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Abstract

When studying elliptic operators on manifolds with nonisolated singularities
one naturally encounters families of conormal symbols (i.e. operators elliptic with
parameter p € R in the sense of Agranovich—Vishik) parametrized by the set of
singular points. For homotopies of such families we define the notion of spectral
flow, which in this case is an element of the K-group of the parameter space. We
prove that the spectral flow is equal to the index of some family of operators on the
infinite cone.
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Introduction

The notion of spectral flow {4;}, t € [0,1], of a family of elliptic self-adjoint operators is
well known and widely used in elliptic theory for a long time (e.g., see [3]). The present
paper develops a generalization motivated by the recent development of index theory on
manifolds with singularities. The spectral flow of a homotopy of conormal symbols (that
is, operators elliptic with parameter in the sense of Agranovich—Vishik) was introduced
in [14] (close results can be found in [10]): if Dy(p), t € [0,1], is a continuous family of
conormal symbols, then, intuitively speaking, the spectral flow sf D; is the net number
(counting multiplicities) of singular points p; = p;(t) of the family D;(p) crossing the real
axis in the p-plane upwards as the homotopy parameter ¢ varies from 0 to 1. An example
is

Di(p) =p— A, (0.1)

where A; is a family of self-adjoint elliptic (or normally elliptic, as in [16]) operators. In
this special case, the precise definition of spectral flow is based on the notion of spectral
sections, which is not defined for general conormal symbols that do not have the form (0.1).
However, to give a rigorous meaning to counting the number of singular points crossing
the real axis in the general case, we need another idea, see Fig. 1.

Instead of counting singular points crossing the real axis, one draws a staircase in
the space [0,1] x C, (the figure shows the projection of the staircase on the (¢,Im p)-
plane) such that the stairs do not touch singular points. The passage from stair to stair
occurs at some time instants ¢;, and one counts the singular points occurring at these
instants between the stairs, taking the number of points (more precisely, the sum of their
multiplicities) with the minus sign when ascending and the plus sign when descending.
The advantage of this method is that the sum of multiplicities of singular points of the
conormal symbol in a strip is given by simple closed-form expressions (see [18]). We can
also interpret this idea as follows: It is hard to count singular points crossing the real axis,
since their trajectories are in general not transversal to the real axis. Hence we deform
the real axis to a broken line (formed by the horizontal stairs and the vertical segments
joining the stairs) such that the trajectories of singular points meet only vertical segments,
to which they are necessarily transversal; then the computation becomes easier.

One of the main theorems on index formulas on manifolds with conical singularities
says that index formulas with homotopy invariant terms exist for the class of elliptic oper-
ators with principal symbols from a given set satisfying certain natural conditions if and
only if the spectral flow of every periodic family of conormal symbols associated with such
principal symbols is zero [12]. (This condition can be verified effectively, since the spectral
flow of a periodic family depends only on the principal symbols of the operators in the
family.) A similar result for closely related [13] “spectral boundary value problems” (i.e.,
problems in which the boundary conditions are determined by some pseudodifferential
projections) was obtained in [16]. The vanishing condition for the spectral flow is not
satisfied in the class of all elliptic principal symbols, and one example of a symbol class



Im p

Figure 1. The definition of spectral flow

for which it is valid is the class of principal symbols whose restriction to the boundary of
the cotangent bundle of the stretched manifold is symmetric with respect to the change
of sign of the conormal variable:

D(Tawapaq)‘aT*M/\ :D(T,w,_p,Q)- (02)

(Other examples can be found in [12].) The index formula for operators whose principal
symbols satisfy this symmetry condition has the form [14]

~

ind, (D) + sf D, = ind,(2D), (0.3)

where the family D, is determined by the conormal symbol and has the form of a linear
homotopy
D, =(1—-7)D(p) + 7D(—p). (0.4)

This formula generalizes the formula in [18], which uses only the multiplicities of singular
points under a symmetry condition imposed on the full conormal symbol.

These constructions show that the notion of spectral flow plays an important role in
elliptic theory on manifolds with singularities. However, the definition given in [14] is
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adequate only for the case of simplest singular manifolds, namely, manifolds with isolated
singularities. The situation becomes more complicated for manifolds with nonisolated
singularities. For example, consider an elliptic operator D on a manifold M with edge X.
Its conormal symbol is defined at each point x € X and hence is a family that depends
not only on the conormal variable p, but also on the point of the edge:

o.(D) =D,(p), =€ X.

Now if we consider a homotopy D, = D, (p) of such parameter-dependent conormal
symbols, then the spectral flow should be an element of the Grothendieck K-group K (X)
of the parameter space. For the case of families of self-adjoint elliptic operators, the defi-
nition was given in [7, 8] (again in terms of spectral sections). We are however interested
in the case of general conormal symbols.

In the present paper, we define the spectral flow sf D, of a homotopy

Dt = D:E,t(p)a t € [0, ]_],

of families of conormal symbols with compact parameter space X and prove its main
properties. The main novelties are as follows.

1. We consider general conormal symbols rather than linear ones of the form (0.1);

2. We give a local analytic definition that essentially treats the spectral flow as an
intersection number;

3. We prove a K-theoretic formula for the spectral flow using Bott periodicity.

The passage from the case X = {pt} to a nontrivial parameter space X dramatically
complicates the technicalities, and so in the remaining part of the introduction we explain
the main essential points of the construction.

1. In our situation the spectral flow is not a number, but rather an element of the K-
group, that is, a formal difference [E]-[F] of equivalence classes of two vector bundles
over X. Consequently, we should count not the singular points crossing the real line (or
passing between stairs), but the corresponding bundles. What are these bundles? If the
family has the form

D:c,t(p) =P A(J’I, t) (05)

with a normally elliptic A(x,t), then it is natural to define the bundle corresponding to a
singular point p; = p;(z, t), which in this case is just an eigenvalue of the operator A(z, 1),
as the bundle formed by the corresponding root subspaces (so far we ignore the additional
difficulties encountered if the eigenvalues have variable multiplicities). However, it is
not obvious at first glance how to extend this scheme to arbitrary families D, ,(p) that
do not have the form (0.5). The hint is given by an analogy in the theory of elliptic



boundary value problems. When analyzing an mth-order differential equation near the
boundary, one freezes the coefficients, passes to the Fourier transform with respect to the
tangent variables, and considers decaying solutions of the resulting ordinary differential
equation with constant coefficients on the half-line R, > 7. The space of such solutions is
isomorphic to the space of their m-jets at 7 = 0, and the boundary conditions are imposed
on these jets. If the original equation is pseudodifferential rather than differential, then
it is hard a priori to say anything about the value of m for which such an isomorphism
holds, and it is more convenient to consider the space of decaying solutions themselves.
In our case we proceed as follows. Let us start from the simplest family (0.5). Let h be
an eigenvector of the operator A = A(x,t) with eigenvalue p:

