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ABSTRACT. We show a Lefschetz fixed point formula for holomorphic functions
in a bounded domain D with smooth boundary in the complex plane. To
introduce the Lefschetz number for a holomorphic map of D, we make use of
the Bergman kernel of this domain. The Lefschetz number is proved to be the
sum of usual contributions of fixed points of the map in D and contributions of
boundary fixed points, these latter being different for attracting and repulsing
fixed points.

1. INTRODUCTION

Let D be a bounded domain with smooth boundary in the complex plane C,
and f be a holomorphic map of D which is C'* up to the boundary of D. The
pull-back operator f* on differential forms preserves the bidegree and commutes
with the Cauchy-Riemann operator 9. Hence it induces a homomorphism H f* of
the cohomology of the complex

(1.1) 0 — £9D) L £1D) — 0

where £4(D) stands for the space of all (0, q)-forms in D with coefficients smooth
up to the boundary, ¢ = 0, 1.

The cohomology of (1.1) at step ¢ = 0 just amounts to the space A(D) of
holomorphic functions in D which are C° up to the boundary. This space is
infinite-dimensional. On the other hand, the cohomology of (1.1) at step ¢ = 1
vanishes. It follows that the usual definition of the holomorphic Lefschetz number
leads to

L(f) = Trf*|A(5),

the trace of f* on A(D). As the space A(D) is of infinite dimension, this trace fails
to be defined for all maps f. The problem arises of defining a regularised trace of
f* on the space A(D).

To this end one might invoke any right fundamental solution @ of the operator
0 in D. Then the operator IT = 1 — ¢0 is a projection in the space £°(D) = £(D)

whose range is A(D). The kernel K7((,2) of II is a representation of the Dirac
functional ¢, (¢) on the space of holomorphic functions. The regularised trace of f*
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on A(D) is then defined by

(1.2) T pp—— /Kn(z,f(z)),

the principal value referring to fixed points of f on the boundary of D if there are
any.

This agrees on the one hand with the trace of the pull-back operator f* on A(D)
for constant maps f of D, i.e., f(z) = wo € D. Indeed, in the latter case both sides
of (1.2) are equal to 1. On the other hand, equality (1.2) gives readily the most
elementary result of the Lefschetz theory. Namely, if f has no fixed points in D
then the holomorphic Lefschetz number of f vanishes, for the integral localises to
the set of fixed points.

In this paper we take as @ the right fundamental solution of the Cauchy-Riemann
operator d given by the Neumann problem for the complex (1.1). At step 1 the
latter problem actually reduces to the Dirichlet problem for the Laplace operator
in D. The kernel K;((, z) obtained this way is nothing but the Bergman kernel of
the domain D. We obtain:

Theorem 1.1. Suppose f is a holomorphic map of D which extends smoothly to
the closure of D. If f has only isolated fixed points in D then the holomorphic
Lefschetz number of f is

L(fy= >, up).
pGFix(f,ﬁ)

The local indices p(p) are infinitesimal invariants of f at p. If p € Fix(f, D) then
u(p) coincides with that appearing in the case of compact Riemannian surfaces.
Namely, u(p) is the trace of the meromorphic function 1/(1 — f'(z)) near z = p
with respect to the map z — f(z) at 0, cf. § 6 in Tsikh [12]. The local indices of
boundary fixed points are more artful, cf. § 5.

A Lefschetz fixed point formula for closed holomorphic curves was first proved
by Eichler in [4]. Atiyah and Bott [1] generalised it to the Dolbeault complex on
a compact closed complex manifold. For direct constructions along more classical
lines we refer the reader to Patodi [9], Toledo and Tong [11], et al.

For strictly pseudoconvex domains D in C", a holomorphic Lefschetz formula
was proved by Donnelly and Fefferman in [3], who worked within the framework
of L?-cohomology of the Bergman metric. Recall that the Bergman metric, whose
Kaehler potential is given by the Bergman kernel, is a complete Kaehler metric on
D. This actually corresponds to the case of a non-compact closed manifold, and
so f was assumed to have no fixed points on dD. Our results extend to higher-
dimensional situation, too.

Brenner and Shubin [2] showed a fixed point formula for elliptic boundary value
problems in Boutet de Monvel’s algebra. Their results do not apply to the Cauchy-
Riemann system, for the latter admits no boundary value problem satisfying the
Lopatinskii condition.

