bundle on S(V @ R)
is Zg-equivariant. (More precisely, the antisymmetry condition (4.2) coincides with the
compatibility conditions for the actions of Z, in the restriction of 77 E to the boundary
d(BLV) = SV).

Lemma 4.7. The difference construction is an isomorphism
LYY & Ky, (S(V @R ) /miKy,(B), m:S(V®R ) — B.

Proof. Let us construct the inverse mapping. Let £ € Vecty,(S(V@®R_)). The restriction
E|;=_; will be denoted by Ey € Vect(B). (Here t is the coordinate on R_.) We take a
bundle isomorphism

Q E|B+V — W:EO
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that restricts to the identity mapping at ¢ = —1. Then to E we assign the odd symbol
defined as the transition function

(oz*go)(oz*)go’l ' Ey — 7 E)

between the restrictions of the bundles to the two hemispheres. One can readily show
that this map extends to a group homomorphism, which is the inverse of x. O

4.2.2 The exact sequence of the pair

Consider the pair S(V @& R ) C B(V @ R ) of the bundles of unit spheres and balls.
The exact sequence of the pair in Zs-equivariant K-theory has the form

s Kp,(B) 25 Ky (S(VOR)) — KL (VOR.) -5 KL (B) — -
By Proposition 4.3, under condition
dimV_ =0( mod 2)

one has the isomorphism
L 1l & 4 1 P
K;,,(VoR.)®Z 3 — K (V,)QZ 1k = (rp—7_)i*, i:V, CVOR,

modulo 2-torsion, and the mapping b in terms of this isomorphism is induced by the
restriction.
4.2.3 Computation of the equivariant K-group

We assume that the bundle V; has a nonzero section and the following parity condition
is satisfied (cf. [37]):
dimV_ =0 mod 2.

The existence of a nonzero section implies that 7f is a monomorphism. It follows that
the homomorphism b is zero and one has the isomorphism

(K SV O R ) KeB) 03] = KV 02

Under these assumptions, we obtain the following assertion.
Proposition 4.8. If dimV_ =0 mod 2, then

LY(V)QZ B] ~K'(V,)®Z B} :
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5 Index formulas

In § 3, we have computed the main term in the index formula for edge problems. Here
we give a number of examples of computation of correction terms under various symmetry
conditions and hence obtain the corresponding index formulas on manifolds with edges.

5.1 Symmetry with respect to the conormal variable

We shall consider elliptic edge problems whose principal symbols o(A) satisty con-
dition (3.2), where the involution in the fibers of 0T*M = T*OM @ R is given by the
formula

CY(U,p) = (Ua _p)7 (51)
that is, merely changes the sign of the conormal variable p. Let A be an elliptic edge
problem of this sort. Without loss of generality (using homotopies that affect neither the
boundary symbol 05(A), nor the edge symbol o,(A), nor the principal symbol o(A) far
from the edge), we can assume that the principal symbol is independent of the variable r
in a collar neighborhood U of the edge. Let us cut U away from M. The manifold M\ U
is diffeomorphic to M, and we glue together two copies of this manifold along the common
boundary, thus obtaining the double 2M of the manifold M. This gluing naturally extends
to the cotangent bundles: the point (v,p) on one copy of T*M over a given point of OM
is identified with the point (v, —p) over the same point of the boundary on the other
copy (the minus sign occurs since the directions of the r-axis on the two copies of M
are opposite), and the gluing results in the cotangent bundle of 7%(2M). The principal
symbol o(A) can be extended to T (2M) by virtue of the symmetry with respect to the
conormal variable (and the assumption that it does not depend on the radial variable
over U); the bundles 2E and 2F where the extended symbol acts are obtained from two
copies of the respective bundles £ and F' by clutching along the common boundary 0M of
two copies of M by the automorphisms ¢z and ¢y, respectively. We denote the resulting
symbol by

20(A) : 75, (2E) — 75, (2F).

The corresponding elliptic pseudodifferential operator

def =~ 3

24 = 20(A)

on the closed manifold 2M is defined modulo compact operators.

Next, the closure U is a manifold with edge X and with boundary 0U = U\ U ~ dM.
By gluing two copies of this manifold along the common boundary 0M, we obtain the
double 2U, which is a manifold with edge, the edge being the disjoint union of two copies
of X. The manifold 2U can also be represented as the bundle of suspensions with base (2
over the manifold X. (Recall that the suspension with base 2 is defined as the manifold
with two conical points of the form

S = {{Qx [0, 2]} /{2 x {0} }}/{Q x {2}}. (5:2)
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The radial variable r on 2U can be assumed to vary on the interval [0,2], so that the
gluing is along r = 1.) By the same argument as above, the principal symbol defined on
T*U admits the gluing and determines an elliptic principal symbol

O'QU(A) . W;U(2E2U) — W;U(2F2U)

on T3 (2U). The latter depends only on the boundary symbol o5(A) (since the principal
symbol is independent of the radial variable in U) and on the involutions eg and ep. On
each of the components of the edge, we have the elliptic edge symbol o,(A) compatible
with o9 (A). Thus, the principal symbol o9 (A) is uniquely determined by the edge
symbol together with the involutions ¢z and ex. These data specify (modulo compact

operators) an elliptic problem on 2U, which will be denoted by 20, (A).
Now we can state the index theorem for this case. Note that it was earlier stated by
G. Rozenblum in his talk at Potsdam University in October 1999.

Theorem 5.1. Suppose that the principal symbol of an elliptic edge problem A satisfies
the symmetry condition with respect to the conormal variable:

09(A) (v, —p) = erpoy(A) (v, p)eg.

Then the index formula
1 —
ind A = 3 {ind 24 + ind 20A(A)} (5.3)

is valid, where 2A and 20//\(\A) are the above-defined operators on the smooth compact
manifold 2M and on the suspension bundle 2U, depending on the principal symbol and
the edge symbol, respectively, of problem A.

Proof. The proof is based on surgery and the locality principle for the relative index. It
reproduces, mutatis mutandis, the proof in [24] of the index theorem for operators with
symmetry conditions on manifolds with conical singularities. O

Remark 5.2. The expression given by Theorem 5.1 for the contribution of the principal
symbol seems to differ from the homotopy invariant constructed in §3. However, this is
only an apparent difference. Indeed, by applying item 1 of Lemma 3.9, we obtain

ind 24 = ind H, (), (5.4)

where H, (4 is the Hirzebruch operator (3.6) on D(1*2M) corresponding to the symbol
o(A) and the involution «: p — —p.

Remark 5.3. Theorem 5.1 provides the desired index splitting: the index of the problem
A is half the sum of indices of two operators, one of which is determined by the principal
symbol of the problem and the second by the edge symbol. The first term is a homotopy
invariant of the principal symbol and can be represented by the Atiyah—Singer formula [6].
The second term is an invariant of the edge symbol and can also be represented by an
appropriate formula. Namely, the following assertion holds.
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Proposition 5.4. The operator 20,(A) can be represented modulo compact operators as a
pseudodifferential operator on X with elliptic operator-valued symbol F(x, &) with compact
fiber variation in Hilbert function spaces on the fibers of the suspension bundle with base

Q over X : 5
20, (A) = F —— ).
on(A) (x, Z@m)

The index of this operator is the direct image under the mapping of X into a point of the
difference construction of this symbol in K(T*X) (see [4]):

ind 20, (A) = p[F(2,€)], p: X — {pt}.

Proof. This is a special case of Proposition 1.2. O

5.2 Symmetry with respect to the edge covariables
Suppose that there is a decomposition
OT* M ~ (T X) & ("T*OM @ 1) € Vect(dM) (5.5)

of the restriction of the compressed cotangent bundle of M to the boundary M into
“horizontal” and “vertical” components. Next, let 9T M be equipped with the involution
described in this decomposition by the formula

a(§,q,p) = (o€, q,p), (5.6)

where o : 7" X — T"X on the right-hand side is an orientation-reversing involution
(denoted by the same letter) in the cotangent bundle of the edge X.

Remark 5.5. The involution & — —& can serve as an example provided that X is
odd-dimensional.

We consider elliptic edge problems A whose principal symbol satisfies the symmetry
condition (3.2).
Let A be a problem of this sort. We set

o (A)(2,8) = epon(A)(z,a)ep, (2,8) € Ty X. (5.7)

By the symmetry condition, the edge symbols o (A)(x, &) and o (A)(x, &) have the same
principal symbol 05(A). Their ratio

B(,£) = (0, (A)(x,€)) "or(A)(,€) (5.8)

has a unit principal symbol and, by Proposition A.31, defines a Fredholm operator
B(x, —i0/0x) in the space W(W) & L?(X) on the infinite-dimensional wedge W asso-
ciated with M.
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Theorem 5.6. Let A be a Fredholm edge problem whose principal symbol satisfies the
symmetry condition (3.2) with respect to the orientation-reversing involution (5.6). Then
the following index formula holds from the problem A.:

. 1. 1. .0
ind A = 3 ind Hyay + 3 ind B (aj, _Za_:r>’ (5.9)

where Hqay is the Hirzebruch operator (3.6) and the symbol B(x,§) is given by for-
mula (5.8).

Remark 5.7. The contribution of the edge symbol can be expressed by Theorem 1.1
as the direct image of the index ind B(z,&) € K(T*X) of the Fredholm family B(z, ¢),
invertible outside a compact set, under the mapping of X into a point:

indB(x, —z§> =pind B(z,£), p: X — {pt}.
x

Proof of Theorem 5.6. First, let us describe the scheme of the proof. We transpose the
second term on the right-hand side in (5.9) to the left-hand side, so that the desired
assertion acquires the form

. 1. .0 1.
ind A — 5 ind B (x, —z%> =3 ind H,(a). (5.10)
We denote the left-hand side by
1
p(o(A),0x(A)) =ind A — 5 ind B (aj, —z§> (5.11)
x

The proof contains several steps.

1. We prove that p(c(A),04(A)) is actually independent of o, (A) and is a homotopy
invariant of the principal symbol o(A) in the class X,:

p(o(A),or(A)) = inv(a).

This is done in Lemma 5.9 with the use of the relative index formula provided
by Proposition 1.3 and the auxiliary Lemma 5.8. Thus, both sides of (5.10) are
homotopy invariants of the principal symbol.

2. We show that an arbitrary symbol in ¥, is stably rationally homotopic to a sym-
bol symmetric with respect to the inversion p — —p of the conormal variable
(Lemma 5.10).

3. Since both sides of (5.10) are homotopy invariant, it suffices to verify the formula
for symbols that are also symmetric with respect to the involution p — —p. We do
this in Lemma 5.11.

Let us now proceed to the proof itself.
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1. The homotopy invariance of (5.11). First, we prove an auxiliary assertion.

Lemma 5.8. Let a € ia be an elliptic symbol. If we deform a in the class ia, then for
sufficiently small intervals of the deformation parameter there exists an invertible edge
symbol a, compatible with a and continuously depending on the deformation parameter.

Proof. By Proposition A.39 there exists a Fredholm edge symbol a, compatible with
a. Since the obstruction to the existence of edge problems for a is zero, one can add
(co)boundary conditions such that the complete matrix Green symbol a, will be invert-
ible. Next, if we deform a and deform a, compatibly, the other entries of the Green
matrix symbol being fixed, then a, remains invertible for small values of the deformation
parameter. [

In what follows, by A(c,) we denote the edge elliptic problem with principal symbol
o(A) and (compatible) edge symbol c,(x,&). For brevity, we denote o,(A) by a,. Thus,
A= A(a/\).

Lemma 5.9. The quantity p(o(A),on(A)) (5.11) can be expressed by the formula
L.
o(o(A),on(A)) = 3 ind(A(a,) ® A(a))). (5.12)

It depends only on the symbol a (i.e., is independent of the choice of an elliptic problem
for this symbol) and is its stable homotopy invariant.

Proof. By the relative index theorem 1.3, we have

ind A(a,) —ind A(af) =ind B (aj, - g)
T

Now
% ind(A(a,) ® A(a?)) = ind A(ay) — %(ind Aa,) — ind A(a}))

—indA(a,) — ~ind B <:r —2'3) — (0 (A), o0 (A)),
2 oz
which proves (5.12).
To prove that the right-hand side of (5.12) is independent of a,, note that if we
replace a, by another elliptic edge symbol ¢, compatible with o(A), then the right-hand
side of (5.12) is changed according to the relative index formula by

pi(ind(cray @ cf(al)™), p: X — {pt}.

