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This note is devoted to the global singularity structure of solutions to the following three-
dimensional semilinear wave equation with discontinuous initial data:

Du + g(u) =0,
u(0,2) =0, (1)
0wu(0,z) = uy (z),

where Ou = 92u — Zzzl O2u, ui(zr) = p(z) when |z| < 1, ui(z) = 0 when |z| > 1,

o(z) € C*(B(0,1)), and x = (x1,z2,x3). The nonlinearity g(u) € C*°(R) is assumed to
satisfy the following assumptions:

9(0) =0, G(u)= /Oug<s>dszo, 2)
9P| < Cy(1+ |uP~, 1<p<5. (3)

Under the conditions (2) and (3), the global existence of weak and smooth solutions to (1)
has been intensively studied in literature, [1-4] and the references therein. For instance, if
uy(z) € C°(R3), the authors in [1] and [2] proved the global existence of smooth solutions
to (1) when p < 5 and p = 5, respectively. Besides, if uij(x) € L*(R®), the authors
in [3] proved the global existence and uniqueness of weak solutions to (1) in the space
u € C([0,00), HY(R?)) N C1([0,0), L3(R3)) when 1 < p < 5. J. Shatah and M. Struwe in
(4] then obtained the global existence and uniqueness in the space u € C([0,00), H1(R?)) N
C([0,00), L*(R?)) N L*([0, 00), L'°(R?)) when p = 5.

Our main purpose is to study the influence of the nonlinear term g(u) on the properties
of the weak solution u to (1), in particular, to give a precise description of the global
singularity structure of w when the initial data u;(z) are discontinuous.
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2 H. YIN AND I. WITT

The main result is:

Theorem. Under the conditions (2) and (3), the global weak solution u(t,z) to (1) belongs
to C°((RT x R3) \ (21 U X)), where X190 = {(t,z) e R xR®: (t+1)? = Zzzl T2},

Notice that the surface X5 has a singular point (1,0,0,0). In general, the solution u will be
singular at this point. In [5], M. Beals showed that singularities of solutions to nonlinear
wave equations at such a point can cause a very complicated singularity structure of the
solutions for later times. More precisely, he proved that there are a C°° function S(t,x)
and a solution u € HE (Rt x R?), s > %, to the equation Cu + B(t, z)u® = 0 such that the
initial data u(0, ), 0;u(0, z) have compact support and are C°° with the exception of the
point at = = 0, while the singularities of u fill the whole solid light cone {(¢,z): |z| < t}. For
the problem (1), however, thanks to the special property of the discontinuous initial data
to be conormal with respect to the sphere |x| = 1 (for the definition of being conormal, see
[6] or [7]), with the help of Strichartz’ inequality we can prove that the weak solution u to
(1) is also globally conormal with respect to both the surfaces ¥; and X5. Consequently,
u € C®((RT x R?) \ (X1 U2Xs)), and the nonlinear term g(u) does not bring about the
nonlinear influence on the singularity structure of w.

To prove the Theorem, we will make use of the commutator technique introduced in [7].
To do so, we are required to know a basis for the C* vector fields which are tangent to
both 21 and 22.

Lemma 1. A basis for the C°° vector fields simultaneously tangent to 31 and ¥ is given
by

Vi= (t2 + x% + x% + x% — 1) O¢ + 2tx101 + 2tx209 + 2tx303,

Vo = 2tz10p + (t* + 23 — 1) 01 + 217202 + 212305,

V3 = 2tw20; + 212201 + (2 + 235 — 1) 02 + 222305,

Vi = 2tw30; + 212301 + 123305 + (87 + 23 — 1) 05,

Vs = 2102 — 2201,

Ve = 103 — w301,

Vi = 2205 — x30,.

Proof. As is well known, a basis for the C°° vector fields tangent to X is

(t+ 1)0¢ + 2101 + w202 + 303,
(t+ 1)01 + 210,

(t + 1)02 + 2204,

= (t + 1)83 + x30%,

My = 2102 — 2201,

M5 = 103 — w301,

Mg = 2203 — x305.