Ah = ph.
Instead of h, we consider the solution
fr) ="
of the equation
-1 = (5 - 4) 1) =0 06)

with the initial condition f|;—o = h. Next, let h; be an associated vector:
Ahy = phy + h.
Instead of h;, we consider the solution
fi(T) = e PThy + ite” T

of Eq. (0.6) with the initial condition fi|;=9 = h1, and so on (see [2]). The passage from
root vectors with given A to solutions of the nonautonomous equation is an isomorphism,
and even for the simplest family (0.5) the advantages of this method are obvious: one need
not distinguish between eigenvectors and associated vectors, since they all are represented
by solutions of the same nonautonomous equation. Next, in the construction of the
spectral flow we shall need all solutions corresponding to roots p contained in some open
strip a < Im p < b in the complex plane. It is easy to single out such solutions: one must
consider solutions that grow slower than €™ at +00 and slower than €™ at —oo. (Here we
continue the analogy with elliptic boundary value problems but use a strip instead of the
lower half-plane.) Restating this condition, we say that the solutions should be sought
in the weighted Sobolev space H***(R, x ) on the infinite cylinder (e.g., see [20], [18]).
Now it is clear what to do for general conormal symbols D(p): the bundle corresponding
to the passage between the stairs Imp = a and Imp = b, a < b, at time ¢; is formed by

the kernels of the operators
~ 0
D:c,tj = D:c,tj <_ZE>
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in the space H>*®. (The smoothness parameter s does not affect anything by virtue of the
smoothness theorems for solutions of elliptic equations.) The bundles E and F' defining
the spectral flow can be constructed as follows in the simplest case: one chooses some
staircase, and the direct sum of all bundles corresponding to ascending steps is taken as
F, while the direct sum of all bundles corresponding to descending steps is taken as F.
Needless to say, one has to prove that the class [E] — [F] € K(X) is independent of the
choice of the staircase.

2. If the parameter space X is nontrivial, then there is an additional technical difficulty:
in general, there exists no staircase suitable for all z € X simultaneously. The construction
can be carried out only locally; in other words, one covers the parameter space by finitely
many open charts Uj, chooses a staircase S; in each of these charts, and constructs the
corresponding bundles E; and Fj. However, this is not sufficient for defining a class in
K(X), even if the necessary conditions [E;] — [Fj] = [Ex] — [Fkx] € K(U; NUy) hold. Thus
we in fact construct some bundles W; and isomorphisms

onk:Ej@Wj—)Ek@Wk,
Yk F; @ W; — Fy @ W

on the intersections U; N Uy such that the cocycle conditions hold. These data already
determine vector bundles E and F over entire X and hence the class [E] — [F] € K(X).
A major part of this paper just deals with the construction of these bundles and with
the proof of the fact that the construction is invariant (in particular, independent of the
choice of staircases in the charts).

The main body of the paper consists of three sections. The first section contains some
necessary preliminaries, the second section contains the construction of the spectral flow,
and in the third section we prove the main properties of the spectral flow, namely, the
homotopy invariance and the index theorem.

We note that the sign in the definition of spectral flow is opposite to that adopted
in [14]. This has been done to avoid the unaesthetical minus sign in the statement of the
index theorem.

1 Preliminaries

In this section we recall some known material in order to make the exposition as much as
possible self-contained.

1.1 Conormal symbols

Let X be a compact parameter space (for simplicity assumed to be a smooth manifold),
and let B
Q- X (1.1)



be a locally trivial bundle with fiber a smooth compact manifold €2 without boundary.
In what follows the fiber over a point x € X will be denoted by (2, whenever we need to
indicate the base point explicitly. Next, let E' be a vector bundle over 2. We denote the
restriction F ‘QI by E,; this is a locally trivial vector bundle over 2.

Definition 1.1. A conormal symbol of order m (with parameter space X) is a family,
continuously depending on = € X, of mth-order pseudodifferential operators Agranovich—
Vishik elliptic with parameter p € R [1] in the Sobolev scales { H*(2,, E;) } ser-

We denote a conormal symbol by D = {D,(p)}, where
D.(p): H*(Q, Ey) — H* ™ "™(Q, E,). (1.2)

In what follows we omit the subscript = and the variable p unless this might lead to
confusion and also write H*(€);) instead of H*(),;, E,). Furthermore, we consider only
conormal symbols of order m = 0. (The general case can be reduced to this by order
reduction.) Unless otherwise explicitly specified, we assume throughout the following
that for some hy > 0 all conormal symbols in question satisfy the following condition.

Condition 1.2. The operator function (1.2) is holomorphic in the strip |Imp| < hyg
and is a family of pseudodifferential operators Agranovich—Vishik elliptic with parameter
Rep € R continuously depending on x € X and Imp € (—hy, ho).

We first give the definition of spectral flow for families of conormal symbols satisfying
Condition 1.2. Later on we show how to extend the definition to the case in which this
condition is violated.

It follows from Condition 1.2 that for each € X the operator function (1.2) is
finitely meromorphically invertible in the strip | Imp| < hy, i.e. invertible everywhere but
a discrete set of singular points, where the inverse operator has poles with finite rank
principal parts of the Laurent series. Moreover, there are only finitely many singular
points in any proper substrip |Imp| < h, h < hy.

1.2 Weighted Sobolev spaces and ¥YDO on the infinite cone

Weighted Sobolev spaces. To a given operator function (1.2) we shall assign some
families of finite rank projection operators defined on open subsets of the parameter space
X. First, let us describe the spaces where these projections act. Let

Ko ={Q xR }/{Qx{0}} (1.3)

be the infinite cone with base 2. We denote points of the smooth part of the cone by
(w,r), we Q, r € Ry. The projections act in the spaces H*""72(Kg) defined as follows.
The cone K can be treated as a compact manifold with two conical singularity points
(a “spindle”), where one point corresponds to the value r = 0 and the other to r = cc.
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(The radial variable 7’ in a neighborhood of the second point is related to r by the change
of variables ' = 1/r.) Then H*"7(Kq) is the weighted Sobolev space of order s with
weight exponents 7, at the point » = 0 and —~; at the point ' = 0. For 11 < v < 7,
there is a continuous embedding

H*"(Kq) C H*""*(Kg), (1.4)
where H*7(Kg) is the “standard” weighted Sobolev space on the infinite cone with the
norm , p )

0 ’ d
ull?,, = /‘ <1 — <r5> — Ag) [ Tu] % dw.
Ko

Moreover, if v; < 73,74 < 79, then there is a more general embedding
H*"?7(Kq) C H " (Kq),
which turns into the previous one for v3 = v4 = v, since
H*"(Kq) = H(Kq).