But the family c a, ! @ cf(af) ! is invariant with respect to the involution £ — «&; since
the involution reverses the orientation, this family defines a 2-torsion element in K (7*X),
whose index is zero. Now the homotopy invariance of p(o(A),o(A)) is also clear, since
for small deformations of the principal symbol one can continuously deform the compatible
elliptic edge symbol a,. The proof of the lemma is complete. O
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In view of the result of this lemma, we write

in what follows.

2. The principal symbol is homotopic to a symbol symmetric with respect
to the conormal variable. Now that the homotopy invariance of both sides of the
desired relation has been proved, we deform the principal symbol to the simplest form,
for which the proof will be essentially elementary.

Lemma 5.10. For an arbitrary elliptic boundary symbol a € X.5, there exist positive
integers N and N' such that the direct sum 2Ya @ 1y is homotopic in Xay to a symbol
symmetric with respect to the inversion p — —p of the conormal variable, where by 1
we denote the unit symbol in the trivial bundle of dimension N’ equipped with an arbitrary
involution.

Proof. The proof is based on the classification of symmetric boundary symbols obtained
in §4.1. In this case, the classification results in the K-group Ky,(V, @ V_ @R, ), where
V., and V_ are the positive and negative subspaces generated by the involution in the
cotangent bundle T*0M). By the results of §4.1, this group is isomorphic to K (V; ® R)
modulo 2-torsion.

[t turns out that the group K (V,;@R) is generated modulo 2-torsion by endomorphisms
o(vy,p) invertible outside the zero section and satisfying the condition

U(U+7 _p) = UO'*(U+,p)U, (513)

where U is a unitary involution.
Indeed, for an arbitrary symbol o(v,p) we set

oo(vs,p) = < a(va’p) U*(Uf, ) ) , U= ( (1) (1) ) . (5.14)

The resulting symbol satisfies condition (5.13). One can readily show that the mapping
o0 +— 0p induces an isomorphism in K-theory modulo 2-torsion. Indeed, the passage to
adjoint symbols, as well as the involution p — —p, acts as —Id on the K-groups. Thus,
the composition of these two mappings is the identity mapping of the K-group. Finally,
the 2-torsion arises from the doubling of the symbol in (5.14).

Gathering the results, we obtain the following set of symbols generating the group
KZ2(V+ EB V_ @ R+)

(el 180 ()
cto(vy,v_,p) = ( 1® o (v, p) —c(v,)®11) ), (5.15)
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and the relation o(v;, —p) = Uo* (v, p)U holds.
These generating elements satisfy the symmetry condition with respect to the involu-
tion «p : p — —p. More precisely,

(c#0) (03, v, —p) = A((co) (s, 0, p))A, A= (}} v )

The proof is straightforward; as the involutions one can take e = 1A and e = —iA.
It follows that for some positive integer N one has

2Na) = [c#0] € Kz,(0T* M),

where the symbol ¢#0 has the form (5.15) and is symmetric. In the symbol c#0o, one
should smooth (see [6]) the second component o = o(v;,p), which is originally not a
smooth function of the variables (v;,v_,p). With regard to properties of K-groups, we
see that there exists a homotopy between these symbols. The proof of the lemma is
complete. O

3. The proof of formula (5.9) for symbols symmetric with respect to the
conormal variable. It remains to show that the following assertion holds.

Lemma 5.11. The identity
1
inv(a) = 3 ind H,, (5.16)

where H, is the Hirzebruch operator (3.6), holds for symbols a € ia symmetric with
respect to the conormal variable.

Using the doubling construction (i.e., passing to the problem A (a,)® A(a))), we can
assume that a is equipped with a compatible edge symbol a, satisfying the symmetry
condition

g/\(xaf) = g/\(xaag)'

For the case of the principal symbol symmetric with respect to the conormal variable, an
index splitting formula was established in the preceding subsection. It differs from the
one two be proved in two respects:

1. The Hirzebruch operator is defined on D(T*(2M)) rather than D(T* M UT*M).

2. The contribution of the edge symbol is expressed not as the index of an operator on

—

an infinite wedge but as the index of the operator 20, (A) on the total space of the
suspension bundle.
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However, the indices of the two Hirzebruch operators coincide by item 2 in Lemma 3.9.
Next, by virtue of our assumption on the symmetry of the edge symbol, both the op-
erator on the infinite wedge and the operator on the suspension bundle, whose indices
are to be compared, can be represented as pseudodifferential operators on X with elliptic
operator-valued symbols (see Proposition 1.2) symmetric with respect to the involution
¢ — a&. (Indeed, the symmetry of the operator on the infinite wedge is clear from the
formula determining this symbol, and the symmetry of the symbol of the operator on the
suspension bundle can be observed from the construction of this symbol, described in the
proof of Proposition 1.2, with regard to the fact that both the edge symbol and ay are
symmetric.) Since the involution is orientation-reversing, it follows that these symbols
generate torsion elements in the K-group K(7*X) with compact supports. Applying
propositions 1.1 and 1.2, we see that both indices are zero (and, in particular, coincide).
The proof of Theorem 5.6 is complete. O

5.3 Antisymmetry with respect to the edge covariables

In this subsection, we prove an index theorem for the case of an orientation-preserving
involution (the antisymmetric case). Many of the constructions are parallel to the sym-
metric case, considered in the preceding subsection. Hence we focus our attention on the
differences between these two cases.

Let again « be an involution of the form (5.6). Now we assume that it is orientation-
preserving.

Remark 5.12. The involution & — —¢& can serve as an example provided that X is
even-dimensional.

We consider elliptic edge problems A whose principal symbol satisfies the antisymme-
try condition (3.3).
Let A be a problem of this sort. We set

on (A)(2,§) = con(A)(z,0€) e, (2,€) € THX. (5.17)

By the antisymmetry condition, the edge symbols of (A)(x, &) and o.(A)(x, &) have the
same principal symbol o5(A). Their ratio

B(z,€) = (0] (A)(2,£)) " or(A)(x,£) (5.18)

has a unit principal symbol and hence defines a Fredholm operator B(x, —id/0z) in the
space W(W) & L*(X) on the infinite-dimensional wedge W associated with M.

Theorem 5.13. Let A be a Fredholm edge problem whose principal symbol satisfies the
antisymmetry condition (3.3) with respect to the orientation-preserving involution (5.6).
Then the following index formula holds from the problem A

. L. L. .0
ind A = 5 ind Hq(a) + 5 ind B (x, —z%>, (5.19)
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where Hoay is the Hirzebruch operator (3.6) and the symbol B(x,&) is given by for-
mula (5.18).

Remark 5.14. The contribution of the edge symbol can be expressed by Theorem 1.1
as the direct image of the index ind B(z,&) € K(T*X) of the Fredholm family B(z, ¢),
invertible outside a compact set, under the mapping of X into a point:

ox

Proof of Theorem 5.13. The proof is very close to that of Theorem 5.6. Before proceeding
to details, we briefly outline the scheme of the proof. We transpose the second term on
the right-hand side in (5.19) into the left-hand side, so that the right-hand side will
contain only the homotopy invariant of the principal symbol equal to half the index of
the Hirzebruch operator. The proof contains the following steps.

1. We prove that the left-hand side

indB(aj, —zi> =pind B(z,§), p: X — {pt}.

o(o(A),or(A)) =ind A — %indB(aj, —z%)

of the equation to be proved is actually independent of o,(A) and is a homotopy
invariant of the principal symbolo(A) in the class 3, (Lemma 5.15).

2. We show that an arbitrary symbol in ¥, is stably rationally homotopic to a symbol
symmetric with respect to the inversion p — —p of the conormal variable (Proposi-
tion 5.17 and Corollary 5.18).

3. Now it suffices to verify the formula for symbols that are also symmetric with respect
to the involution p — —p. This is done in Lemma 5.19.

We now proceed to the detailed proof.
1. The homotopy invariance of p(o(A),o,(A)). Just as in the preceding subsec-

tion, by A(c,) we denote the elliptic morphism with principal symbol o(A) and (com-
patible) edge symbol c,. By ¢l we denote the elliptic edge symbol (cf. (5.17))

C;l\—(ili,f) = C/\(JI, af)_l'

It follows from the antisymmetry condition that the problems A(c,) and A(c}) are
Fredholm or non-Fredholm simultaneously.

Lemma 5.15. The quantity ¢(o(A),or(A)) can be expressed by the formula
L.
p(o(A),or(A)) = 3 ind(A(ay) ® A(a))). (5.20)

It depends only on the symbol o(A) (i.e., is independent of the choice of an elliptic problem
for this symbol) and is its stable homotopy invariant.
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Proof. By the relative index theorem 1.3, we have

ind A(a,) —indA(a)) =ind B (x, —z%)

Now
% ind(A(a,) ® A(al)) = ind A(ay) — %(ind A(an) — ind A(a}))

—ind A(ay) — ~indB <x _2'3) — o(0(A), o0 (A)),
2 ox
which proves (5.20).
To prove that the right-hand side of (5.20) is independent of a,, note that if we
replace a, by another elliptic edge symbol ¢, compatible with o(A), then the right-hand
side of (5.20) is changed according to the relative index formula by

pi(ind(cray @ cf(al)™), p: X — {pt}.

But a straightforward verification shows that the family cpa, ' @ ci(af)! is this time
antisymmetric with respect to the involution & — af; since the involution preserves the
orientation, this family defines a 2-torsion element in K (7*X), whose index is zero. Now
the homotopy invariance of p(0(A),o.(A)) is also clear, since for small deformations of
the principal symbol one can continuously deform the compatible elliptic edge symbol a,.
The proof of the lemma is complete.. O

In view of the result of this lemma, we again write
. def
inv(o(A)) = ¢(o(A),on(A))

in what follows.

2. The principal symbol is homotopic to a symbol symmetric with respect
to the conormal variable. Now that the homotopy invariance of both sides of the
desired relation has been proved, we deform the principal symbol to the simplest form,
for which the proof will be essentially elementary.

In this case, we deal with the group L{(V,. & V. @ R,), where V, and V_ are
the positive and negative subspaces generated by the involution in the cotangent bundle
T*OM. By the results of §4.2, this group is isomorphic to K*(V, & R) modulo 2-torsion.

Lemma 5.16. The group K'(V, ®R) is generated modulo 2-torsion by Hermitian endo-
morphisms o(vy, p) invertible outside the zero section and satisfying the condition

o(vy,—p) = -Uo(vy,p)U,

where U s a unitary involution.
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Proof. For an arbitrary symbol o (v, p), we set

on=(U57 8 ) o=()

The resulting symbol satisfies the assertion of the lemma. The mapping o — oy induces
an isomorphism in K-theory modulo 2-torsion. U

Gathering the results of Propositions 4.4 and 4.8 and Lemma 5.16, we obtain the
following set of symbols generating the group L"de(‘@ dV_eR,):

o(ve,p)®1  1®c(v-)

oftc(vy, v-,p) = (—1 ®c(v-) o(vy,p)®1

). xo#d) € Ka(s(0V-0R. oR ),
(5.21)
and the relation o(vy, —p) = —Uo(vy, p)U holds.

Proposition 5.17. These generating elements satisfy the symmetry condition with respect
to the involution oy : p — —p. More precisely,

(o400 =) = —Allo#) o omA, A= () ().

Proof. 1t suffices to multiply the matrices and use the fact that U and ¢ commute. O

Corollary 5.18. Ifdim V_ =0 mod 2, then for an arbitrary odd symbol o on the bundle
V. ®V_® R, there exist positive integers N and N' such that the direct sum 2¥o @ 1y
15 homotopic to a symbol symmetry with respect to the involution p — —p.

To prove the corollary, it suffices to note that the component o(v,p) in the exter-
nal tensor product (5.21) can be smoothed as in [6]. Now the existence of the desired
homotopy follows from Proposition 4.8, Lemma 5.16, and Remark 3.5.

3. The proof of the formula for symbols symmetric with respect to the
conormal variable. To complete the proof of Theorem 5.13, it remains to show that
the following assertion holds.