My
My
M,
M;

Obviously, My, My and Mg are also tangent to .
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Suppose that the C*° vector field V is tangent to ¥; and ¥s. Then

6
V= Z a,-(t, .’IT)MZ
=0

2
= (ao(t + 1) + a1T1 —|— a2 9 + a3x3) 8t + ((10.1‘1 —|— al(t —|— 1)) 81
6

+ (a0$2 + az(t + 1)) 02 + (Clol’g + ag(t + 1)) 83 + Z CliMZ',
=4

where a;(t,x) (i = 0,1,2,3) are appropriate C*° functions to be determined.
For V is tangent to Y9, from the Malgrange preparation theorem we infer that there is
a C* function d(t,z) such that

% <(t —1)2 - ixf) =2d <(t —1)% - ixf) :
We get,
<a0(t +1)+ Zai%) (t—1)— Z (apr; +ai(t+1))x; =d <(t —1)2— Zx3> . @)

We now start to determine the functions a; (i = 0,1,2,3).
Setting x1 = 22 = 23 = 0 in (4), we get

ag(t,0,0,0)(t + 1) = d(t,0,0,0)(t — 1).

Then there are C*° functions b;(t, x) (i = 1,2, 3) such that

ao(t+1) =d(t — 1)+ > b (5)

Substituting (5) into (4) yields

3

(Z(ai + bi)xi> (t=1) = (aowi + ai(t+ 1))z = —d ¥ _ 7. (6)

=1 =1 =1

Setting t = 1, 1 = 2 = 0 in (6), on the analogy of the analysis made above we conclude
that there are C* functions b;(t,z) (j = 4,5,6) such that

aogrs + ag(t + 1) = d$3 + b4(t — 1) + b5l’1 + b6$2. (7)

Similarly, there are C*° functions by (¢,x) (k = 7,8,9) and by, (t,z) (m = 10,11,12) such
that

agxo + a2(t + 1) = dxz + b7(t — 1) + bgﬂ?l + b9$3, (8)
aogri + (ll(t + 1) = d.’l?l + blo(t - 1) + bll.’Ez + 612.1‘3. (9)
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Then Eq. (6) assumes the form

(Z (ai + bz) .I'z) (t — 1) — (blo(t — 1) + b11$2 + b12$3) I

=1
— (b7(t — 1) + bg.TQ + ngg) Tro — (b4(t — 1) + b5$1 + bﬁl'g) Iy = 0. (10)

Setting ¢t = 1 and x3 = 0 in (10), we get
b11(1, 1, x2,0) + bg(1,z1,22,0) = 0.
Thus, there are C* functions ¢;(¢, ) (i = 1,2) such that
bi1 = —bs +c1(t — 1) + cazs. (11)

Similarly, there are C* functions ¢;(t,z) (j = 3,...,8) such that

b12 = —b5 + Cg(t — 1) + CqT 9, (12)
bg = —bG + C5(t — 1) + Cel1, (13)
as + bg = b4 + crx1 + Ccgxo. (14)

Eq. (10) becomes

<Z(ai 4 by)as + (cran + csxz)xg) (t—1)— (blo(t 1)+ (et — 1) + coms) a2

=1

4 (es(t—1) + C4x2)x3>$1 — (br(t — 1) + (c5(t — 1) + ca1) w3) w3 = 0. -

Setting ¢ = 1 and ;1 = 0 in (15), we infer that there are C*° functions cx(t,z) (k = 9,10)
such that

Co+cq4 = —cp + ot — 1), (16)
by = as + by + cgx3 — c5T3 — C10T1- (17)

Thus, Eq. (15) simplifies to
a1 + b1 — bip = —c10%2 — c7x3 + c1T2 + €373 + CoT2T3 (18)

Below, we shall derive expressions for ag, a1, as,as in terms of by, bs, b3, bs, bg, bs, cg, C7,
cs, €10, and d. From (5), (7), (8) and (9), we gather

d(t — 1) -+ Z?:l bz.Z‘z

- 1
" t+1 ’ (19)
> b
o 2d.’171 n blo(t — 1) + 611.1‘2 + b12-'173 _ (Zizl zxz) Al (20)
al_(t+1)2 t—f—l (t+1)2 )
3
2dxs br(t — 1) + bgxy + box3 (Zi:l bﬁi) T2
ag = + — , (21)
(t+1)2 t+1 (t+1)2