For the reader’s convenience, we also note that the space H*7:72(Kq) can be described
as follows. Let

1= @1(r) + ¢a(r) (1.5)
p1(r) =0forr > 1, po(r) =0 for r < 1/2

be a smooth partition of unity on R,. From now on we assume that this partition is
chosen and fixed. Next, let Ko be the cone Ko without the vertex. Then

the completion of C’go(lofg) }

S,71,72 _
H (H) = {with respect to the norm [|ullsy, ny = [918lls + 12l

o (]‘6)
B the set of distributions u € D'(Kq),
| such that pju € H¥"(Kg), pou € H*"2(Kq) |

In the following, we consider only spaces H*77?(Kq) with v; < 7s.

Pseudodifferential operators with constant coefficients on the infinite cone.
Let
A=A(p):H(Q) — H’(Q?), seR

be a pseudodifferential operator with parameter Rep € R in the sense of Agranovich—
Vishik of zero order on €2, defined on the weight line

Ly ={lmp =~}

9



We define an operator
— - a [ee] i / i

by setting R
A, =9 "o Ap) oM, (1.8)

where
) = = / () T pe ) = = / () dp (19)

is the Mellin transform with respect to the variable r with weight line £, and the inverse

transform. The operator 2&7 extends by closure to a continuous operator (denoted by the
same letter)

A, HY(Kg) — H*(Kqg). (1.10)

Now suppose that the operator function A(p) is holomorphic in the strip |Imp| < hy
and is a family of Agranovich—Vishik pseudodifferential operators with parameter Rep €
R continuously depending on x € X and Imp € (—hg, hy). Then the operator (1.7)
(i.e., the operator K7 on compactly supported functions) is independent of the choice of
v € (—ho, hy) by the Cauchy theorem and can be extended not only to the continuous
operators (1.10), but also to the continuous operator

-~

A'Yl,’)’2 : H5771772(KQ) — Hs;71772(KQ) (111)

for v1,72 € (—ho, ho). (This assertion is not valid if A (p) has singular points in the strip.)

1.3 Projections associated with conormal symbols

Let D be a conormal symbol satisfying Condition 1.2. We take some positive h < hy and
carry out all subsequent considerations in the Hilbert spaces!

Hz = H>M(Kq,). (1.12)

Accordingly, all weight exponents v will be taken from the interval [—h, k], which is not
explicitly mentioned every time. Consider the operator family R = D~!; more precisely,

!The specific value of s is irrelevant; the results are independent of the choice of s by virtue of the
theorems on the smoothness of solutions of elliptic equations, which is valid also for cone-degenerate
operators.
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By the preceding, this is a meromorphic operator family in the strip |Imp| < hy; it
depends on x continuously and for each x has at most finitely many poles in the strip
| Im p| < h. Moreover, it is a zero-order pseudodifferential operator with parameter Rep
on every weight line £, that does not contain poles for a given x.

Let U C X. Until the end of this subsection we fix U and consider only parameter
values x € U. Let A = [y1,7%] C [=h, k], 11 < 72, be an interval (possibly degenerating
to a point) such that the weight lines L,;, j = 1,2, corresponding to its endpoints do not
contain poles of R for z € U. Such intervals will be called admissible (with respect to
U). We define an operator family

Pao=Pa(r): CF(Kq,) — Hey a €U, (1.13)

by the formula (we omit the parameter = here and in what follows and sometimes speak
of operators rather then operator families for brevity)

f)A - (ﬁ")’l - ﬁ‘%)[@Qaﬁ]a (114)

where D = ]/:\)7, v € [—h, h] is chose arbitrarily, ¢, is the second element of the partition
of unity (1.5), and the brackets [, -] stand for the commutator of operators.

Remark 1.3. If the interval A is degenerate, then P4 = 0.

One can readily see that the operator (1.14) is well defined: it follows from the above

~

discussion that the operator D, (and hence the commutator [p,, D,]) is independent of

7, and by applying the commutator to a function from the space C§°(Kg) one obtains
a function that lies in each of the spaces H*7(Kq), so that the operators f{% and ﬁw
can be applied. It remains to use appropriate embeddings of the form (1.4). Moreover,
the operator (1.14) extends to a continuous operator in the space H®*772(Kq): it is
the projection on the finite-dimensional kernel of the operator ]571,72. Thus, for each
admissible interval the above-mentioned projections act in their own weighted Sobolev
spaces, which complicates the comparison of their ranges. However, one can readily
overcome the difficulty. Let us prove some properties of the operators P4 in the wider
space ) = 9.

Lemma 1.4. The projections (1.14) extend by closure to continuous projections (denoted
by the same letter)

Pi:H— 9. (1.15)

(The ranges of these projections are finite-dimensional and hence are not affected by the
closure.)

Proof. The operator of multiplication by ¢ is continuous in the spaces

0y H = HMKg) — HYM(Kg),
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where «y is arbitrary. (This follows from the fact that po = 0 for small r). Of course, we
are interested only in the values v € [—h, h|. For these v, the operator D is continuous
in H*7"(Kq), so that the commutator is continuous in the spaces

02, D] : § — H* (). (1.16)

Now we note that

~ ~

[p2, D] = —[¢1, D], (1.17)

and moreover, p; = 0 for large r. A similar argument shows that the commutator is

continuous in the spaces R
[p2, D] : 5 — H>"(Ky). (1.18)

Combining (1.16) with (1.18), we find that the commutator is continuous in the spaces

[p2, D] : § — H*M(Kq) N H> (Kq) = HY (Ky). (1.19)
It remains to take v = «;, j = 1,2, use the continuity of the operators f{%. in the
corresponding spaces, and apply the corresponding embeddings (1.4). a

The projections thus constructed continuously depend on x. Hence for each interval
A C [—h, h] admissible with respect to U we have a finite-dimensional subbundle £4 =
EA(U) over U of the Hilbert bundle 9 "3 X with fiber $.; namely, the subbundle is
formed by the ranges of the family of projections P A-

These projection families (and the corresponding subbundles) prove to have useful
properties.

Theorem 1.5. The following assertions hold.

1) If A and B are admissible intervals, then
P.Pp=PpP,=Pup, EiNEp=Ers (1.20)

Here 13@ = 0 by definition, and, as noted before, f’c = 0 ¢f C is a degenerate
admissible interval (i.e., consists of a single point).

2) If A and B are admissible intervals with a single common point, then

P,+Py=Puip Ei®ER=Ean (1.21)

Remark 1.6. The intersection of admissible intervals, as well as the union of admissible
intervals with a single common point, is always an admissible interval, so the objects in
the statement of the theorem are well defined.