2. THE NEUMANN PROBLEM

The Neumann problem for complex (1.1) at extreme step 1 consists of finding,
for a given F € £1(D), a differential form u € £'(D) such that
00*u = F in D,

(2.1) n(u) = 0 on 9D,



A FIXED POINT FORMULA IN ONE COMPLEX VARIABLE 3

where 0* is the formal adjoint for 8, and n(u) the complex normal part of u on the
boundary. Write

F = F(z)dz,
u = wui(z)dz,
then the problem (2.1) becomes in fact the Dirichlet problem for the function u;(2),
namely
- (1/2) A’U,l = F1 in D,
uy = 0 on OD.

The latter problem has a unique solution given by
w(:) =2 [ Fi(QOGC2)dlndg
D

for z € D, where G((, z) is the Green function of the Dirichlet problem. It has the
form

(22) G(6,2) = 5 loglC — 2] = h(¢,2)

where h((, z) is a smooth function defined away from the boundary diagonal in the
product D x D. For a fixed z € D, this function is harmonic in ¢ € D, continuous
in ¢ € D, and satisfies h(¢,2z) = (1/2m) log|¢{ — z| in ¢ € dD. This forces it to
be symmetric in ¢ and z, whence G((,z2) = G(z,(). It follows that the Neumann
operator at step 1 is

(2.3) NF(2) = /D Q) A (26(¢.2) dcds),

the integral being over ¢ € D.

The composition & = 9*N gives a right fundamental solution of the Cauchy-
Riemann operator in D. Indeed, (2.1) implies at once that d¢ = 1 on £1(D), as
desired.

Lemma 2.1. When regarded as a map in L(E*(D),E(D)), the operator ¢ has the
Schwartz kernel
1 1

P
Ko(C,2) = ( “gm Tt ah(g,z))dg.

Proof. Since

= 0

5" (1 (2)d2) = 5o (2),
it follows from (2.3) that

PF (z)

/D F(Q) A= (2G(C,2) )

[ FOnKaG2)
for all z € D. O

Note that the second term in K4((,2) is holomorphic in z € D for any fixed
(eD.
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3. AUGMENTED COMPLEX

The operator I = 1 — @9 belongs to £(£(D)) and extends to an orthogonal
projection of L?(D) onto the subspace of L?(D) consisting of holomorphic functions
of class L?(D). The Schwartz kernel of IT is just the Bergman kernel of the domain
D. We next compute it.

Lemma 3.1. When regarded as a map in L(E(D)), the operator I has the Schwartz

kernel
2

9oz

Ki((,2) = (22 h(C, z))df AdC.

Proof. Let u € £(D). Combining Lemma 2.1, the Cauchy-Pompey theorem and
Stokes’ integral formula, we obtain

mu() == [ u@ K0+ [

D

2

29—
u(O) (2 555,
for all z € D. The proof of Lemma 2.1 actually shows that

Kol6,2) = 5 (20 G(¢, ) &)

for ((,z) € D x D. Since G((,z) vanishes whenever ((,z) € dD x D, so does
K 4((,2), too. Hence the boundary integral in the formula for ITu vanishes, which
completes the proof. O

h(C,2))dC A dC

The operators {II, ¢} fit together to give a parametrix of the so-called augmented
complex

(3.1) 0 —s AD) -5 (D) -2 £4(D) — 0,

where ¢ stands for the embedding operator. This means they satisfy the fundamen-
tal equation

mi = 1-S, on A(D),
(3.2) i+ ® = 1-S, on &(D),
06 = 1-S on &YD)

up to operators S_;, Sy and S; with smooth kernels on D x D. In fact, the operators
So and S_; vanish by the very construction, while S; vanishes on the range of 0,
i.e., 0€(D).

The pull-back operator f* defines an endomorphism of (3.1), too, inducing
a homomorphism of the cohomology of (3.1). Since this cohomology is finite-
dimensional, the Lefschetz number of the later homomorphism is well defined. We
denote it by Ly(f), the sub “p” indicating to “partial”, for the cohomology of (3.1)
at steps —1 and 0 is zero.

4. LEFSCHETZ NUMBER
By the above, the total holomorphic Lefschetz number is
(4.1) L(f) = Tr f*| 4y + Lo,

the first term on the right-hand side being the regularised trace (1.2). We first
evaluate the partial Lefschetz number Ly(f).
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Lemma 4.1. Suppose f is a holomorphic map of D, smooth up to the boundary
and having only isolated fixed points in D. Then

L,(f) = —pov. /D A*(1x f)* K — pov. /D dp(P),

where A is the diagonal map D — D x D, and p(®) = —A*(1 x f)*Kg a smooth
(1,0) -form away from the set of fixed points of f in the closure of D.