3
G — 2dx3 + ba(t — 1) + bsz1 + bewa (Zi:l bixi) 3 (22)
T (t+1)2 t+1 t+r1z
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Substituting (11), (12) and (13) into (20) and (21), we arrive at new expressions for a; and
az. Inserting these new expressions for aq, as and (22) into (14), (17), and (18), and taking

advantage of relation (16), we obtain

;

3 bexs
2by 2dx3 bsz1 + bgxo > im1 biwi ) w3 )
= - — crxy — cg%y +
t+1  (t+1)3 t+1 (t+1)2 e

2b; 2dxo bsx1 + (—bg + c5(t — 1) + cgx1) x3 (Zf:l b,-x,-) L2
t+1 (t+1)2 t+1 T (t41)2
+ b2 + cgr3 — c53 — c1o01,
2b10 2dz, (—bs + c1(t — 1) + coxs) o + (—bs + c3(t — 1) + cax2) 3
t+1  (t+1)2 t+1
(Zle biﬂfz‘) 1

ST i et (o~ ) = oz
\

By virtue of (23), we then find the sougth expressions for ay, as, and as:

( 3
de; 1 ) ) (Zizl bifﬂz’) T
al—t+1—§ 8.T2+06.T2$3+ 5.1'3‘|‘ t+1
t—1
+ T (bl + C10T2 + C7$3) s
3
dzo 1 b b (Zi:l bzxz) T2
ag—t+1+§ 8.T1+(CG.T1— 6).1'3— t—l—l
t—1
+ 5 (b2 + csxs — cro71) ,
3
U, (ERE8) Ty )
asz = t+1 2 501 6L2 t+1 2 3 CrT1 C8T2) .

\

Substituting (19) and (24) into the expression for V', we get

d b1

Ve—WV+-——
ATy

{xl (t+1)? —af—a3—23) 0+ (t—1) (t+1)>—23)

b
+ (1 —t)z12202 + (1 — t)xla:gag} + 2 j_ D {xz ((t+1)*— 27— a3 —23) 0

+ (1 - t).Z‘l.’Egal + (t - 1) ((t + 1)2 - .’17%) 82 + (1 - t).’l?lxgag}

bs

HCTCESY)

{373 (t+1)? — o] — 23 —23) O + (1 — t)z12301 + (1 — t)z2w302

(23)
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+0=1) (42 ~a) as}  (aar BUEED onl D) o)y,

bs(t+1)  cr(t2—1) be(t+1) cg(t?—1)
2 2 >V6+<a6+ 2 2 >V7'

+ <a5 +
Finally, upon noting
1 ((t+1)?—af —a3—23) 0+ (t— 1) (t+1)> = 27) 01 + (1 — ) 212205 + (1 — t)z12305
=+ 1)Vy —x, V1,
zo ((t+1)? —af — a3 —23) 0 + (1 — t) w2201 + (£ — 1) ((t+ 1)® — 23) 02 + (1 — t)z21305
(t+1)V5 —xaV,
vs (t+1)? — 2] — 23 —23) 0 + (1 — t)z12301 + (1 — t)m2w302 + (¢ — 1) ((t 4+ 1)* — 3) O3
= (t+1)Vy — x5V,
Lemma 1 is completely proved. [

Let [A, B] = AB — BA denote the commutator. By direct computation, we find:

—

Lemma 2. We have

Vi, Vo] = =229tV — 2x3tV5,
Vi, V3] = 221tV — 2x3tV7,

Vi, Va] = 221tV + 2x9t V7,

Vi, V5] = [Vh, V] = [V1, V7] =0,

Vo, Va] = =3(t* + 1)Vs, [Vo, V4] = 3(t2 + 1)V,
Vo, V5| = Vs, [Va,Ve] = Vi, [Vo, V7] =