12



Proof. First, let us prove item 2). Let A = [y, 72|, B = [72,73], so that AU B = [y, 73]
We have

1314 + 1SB = (ﬁ’n - ﬁ72)[§027 ]3] + (ﬁ’m - ﬁ73)[g02, f)] = (ﬁ% - ﬁ%)[()@?a ]3] = ISAUBJ

as desired.

Now let us pass to item 1). With regard to item 2), it suffices to consider the case in
which A and B have at most one point in common. Let A = [y, 7,] and B = |3, 4],
where v, < 3. Then

)[f) v1/Py

IPB (R'yl - R72)§01DPB
901PBa
since

1. DPy = 0 (the range of Py is contained in the kernel of D);

2. by virtue of the inequalities relating the weight exponents, the operator of multipli-
cation by ¢; continuously acts from the space H*77(Kq) D ImPp into the space
H*"(Kq) N H*"(Kg), so that all operator products in this computation are well
defined continuous operators.?

It remains to note that (f{ﬂ,1 - f{W)D =0 on HS’"“(KQ) NH*"(Kg).
In a similar way, on can consider the product P BP 4. The proof is complete. O

1.4 Homotopies of projections and bundle isomorphisms

We intend to study how the above-introduced projection families (and the corresponding
bundles) behave under homotopies of conormal families. Here we give some facts concern-
ing homotopies of projection families and the corresponding bundles in the abstract case.
All our constructions are “pointwise” with respect to the parameter space, and so instead
of homotopies of projection families we speak for brevity of homotopies of projections and
so on. The continuous (or appropriately differentiable) dependence of our constructions
on the parameters is trivial.

2Compare with the computation for the case A D B (i.e., 71 <73 <71 < 72):

~

f)Af,B = (ﬁ"h [ﬁ7 901] + ﬁ"Yz [ﬁ7 902])PB == ﬁ%ﬁ@lf)B + ﬁwﬁ@Zf)B = (901 + <P2)f)B = f’B-
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Statement of the problem. Let P(¢),t € [0, 1], be a continuous piecewise continuously
differentiable (in the uniform operator topology) homotopy of continuous projections in
a Hilbert space H. (Instead of [0, 1] one can take an arbitrary interval [a, b] of the real
line.) To this homotopy we assign the family of subspaces

E(t)=ImP(t) CH, te]0,1]. (1.22)
We shall study continuous piecewise continuously differentiable families of isomorphisms
W(t) =£(0) — E(t), te]0,1], W) =1. (1.23)

More precisely, we answer the following questions:

e How to describe all such families of isomorphisms in terms of the family of projec-
tions P(t)?

e How to construct them??

Reduction to the similarity of projections. To solve these problems, we first note
that from isomorphisms of the ranges of projections one can always proceed to the simi-
larity of the projections themselves. Namely, the following lemma holds.

Lemma 1.7. Each family (1.23) can be extended to a continuous piecewise continuously
differentiable family of isomorphisms U(t) : H — H satisfying the conditions

U)PO)U (t) = P(t), te][o,1]; U0) =1. (1.24)

Conversely, the restriction to £(0) of a continuous piecewise continuously differentiable
family of isomorphisms U(t) satisfying conditions (1.24) is a family of isomorphisms of
the form (1.23).

Proof. The second part of the assertion is trivial; let us prove the first one. Given W (t),
we consider the family of subspaces

E(t) =Im(1 — P(t))
and some continuous piecewise continuously differentiable family of isomorphisms

W(t): £(0) — E(t), W(0) = 1.

(The existence of such a family, in any case well-known, follows also from the results given
in this subsection below.) We set

U(t) = W(t)P(0) + W(t)(1 — P(0)).

3The answer to the second question will not be complete. We only describe the construction of a fairly
large set of such families.
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Then one can readily see that

as desired. O

From now on we sometimes omit the argument ¢. The ¢-derivative will be denoted by
a dot.

A description of the set of families (1.23). Now we are in a position to describe all
possible families of isomorphisms (1.23). The following assertion holds.

Theorem 1.8. Fuvery continuous piecewise continuously differentiable family of isomor-
phisms (1.23) has the form

W@:U@Mm (1.25)
for an invertible operator family
Ult): H —H
satisfying the Cauchy problem
U=AU, U((0)=1 (1.26)

with some bounded piecewise continuous operator function A = A(t) such that the original
projection family P satisfies the equation

P =[A,P). (1.27)
Two such operators A and A generate the same isomorphism W if and only if

(A— AP =0. (1.28)

Proof. By Lemma 1.7, every isomorphism W has the form (1.25), where U satisfies the
relation (1.24). Thus, we must show that the relation

P=UP(0)U*

holds if and only if for some operator A the family U satisfies the Cauchy problem* (1.26)
and the projection P simultaneously satisfies Eq. (1.27). This assertion is nothing else
than a variation on the theme of the well-known relationship between the Heisenberg and

“The initial condition follows from (1.24).
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Schrodinger pictures in quantum mechanics. For completeness, we give the proof here:
the operator A is uniquely determined by U as A = UU!; now if P = UP(0)U!, then

P=UPOU Y =UPOU—UPOUUU!
= (U HYUPO)UY) — (UPO)UHYUU™) =[A,P).

Conversely, if P = [A, P], then P = UP(0)U~! by virtue of the unique solvability of the
Cauchy problem.

Finally, two isomorphisms U and U with property (1.24) specify the same isomorphism

W if and only if

VEpPU-U)=0.

The family V' satisfies the Cauchy problem
V(0)=0, V=AV +(4A-A)PU

and vanishes identically if and only if condition (1.28) holds. O

A construction of operators A satisfying (1.27). Thus, to construct the desired
isomorphisms W, it suffices to find operators A(t) such that P(t) satisfies the Heisen-
berg equation (1.27). Here we give a construction that provides an ample supply of such
operators. Let P = {Pi(t),..., Py(t)} be a finite set of continuous piecewise continu-
ously differentiable disjoint projection-valued functions of the parameter ¢ € [0, 1]. This
means that for each ¢ all operators P;(t) are projections (not necessarily orthogonal), and
moreover,

P;(t)P(t) =0 for j # k. (1.29)
We set
N
P =13 Py(0), (130)
j=1
so that the operators P, ..., Py form a resolution of identity:

1= XN:P]-. (1.31)

Jj=0

(If P is a resolution of identity, then Py = 0.) Consider the piecewise continuous operator

function of ¢ given by
N

A= AP = AP)(t) £ Y PP (1.32)

J=0
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Lemma 1.9. Let the projection P be decomposable in the system P in the sense that
P-yr,
jel
where I € {0,...,N} is some subset. Then P = [A, P].