Proof. Applying f* to both sides of (3.2) we conclude that the endomorphisms f*
and f*S of (3.1) are homotopic. Hence it follows that L,(f) = L,(f*S). Since
the endomorphism f*S is smoothing, the alternating sum formula readily yields
L,(f) = —Tr f*Sy, for S_; = Sp = 0. We now use the fundamental equation (3.2)
once again, taking into account that the kernel of the identity operator is supported
on the diagonal of D x D. This gives

Lf) =l [ A K

=l A Ko,

where U is an € -neighbourhood of the set of fixed points of f in D. This establishes
the formula because A*(1 x f)*Kj54 coincides with —A*(1 x f)*K g — dp(P) away
from the set Fix(f, D). O

Lemma 4.1 gives some suggestive evidence to defining the regularised trace of
f* on holomorphic functions by (1.2). Indeed, from (4.1) and the lemma it follows
that

(12) L(f) = -p. [ de(®),
D
the formula looking like that for the case of compact closed manifolds, cf. Theorem
6.2.15 in [10].
5. LOCAL INDICES

Given a point p € Fix(f,D), we write U(p,e) for the disk with centre p and
radius € > 0 in C. By (4.2) and Stokes’ formula, we get

(5.1) L(f)=-pv. | ¢(®)+ w(p)
/BD pGFg(:fyD)

where

(5.2) p(p) = lim ©(2)

=0 JpnoU(p,e)

is an infinitesimal invariant of f at p. Note that in general u(p) is a complex
number, and not an integer.

Lemma 5.1. Assume that p € D is an isolated fixed point of f. If € > 0 is small
enough then

1 dz
/“L(p) N /8U(p75) 2_7” Z = f(Z) -
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Proof. Combining formula (5.2) and Lemma 2.1 we obtain

. 1 dz . ,
,U,(p) - 511_>H6 8U(p75) 27” P f(z) 511_>H6 8U(p75) QZ hz(zﬂ f(Z)) dZ,
h.(¢,z) meaning the derivative of h((,z) in z. The differential form in the first
integral on the right-hand side is closed in a small punctured neighbourhood of
the fixed point p. Hence the integral does not depend on ¢, provided that £ > 0 is
sufficiently small. On the other hand, the differential form in the second integral on
the right-hand side is smooth in a neighbourhood of p, for h((, z) is smooth in the
product D x D. It follows that the second limit is equal to zero, which establishes
the formula. d

In particular, if p € D is a simple fixed point of f, i.e., f'(p) # 1, then
1

1(p) =70
as is easy to check by the Cauchy formula. In the general case the integral is
evaluated by the residue theory.

For boundary fixed points of f the computation of the local index u(p) is much
more subtle. We will touch only the case of simple fixed points of f on the boundary.

Brenner and Shubin [2] specified attracting and repulsing simple fixed points
of f on the boundary. Each simple point p € Fix(f,9D) is either attracting or
repulsing. The contribution of an attracting point p € Fix(f,0D) to the Lefschetz
number L(f) amounts to that of any interior simple fixed point, cf. (5.3), while
the repulsing points do not contribute to the Lefschetz number at all. In the non-
elliptic case the specification is more tricky. A boundary fixed point p of f is said
to be attracting, if | f'(p)| < 1, and repulsing, if | f'(p)| > 1. Once again each simple
fixed point p of f on the boundary of D is either attracting or repulsing. Indeed,
if |f'(p)| = 1 then close to p the map f reduces to a rotation around p, and so it
cannot keep D invariant.

Lemma 5.2. Assume that p € 9D is a simple fixed point of f. Then

(5.3)

L L if p is attracti
-, if p is attracting;
(p) = 21— f'(p)
H\P 1 1 1

— —_— if p is repulsing.
2 f'(p) 1= f'(p)

It is worth pointing out that the contribution of a repulsing fixed point is still
smaller by absolute value than the contribution of an attracting fixed point.

Proof. The proof follows from calculations of § 7 and a familiar construction of the
Green function for planar domains D. Namely, given a point z € D, let C((, z) be a
conformal map of D onto the unit disk with centre at 0 in C, such that C(z,z) = 0.
Then

1
T
is the Green function of D. O

6. HOLOMORPHIC LEFSCHETZ FORMULA

We are now in a position to formulate our fixed point theorem which makes more
precise Theorem 1.1 of the Introduction.
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Theorem 6.1. Suppose [ is a holomorphic map of D which extends smoothly to
the closure of D. If f has only isolated fixed points in D then the holomorphic
Lefschetz number of f is

L(fy= >, ulp),

PGFiX(fyﬁ)

the local indices pu(p) being infinitesimal invariants of f at p given by formula (5.2).