Va, V] = =3(t* + 1)V, [V3, V5] = —Va,
Va,Vs] =0, [Va, Vi] = Vi,

00, Vi = 4t — 40,
O, Vo] = 4z,:0 4 205Vs + 203V + 401,
O, V3] = 4z — 20, Vs + 203V7 + 405,
O, Vy] = 4z30 — 20, Vs — 20,V7 + 403,
[0, Vs] = [0, V6] = [0, V7] = 0.
From Lemma 2, one easily derives the following result:
Corollary. Let {VFu} = {Vl’flVl’;z . ‘/lfju: i+ 4+ kj=1k|, ki,.... k; € No}, where

Vi s Vi, € {Vi,...,Vz}. If w is a solution to (1), then {VFu} satisfies the following
system of equations:

[
[
[
[
[
[
[
[
[
[
[
[

3
OVFu + Z eyt 2)0;VRu + fr(t, z,u)VFu
j=1
= Z akll._.lj (.T, t, U)Vllu e Vlju + Z bkljajvlu, (25)

T4+l | <[k =1 1<5<3
[H<Ik|-1
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where cyj(t,v), fx(t,z,u), and agy, .. 1, (v,t,u) are C* functions, by; are constants.
Next, we determine the initial data for the V*u.

Lemma 3. For each k, we have

{ Vmwhozgm@ﬂ@ﬁ+$%+$?—Dfﬂﬁ+ﬂ€+x§—n+g%@% 26)

athu‘tZO = q1k($)H(.T% + .T% + .T% - 1) + QZk($)7

where H(s) is the Heaviside function, and gix(x), gor (), q1x(x), q2x(z) are C on R3.

Proof. For |k| =0, (26) obviously holds.

We now assume that (26) holds for some |k|. Then we want to show that (26) also holds
when |k| is replaced with |k| + 1.

Let Ny = (.T% — 1)81 + 212202 + 112303, No = x1x201 + (.I‘% — 1)82 + x9x303, and
N3 = 212301 + 22309 + (x5 — 1)03. Then { Ny, Na, N3, Vs, Vs, Vz} constitutes a basis for
the C™ vector fields tangent to the circle z2 + 23 + 22 = 1. A direct computation gives

Vlvku‘tzo = (a:% + 23+ 23 — 1) 8thu‘t:0
= q1x(x) (x%+x%+x§ — 1) H(w%+x%+x§ -1)

+ qan () (o] + 23 + 25 — 1),

Vi+1V’“u\t:0 = (Nig1x(z) + 223915 (%)) (23 + 23 + 25 — V) H (2] + x5 + 25 — 1)
+ Nigor(x), i=1,2,3,

Vj+4V"’u‘t:0 = Vjyagik(2) (2] + 23 + 23 — V)H (23 + 23 + 23 — 1)
+ Vigagae(z),  j=1,2,3,

Vlathu‘tZO = (23 + 25+ 23 — 1)akau\t:0

3 3
= (22 + 25+ 23— 1) <Z D2V Hy — chj(t,x)ajvku
k=1 j=1
— oty z,u) Vi + Z apty ., (@, t, 0)Viu. . Vi

T[4 [<]k| =1

+ Z bkmjajvmu>

1<j<3
im[<]k]| -1

= grp+1() (2] + 25 + 25 — DH (2] + 25 + 25 — 1) + g2 p41(2),
V,-+18thu‘t:0 = Niqup(z)H (23 + 23 + 23 — 1) + Nigop(2), i =1,2,3,
Vj+18thu‘t:0 = Vj+4q1k(a:)H(x% + a3 422 —1)+ Vitaqar (), j=1,2,3.

t=0

By the principle of induction and a straightforward computation, Lemma 3 is then
proved. [

To solve (25) with the initial data (26), we have to show that the weak solution u(t,x)
to (1) belongs to L ([0,00) x R?). Let us recall Strichartz’ inequality from [3].

loc
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Lemma 4. There is a constant C' > 0 such that, for each T > 0,

[ull Laqo,r;zergey) < O (|Bullpro,m;p2@e)) + IVeu(0, @) || L2 sy + [10¢u(0, 2) || L2rs)) , (27)
where % +1=1rel2,00).