Lemma 5.19. For symbols a € X, symmetric with respect to the conormal variable, the
identity

1
inv(a) = 3 ind #, (5.22)
holds, where H, is the Hirzebruch operator (3.6).

Proof. Using the doubling construction (i.e., passing to the problem A(a,) ® A(ay)),
we can assume that a is equipped with a compatible edge symbol a, satisfying the anti-
symmetry condition

ap(z,€) = ap(z, )™
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For the case of the principal symbol symmetric with respect to the conormal variable, an
index splitting formula was established in §5.1. It gives the expansion

1 —
inv(a) = ind A(a,a,) = 3 <ind 2A +1ind 2a/\> :

By Lemma 3.9, the index of the operator 2A on the double of the manifold is equal to
the index of the Hirzebruch operator H,. It remains to show that ind2/é\A =0.

Arguing as in the symmetric case, we see that the operator-valued symbol 2a, is
antisymmetric modulo compact operator families decaying as || — oo:

a*(2a,)(2a,) =1+ K(z,§), where ||[K|| — 0 as |{] = co.

The corresponding element of the K-group lies in the 2-torsion subgroup by virtue of the
antisymmetry condition. Hence the index of the corresponding operator is zero.
The proof of Lemma 5.19 as well as Theorem 5.13 is complete. 0

6 Examples

6.1 Operators on a manifold with conical singularities

As the first example, we consider the trivial case in which the edge degenerates into
a point, i.e., the manifold M in question is a manifold with conical singularity. Let A
be an elliptic operator on M. Its edge symbol, which can be computed as the limit as
A — oo of the family (A.39), is just the conormal symbol o.(A) (since the factor e®*¢ in
the definition of the one-parameter group (A.38) disappears for dim X = 0). Suppose
that the principal symbol of A is symmetric with respect to the conormal variable (that
is, with respect to the involution p — —p):

09(A)(w, q,p) = eros(A)(w, q, —p)ep.

By Theorem 5.1, for the index of A we obtain the formula
: L. 1.
ind A = §1nd2A+§1ndB, (6.1)

where 2A is the operator on the double 20 with principal symbol 20(A) obtained from
o(A) by gluing (which is possible by the symmetry condition) and B is an operator in
spaces of sections of infinite-dimensional bundle over the point X), i.e., an operator in
function spaces on the suspension over the base of the cone; the principal symbol of this
operator is independent of r, and the conormal symbol at either conical point coincides
with the conormal symbol of the original operator.

The index of the latter operator is equal to the spectral flow of the linear homotopy

ind B = st{to.(A)(p) + (1 — t)epo.(A)(—p)er}, te€]0,1],
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and can be expressed as the sum of multiplicities of the poles of the family [o.(A4)(p)]~" in
some horizontal strip on the complex plane provided that the stronger symmetry condition
(involving not only the principal symbol, but also the conormal symbol)

0c(A)(po —p) = croc(A)(po +p)ek

with respect to some point pg of the complex plane is satisfied.

Thus, we recover the well-known index theorem for manifolds with conical singularities,
originally obtained in [42] and then generalized in numerous papers (e.g., see [24] and
bibliography therein).

6.2 The Euler operator

Consider the Euler operator on a compact manifold M with boundary X, where the
boundary is treated as an edge (i.e., the model cone is just R, with base a single point).
If the metric in a collar neighborhood U of the boundary has the direct product form
dp%; = dr? + dp%, then the Euler operator x,; can be represented in this neighborhood
as the external tensor product

Xar = Xx#(—id/dr) = v~ xx#(ird/dr). (6.2)

Its symbol satisfies the symmetry condition with respect to the involution p — —p
(see [42]), and the obstruction (A.44) for this operator (coinciding with the Atiyah-Bott
obstruction, since X = OM and 7 : M — X is the identity mapping) is zero. Thus,
we can apply Theorem 5.1 and remark 5.2 and arrive at the following assertion.

Proposition 6.1. The contribution of the principal symbol to the index of the Euler
operator X 1S equal to half the Euler characteristic of the double 2M of the manifold M:

Flolaan)) = gx(2M)

To descend to more specific computations and write out a complete index formula,
we consider the special case in which M is two-dimension. Accordingly, the edge OM
is the circle S! (or a disjoint union of finitely many circles, which can be treated in a
similar way). A collar neighborhood of the edge in the manifold is isomorphic to a collar
neighborhood of the edge in the two-dimensional model wedge S' x R, with coordinates
r € S'=R mod 27 and r € R,. We assume that in a neighborhood of the boundary
the metric is the direct product metric ds* = dr? + da?. We consider the Euler operator
(acting from the space of odd forms to the space of even forms) in the spaces

x=d+6: WH (M, AY) — WM, A" @ A?).
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It is given by the formula® y = d — xdx, since the dimension of the manifold is even.
For the explicit computation in a neighborhood of the boundary, we note that the Hodge
operator is given by the formulas

x1 =dr ANdr, xdr=dr, xdr=—dx, xdzANdr=1,

so that for an arbitrary 1-form w = adx + bdr we have

ob  Oa
Xw—<%—§>daj/\dr—*d(adr—bd$)
ob  Oa Oa  0Ob
—<%—5>dm/\dr—*<a a)dx/\dr

(20 g (B0
~\ox  Or vAaar oxr Or)’

Thus, the Euler operator is represented by the matrix

a9 8
— oz, B) — T o]
(% )= (UF )

Its edge symbol has the form®

on@ &) =it (75 ) R = v AR + L 0 R
— KY(R,) = L*(Ry) = H'P(Ry), (6.3)

where 1(r) is an R-function (an infinitely differentiable function such that ¢ (r) =1 for
r < 1and ¢(r) = 0 for r > 2) and the bundles (in this case, C*) are omitted in the
notation of spaces.

The edge symbol is Fredholm, since the conormal symbol

oulon0)0) = (5 1)

is invertible on the weight line £,/ = {Imp = 1/2}. To compute the index of the edge
symbol, we note that the conormal symbol is symmetry with respect to the involution
p — —p and use the standard theorem on the index of operators on manifolds with
conical singularities for this case. By this theorem, the index of the operator (6.3) is

Swhere d is the exterior differential, § is the adjoint operator, and * is the Hodge star operator (e.g.,
see [29]).

6The apparent controversy in the exponents is due to a difference of 1/2 between the weight exponents
accepted here and in the book [39]. The exponents in WW*7 and K7 are used according to the convention
in [39], while for the cone spaces H*? we use the convention in [42].
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half the difference between the index of an operator on the double of R, and the sum
of multiplicities of the singular points of the conormal symbol in the strip between the
weight lines £,/, and £_;/,. The operator on the double has the form

<z§i Zjﬁg) : H'(R) — L*(R)

and is obviously invertible (recall that £ # 0), so that its index is zero. The half-sum of
multiplicities is equal to 1; thus, the index of the edge symbol is independent of ¢ and
r and is equal to —1, more precisely, —[C] € K(S'). Let us compute the kernel and
cokernel of the operator (6.3). This is easy, since we deal with an operator with constant
coefficients on the half-line:

w0 =i (5 _‘5) . (6.4

T@r

An arbitrary function annihilated by the operator (6.4) has the form

o(r) = CLefr (1) + Cpe € ( 12.> , (6.5)

where C) and Cy are arbitrary constants. None of these functions lies in K£!(R, ), since
the elements of this space must be square integrable at infinity and vanish at zero. The
cokernel of the edge symbol is equal to the kernel of the adjoint operator

o6 = =i (5 ) PR =R KR (6

It is one-dimensional and consists of functions of the form

@(r):Ce'ﬂT( ! ) (6.7)

—isigné

Thus, to make the edge symbol invertible, we must equip it with a single coboundary
condition, that is, extend it to a matrix of the form

(700 (@, 6), P(2,6)) : KM (Ry) & C — KM(R,). (6.8)

The operator P(z, &) can be specified as follows. Consider an arbitrary function ¢(r) €
C§°(Ry) (vanishing at zero) such that

0.9}

[ entriear 20

0
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and set
PO = el (o)

One can readily see that the resulting edge symbol is an isomorphism and is first-order
twisted homogeneous in £&. Thus, for the Euler operator on M we obtain a Fredholm
problem of the form

xu+Y(r)r too(| —ird/ox|)v (é) = f e WP (M,A®), ueW-H(M, A"dd),v € H'(X),

(6.9)
where ¢ (r) is an arbitrary R-function (on the choice of which the problem is independent
modulo infinitely smoothing operators). The edge symbol of this problem is symmetric
in &, and the circle is odd-dimensional. Applying the theorem in §3.3, we arrive at the
following assertion.

Proposition 6.2. The index of the edge problem (6.9) is equal to half the Euler charac-
teristic of the double 2M .

Likewise, if we consider the Euler operator in the spaces
X WY (M, A — W LT (M, A®) (6.10)

for v < 1/2, then we obtain for it a Fredholm edge problem with edge condition, say, of
the form

{X“ = f eWTIT(M, A7), we WM, A%y (6.11)

Jo woll = ird/0x|)us (z,r)F = g € H~H(X),

T

(here wu; is the first component of the vector function u). For the index of this problem,
we have the following assertion.

Proposition 6.3. The index of problem (6.11) is equal to half the Euler characteristic of
the double 2M.

For v = 1/2, the edge symbol is not Fredholm, and there are no elliptic edge problems.

Appendix 1. Pseudodifferential operators in sections
of infinite-dimensional bundles
The technique of pseudodifferential operators in spaces of sections of infinite-dimen-

sional bundles (or pseudodifferential operators with operator-valued symbols) plays an
important role in elliptic theory on manifolds with singularities and is substantially used
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in this paper in the proof of main theorems. Such pseudodifferential operators were stud-
ied by many authors (in particular, see [16] or [23], where further references can be found).
As applied to elliptic theory, where the remainders in composition formulas for pseudod-
ifferential operators must be compact operators in order to provide informative results,
an appropriate technique was developed in [15]. In this appendix, following that article
with slight modifications, we briefly recall the main definitions and facts concerning pseu-
dodifferential operators in sections of infinite-dimensional bundles in a form convenient to
us. The main theorem on the index of elliptic pseudodifferential operators with operator-
valued symbols was proved in [15] in the special case of symbols homogeneous for large
values of the momentum variables and only announced in the general case of arbitrary
elliptic symbols (which is of main interest to us) with the indication that the proof can
be based on the ideas developed by Hormander for the corresponding class of symbols in
finite-dimensional bundles. This has given rise to some doubts (e.g., see [31] and [9]). In
this connection, we also give a more or less detailed proof of this theorem with a reduction
to the above-mentioned special case.

A.1 Symbols with compact fiber variation

We consider pseudodifferential operators on a smooth compact closed manifold X in
spaces of sections of Hilbert bundles over X. By the Kuiper theorem (e.g., see [4]), any
Hilbert bundle is trivial, and so in the abstract theory one can assume that these bundles
have the form X x H — X, where H is a Hilbert space. By B(H) we denote the Banach
algebra of bounded operators in H and K(H) C B(H) is the closed ideal of compact
operators. The canonical coordinates on 7" X will be denoted by (x,&). For convenience,
we choose and fix a smooth norm |£] in the fibers of T*X.

Definition A.1. By S2,(T*X) we denote the space of infinitely differentiable (in the
uniform operator topology) functions

f:T"X — B(H),
satisfying the estimates

‘ 00 f(x,€)

0P
in any canonical coordinate system (z,&) on T*M and possessing the compact fiber vari-
ation property

< Cos(L+ €)7ol + 18] =0,1,2,..., (A.1)

B(H)

f(,€) = f(w,€) € K(H) for €€ € T;(X). (A.2)
By S2, (T3 X) we denote the space of functions

f:T3X — B(H),
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satisfying the estimates (A.1) for |{]| > € for any £ > 0 with constants C,s depending on

¢ and possessing the property (A.2) for £, & # 0.
The elements of the spaces Sg (T X) and Sg (15 X) will be referred to as symbols
(of degree 0) with compact fiber variation on T*X (respectively, on T5X).

Remark A.2. Under the estimates for the derivatives, condition (A.2) can be replaced
by the equivalent condition

07 f(,€)

Grges € KUH) for || > 1. (A.3)

(See Lemma 2.4 in [15].)