Proof. In view of linearity, it suffices to prove that PJ = [A,Pj] forall j =0,...,N.
Indeed,

N N N
AP;— PjA=P;P;— P}y PP =PP;-) (P,R)P+P;» PP
=0

= =0 =0
. . . N .
=BP—BP+F) R=F. O
=0

Remark 1.10. If the P;(t) are rank one orthogonal projections on the eigenvectors of
some time-dependent self-adjoint operator B(t), then the corresponding unitary operator
U (t) specifies the evolution in the adiabatic approximation (see Berry [5] and Simon [19]).

Remark 1.11. The construction given here is a generalization of the well-known con-
struction in which the operator U is defined via the Cauchy problem

U =[P, P]U,
U|t:0 - ]_
Indeed, if we take N =1 and P, = P, then P, =1 — P and
A= PP, + PyPy=PP—P(1—-P)=2PP— P =2PP— (PP) =[P, P].

Our construction can readily be generalized to the case of several sets of disjoint
projections.

Lemma 1.12. Let Py,...,Ps be continuous piecewise continuously differentiable (in the
parameter t € [0, 1]) finite sets of disjoint projections such that the projection P is decom-
posable in each of these sets. Then P satisfies Eq. (1.27) with an arbitrary operator A of
the form

A= NAP], (1.33)
7j=1
where the \j = \;(t) are piecewise continuous functions such that

The proof is trivial.
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2 The Spectral Flow

Let D; = D, (p) be a family of conormal symbols over a compact parameter space X
continuously depending on the additional parameter ¢ € [0, 1]. Suppose that the following
condition holds.

Condition 2.1. For t =0 and ¢ = 1 the family D, is invertible for all p € R.

Under this condition we define the notion of spectral flow of our family on the interval
[0,1] as an element of the K-group of the parameter space:

Sf{Dt} = SftE[O,l]{Dt} € K(X)

Remark 2.2. If X is a singleton, then the invertibility condition is not necessary, since
one can always guarantee the invertibility by moving by a small ¢ down from the real
axis. In the general case this cannot be done, and the invertibility condition is essential.

Throughout this section we additionally assume that the family D; smoothly depends
on ¢, Condition 1.2 holds for all ¢ € [0,1], and a positive number h < hy is chosen and
fixed, so that the constructions of Subsection 1.3 in the Hilbert spaces (1.12) are well
defined. Next, we equip X with some metric; for arbitrary ¢ > 0 and an arbitrary subset
K C X, by U.(K) we denote the e-neighborhood of K in this metric; for a singleton
K = {z}, we write U.(z) instead of U.({z}). Thus, U.(x) is an open ball centered at x.
We recall that U.(AU B) = U.(A) UU.(B), but U.(AN B) C U.(A) NU.(B).

2.1 Admissible weights and staircases

We define a weight system as a finite subset of [—h, h] containing the point 0. Let I' C
[—h, h] be a given weight system. We say that v € [ is an admissible weight at a point
x € X for given t € [0,1] if the family D, ,(p) is invertible everywhere on the weight
line £, for these x and ¢. (For example, Condition 2.1 implies that the weight v = 0 is
admissible for t = 0,1 for any € X.) The set of all admissible weights at a point x € X
for given ¢ € [0, 1] will be denoted by I'(z,t). We note that by definition I'(z,¢) C T'; that
is, one takes weights from a given weight system rather than arbitrary weights. Next, we
set

D(K,t) = () T(x,1), KcX, telo1],
zeK

D(xz,A) = (| I(z,1), reX, Ac](o1],
tcA

N(K,A) = () T(at), KcX, Ac|o1]
reK teA
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(for example, I'(x, A) is the set of weights admissible at x for all ¢ € A) and

L(a,t) = D(U.(x), 1), IL(K, 1) = D(UL(K), 1),
[o(a, A) = D(U.(x), A), IL(K, A) = T(U.(K), A).

An element v € I'.(z,t) (respectively, v € I'.(K,t)) will be called an e-admissible weight
at a point x (respectively, on a set K) for given ¢. Furthermore, an element v € I'.(z, [¢, 7])
(respectively, v € I'.(K, [t,7])) will be called an e-admissible stair at x (respectively, on
K) on the interval [t, 7).

Let a weight system I' C [—h, h| and a finite partition T = {t¢,t1,...,6,:}, 0 =ty <
t; < --- < t. =1, of the interval [0,1] (in what follows, simply a partition) be given.

Definition 2.3. Let U C X be a subset. An e-admissible staircase (for U) is a sequence
S ={7,7%...,7} of e-admissible stairs for U on the intervals [to, t1], [t1,t2], . .., [tr—1, ;]
(see Fig. 2).

For technical reasons, we supplement each staircase by zero initial and final stairs
Yo = Yr+1 = 0 (also shown in Fig. 2), so that for each point of the partition 7" there is an
incoming (left) and an outgoing (right) stair.

We note that admissible staircases in general do not exist unless U is sufficiently small,
T is sufficiently fine, and the weight system [ is sufficiently ample.

The following lemma is a basis for the local construction of the spectral flow.

Lemma 2.4. There exists an € > 0, a finite open cover Uj U; O X, a partition T of the
interval [0, 1], and a weight system I' C [—h, h|, such that for each element U; of the cover
there exists an e-admissible staircase.

Proof. Take some x € X. Then there is a partition T, = {to,t1,...,t.}, r = r(z), of
[0,1] and a weight system 7y, ...7, € [—h, h] such that the family D, ,(p) is invertible on
the weight line £, for ¢t € [t;_1,¢;], 7 = 1,...,r. By continuity, the invertibility holds
in some open ball B, centered at x. We set I'y = {v,...7.}. Let Ew be the open ball

centered at x with radius half that of B,. Since X is compact, there exists a finite cover
X = Uj B,,. Now we can set U;j = By, T = Uj Ty, and I' = Uj [';; U{0} and take the

minimum radius of the balls Exj as €. [

2.2 Auxiliary constructions

In the following subsection, we construct the bundles specifying the spectral flow using a
set, of e-admissible staircases in elements of some open cover of the parameter space X.
Here we only describe the relevant auxiliary constructions that depend only on the weight
system [, the partition T' = {¢¢,t1,...,t,}, and the number ¢ > 0, which are assumed
to be chosen in such a way that the conclusion of Lemma 2.4 holds for some open finite
cover of X. (Note, however, that the cover itself does not occur in the constructions of
this subsection.)
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Figure 2. An admissible staircase

Morphisms relating the range of admissible projections. Let U C X be an
open subset, and let 7,7 € I'(U,t;). According to Subsection 1.3, the subbundle