By virtue of the estimate (27), we arrive at (see [3, Lemma 3.3]):

Lemma 5. For allT >0, r € [2,00), M > 0, there is a constant C(T,r, M) > 0 such that
the solution u to (1) with p < 5 satisfies

u||Laqo,r;n8r sy < C(T,r, M), (28)

where % ++=3,7€[2,00), and |lur||p2rz) < M.

Based on Lemmas 4 and 5, we can now establish an L{S, bound for solutions u to (1) when
p < 5.

Lemma 6. Let 1 < p < 5. Then the weak solution u to (1) satisfies

u(t,z) € L2.([0,00) x R?).

Proof. Suppose that v(t,z) is the solution of the following linear wave equation:

Uv =0,
v(0,2) =0,
0tv(0,z) = uq(x).

By Kirchhoft’s formula,

1 t
v(t,x) = ypr /|w_y|:t u1(y)dSy = yp /52 ur(x + tw)dw.

Hence, v(t,z) € L ([0,00) x R®). By virtue of the energy inequality, we addionally have

loc

o(t, ) € C([0,00), HEEL (R3)) N CY([0, 00), HE.  (R®))  for any s < %

comp comp

Set w = u — v. Then w satisfies

Ow + g(w+v) =0,
w(0,z) =0, (29)
8{(1)(0, .’17) = 0.

To show u € L2 ([0, 00) x R?), it suffices to show that w € L2 ([0, 00) x R3).

loc loc
From (29), one deduces

O0,w + g'(w + v) 0y (w + v) = 0,

0, w(0,z) =0, (30)
0:0,w(0,2) = 0.
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What we want to show is g'(w + v)d,(w + v) € L ([0,00); L*(R?®)). If this holds, then

02w € L2 ([0,00); L2(R?)) and w € L2 ([0,00) x R3) by Sobolev’s embedding theorem.
In fact, using (28) and choosing ¢ =5, r = % in Lemma 4, we have
|0:w|| L3 (0,7;010) < C[lg"(w + ) Ox(w + 0)|| L1 (0,712

< Crum (||3:cw||Loo(0,T;L2) + ||a:n”||L°°(0,T;L2)

-1 —1
+ [l 8wwHLl(o,T;m) +[[[wl? awUHLl(o,T;m))
1 —0
< Crm (1 + [[w]l” 5(p—1) 5(p—1) ||aww||%°°(0,T;L2)||8ww||i5(o T;L10)
[ iTo (O,T;LZ(I—G)) o
+ H|w|p_18w”HL1(0,T;L2))7
where 6 = 5%1’, and Cr g > 0 is a generic constant depending only on 7' > 0 and
M > 0, where |ui||f2msy < M. Taking into account that 5(::91) < 5, gg’:;g < 10,
and [|w|| s 0,7;z10y < O, in view of Lemma 5, we further obtain
10xw]| L3 0,75210) < O M (1 + ||aww||;(90,T;L10) + H|w|p_1awUHL1(o,T;L2)> : (31)
To estimate the remaining term |[|w|P=10,v||, |, 2\, We now distinguish three cases:
L'(0,T;L?)
Case 1: 1 < p < 2. By Sobolev’s embedding theorem, d,v € L>®(0,T; L37¢°) for any
go > 0. Since |wP~1 € LOO(O,T;L%), upon choosing ey = % < 1 we obtain
=00l s 5y < Crae 10l oz [0,y o < O
by Holder’s inequality. Hence, for 1 < p < 2, (31) implies
105w 250 75210y < Cros (1 + ||8ww||i§(907T;L10)> . (32)

We deduce [0zwl| 5o 1,10y < Cr,ar from (32), ie., g'(w + )0y (w + v) € L'(0,T; L?) and
w € L*®((0,T) x R3).
Case 2: 2 < p < 4. By Holder’s inequality, we have

| |w|p_1awv“L1(0,T;L2)

-1
< lzes o,752m (B0,147))) ||w||i(p71>p2(O,T;L(p71>¢12) 1020|| Lo (0,1 L5-<0)
where p1,p2,q1,q2 > 1 satisfy
1 1 1 1 1 1 1 3 1