Both spaces S (T*X) and Sg, (T3 X) are obviously algebras (with respect to fiber-
wise multiplication). The algebra S%, (7*X) contains the ideal J;.'(T*X) of compact-
valued symbols

f:T"X — K(H),

satisfying the estimates

‘ 0*7f(,¢)

< C,4(1 —1-18] =0,1,2,... A4
e < Canl )L ol 18 =0, L2, (A4)
in any canonical coordinate system (z,&).

B(H)

Lemma A.3. For each symbol f € S¢. (I3 X), there exists a symbol f eS8 (T"X) such
that f(x,§) = f(:r §) for sufficiently large [€]. If f € Sev (T*X) is another symbol with
the same property, then the difference f — f 15 compact-valued and compactly supported.

Proof. (a) The existence of f. On the unit spheres
§" Hw) ={lgl =1} c Ty X

we define an arbitrary smooth measure du(€) with the property

/ du(§) =1

Sr—1(z)

and set
Fl@,€) = x(€)f(@,€) + (1 — x(€]) / flx, &) du(), (A.5)
Sn=1(z)

where x(t) € C*(R}) is an excision function equal to zero in a neighborhood of zero and
unity in a neighborhood of infinity. (For £ = 0, we set f(x,&) equal to zero on the right-

hand side.) Then, obviously, f(z,§) = f(a:,f) for sufficiently large |£|. Moreover, f(z,§)
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is infinitely differentiable and satisfies the estimates (A.1). Let us verify the compact fiber
variation property (it suffices to do this for & = 0):

fl@,€) = flx,0) = x(|€]) / (f(x,8) = f(x,€) dul&') € K(H)

Snfl(x)

for any £ € T7¥ X, since for £ = 0 the right-hand side is zero, while for £ # 0 the integrand
is compact (and depends on £’ Cor}:cinuously).
(b) Uniqueness of the symbol f modulo compactly supported compact remainders. If

f and f are two symbol with the above-mentioned properties, then they both coincide
with f for sufficiently large £, so that the difference is compactly supported. Since both
symbols have compact fiber variation, we obtain

f(@,8) = f(,8) = [f(2,6) — f(z,&)] = [f(x,§) — [z, &)]

= [f(,8) = f(z,&)] = [f(2,€) = f(x,&0)] € K(H);

one should only take a sufficiently large & € T X such that f(z,&) = f(z,&).
The proof of the lemma is complete. O

A symbol fwhose existence is established in Lemma A.3 will be called the tightening
of f. The main role in our exposition is played by symbols in S (T X), since such
symbols (undefined for £ = 0) naturally occur in edge problems.

A.2 The algebra of pseudodifferential operators
A.2.1 Definition of PDO

For the case of operator-valued symbols, pseudodifferential operators are defined in a
standard way (e.g., see [12]). Namely, we use the following construction. Let

fl@,§): H—H, (x,§)eT"X

be an operator-valued symbol on X. We cover X by coordinate neighborhoods Uj, j =
1,..., N, and consider a smooth partition of unity

1= ZXj($)2

subordinate to the cover. We define a pseudodifferential operator with symbol f(z,&) by

the formula
N

F(mige) = o000 (i ) ot (A.6)

i=1
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where the jth term in the sum is defined in the local coordinates of the chart U; as the
composition of the operator of multiplication by the function x;(z) (which localizes the
function to which the pseudodifferential operator must be applied into the chart U;) and a
pseudodifferential operator with symbol x;(z)f(z,£) in R* (here the symbol is expressed
via the canonical coordinates in 7*Uj, denoted by the same letters (x,¢&)), defined with
the help of the Fourier transform:

) (i o = () e gne e weorm),

where ©(§) is the Fourier transform of u(x).

Proposition A.4. Let f € S, (T*X). Formulas (A.6) and (A.7) define a continuous
operator

f<:r, —i%)  L*(X,H) — L*(X, H), (A.8)

which s modulo compact operators independent of the choice of the atlas U; and the
subordinate partition of unity.

This proposition permits us to give the following definition.

Definition A.5. Let f € S% (T*X). A pseudodifferential operator with symbol f is the
operator (A.8) defined modulo compact operators by formulas (A.6)—(A.7).
Let f € Sgy (T5 X). A pseudodifferential operator with symbol f is the operator

f(:r, —i%) (X, H) — L*(X, H),

where f(x,£) € S2(T*X) is an arbitrary tightening of f(z,&).

By Lemma A.3, the symbol fv exists and is uniquely determined modulo compact-
valued compactly supported symbols, which, in particular, belong to the ideal J,.*(T*X),
so that the corresponding pseudodifferential operators are compact by Proposition 2.1
in [15]. Thus, a pseudodifferential operator with symbol f € S, (T3 X) is well defined
modulo compact operators. By abuse of notation, we denote this operator by

f<:r, —2%)

A.2.2 The composition theorem

Pseudodifferential operators with operator-valued symbols thus defined form an alge-
bra. More precisely, the following assertion holds.
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Proposition A.6. Let p,q € S2,, (13 X), and let P and Q be pseudodifferential operators
with symbols p and q, respectively. Then PQ s a pseudodifferential operator with symbol

pq.

This theorem is essentially about the principal symbol (since we have defined pseu-
dodifferential operators modulo compact operators). Needless to say, having chosen the
ambiguous elements in the construction of pseudodifferential operators in some way (the
atlas, the partition of unity, the tightening, etc.), one can obtain more precise composition
formulas, which in local coordinates have the standard form (e.g., see [13]). We use such
formulas below in the proof of the index theorem.

A.3 Ellipticity and the Fredholm property

The composition formula modulo compact operators contained in Proposition A.6
permits one to give a natural definition of ellipticity and prove the finiteness theorem.

Definition A.7. A symbol p € Sg,(T; X) is said to be elliptic if there exists an R > 0
such that p(z, &) is invertible for |£| > R and the inverse satisfies the estimate

|p(z, &) | <C, [€] >R, (A.9)
for some constant C.

Proposition A.8. A symbolp € S, (15 X) is elliptic if and only if there exists a symbol
q € S (T*X) such that the symbols qp — 1 and pg — 1 are compactly supported and
compact-valued for any tightening p € Sen(T*X) of p. In particular, if p is elliptic, then
p is Fredholm for all (x,&) € T*X (and p is Fredholm for all (z,&) € T; X).

Proof. We define ¢(z,§) for || > R by the formula
q(,€) = p(z,§) 7"

Outside the balls of radius R, this symbol satisfies the estimates (A.1) and has a compact
fiber variation. We extend it into the interior of the balls using the construction in the
proof of Lemma A.3 with an excision function x(¢) vanishing for ¢ < R. The resulting
symbol lies in S2,,(T*X) by construction; we denote it again by ¢(z,£). Now consider
the symbol ¢gp — 1. By construction, ¢(z,&)p(z,£) — 1 = 0 for sufficiently large |£]. Now
for arbitrary & we have

q(fr,f)ﬁ(ﬂf,f) —-1= Q(«T,g)ﬁ(x,f) - Q(«T,go)ﬁ(l‘;go) + q(:r,fo)ﬁ(:r,fo) -1
= q(‘rv f)ﬁ(x,{f) - q(m, fo)ﬁ(.f, §0)7

provided that |&| is sufficiently large. The last expression is compact, and so we finally
obtain,

q(z,8)p(r,8) = 1+ K(x,),
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where K (x,&) is a compact-valued function equal to zero for large |£|. The symbol pg — 1
can be treated in a similar manner. Thus, p(z,£) has a two-sided almost inverse and
hence is Fredholm. The proof of the proposition is complete. O

Theorem A.9 (finiteness theorem). If p € S (15 X) is an elliptic symbol, then the
operator P = p(x, —i0/0x) is Fredholm.

Proof. Indeed, the operator ) = ¢(x,—i0/0x) with the symbol ¢(z,&) constructed in
Proposition A.8 is the two-sided almost inverse for P. O

A.4 The index theorem

Let p € S2 (T;X) be an elliptic symbol. Consider an arbitrary tightening p. Since
the family p(z, £) is everywhere Fredholm and is invertible outside a compact set, it has a
well-defined index indp € K(T*X) (the K-group with compact supports). Since distinct
tightenings differ by compactly supported compact-valued families, it follows that the
index is independent of the choice of tightening, that is, is defined by the symbol p itself,
and we denote it by ind p.

Theorem A.10. Let p € S2(Ty X) be an elliptic symbol. Then the index of the corre-
sponding elliptic operator can be obtained as the direct image in K-theory:

indp(x, —z%) = mindp, (A.10)

where m: X — {pt} is the mapping of X into a point.

Proof. Without loss of generality, one can assume from the very beginning that p €
S2v(T*X) (i.e., the tightening has already been done). The proof was given in [15] for
the case of symbols p satisfying the condition

p(x,t&) =p(x,&) for >R, ¢t > 1. (A.11)

We use Hormander’s method [12, Theorem 19.2.3] to reduce the case of general elliptic
symbols to the one considered in [15]. Hormander’s theorem gives a reduction for the
case of symbols acting in finite-dimensional bundles, and our main task is to verify that
all constructions still work in the infinite-dimensional case.

The reduction is based on the following assertion, which we give here for the special
case that we need.

Proposition A.11 ([12, Theorem 19.1.10]). Let 1., S. € B(H), £ € [0, ], be two strongly
continuous operator families such that the families S. T, — 1 and T.S. — 1 are uniformly
compact. Then ind S, = —ind T, is independent of ¢.
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(An operator family Q). € B(H) is said to be uniformly compact if the union of images of
the unit ball under the operators in the family is precompact.)

Let ¢ € S, (T*X) be a symbol such that pg = gp =1 for || > R.

Let v (t), t > 0, be an infinitely differentiable function such that

1 fort <1,
vt = {l/t for t > 2. (A.12)

Consider the symbols

pe(z,8) = p(x,EY(e€)),  ¢:(z,§) = q(x, EY(£€)). (A.13)

They have the following properties (the proof coincides word for word with the one given
in [12, Theorem 19.2.3] for the finite-dimensional case):

L. po = p and ¢ = ¢;
2. p. and ¢. are uniformly bounded in S (T*X) for ¢ € [0, 1];

3. for € > 0, the symbols p. and ¢. satisfy condition (A.11), and for sufficiently small
¢ they are elliptic;

4. for sufficiently small € > 0, the compactly supported compact-valued symbols
ro=pq.— 1, r2=¢p.—1 (A14)
are independent of ¢.

We define operators

o, .0
PE = Pe (ib', _Za_x>7 Qa ={c <$,—Z%> (A15)

by formulas (A.6)—(A.8) with coordinate neighborhoods and partition of unity indepen-
dent of e. We claim that (for sufficiently small ¢)

(a) indp. € K(T*X) is independent of ¢;
(b) the families P. and Q. satisfy the assumptions of Proposition A.11.

This implies our assertion, since for ¢ > 0 the symbol p. satisfies condition (A.11) and
ind P. = mind p. by Luke’s result, while the passage to the limit as ¢ — 0 is possible by
Proposition A.11. Thus, it suffices to prove (a) and (b).

The first assertion is obvious, since for sufficiently small € the symbol p. varies with
e only in the exterior of a sufficiently large ball {|£| > R ~ 1/} and remains invertible
there.
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To prove the second assertion, note that the following is true.

1) The families P. and (). are strongly continuous, since they are uniformly bounded
and each term occurring in the definition of these families via the sum over coordinate
charts on X is strongly continuous on the set of functions with compactly supported
Fourier transform.

2) The operators P.(). — 1 and Q.P. — 1 are compact and depend on ¢ continuously;
indeed, the second assertion follows from the fact that their complete symbols in local
coordinate systems together with derivatives are uniformly continuous in € on compact
subsets of &, are uniformly bounded, and decay as & — oo, which implies the uniform
continuity in ¢ for all &.