Erm (U, L) C 5‘U is well defined as the range of the projection 13[71,72}(:1:,@), z e U.
The fiber of this subbundle at a point x € U will be denoted by &, ,.1(,t;) C .
We shall introduce bundle isomorphisms

U;:9—9H j=1..,r (2.1)
such that the following properties hold for an arbitrary open subset U C X:

L. If y1, 72 € To(U, [tj_1,t;]) are e-admissible stairs for U on [t;_1,t;], then ﬁj restricts
to an isomorphism of the bundles &, ,,1(U, t;_1) and &, ,.1(U, t;):
Wj([’h, 72]7 U) = Uj : 5[71,72}([]7 tj—l) — 5[71,72]([]7 tj)' (2'2)
€1 721 (Ut —1)
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2. If yi,72, 73 € Lo(U, [tj-1, 5]), 11 < 72 < 73, then
W, ([, 93], U) = W, 7], U) @ W([99, 73], U). (2.3)

In fact, property 2 holds automatically, since the operators V/\\/']( -+ ) occurring in (2.3)
are the restrictions of the same operator U; to the subspaces

5[71 73] (Ua t) = 5[71 2] (U= t) ©® 5[72,73] (U= t)'

Hence it suffices to guarantee property 1.

We construct the isomorphisms U; by the method explained in Subsection 1.4. That
is, we take some piecewise continuous point family K(x,t), t € [0,1], z € X, such that
for any weights 71,72 € I'.(x, [t;_1,;]), 11 < 72, one has

P[’n,’yz} (l‘, t) = [A((E, t)a P[’YI,’YQ} (l‘, t)] (24)
Next, we solve the Cauchy problem
U=AU, tel0,1, Ul =1 (2.5)
=tj_1
and set R R
U; =U(t;)U(t1) (2.6)

By Theorem 1.8, this isomorphism has the desired properties.

Lemma 2.5. The set of piecewise continuous operator families A(x,t) with property (2.4)
18 nonempty.

Proof. Let X = |J, V5 be a finite cover of X by open balls of radius €/2. Consider an
arbitrary Vi; let I'(V}, [t,_1,t;]) = {7,..., %}, where the numbers 7y, ..., are arranged
in ascending order. Consider the system of disjoint projections

Ps = { Pl ) (2, 1), Py, gy (@, 1), Pl (@, )}, € [t 1]

and set R
A, = A[P;]
(see (1.32)). Next, let {s(x)} be a partition of unity on X subordinate to the cover {V;}.

We set,
ZSOS s) ] 17t]

The operator this constructed has the desired property. Indeed, let

Y172 € Te(U, [tj-1,85]).

Then vy, v, € I'(Vy, [tj_1,¢;]) for any V; that has a nonempty intersection with U. (Since
Vs is a ball of radius £/2). It follows that the projection Phlm](m, t),veU,tetji,t;]is
decomposable in each of the systems P, for which x € V;. It remains to apply Lemma 1.12.

0
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Remark 2.6. The isomorphisms V/\\fj( -+ ) are not uniquely determined; they depend on
the choice of the family A(z,¢). The set of such families with the desired properties is

an affine space, and so any two systems of isomorphisms V/\\/']( -+) given by the construc-
tion (2.2), (2.4), (2.5), (2.6) are homotopic in the class of such systems of isomorphisms.

Finite-dimensional approximations. Although the bundles &, ,,(U,t;) are finite-
dimensional, they form a system of subbundles (defined on certain open subsets) of the
infinite-dimensional bundle 9. Now we pass (for each j = 0,...,r) to an isomorphic
system of subbundles of some finite-dimensional bundle F;. Consider some j € {0,...,r}.

Lemma 2.7. For each 6 > 0 there exists a bundle homomorphism

where Fj is a finite-dimensional bundle over X, such that for any v € X and 71,72 €
Ls(x,tj), 11 <72, the restriction

fjl‘ : 8[71,’72}(x7 tj) — Fj (2'8)
21 (@:t5)
1S a monomorphism.
Remark 2.8. It follows from the lemma that for admissible weights v, v, € I's(U, ¢;) the
subspaces
E(,Yl)’)/?)x:tj) :fjfﬁ(g[%ﬁﬂ(x?tj)) CF}CL” relU

form a subbundle E(vyy,v,,U,t;) C Fj‘U isomorphic to &, ,)(U,t;). Moreover, natural
properties like

E(n,7s,U,tj) = E(71,72, U, t;) ® E(v2,73, U, t}) (2.9)

are valid.
For brevity, these subbundles (respectively, subspaces) will be denoted by®

[71, 72]j (U)
[71, 72]j (z)

def

= E(717727U7 t):
def
= E(’}/l,’}/g,x,t),

and the argument U or x (as well as the index j) will be omitted whenever it is clear from
the context or irrelevant. Property (2.9) acquires then the mnemonically natural form

v, 72l @ [2s s8] = [, sl 1 < e < s

likewise, for 71 < y23 < 74 we have

[v2, 78, 72 < 78,
[71; 73] N [72, 74] =
{0}, Yo > 3.

5The brackets are typeset in bold to distinguish subbundles from the corresponding closed intervals.
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Proof of Lemma 2.7. By the Kuiper—Jénich theorem (see [4]), the bundle § is trivial:
H~ X x9H Let {e1,€2,...} be an orthonormal basis in . We claim that f; can be
taken in the form of the orthogonal projection 13N on the subbundle F; ~ CV spanned
by the first N vectors of this basis for sufficiently large N. First, note that if for given
x, 71,72 the mapping (2.8), where f; = f’N, is a monomorphism for some N = Ny, then
it is a monomorphism for N > N; as well, since f’NO = f’NOf’N in this case. Now we take
arbitrary vy, v € I', 71 < 79, and set

Xs(y1,72) = {55 €X |7, € F(;(x,tj)}.

The bundle &}, ,,)(U, t;) is defined in some neighborhood U of the set Xs(71,72). Since

p Stromely 4 as N — oo, it follows that for each point xy € Xj(71,72) there exists an
N such that the mapping (2.8), where f; = 13N, is a monomorphism for x = zy. By
continuity, this mapping is monomorphic also in a sufficiently small neighborhood of the
point zy. Considering a finite cover of the closed set Xs(71,72) by such neighborhoods and
choosing the maximum of the corresponding N, we provide the validity of the assertion
of the lemma for the given pair v;,v, € I'. Since there are finitely many such pairs, we
can proceed to the maximum of N over all pairs, thus completing the proof. O

The isomorphisms \/7\\73( -+) construct, via f;, the corresponding isomorphisms

Wj(’h,%) : [71;72]3‘71 — [71;72]j7 7 < Ve, (2-10)

which inherit the direct additivity from \/7\\7j:

Wi, 72) @ Wilv2, v3) = Wi, 73), M <72 < 7s. (2.11)

Remark 2.6 pertains to these morphisms as well.