_+_:17_+_+ = 3 + ) p—1Q2Z6
P1 P2 @1 g 3—e0 2 (p—lp2 (p—1)g2 2 ( )
. 6(3—
Choose 0 < g9 < min{1,4 — p} and set p; = 4_10%50, Q= 60((1_?0)), p2 = p_%l_e(), and
g2 = —9— to satisfy the above requirements. Hence, in view of Lemma 5, we obtain

1—60

||wP~ 10| 10,7502y < Cr,pr- Similar to Case 1, we then deduce w € L*°((0,T) x R?).
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Case 3: 4 < p < 5. Choose gp > 0 sufficiently small so that p — 2 +¢9 < 3 and
(p=2+20)B=c0) ~ 9 By Hlder’s inequality and Sobolev’s embedding theorem,

1—60

H |w|p_189”UHL1(O,T;L2)

= w20,

(0,T;L2)
—24 1—
< w7 2(p—2+e)(3-20) Haﬁ%w“Loos(OO,T;Lz)HaﬁBUHLW(O,T;L?’*EO)'
Lr=2+=0 (0,T;L T-cp
By Lemma 5 (with ¢ = 3, r = 6), we get
H|w|p_1awUHL1(o,T;L2) < CT,M“angi;E(Oo,T;Lz)' (34)

Substituting (34) into (31) gives
|0zwl|zs0,1;100) < Crymt (1 +[100w| 25 0,7, 1.10) + ||8§w||2;€(00,T;L2)> :

Consider the function h(s) = s — Cy — Cp 8%, where Co = Cr (1 + ||0§w||i;€(°0 T,L2)>.
Thereby, we can assume that Cr pr > 1. Obviously, h(0) = —Cy < 0 and

h(Co + CoCitag) = CiCrar (C3T0CTT — (1 + CHar)?)
> C8Crm (C’Trf;j —(1+ Crfp’fM)9> >0
for m > 0 large enough. Hence,
0wl 0,250y < Col + Ciag) < Coar(1+ 0205258 7o),
Upon applying the energy estimate to (30), we infer
|02w]| L (0,;22) < Croar |9 (w0 + )0 (w + )| 2 0,712
< Crour (14 102013250 ooy + 102001 o e ) -

Hence, [|02w|| g (0,r;02) < Cr,m, and we find w € L>°(0,T; H*(R*)) € L>°((0,T) x R*).
Because T' > 0 is arbitrary, Lemma 6 is proved. [
Now, we establish the same result when p = 5.
Lemma 7. For p = 5, the weak solution v € C([0,00), H'(R3)) N C*([0, 00), L3(R3)) N
L3([0,00), L'(R3?)) to (1) satisfies

u(t,z) € Lis.([0,00) x R3).

Remark. In case p = 5, (1) has a unique global weak solution v € C([0,0), H}(R?)) N
C1(]0,00), L2(R3)) N L} ([0, 00), L'°(R3)) by [4]. Moreover, u € L°((0,0), L1°(R3?)) by [8].

loc
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Proof. One easily gets that there is a time 7" > 0 such that Eq. (29) has a local solution
w(t,z) € C([0,T%), H52 (R*))NCH([0,T*), HEFL (R3)) for any 0 < s < 3. Thus, w(t,z) €

comp comp
L3 ([0,T*),L'(R%)). By the preceding remark, w(t,z) € L*((0,7*), L'°(R?)).

We want to show that w(t,z) € L*((0,7*) x R?).

Applying the pseudodifferential operator A5tz with symbol (14 |¢|2)2(+2) to both sides
of (29), we find

OAST 2w + A2 g(w + v) = 0,
ASt3(0,2) = 0, (35)
OtAH%w(O,x) =0.