It follows from 2) that the families P.(Q). — 1 and Q.P. — 1 are uniformly compact,
which completes the proof. O

Appendix 2. Pseudodifferential operators on mani-
folds with edges

In this appendix, we describe the calculus of pseudodifferential operators on manifolds
with edges. As was already noted in the introduction, the constructions given below are
specializations of the general scheme of the construction of the algebra of pseudodifferen-
tial operators on manifolds with fibered boundary and hence differs from the constructions
given in [8] concerning manifolds with edges. In particular, we nowhere use the analyt-
icity properties of symbols with respect to the conormal variable. The structure of the
appendix is as follows. In § A.5, we give the definitions of manifolds and function spaces.
This material is standard (it can be found, say, in [8]), and so all proofs are omitted.
In § A.6 we describe the calculus itself, namely, define symbols and operators and give
their main properties, including the composition theorem. Our algebra is slightly different
from the algebra of edge pseudodifferential operators described in [8] (one of the differ-
ences is the larger supply of Green operators), and so some of the results are provided
with brief proofs or hints. In §A.6, the definition of ellipticity is given and the finite-
ness (Fredholm property) theorem is presented. The proof is again standard and hence
omitted.

A.5 Manifolds and function spaces

First, we give the main definitions of manifolds and spaces that we deal with.

A.5.1 Manifolds with edges

Let
T Y 5L X (A.16)
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be a locally trivial bundle over a smooth compact manifold X with fiber a smooth compact
manifold €2, and let M be a smooth compact manifold with boundary OM =Y. In a
collar neighborhood U of the boundary, we choose and fix a trivialization

U~Y x[0,1).

The coordinate on the interval [0, 1) (“the distance from the boundary”) will be denoted
by 7, and local coordinates (sometimes, points) on X and © will be denoted by z and w,
respectively. The dimension of X will be denoted by n, and the dimension of €2 by k, so
that dim M =n +k + 1.

A manifold with edges is the space obtained from M by shrinking each fiber of 7 into a
point, i.e., by identifying all boundary points lying in the same fiber of 7. The manifold M
is called the stretched manifold of M. The image of U under the factorization M — M
will again be denoted by U.

There is a natural diffeomorphism

M\X=M=M=M\Y.

An invariant definition of the compressed cotangent bundle of M can be found in [19].
This is a smooth manifold with boundary 7% M; it is isomorphic to T*M, and there is a
diffeomorphism of the interiors T* M\ 0T*M = T*M and T*M \ 0T*M = T*M of these
manifolds, specified in U by the formulas

T* M\ OT*M — T*M \ 9T* M,
("'U7w7,r7 777 q7p) '_) ("'U7w7,r7 €7 q7 C)) (A17)
n=2_&r, p=—Cr

Here (7, g, p) are the momenta dual to (z,w,t = —Inr) in the fibers of 7* M, and (&, ¢, ()
are the momenta dual to the same variables in the fibers of the usual cotangent bundle
T*M. Note that the conormal variable p can be interpreted as a usual momentum (dual to
the variable t = —Inr). The change of variables t = —Inr, or, equivalently, r = e~ takes
U to the half-infinite cylinder Y x (0, 00);, on which ¢ — co corresponds to approaching
the edge. The isomorphism (A.17) can be extended to the entire 7* M\ 07* M in a trivial
way: the function r is extended to be equal to 1 on M \ U (and is then smoothed near
the interior boundary of U), so that the isomorphism proves to be identical outside U. In
what follows, we often use the “mixed” set (£,w,p) of momentum variables; this will not
result in a confusion.

Along with M, we consider the model wedge W, = W obtained from the semiinfinite
cylinder Y x Ry by the same shrinking of the fibers of m over ¥ x {0}:

W=(Y xR;)/~, where (y,r)~ (y,r") < r=r"=0and 7(y) = 7(y').

The neighborhood U of the edge in M will be identified with the corresponding neighbor-
hood in W, which will be denoted by the same letter. Thus, functions on M supported
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in U can be viewed as functions on W and vice versa. For the localization in U, we shall
use cutoff functions ¢ supported in U such that ¢ depends only on r (¢ = ¢(r)), belongs
to the space C’go([O, 1)), and is identically equal to unity in a neighborhood of zero. For
brevity, such functions will be called R-functions. Next, we sometimes need localization
along X in the same neighborhood. We then use cutoff functions of the form i (r)¢(x),
where 1 (r) is an R-function and ¢(x) is a smooth function on X (supported, say, in a
coordinate neighborhood on X'). Similar cutoff functions ¢(w) will be used on €.
The model wedge bears the natural bundle structure

mw W — X (A.18)
over X; the fiber is the model cone

K=Kq={Qx[0,00)}/{2 x {0}}.
By K =Qx (0,00) we denote the interior of K.

A.5.2 Edge Sobolev spaces

These spaces can be obtained by applying the construction [39], [8] of abstract edge
spaces to the spaces K*7(K) of functions on the model cone.

(e}

Definition A.12. By K£%7(K), where s, € R, we denote the subspace of the space D(K)
of distributions formed by elements u such that for each R-function ¢ (r) and each smooth
function ¢(w) supported in a coordinate neighborhood on 2 one has the inclusions

[P0 P ygul (e, w) € HU(REY),

(1= w)u](r,w/r) € H(RZS),
where H*(RF!) is the usual Sobolev space on the (k + 1)-dimensional real vector space
and in the first inclusion the standard change of variables r = e~* has been made. The

norm in K*7(K) is introduced in the usual way on the basis of a partition of unity {¢;(w)}
subordinate to a cover of €2 by coordinate neighborhoods.

The special case of this space for s =~ =0 is [8, p. 213]
KY(K) =K =r*2L2(Q x R,),

where the coordinate on R, is r and the space L? is considered with respect to the measure
dr dw (here dw is a volume form on 2). This equation in particular means an equivalence
of norms, and we always use the norm of the space on the right-hand side in this special
case.
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In each of the spaces K£®7(K), we have a well-defined one-parameter group

o K9(K) — K(K), A € R,

A.19
sou(r,w) = AV 2y (A, w) ( )

of bounded operators (the group law is multiplicative, i.e., s6y3¢, = 2),). One can readily
see that this group is unitary in K% (K), since

/)\k+1|u|2()\r,w)rk dr dw = /|u|2(r,w)rk dr dw.

For £ € R™, we take a smooth function [£] such that [£] is strictly positive for all £ and

= [¢] = Ve for ¢ > 1.
Now we can define the space W*7 (V).
Definition A.13. The space W?*7(W) is the completion of the space Cgo(l;l)/) of com-

pactly supported smooth functions on W with respect to the norm defined on functions

u € C§°(W) with the projection of support on X contained in some coordinate neighbor-

hood by the formula
Jul, = [ gt

where u = u(€) is the Fourier transform of u(x,w,r) with respect to z and the norm of
the integrand on the right-hand side is taken in C*7(K).

2 dg, (A.20)

s”y

The special case of this space for s =y =0 is [8, p. 297]
WO(W) = *2L2H(W) = LA(X, K);

Here the coordinate on R, is r and L*(W) = L?*(Y x Ry, drdv), where dv is a volume
form on Y (in local computations, one can assume that dv = dw dx).
The group s, is strongly continuous in all these edge spaces and is unitary in W% (W).
Now we can define edge spaces on the manifold M itself.
Definition A.14. The space W*7(M) is the completion of C§°(M) with respect to the
norm

lellyyenany = loulls, + 11 = $)ully, (A.21)

where ¢ is an arbitrary R-function, the first term is the norm in the edge space on the
infinite wedge, and the second term is the norm in the standard Sobolev space on the
smooth part of M.
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The space W*?(M) can be represented in the form

WO,O(M) — Nik/2L2(M),

where 7 is a smooth nonvanishing real function on M equal to r in U and to a positive
constant outside a larger neighborhood of the edge.

In what follows, we write W(M) and W(W) instead of W*?(M) and WO (W), re-
spectively. If the argument is clear, we simply write W.

The definition of edge spaces of sections of vector bundles are obtained from the above
definitions by standard modifications, which are omitted here altogether. Such spaces will
be denoted by W(M, E), W(W, E), or even W(FE), where E is the corresponding bundle.
The letter E will also be often omitted. We only note in passing that vector bundles on
M are defined just as vector bundles on M.

A.5.3 The structure of a bottleneck space

Our proof of index theorems uses, among other tools, the abstract relative index
locality principle introduced in [24]. To apply this principle, one must have the structure
of a bottleneck space in the sense of [24] on the spaces where the elliptic operators in
question act. In our case, these spaces are W(M) and W(W). They can be equipped
with the structure of bottleneck spaces as follows. Consider a smooth function y(r) such
that

1, 0<r<1/2,
x(r) = ¢ increases monotonically from —1 to 1, 1/2<r <1,
1 r> 1.

Y

[t can be interpreted as a smooth function on the entire M (or W) if we define it to be
equal to 1 identically outside U. We define an action of the algebra C*°([—1, 1]) on W by
setting, in accordance with the general recipe in [24],

def

fu=(fox)-u, [feC?([-11]), ueW,
where the functions on the right-hand side are multiplied pointwise. Geometrically, the

bottleneck is the subset of M (or W) specified by the inequalities 1/2 < r < 1.

A.6 Pseudodifferential morphisms

Here we introduce the algebra of pseudodifferential morphisms used in this preprint.
First of all, we explain why it suffices to deal with zero-order operators when studying
index theory.
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A.6.1 Order reduction

The theory of (pseudo)differential operators on manifolds with edges deals with elliptic
edge problems of arbitrary order m given by operators of the form [8, p. 320, Definition 1;
p. 326, Definition 15; p. 327, Theorem 16]

AW (M, Ey) @ H* (X, Jy) — W™ m(M, Ey) & H™(X, Jy). (A.22)

Here E; and E5 are bundles over M and J; and .J, are bundles over X. Such problems
can always be reduced to problems specified by zero-order operators acting in spaces of
the form W(M, E;)® L*(X, J;). This does not restrict generality in index theory. Indeed,
the index of the Fredholm operator (A.22) is independent of s (see [8, p. 329, Remark 19]).
Hence we can assume without loss of generality that s = . To simplify the exposition,
we assume that the bundle M — X is trivial (the direct product case). Next, on the
manifold M we consider the Laplace operator A corresponding in a neighborhood of the
edge to the edge-degenerate metric

dm? = dr? + r*dmg + dm?,

where dm? and dm?% are some metrics on the edge and the base of the cone, respectively.
This operator has the form

2
A =r2 {(r%) + ANq + TZAX}

in U, where Aq and A x are the Laplace operators on 2 and X, respectively. The operator
Q=c?=A, (A.23)
where ¢ is a positive constant, is elliptic and, moreover, invertible in the spaces
Q s W (M) — W 272(M)

for |7v| < R provided that ¢ > ¢(R), and for the order reduction in problem (A.22) it
suffices to multiply A on the right and the left by the operators

0 0 wmmlm 0 0\
0 1—Ay a 0 1—Ay ’

respectively. The new operator

:& B Q 0 —s/2 A Q 0 (s—m)/2
- \0 1-Ax 0 1-Ax

defines an elliptic problem with the same index in the spaces

AWM, E)® L*X, J,) — WM, E) @ L*(X, J»).
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Note that the order reduction procedure does not affect the interior principal symbol on
the unit cospheres, while the edge symbol is multiplied by an invertible family symmetric
with respect to the involution & — —&. Hence, applying the index theorems proved in
the present paper to the reduced problem, one can readily restate the results in terms of
the original problem.

A.6.2 The general form of morphisms

We shall construct the calculus of pseudodifferential morphisms on a manifold M with
edges modulo compact operators. To avoid unnecessary wordiness, we do not explicitly
mention this each and every time. (For example, the statement that Green operators
form an ideal in the algebra of pseudodifferential morphisms should be understood in the
sense that the product of a pseudodifferential operator by a Green operator is again a
Green operator plus a compact operator. This will not result in a misunderstanding.)
Pseudodifferential morphisms have the form of matrix operators

A (A+G 0) | W(./\e/;,El) W(%,EQ)

B D —

(A.24)
L*(X, ;) LA(X, Jo)

where E, and E, are bundles over M and .J; and .J, are bundles over X. Here A is an
edge-degenerate pseudodifferential operator on M and

G C det
(5 b) e

is a Green matriz, or a matriz Green operator. The structure of these components will be
described in detail in what follows. For brevity, we sometimes write A = A+ G omitting
the matrix factor (§9) on A.