We write W;(y1, 72, U) instead of W;(y1,72) whenever we wish to indicate the domain
U over which the subbundles related by this morphism are defined.

In the following, we assume that § < e (say, we choose § = £/2).

Orthogonalization. Let some homomorphisms f; with the properties indicated in
Lemma 2.7 be given. We shall equip each of the bundles F; with an inner product, which
permits us to consider orthogonal complements of bundles. The subbundles [y, 7o]; will
be orthogonal with respect to this inner product. More precisely, the following assertion
holds.

Lemma 2.9. In the bundle F} there exists an inner product (-, «) such that the subspaces
[a,0];(x) and [c,d);(z) are orthogonal for any x € X and any two intervals [a, b], [c, d] with
disjoint interiors such that a,b,c,d € I'.(z,t;).
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Proof. Let (-, +) be some inner product on Fj;. Consider a finite open cover X = |J, V;
by balls of diameter < ¢ — 0. We take some ball V;; let I's(V;,t;) = {71,..., 7}, where
the numbers 7y, ...~ are arranged in ascending order. We have the direct sum expansion

Fil,, =lnrleherle - ehiuek, (2.12)

where F is the orthogonal complement to [y1,y2] ® - - - @ [1-1, 7] with respect to (-, -).
Now we define an inner product on Fj‘v by setting

(u,v)s = Y _(mu, mv), (2.13)

j=1

where m; is the projection on the [th component in the expansion (2.12). The expan-
sion (2.12) is orthogonal with respect to the product (2.13). We set

(U,,U) - Z@s(uav)s (2.14)

where {p,(z)} is a partition of unity on X subordinate to the cover {V;}. This inner
product has the desired property, since if v € I'.(z,t;), then v € I's(Vj, ¢;) for each ball
Vs containing the point x. O

Remark 2.10. It follows from the construction given in the proof with regard for the
convexity of the set of inner products satisfying the conditions of the lemma that for a
continuous deformation of the family D, and/or finite-dimensional approximations f;, the
inner products (-, ) can be chosen continuously depending on the deformation parame-
ters.

In this subsection, for given weight system [, partition 7', and number £ > 0, we have
defined a construction (nonunique) of morphisms, finite-dimensional approximations, and
inner products satisfying the above-mentioned conditions. For brevity, such morphisms,
finite-dimensional approximations, and inner products will be referred to as suitable (for
given I', T¢) in what follows.

2.3 Bundles determining the spectral flow

The spectral flow will be defined in the next subsection as an element of the group K (X),
i.e., the difference [E] — [F] of equivalence classes of two bundles E and F over X. In this
subsection we construct £ and F', assuming that the above-mentioned objects are fixed
(more details will be given below), and in the next subsection we show that the element
[E] — [F] is well defined, i.e., independent of the choice of these objects.

Thus, we assume that the following objects are chosen and fixed:
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1. the partition of unity 1 = ¢ (r) 4 2(r) occurring in the definition of the projections
P, (see Subsection 1.3);

2. a partition T'={0 =1, < t; < ... < t, = 1} of the interval [0, 1];
3. a finite weight system I' C [—h, hl;
4. a number £ > 0;

5. a cover | J,Us; D X for which the conclusion of Lemma 2.4 holds (in the following,
such covers are said to be admissible);

6. suitable finite-dimensional approximations f;;

7. suitable inner products (-, +) on Fj;

8. suitable morphisms V/\\fj( -+) and the corresponding morphisms W;(-- ).

The bundle F. We define F' globally on X by the formula
F=@PF,. (2.15)
j=0

The bundle E: a local description. The description of E is more complicated. In
this item, we give a local description, that is, describe the restrictions Ey = E|y, of E
to the charts U of the cover, and in the next item we describe the transition functions.
Let us take some s. Suppose that in U; we have chosen some e-admissible staircase
Ss = {7s1,.-+,%sr}- (The independence of the construction on the choice of staircases will
be shown in the next subsection.) It proves convenient to describe E; not only over all
Us, but also over an arbitrary open subset U C U,. The smaller the subset, the larger the
freedom in the description; of course, all descriptions will be isomorphic with explicitly
given isomorphisms.
We define E|y as the direct sum of 3(r + 1) bundles

T

E|,=@DE; e PE) e PE) =D (E; 0 E” e EY), (2.16)
j=0 j=0 j=0

j=0

so that to each point ¢; € T" there correspond three summands with superscripts (—), (0),
and (+). Let us describe these summands. To simplify the notation, we omit the subscript

s, i.e., write E](-i), EJ(-O) instead of ES-E), Egg), 7; instead of 7y, etc. At the point ¢; there is

an incoming stair ; and an outgoing stair vy, of the staircase S. Furthermore,
Vi Vi+1 € FE(Usatj) - FE(Uv tj)'
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Figure 3. The construction of the bundle E for an admissible staircase

We take arbitrary admissible weights a;, b; € I'.(U, t;) such that
aj < Y5 Vit < b (2.17)
(say, one can take a; = min{v;, yj+1}, b; = max{vy;,v;11}) and set

EY =y b, 0), BV = oy, b5 (U), B = [a5,795]5(0) (2.18)

(see Fig. 3a, where the construction is visualized; the vertical segments stand for the
bundle given by the ranges of the corresponding projections). Here E+ is the orthogonal
complement of F.
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Our construction contains additional ambiguity in the choice of the weights a;,b; €
I'.(U, t;) satistying condition (2.17). Let us show that the bundle Ej is independent of
this choice up to natural isomorphisms. These isomorphisms are in fact direct sums of
isomorphisms corresponding to separate points of 7', and so we consider the components
corresponding to a given j € {0,...,7}.

Lemma 2.11. Suppose that two pairs a;,b; and Zij,gj of admissible weights I'.(U, ;)
satisfy condition (2.17). Then there is a natural isomorphism

EX @ BY @ BV = [v;,b] @ [aj, b)]* @ [ag, 7541]
— B e EY @ BT = [y, b)) @ [, 0] @ [d;,%1] (2.19)

Moreover, if Ej,gj 15 a third such pair, then the triangle
EVeEYeEY —— ED e EY ¢ EY
| | (2.20)
)y 7O g g )
of the corresponding natural isomorphisms commutes.