Choosing tg < so < T™, by virtue of Lemma 4 we have

Al iz < © (J0:A Fw(t0, )|z + 19A S u(to, )1

503
A0+ 0) gt er) < Cllo) + Ol + 0% e
For > 0,1 < p < 0o, the following inequality holds (see [9]):
IA*(frf2)|lr@®ny < C (| fillpo @) |A* foll oz ey + | f2ll s ey [|AF f1 ]| Lz (me))

providedthat%:q%+qi2:—+r , q1, 1 € (1,00], g2, T2 € (0,00).
Thus, we obtain, for ||uy||pz < M,

[0t Mgy <€ (ot )] A @) (e, )l + e, ), 1A+ (e, o)
< Cllw(t, )l A w(t, ) | oo,

oot ey < C (It Moo IA ot Yoo + ol )= IAE () (1, )] 2
< O ([t s |4 B0 (t, ) 122 + 1A (wh) (1, )12

< Cp- arlleo(t, )| Bl A2 w(t, )| e,

lw?v2 () yovy < € (Il (tllas [ATFE @2 Yoo + 022, e (AT (P2, ) 22
< Cre (It I s 08, ) o
ot e, [Fo AT 2 w(t, o )
lw?v (&, ) yory < € (It llas A2 @A) oo + 07 8 ) Lo (AT (@) (2, ) 22
< ot (e, 3zl (E, ) e
ot et oA Fw(t, o)

vt (6, M gery < C (ot Lz oA (e ez + oG, M= 1A Fw(t, )z -
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Hence, we have

1 1

||As+2w||L5(t0,So;L10) < CT*,M<]' + ||w||%5(t0,so;L10)||AS+2w||L5(t0,SO§L10)
3 1
w12 (1 o519 A2 0] oo ,0:22) + 10 Es 1, 505210) AT 20| Lo ,505210)
1 4 1

+ ||w||L5(t0,80;L10)||AS+2w||L5(t0,80;L10) + (80 —to)® ||AS+2w||L5(t0,80;L10)) '
Since w € L3((0,T*), L'?), we have w € L3([0,T*), L'8) by virtue of Lemma 4. When ¢ is
sufficiently close to T, we infer from (36)

1 3
||AS+2w||L5(t0,80;L10) S CT*yM (1 + ||w||%3(t0,so;L18)||AS+2w||L°°(t0,80;L2)> .
Applying the energy estimate to (35), we get
1 3
||atAs+2 w||L°°(t0,So;L2) + ||As+2 w||L°°(to,so;L2)
3
< CT*:M (1 + ||w||%3(t0,so;L18)||As+2w||L°°(t0,so;L2)> .
If ¢y is sufficiently close to T™ so that CT*:MHwH%f‘(tO,so;LlS) < %, then we have
1 3
||0tAs+2w||Loo(t0a50;L2) S CT*7M7 ||As+2w||Loo(t0750;L2) S CT*zM'
More precisely,
|0, A5 T3 w|| <C A3 <C
¢ C([to,T*),L2) < O+ M, C([to,T*),L2) < Cr> M-

Using Eq. (35) once again, we find

10:A° T oo, m),02) < Crea,  |AT20|| 010, 74),22) < Cre -

We obtain w € C([0,T*], H¥*t2(R3)) n C1([0, T*], H*T1(R®)) by Arzela-Ascoli’s Theorem.
Furthermore, for some 0 > 0, we can extend this solution to the time interval [0, T* + 0]
utilizing the local existence of solutions to (35).

Continuing this way, the proof of Lemma 7 is completed. [

Proof of the Theorem. We solve Eq. (25) with the initial data (26). To prove the
Theorem, we need to show that

VFu € C([0,00), L3(R?)) (37)

for all k.

For |k| = 0, (37) obviously holds. Now suppose that (37) holds when || < |k] — 1. We
shall then prove this result for k.

Since u € L*°([0,T] x R3) for T > 0 according to Lemmas 6 and 7, respectively, the
Gagliardo-Nirenberg inequality (see [10]) when applied to (25) gives

Z al,..1; (7, w)Vihu.. . Viu e C([0,T], L3(R?)).
T4+l | <[k -1

Hence, by the standard energy estimate and the regularity of initial data as stated in
Lemma 3, we get
Vku e C(0,T], L*(R®)) for any T > 0.

Therefore, (37) holds and the Theorem is proved. O
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