A.6.3 Matrix Green operators

First, we describe the matrix Green operators G. These operators act in direct sums
of the form
WM) @ L*(X) = WM, E)® L*(X, J)

and, as we shall see, form a subalgebra (and even an ideal) in the algebra of pseudodiffer-
ential morphisms. Modulo compact operators, they are determined by their edge symbols,
which we shall now describe.

Green symbols.

Definition A.15. A matriz Green symbol is a family

_ (9n(@,8) ealz,§) *
g/\(ili,f) = <b/\($,f) dA(CU,f)) : K(Kx,El) ®eJ — K(Kx,Eg) D JQ, (:r,f) S TOX
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(where E) o are finite-dimensional vector bundles over W and J; » are finite-dimensional
vector bundles over X), parameterized by 7y X, of continuous operators on the cones K,
(the fibers of the bundle (A.18)) smoothly depending on (x,&) € T5X and possessing the

following properties.

1. The family g, (z, &) satisfies the twisted homogeneity condition

gz, \) = %Ag/\(x,f)%)fl, A >0, (A.25)

where the group s, acts on the second component of the direct sum (K, E;) ® J;
as the identity operator for all values of \.7

2. The operator ga(z,€) is compact for all (z,§) € T3 X.

Remark A.16. All entries of ga(x, &) except for the upper left are finite rank operators,
and so the compactness condition is nontrivial only for the upper left entry.

The set of matrix Green symbols will be denoted by Sg] ) (T3 X). Obviously, the product
of matrix Green symbols (if it is well defined, i.e., if the spaces fit) is again a matrix Green
symbol.

Proposition A.17. The embedding Sg))(Tg‘X) C S (T¢X) holds. In other words, a
matriz Green symbol is a symbol with compact fiber variation on 15X .

Proof. The property of compact fiber variation follows from the compactness of the matrix
Green symbol itself, and so we only need to verify the estimates (A.1) on sets of the form
|€] > & > 0. We differentiate (A.25) « times with respect to x and § with respect to &
and set A = |£]7!; then we obtain

€17 g (2, £/1€]) = 211807 (2, €) 52

The desired estimate now follows, since the group s, is unitary. O

Quantization. Since g,(z,§) is a symbol with compact fiber variation, we can use
Definition A.5 and obtain the pseudodifferential operator

— 0 W(W, Ey) W(W, E5)
g =g <aj, —i—> : @ — &) (A.26)
dr ) [2(X,J) LA(X, J,)

"Thus, instead of s we should write the matrix

J{)\O
0 1)’

which has not been done to avoid clumsy notation. This will not result in a misunderstanding.
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in spaces of sections of vector bundles on the infinite wedge W and on X, which will be
called a matriz Green operator with symbol ga(x,§).

Applying Proposition A.6, we see that the product of two matrix Green operators is
again (modulo compact operators) a matrix Green operator, and the product of operators
corresponds to the product of their symbols.

However, we wish to interpret a matrix Green operator as an operator in spaces of
sections of vector bundles on M and X. To this end, we use the following assertion,
which shows that modulo compact operators a matrix Green operator is concentrated in
an arbitrarily small neighborhood of the edge. To state the assertion most concisely, for
elements v € L?(X,J) we define multiplication by functions ¢ (r) of the variable r by
setting v = 1(0)v. (In particular, if ¢ (r) is an R-function, then ¢v = v.)

Proposition A.18. Let ¢(r) be an arbitrary R-function. Then the operators

(= vl (55 ) (i ) 0 00

are compact.

Proof. Consider the first of these two operators. (For the second operator, one passes to
the adjoint operator

[g/\ (x, —@é%) (1-— 1/}(7"))] * =(1—1v(r))gr <m, —z%) + a compact operator,

thus reducing the proof to the case of the first operator.) We have

= v (o -ig-) = 1 (i),

f(@,8) = (1= (r))gn(z, §).

Let us estimate the norm of the symbol f(z,§) as [£] — oo. To this end, we use twisted
homogeneity and write

f(@,8) = (1 = (r)sagn(@,&)se ! = sl = d(r/N)ga(@, &),
where A = |£] and & = £/|£|. Since the group s, is unitary, we see that
1 (@, I = 11— &(r/A)galz, -

We are interested in an estimate as A — oo uniformly with respect to (z, ') € S*X; hence
we treat g (z,£’) as an operator in the spaces

g - H1 — C(S*X, HQ), (A27)

we have

where
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Lemma A.19. The operator (A.27) is compact.

Proof. Let us prove that the image of the unit ball in H; under the mapping g, is
precompact in C(S*X, Hy). Let u; = u;(a), a = (z,§) € S*X, be a sequence of functions
from the image of the unit ball. We must show that it contains a convergent subsequence.
One has the inequality

Jj (@) = uy(@)]] < C dist(a, o),

where the constant C' is determined by the maximum of the first derivatives of gu(«).
Let {as} be a sequence everywhere dense in S*X. Since g, («) is compact for each given
«, it follows that the sequence w;(ay) contains a convergent subsequence for each given
s. Using the diagonal process, we choose a subsequence of u; convergent at all points
a;s. We denote this subsequence again by u;. It is a Cauchy sequence in C'(S*X, Hy) and
hence converges. Indeed, for any € > 0 in C'(S*X, H,) there exists a finite e-net that is a
subset of {a,}. We choose N large enough that at all points a; of this e-net the function
u;(as), j > N, differs from the limit value at most by €. Now if j,j' > N and o € S*X
is an arbitrary point, then

i () = uj(a)|| < llus(e) — wjla) ||+ [|uf@) = wfes) || +[Juj(as) — uj(ew)]] < (2+20)e,
where «ay is the point of the e-net closest to a. The proof of the lemma is complete. [
The operator family
1—4(r/A): C(S*X, Hy) — C(S*X, Hy)

strongly converges to zero as A — oo. (Indeed, this family is uniformly bounded and
strongly converges to zero on the dense subset of functions with support compact with
respect to the variable r.) Hence the product (1 — ¢(r/\))ga(x, &) tends to zero in the
operator norm (the first factor strongly tends to zero and the second factor is compact).
Thus, we obtain an estimate of the form

I1f (z, Ol < woo([€]),
A—00

where ¢go(A) is a monotone decaying function such that ¢go(A) =—— 0.
The derivatives

0"+ f (2,€)
() =2 SIS g (a,3)
can be estimated with the use of twisted homogeneity in a similar way:
o — A—00
172 (@, )| < 1€ pas (€D, pas(A) 0. (A.28)

Let x(&) be a smooth function identically equal to 1 for || < 1 and to zero for |£] > 2.
We set

fe(@,8) = f(z,§)x(€€), €>0.
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The symbol f.(z,&) is compactly supported and compact-valued, so that the operator

ﬁ = fa (1‘7 _Z%>

is compact for every € > 0. On the other hand, the difference g. = f — f. satisfies the
estimates
Hgéa’ﬁ)(x,ﬁ)H < C’a5|§|"ﬁ| max gpa,ﬂ/(s’l). (A.29)

o/ <a,f'<p

For some N depending only on the dimension of X, the L?-norm of a pseudodifferential
operator on X can be estimated via the norms of the derivatives of its symbol of order
< N. Hence it follows from the estimates (A.29) that g. — 0 in the operator norm as

£ — 0 and hence the operator f is compact as the uniform limit of the compact operators

Je-
The proof of the proposition is complete. O

Now let ga(z,€) be a matrix Green symbol. By the proposition we have just proved,
the product

o,
G =Ygn <m, —z%> )1, (A.30)

where 1 and v, are arbitrary R-functions, is independent of the choice of these functions
modulo compact operators. Since the product is localized in the collar neighborhood U,
it can be interpreted as an operator in spaces of sections of bundles over M and X.

Definition A.20. The matriz Green operator corresponding to a Green symbol g, (x,&) €
Sg)) (T5 X) is the operator

W(M, Ey) W(M, E»)
G: &> — &5}
L*(X, J,) L*(X, Jo)

given by formula (A.30).

Omitting the cutoff R-functions, we also denote this operator by g. or ga <m, —i%).

In more detailed notation, a matrix Green operator has the form

(i ©

gA by dy )
The operator G = g, will be called simply a Green operator, and its symbol will be
called a Green symbol. The operators B = b, and C' = ¢, will be called the boundary and

coboundary operators, respectively (cf. [45]). The operator D = d, is a classical zero-order
pseudodifferential operator on the edge X.
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A.6.4 Pseudodifferential operators

Let us now describe the class of operators A in the upper left corner of the matrix
of a pseudodifferential morphism. These operators are naturally called pseudodifferential
operators. It will be convenient for us to describe three operator algebras, each of which
is contained in the preceding (and hence inherits some nice properties of the latter). The
last algebra is the one we deal with in our index theorems. This way we clarify which
elements in the definition of the algebra of pseudodifferential operators are responsible for
which properties of the algebra.

By C*°(M) we shall denote the class of smooth functions on M that depend only on
the variable z in some neighborhood of X contained in U (and hence extend naturally
to the entire M by continuity). In particular, R-functions belong to C*°(M). We also
use the notation S°(7T*X) (respectively, S°(T; X)) for spaces of operator-valued symbols
that satisfy the same estimates as those in the definition of S (7*X) (respectively,
S& (T3 X)) but do not necessarily have compact fiber variation.

By x(|¢|) we denote a cutoff function on 7* X that is compactly supported and is equal
to unity in a neighborhood of £ = 0.

The widest algebra.

Definition A.21. By P(M) we denote the set of continuous operators
A WM) — WM)
with the following properties.
1. The commutator [A, ¢] is compact for any ¢ € C*°(M).

2. If p,9p € C®°(M) are supported away from the edge, then p Ay is, modulo compact
operators, a classical pseudodifferential operator of order zero in the interior of M.

3. If p,¢p € C°(M) are supported in U, then pAy is, modulo compact operators, a
pseudodifferential operator with symbol A(z, &) € S (T3 X) on the infinite wedge
W. (Here we use the identification of neighborhoods U of the edge in W and M.)

It is standard routine to show that P(M) is an algebra. Each element A € P(M)
has a well-defined principal symbol o(A), which is a function on the interior of the com-
pressed cotangent bundle 7" M. This function may well have singularities on the boundary
OT* M. We also note that if the principal symbol of an operator A € P(M) is zero and for
some R-functions ¢, the operator ¢ A is compact, then A itself is compact. However,
this is probably all we can say about the compactness of operators in the class P(M),
because in general these operators have no edge symbols. Our next step is to introduce a
narrower algebra, in which one can already speak of edge symbols and write out a precise
compactness criterion.
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The middle algebra. Now let us introduce a subset PS(M) C P(M) by imposing
certain restrictions on the symbols of pseudodifferential operators arising in item 3 of
Definition A.21. By O©(T;X) we denote the class of infinitely differentiable bounded
families

an(z, &) : K(K,) — K(K,), (z,§) € TiX,

of operators on the cones K, smoothly depending on (z,&) € T§X and possessing the
following properties.

1. The family ax(z, &) is twisted homogeneous:
an(z, AE) = senan(x, &) 5!, A > 0.
(Hence it lies in S2 (15 X); cf. Proposition A.17.)
2. If ¢ is an R-function, then ¢a, and axt) lie in S (T3 X).
3. If ¢ is an R-function, then the commutator [, a,] is compact-valued, and moreover

[0, an]x(e|€]) = [0, an] in Sgy (TyX) as e — 0.

One can readily see that O (77 X) is an algebra. Only property 3) might cause some
difficulty, but it is also in fact easy: one has

[0, anbp] = [1), an]bn + an[t), bal,

and it remains to note that the product of two factors in S°(73X) necessarily lies in
S2v (T3 X) provided that one of the factors is compact; the desired convergence also
follows readily. B

Now we introduce the space S (T3X) C S (TgX) of symbols a(z,&) with the
following two properties.

1. If ¢ is an R-function, then the commutator [, a] is compact-valued, and moreover
[¥, alx(elé]) = [,a] in Sgy (T7X) as £ — 0.
2. Set
ax(w, &) = »;  a(z, AE) .