Proof. By (5.1) it suffices to show that the integral

—p.v./ o(®) = lim Kg(z, f(2))

oD =20 JoD\Uperixis,0m) U(pic)

is equal to zero. As has been mentioned in the proof of Lemma 3.1, the kernel
K (¢, z) vanishes for all (¢,z) € 9D x D. Since this kernel is actually C* away
from the diagonal in the product Dx D, we deduce at once that K (2, f(z)) vanishes
for all z away from the set of fixed points of f on the boundary. This finishes the
proof. a

Theorem 6.1 extends obviously to the Dolbeault complex on a strictly pseudo-
convex domain in C", thus implying the fixed point formula of [3] as a highly special
case. But we will not develop this point here.

7. AUTOMORPHISMS OF THE UNIT DISK

Let D = U be the unit disk centered at the origin in the complex plane. Then
the Green function is

1 1 _
G((,z) = Gy log € — 2| — Gy log |1 — ¢z,

cf. (2.2). An easy computation shows that

/1 1 ¢
—K¢(<’2)—(2_mg_z‘2_m1_gz)d<

for (¢, z) away from the diagonal in U x U.

By (5.2), we get

1 dz 1 zdz

7.1 w(p) = lim — ———— — lim P a—
(7.1) (p) =0 Junou(pe) 2 2 — f(z) =0 UNoU(p,e) 2T 1 — zZf(z)
if p € U is an isolated fixed point of f. We restrict our discussion to the case
p € OU, for the local index of interior fixed points p € U is computed in Lemma
5.1.

The first limit on the right-hand side of (7.1) is standard in the theory of the
Cauchy integral, unless p fails to be simple. This is

1 dz 1 1
7.2 lim — = — .
(7.2) B fmovipn 7= 7 21 )

To evaluate the second limit on the right-hand side of (7.1) we use the Taylor
formula to write

fz)=p+ f'(0)(z—p)+ oz - pl)
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in a small neighbourhood of p. After changing the variables z — p = ep( with
¢l =1, we get

" lim Lo _EE L (1 +eQ)d¢
==0 Junau(pe) 2 1 = Z2f(2) =0 Jeeou 2m f')¢+ ¢ +ef'(p) + o(e)
- lim RS (C+e)d¢
=0 Jeeov 2m f'(p)C* + 1+ ef'(p)C + o(e)’

for the boundary of U is smooth at p. If |f'(p)| # 1 then we can pass to the limit
under the integral sign, thus obtaining
/ 1 ¢d¢ 1 / 1 ¢d¢
ceou 2m ) +1 2 Jecor 2m f'(p)C2+1°

the last equality being a consequence of the invariance of the differential form under
the transformation ¢ — —(.

In the case |f'(p)| < 1 the polynomial f’(p)¢® + 1 is different from zero in the
closure of U. Hence the latter integral vanishes by the Cauchy theorem.

For |f'(p)| > 1 the integral in question is easily evaluated by the residue theorem.
It is equal to 1/2f'(p). Summarising, we have

. 0 if p is attracting;
1 ’ ’
(7.3)  —lim 1o_FE )y
=0 Junou(p.e) 2m 1 — Zf(2) 3

if p is repulsing.

Combining the equalities (7.1) and (7.2), (7.3), we arrive at the formula of Lemma
5.2, namely

1
_ if p is attracting;
1—f"(p) s
1ttt
2 f'(p) 1= f'(p)’
Example 7.1. Consider the family of linear-fractional automorphisms of the unit
disk U, given by

=D | =

u(p) =

if p is repulsing.

zZ—a

flz) = 1—az

where a € U is different from zero. The map f has two fixed points p = *a/|al,
both points belonging to the boundary. Since

f,(ig) _ Hclal,
o]/ 15 |a|
the point +a/|a| is repulsing and the point —a/|a| is attracting. Hence it follows
that
(+a) . 11—|a|l 1—]a|
AT/ T AT ] Tl
a 11+ |a
() =
lal 4 |a|
and so )
L(f)= ——.
) 1+ |a

Note that L(f) tends to 1 when a — 0, while single local indices p(+a/|al) have
no limit values for a — 0.
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