Then there exists a symbol a, € O©) (T X) such that for each R-function ¢ (r) and
each 0 > 0 one has the estimates

fo+s
W(GA—GAW(T) <,
07 < sl¢|- 1Al
J600) g (o~ )| < 3

whenever A > R and £ > R;, where R and R; depend on § (and also on ¢, «, and
(), and R; may depend also on \.
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The space S%, (7% X) is just the space of tightenings of symbols a € 5%, (13 X).

Proposition A.22. 1. For each a € SO, (13 X) there exists a unique ax with the above-
mentioned property.

2. If ¢ is an R-function, then 1 € S v(T*X) and pp = 1.

3. The space %y (T3 X) (as well as S%, (T*X)) is an algebra.

4. The mapping a — ax s an algebra homomorphism:

(a,b)/\ = a/\b/\.

Sketch of proof. Item 2 is obvious. Taking it into account, we see that it suffices to prove
item 1 for the case in which the function 1 is fixed. It makes little difference whether ¢ is
on the right or on the left in the product, since we can always commute it from one side
to another using the properties concerning commutators. Hence we assume that it is, say,
on the right. Assuming that there are two elements a, and a, for the same a, we subtract
two estimates and obtain the similar estimates for the difference (ax(x, &) —an(z, &) (r),
which is however independent of A\. Namely (we take o = 3 = 0)

[(an(x, &) — an(x, §))v(r)|| < 6
for [£] > Ry(0). Using the twisted homogeneity and the fact that s, is unitary, we obtain

[(an(z,€) = an(z, §))(r/p)l < 6

for a given £ and for p > Ry(6)|€]7!. But this is only possible if a,(z, &) = anx(z,§), since
Y(r/p) strongly converges to unity as g — 00.
Now we prove items 3 and 4. Let ¢ = ab and accordingly cy, = apbsy. We have

(ex = ea)i = ax(bx — ba)1 + (ax — ap)Pbatho + (ax — an)[ba, ¥]tbo,

where 1)y is an R-function such that 1y = 1, whence the desired estimates follow with
regard to the fact that ay is uniformly bounded in S (T¢X) and the above-mentioned
properties of commutators. The case in which ¢ is on the left can be considered in a
similar way. U

Definition A.23. By PS(M) we denote the set of operators A € P(M) such that the
following property holds.

If ,9 € C®°(M) are R-functions, then pAy is, modulo compact operators, a

pseudodifferential operator with symbol A(x,€) € 8%, (T; X) on the infinite wedge
W.

It follows from the preceding results that to each A € PS(M) there corresponds a
uniquely determined symbol a, constructed in the above-mentioned way via the symbol
A(z, &) of the operator p A, where 1) and ¢ are arbitrary R-functions. Indeed, to observe
the uniqueness, one has only to note that if A(z,§) € § v(T5X) is the symbol of a
compact operator, then it necessarily decays for large &, thus giving rise to a zero symbol

Qan.
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Definition A.24. The symbol a, corresponding to an operator A € PS(M) via the
procedure described above is called the edge symbol of A and is denoted by o, (A).

Proposition A.25. The set PS(M) is an algebra. The mappings A — o(A) and A —
on(A) are algebra homomorphisms.

The proof is obvious. O

The operators in the middle algebra PS(M) possess not only principal symbols but
also edge symbols. It turns out that these two symbols already permit one to find out
whether a given operator is compact.

Theorem A.26. An operator A € PS(M) is compact if and only if 0(A) = 0 and

Sketch of proof. The necessity is obvious. Indeed, A is compact if and only if so are 1) A7)
and (1 —¢)A(1 — ¢) for arbitrary R-functions ¢». We have already noted that the edge
symbol of the first operator must be zero if the operator itself is compact. The second
operator is a usual pseudodifferential operator, so one can apply standard results to the
desired effect.

Let us prove sufficiency. If both symbols are zero, then the operator (1 —1)A(1—1) is
compact by virtue of well-known results for pseudodifferential operators, and it remains
to prove the compactness of the operator B = 1 Ay. Let ¢ be an R-function. Then

B(1 = @(Ar)) = (1 = @1 (Ar)) B(1 = (Ar)) + [B, (1 — @1 (Ar))](1 = ¢(Ar))

is compact (the first term is a usual pseudodifferential operator with zero principal symbol
and the second term contains a commutator), and so we shall arrive the desired assertion
once we prove that Bo(Ar) can be represented as the sum of a compact operator and an
operator whose norm tends to zero as A\ — oo. The operator Byp(Ar) has the operator-
valued symbol

c(x, &, N) = b(x, &) p(Ar) = %A%)le(x,f)%Ago(r)%/(l = %A[bA(:r,f/)\)cp(r)]%/fl.

The group s, is unitary and does not affect estimates; since o,(B) = oA(A) = 0, it
follows that the symbol in brackets (and hence ¢(x, &, A)) admits the estimates

H aa+ﬁ

WC(%S, )\)H < ol¢| !
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for A > R(8) and |€] > R(6)Ry(5, ). Now

Bo(wju = [ (e, ¢, N)ale) de
— [ e Enteleetwn Ve d + [ e = el ela € Nl6) de
= [ e xteleDlete €0 - enlar ) de + [ eExellente Vle) de
+ [ e = x(eleh)elo. & A€ dg = 1+ 1T+ 111,

where cp is the mean value of the symbol over the sphere of radius R. Now the first term
is a compact operator by virtue of the compact fiber variation condition, while the second
and third terms can be made arbitrarily small in the norm if we take sufficiently large A
and then choose a sufficiently large R(> R(0)R;(d,\)) and sufficiently small €. The proof
of the theorem is complete. O

The algebra of pseudodifferential operators. Although for middle-class symbols
we have the main ingredient of the calculus, namely, the composition formula modulo
compact operators (which readily follows from the preceding ), we in general have no
compatibility condition for the principal and edge symbols and cannot construct an oper-
ator with given principal and edge symbols, which prevents us from constructing almost
inverses. In particular, one cannot prove the finiteness theorem in this generality.

Thus we descend to a still narrower algebra, which is the main algebra used in our
preprint. This algebra will be denoted by PSD(M), and its elements will be called
pseudodifferential operators. This algebra will be constructed in the remaining items of
this subsection. It is singled out by further conditions imposed on the principal and edge
symbols.

Principal symbols. The principal symbols that we shall consider are smooth (up to
the boundary) zero-order homogeneous functions on 7 M. The space of such symbols will
be denoted by S (T3 M). In local coordinates near the boundary (in U), each element
a € SO(Ty M) is represented by a smooth function

a(z,w,r,n,q,p) = a(z,w,r,An, Ag, A\p), A >0, (A.31)

defined for r > 0 and 7? + ¢* + p* # 0 (the variables x and w range in the corresponding
coordinate neighborhood). For each such function, using the change of variables (A.17),
one defines a smooth (also up to the boundary) symbol @ € SO (T M) by the formula

a(z,w,r,€,q,¢) = alr,w,r, 1€, q, —1r(). (A.32)
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Edge symbols. Now we describe additional conditions imposed on the edge symbol of
pseudodifferential operators.

Recall that edge symbols, as well as Green symbols, act in the space K = K% (K) of
functions on the model cone K = K. More precisely, these are operator families in the
spaces IC(K,) of functions on the fibers K, of the bundle 7y : W — X (where W is the
model wedge with edge X). They are conically degenerate pseudodifferential operators
near the vertex of the cone and pseudodifferential operators with a special behavior of the
coefficients far from the vertex (as r — 00), and so, prior to introducing the definitions
of the edge symbols themselves, we recall some auxiliary notions.

Definition A.27. A boundary symbol is a smooth zero-order homogeneous function
ay = ay(x,w,1n,q,p) € SODTFM), (A.33)

defined on 07;f M. One says that a boundary symbol is compatible with a principal symbol
a € SO(TyM) if

a ‘8T5M: ap. (A.34)

Let ag be a given boundary symbol and ¢ (r) and R-function. To the product (1—1)as

we shall assign a pseudodifferential operator on the cones K, in the following special way.

Consider a finite cover of {2 by coordinate neighborhoods §2; and a subordinate partition

of unity
D) =1
J

In ©Q; xR} we introduce local coordinates w = wr and 7. Note that the change of variables
(w,r) = (@,7) takes W(W)|q, xx, into the usual L* space with respect to the measure
dr dw.

We consider the symbol

i@, 60,74, ¢) = x5 (@/r(1 = ¢(r))as(x,0/1,€, 4, €) (A.35)

depending on the parameters (z,£) € S*X and define pseudodifferential operators

f(x,€) def zj:gjlfj (x,{f,fu, r, —ia%, —z%) o gjx;j(w), (A.36)
where g; is the coordinate mapping in the jth coordinate chart and the pseudodifferential
operator in each term of the sum is defined in the standard way in the corresponding local
coordinates with the help of the Fourier transform (cf. (A.6)).

The symbols f; belong to the class SI%0(R?") of symbols in R, (the physical coor-
dinates are w,r) studied, e.g., in [8, §8.2]. The results obtained there imply that the
following assertion holds.
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Proposition A.28. The operator (A.36) is bounded in K(K;) and, modulo compact oper-
ators in K(K,), is independent of the choice of coordinate neighborhoods, local coordinates
and the partition of unity.

Definition A.29. A (pseudodifferential) edge symbol is a family, parameterized by the
cotangent bundle of the edge X with zero section deleted, family

an(z, &) K(K,) — K(K,), (x,€) € T;X,

of operators on the cones K, smoothly depending on (z,€) € T§X and possessing the
following properties, modulo the addition of a Green family.

1. the family a,(z, &) satisfies the twisted homogeneity condition

an(z, N§) = %Aa/\(x,f)%)fl, A > 0.

2. In a neighborhood of the point = 0 (the vertex of the cone), the operator a,(x, &)
is a conically degenerated zero-order pseudodifferential operator 0 with a principal
symbol ag(z,w, ré, ¢,¢) and with conormal symbol

oc(an)(z,p), pe€L={lmp=—(k—-1)/2},

independent of the parameter £. Outside a neighborhood of the vertex, ax(x,§) is
a pseudodifferential operator of the form (A.36). More precisely, for |£| = 1 one has

an(r,&) = YrArpr + (1 — ) Az(1 — ¢2),

where 1, 9,191, 1y are R-functions, A; is a cone-degenerate operator, and A, is an
operator of the form (A.36).

The functions o(ax)(z,w,n, ¢, p) o ao(x,w,n, q,p) and o.(ax)(z, p) are called the principal
and the conormal symbol of the edge symbol, respectively.
The space of pseudodifferential edge symbols will be denoted by 0% = O (T*X).

Proposition A.30. The space O% = O%(T*X) is a subalgebra of O = O°(T*X).

The proof follows from the composition theorems for conically degenerate pseudodif-
ferential operators as well as for pseudodifferential operators with exit behavior [8].

Proposition A.31. If the principal symbol of an edge symbol a(x, &) is a constant (or,
more generally, depends on x but is independent of £), then ax(x,£) € S (T3 X).
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Definition of the algebra PSD(M).

Definition A.32. By PSD(M) we denote the subset of PS(M) formed by operators A
such that the edge symbol a, = o, (A) belongs to 0% = OY(T*X), the principal symbol
a = o(A) belongs to S (T M), and the compatibility condition

o(an)(z,w,n,q,p) = a(z,w,0,1,q,p) (A.37)

holds, i.e., the principal symbol of the edge symbol coincides with the restriction of the
principal symbol to the edge 07" M.

Theorem A.33. The set PSD(M) is an algebra, and the mappings taking operators to
symbols are multiplicative.

Computation of the symbols of a pseudodifferential operator. 'To a compatible
pair of symbols, one can always assign a pseudodifferential operator in PSD(M) (e.g.,
see [39], [8], [40]), which is unique modulo compact operators. (The uniqueness holds
already in PS(M); we have proved this.) A construction procedure will be given in the
next item. Here we indicate a method for reconstructing symbols from a given operator.
Let A € PSD(M). Then for any R- functlons Y (r) and v (r) the operator (1—4)A(1 1/))

is a classical pseudodifferential operator on M It has a well-defined principal symbol T*M
(in the usual sense), which can be computed via a procedure due to Hérmander [11] and
which is independent of the choice of 1,y outside their supports. This gives a method
for computing the principal symbol.

To compute the order symbol of A, consider the operator

B = ZDA%:

where 1) and 1, are some R-functions (which do not affect the result.) The operator B
can be viewed as an operator on the model cone W, since the support of its Schwartz
kernel is contained in U x U.

Now let ¢, 1 € C*°(X) be arbitrary functions supported in some coordinate neigh-
borhood V on X. Consider the operator

A= ¢Bg.

In the space W = W(W), we consider the following one-parameter group depending on
an additional parameter £ € R™ \ {0}:

Ur(&) = 0™ W — W, (A.38)

(Outside the union of supports of ¢ and ¢;, we modify the product z¢ in the exponent
by multiplying =€ by a real-valued cutoff function.)
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Then as A — oo there exists a limit A (€) in the strong operator topology of the
operator family

UTHOAUNE) : W — W, (A.39)
and the limit operator splits into a family of operators
Ag(z,8): K — K

smoothly depending on the parameters (z,£), £ # 0, in the spaces K on the model cones
that are the fibers of the bundle

(W) = Ty X;
here my : T*X — X is the natural projection. This operator has the form

Ao, €) = ¢(@) 1 (x)on(A) (2, ),

so that the procedure described above, which resembles Hérmander’s procedure for com-
puting the principal symbol on smooth manifolds as well as the procedure [26, 18, 22] of
computing the conormal symbol on manifolds with conical singularities permits one to
compute the edge symbol of a pseudodifferential operator A € PSD(M).

Quantization. Now we describe the construction of a pseudodifferential operator A €
PSD(M) with given compatible principal symbol a € O°(T*M) an edge symbol a, €
O%(T*X). First, we construct a pseudodifferential operatorB such that

on(B)(x,€) = an(x,§). (A.40)

To this end, we take R-functions ¢ and v, consider the operator family

b(ib',é‘) = lba/\(x;{f)lbl K — ’Ca

.0
B = b(m, —z%>

(see Appendix 1). This operator can be treated as an operator on M, since its Schwartz
kernel is nonzero only in U xU. One can readily see that (A.40) holds. Indeed, to compute
the edge symbol, we need not multiply the operator by additional R-functions; instead,
we can directly return to the infinite wedge W. Next, we localize along X (we omit the
corresponding cutoff functions in the notation) and consider the family

and set

B(X,§) = Uy (§)BUA(E) : W — W.

Note that

. o\ .
B()\€) = %;11/»@\ . %Xle*”f/\a/\ (x, —za—> e 5z, - %;11/»@\.
x
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The first and third factors strongly converge to the operator of multiplication by ¢ (0) =
1(0) = 1, so it suffices to consider the family in the middle. This family is bounded
uniformly in A, and so it suffices to prove the strong convergence as A — oo on the dense
subset C§°(K) C W. Let u € C§°(K). Then

. 0\ | 1\"? , _
sy e, (:r, —i%> e anu = (%) /%A_IBWCLA (2, A + p)reru(p) dp,
where u(p) is the Fourier transform of p with respect to . We take some & with |£] = 1.
For sufficiently large A, the function u(p), which rapidly decays as p — oo, will be
arbitrarily small for |A{ + p| < 1. Hence with an error tending to zero as A — oo
we can use twisted homogeneity and conclude that the last expression is equal to

(L) " [ et ot ap

which, in turn, converges as A\ — oo to

1 n/2 . N
<§> /em‘“(x’ §)u(p) dp = an(z,§)u,
as desired. The computation of the principal symbol of B shows that it is equal to

o(B) = (r)¢a(r)o(an) (@, w,n,q,p) = ¥(r)ih(r)alz, w, 0,7, q,p)

(the second equation holds since a and a, are compatible), and so A should be sought in
the form
A=B+C,

where 0,(C) = 0 and o(C) = ¢ o 0(A) — o(B). In particular, o(C) is identically

zero on the boundary 07*M. Thus, we arrive at the following problem: for a given
symbol ¢ € O°(T*M) vanishing on 9T*M, construct a zero-order pseudodifferential
operator C' on M with principal symbol ¢ and with zero edge symbol. Using a partition of
unity, we reduce the solution of this problem to the corresponding problems in coordinate
neighborhoods on M. The problem is trivial for the neighborhoods lying away from the
edge. Now let us consider a neighborhood adjacent to the edge. Suppose that the symbol
c(z,w,r,n,q,p) defined w € R¥, z € R, and r € [0, 1) is compactly supported in (w, z,7),
zero-order homogeneous 0 in (7, ¢, p), and identically zero for r = 0. We smooth the
symbol in a neighborhood of » = 0 preserving the latter property, so that we obtain a
classical zero-order symbol (denoted by the same letter) ¢ € SY(RF™ x [0,1) x R*T++1

cl

and vanishing for r = 0. Now we define an operator C'in the space W(W) by the formula

1 (n+k+1)/2
Cu(z,w, e ") = <2—> / dxdw/dp
T
c

Rn+k

x et e, w, e, g p+ ik — 1)/2)i(E w,p) f, (AdL)
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where @ is the Fourier transform of u(x,w,e‘t) with respect to the variables (z,w,t).
This Fourier transform (owing to the weight r~%/2) is well defined as an element of the
space L*(R{T" x L, where £ = {Imp = —(k — 1)/2} is the weight line mentioned earlier,
and the 1ntegral in (A.41) is taken over the corresponding space, so that the argument
p+i(k—1)/2 of ¢ is real (the function ¢ is not assumed to be analytic).

One can readily see that the principal symbol of the operator (A.41) is equal to c.
Indeed, multiplying it on the right and on the left by functions of the form 1 — ¢ (r),
where ¢(r) is an R-function, in the computation of the principal symbol we can assume
that the function u on which the operator acts is compactly supported in r on the open
interval (0,1), so that the Fourier transform of u is holomorphic in the entire complex
plane and belongs to the space of rapidly decaying functions on any horizontal line. Using
an analytic smoothing of the symbol (see [39]), one can proceed to the integration over the
real variable p by Cauchy’s theorem. The subsequent argument is standard in the spirit
of Hormander [11] or Kohn-Nirenberg [13]. To see that the edge symbol of C' is zero, it
suffices to note that C' = riy»(r)Cy, where C) is the pseudodifferential operator (A.41)
with principal symbol

ci(z,w,r,n,q,p) =c(z,w,r,n,q,p)/r,
so that

on(C)(x,€) = on(ripa(r)) (2, €)on(Cr) (2, €) = 0 - o (Cy)(z,€) = 0.

(Note that the edge symbol of C) exists, and so the computation is valid: the strong limit
of a product is equal to the product of strong limits provided the latter exist.)

Remark A.34. 1. The above-described construction gives an operator continuously
depending on parameters if the symbols continuously depend on the parameters.

2. If the principal symbol is independent of 7 in U (in elliptic theory this can always
be achieved via homotopies), then one can simplify the quantization procedure by setting

A =ap (x, —i%)z/)l + (1 = y)a(l — ), (A.42)

where the first term is quantized as a pseudodifferential operator with operator-valued
symbol on X and the hat in the second term stands for the usual pseudodifferential quan-
tization in the interior of M. Here 1), 1,and 1), are R-functions satisfying the relations

Y1 =1, ot = thy.

Thus we have described the class PSD(M) of operators on manifolds with edges for
the case of scalar operators. The construction can be directly transferred to the case of
operators acting in spaces of sections of vector bundles.
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Calculus. Now we state the composition theorem (cf. [8] as well as Theorem 1.3.4 and
Remark 1.3.3 in [40]).

Theorem A.35. Operators of the form

A= <’g 8) +0, (A.43)

where A € PSD(M) and G is a matriz Green operator with symbol in O%(T*X), form
an algebra A, and the product in A is determined by the symbol product:

0(AB) = o(A)a(B), or(AB)(z,§) = on(A)(z,§)on(B)(x, ).
An operator A € A is compact if and only if o(A) =0 and op(A)(z,&) = 0.
Needless to say, here o(A) = o(A4) € O°(T*M), and

on(A) = <"A(()A) 8) +oA(G) € OUT*X) + OL(T*X).

Remark A.36. 1. By our definitions, the operator D in the lower right corner of A is a
pseudodifferential operator in spaces of sections of finite-dimensional bundles on X.

2. The set of matrix Green operators is a module over the algebra of diagonal matrices
of pseudodifferential operators.

3. Our definition of Green operators is wider than that in [39] or [8] (where the
description involves some asymptotic information) and even in [40] (where an improvement
of the weight exponent is required). The only property essential to us is that these
operators must be concentrated in an arbitrarily small neighborhood of the edge. This is
satisfied automatically under our definitions.

General matrix operators of the form (A.43) will be called morphisms, on the analogy
with the terminology pertaining to Sobolev problems ([44, 45] etc.).

A.7 Ellipticity and the Fredholm property

The composition theorem in the preceding item implies the following natural definition
and theorem. (Cf. [39] or [8]).

Definition A.37. A morphism A is said to be elliptic if its principal symbol o(.A) and
edge symbol o,(A) are invertible (on S*M and S* X, respectively).

Theorem A.38. Each elliptic morphism is Fredholm.

Elliptic morphisms are also called elliptic problems.
An elliptic problem can be stated for an elliptic pseudodifferential operator A with
elliptic principal symbol under the following conditions:

78



1. The conormal symbol o.(ox(A))(z,p) is invertible for all x € X and p € £. (This
guarantees the Fredholm property of the edge symbol ox(A)(z, &), since the exit
ellipticity conditions [8] are satisfied automatically once the principal symbol is
elliptic.)

2. The obstruction to the existence of elliptic edge problems for the operator A com-
puted in [19] is zero.

Under these two conditions, there exists bundles J; and J, on X and operators B,C, D

such that the problem
A C
4= (5 )

is elliptic. The corresponding procedure is described in [8, Chapter 9].
We note that the obstruction mentioned in condition 2 has the form?®

mloa(A)] € K(T*X xR), m: K(T*0M x R) — K(T*X x R), (A.44)

and is determined by the restriction oy(A) of the principal symbol o(A) to the boundary
OI*M ~T*OM x R of the compressed cotangent bundle 7% M.

Finally, we note that invertible conormal symbols (or, equivalently, Fredholm edge
symbols) always exist for an elliptic interior symbol. Indeed, the following proposition
holds.

Proposition A.39. For each elliptic symbol a on a manifold M with edge X there exists
a compatible Fredholm edge symbol ax.

Proof. Let a, be an edge symbol compatible with a. Since a is elliptic, we see that the edge
symbol is Fredholm if and only if the conormal symbol o.(ax) = o.(ax)(z,p) is invertible.
The conormal symbol is a family of operators elliptic with parameter p on the weight
line £ = {Imp = —(k — 1)/2}; this family smoothly depends on the parameter z € X.
Thus, the problem of constructing a Fredholm edge symbol is equivalent to the problem
of constructing an invertible conormal symbol compatible with a. It was shown in [27]
that the obstruction to the existence of an invertible conormal symbol is the element

indo.(a,) € K'(X).

The index of families elliptic with parameter was also computed in [27]. Namely, the
principal symbol of the family determines an element of the K-group K'(*T*0M), and
the index of the family is just the direct image of this element. (The direct image is
induced by the projection *7*0M — X, where "IT*0M is the bundle of “vertical vectors”
under the projection 7 : M — X.)

8Here we do not touch general edge problems with (co)boundary conditions in subspaces of Sobolev
spaces on the edge [40], similar to general boundary value problems [41], [21]; in these classes there are
no obstructions to the existence of Fredholm problems for a given principal symbol.
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On the other hand, the principal symbol of the family o.(a,) can be viewed as the
restriction to {{ = 0} of a family of elliptic principal symbols with parameters (,p).
Namely, the latter family is the restriction ay of the symbol a to the boundary 0M. The
corresponding difference element lies in K'(T*0M), and there is a commutative diagram

KNT*0M) s KY("T*0M)
ind | Jind
K (T*X) 25 KY(X).
Here i : "T*OM — T*OM and j : X — T*X are natural embeddings. It was proved in [3]
that the mapping j* is zero. Hence it follows from this commutative diagram that the

obstruction is zero:
indo.(an) = 0.

The proof of the proposition is complete. O

Remark A.40. Note that our elliptic problems are elliptic operators in bottleneck spaces
in the sense of [24] with respect to the bottleneck structure in W.
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