Proof. We write out this natural isomorphism explicitly. To reduce the computations, we
omit the subscript j and the arguments U and ¢; and write y_ = ~; and v, = ~;11. Let

A=min{y-,7+}, B =max{y_, 74}

(See Fig. 3b, ¢, where two possible case of arrangements of the incoming and outgoing
stairs are shown.) Then
a< A<y 7, <B<D,

and regardless of a and b we have the isomorphism
77bab : [777 b] ©® [aa b]L ©® [CL, ’7+] — [’777 B] ©® [Aa B]L b [Aa ’7+] (221)
obtained as the composition (from top to bottom) of the direct sum decompositions

[v-, 8] © [a,0]" @ [a, 74]

ﬁ,,B]A@[B,bT & [ob" @ [0,4] B 4]

-~

[’YfaB] @ [A7B]J_ b [A77+]
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(the validity of these decompositions follows from the fact that the inner product satisfies
the condition stated in Lemma 2.9). Now the isomorphism (2.19) can be defined as
z/)-d%lwab, and the commutativity of the diagram (2.20) becomes the trivial identity

1/%11/)&3 ° w;fgl?/)ab = wg%b-
]

The bundle E: transition functions and the cocycle condition. In the preceding
item we have described local representatives F, of the bundle E in the charts U, on X.
Here we describe the transition functions. Let U; and U; be two charts with a nonempty
intersection Uy = U, N U;. We set

Esl :Es‘Usl; Els :El‘Usl’

so that, according to the construction given in the preceding item,
T r

Ea=@PE] o EY 0 E)), E.=@PE oL L), (2.22)

5]
Jj=0 Jj=0

where the bundles on the right-hand side are restricted to Uy. For these restrictions,
in the definitions of the bundles for each j = 0,1,...,r, we can use the same weights
aj,bj € I'.(Ug, t;) both for E and Ej, so that

aj < Ysgy Vs,jrl> Vijs Vg1 < by (2.23)

(Here v,; and v, are stairs of the staircases corresponding to the jth and [th chart,
respectively). Let us define the transition function

gsi - By — Ey. (2.24)

For the above-mentioned choice of a; and b;, this homomorphism is given by the direct
sum

ga =ide P g (2.25)
7j=1
of the homomorphisms
@ EY eEB) — EY @B (2.26)
corresponding to the replacement of the jth stair, j = 1,...,r, and the identity homo-

morphism

id: By o PEY @ EY — ES e QET & B

lr
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Figure 4. The stair change homomorphism

on the components lacking in (2.26). It remains to describe the homomorphism ng] (see
Fig. 4).
By the definition of the spaces occurring in (2.26), we have
g’ [ag-1 15l @ Dy bl — L4, 7l 1 @ [ Bl (2.27)

Let 7v5; > ;. (In the opposite case, the formulas are similar.) Then the mapping (2.27
Vsj j
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is obtained as the composition (from top to bottom) of the mappings
[aj-1,v5l-1 @ [, 051
[a; vl @ [wvsli ®  [si bl
H J{(Wj('Ylja'YSj))il ‘ (2.28)
dyvwlionc ® Dgvglin @ [ bils

~

[aj—1,Vsilj—1 D [7s5,bjl;-

One can readily see (we omit the corresponding awkward commutative diagram) that the
definition of the transition function (2.24) is independent of the choice of the constants
aj, b; satisfying conditions (2.23).

Lemma 2.12. The transition functions thus defined satisfy the cocycle condition.

Proof. Let the intersection Uy, = UsNU;NU,, be nonempty. On this intersection, in the
description of our bundles we can use weights

aj,bj € Fe(Uslm;tj) D FE(US,tj),FE(Ul,tj),FE(Um,tj)

such that

aj < Ysgr Vs,grls Vijs Vig+1s Ymgr Ymoj+1 < by (2.29)
With regard for (2.25), it suffices to verify the cocycle condition separately for each of
the components corresponding to changes of stairs; for these components, however, the

desired property follows from (2.28) and the direct additivity of the morphisms W;(---).
For example, if v,; < 75 < Vmj, then the cocycle condition follows from the relation

Wi (Vsis Ymg) = Wi(Vsis 1i5) @ Wi(is Yimg)-
We leave details to the reader. O

Corollary 2.13. We have simultaneously shown that the bundle E is independent of the
choice of e-admissible staircases Sy in the charts Us.

Indeed, one can assume that each chart in the cover is repeated several times and
each copy is equipped by an e-admissible staircases, so that all e-admissible staircases are
exhausted. Then the passage from one staircase to another is just a special case of the
passage from one chart to another.
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2.4 The spectral flow as an element of K(X)

The definition of spectral flow. In the preceding subsection, for a family Dy, t €
[0, 1], of conormal symbols with compact parameter space X satisfying Conditions 2.1
and 1.2, we have constructed the bundles £ and F' using some arbitrary additional data.

Definition 2.14. The spectral flow of the family Dy is the element
SftE[O,l] Dt =sf Dt = [E] — [F] S K(X) (230)
of the K-group of the parameter space X.

Theorem 2.15. The element 2.14 is well defined, that is, independent of the ambiguity
in the construction of the bundles E and F'.

Proof. As was mentioned in Subsection 2.3, the construction of £ and F' depends on the
(eight) objects listed there. Accordingly, we split the proof into several parts.

a) [E]—[F] is independent of the choice of objects 8, 1. According to Remark 2.6,
any suitable morphisms W;(---) can be connected by a homotopy of suitable morphisms.
In the construction of FE, this results in a homotopy of the transition functions, so that
E is replaced by an isomorphic bundle. The change of the morphisms W;(---) does not
affect other elements of the construction; in particular, F' remains unchanged. Thus, we
have shown that [E] — [F] is independent of the choice of objects 8 for given projections
13A. Now if we vary object 1, i.e., the partition of unity occurring in the definition of the
projections, then the bundles defined by the projections remain the same, while the set
of suitable morphisms varies. However, one partition of unity 1 = ¢;(r) 4+ ¢2(r) can be
connected with another by a linear homotopy, which provides homotopies of projections
P, in Eq. (2.4), so that one can obtain the corresponding homotopy of the families
K(m, t) by using the construction of Lemma 2.5 with a given partition of unity {y,(x)}.
Thus, we again arrive at a homotopy of suitable morphisms W;(---) (where the notion
suitability now depends on the homotopy parameter), and the preceding argument shows
that [E] — [F] is independent of the choice of the object 1.

b) [E] — [F] is independent of the choice of the objects 7 and 6. First, we
deal with inner products. Suitable inner products form a convex cone; in particular,
any two of them can be connected by a linear homotopy. Such homotopies generate the
corresponding homotopies of E (the definition of the local representatives E; contains
orthogonal complements with respect to a given inner product), so that the bundle E' is
taken to an isomorphic bundle and F' remains unchanged. Hence the desired assertion
follows. Now let us prove that [E] — [F] is independent of the choice of suitable finite-

dimensional approximations B
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First, we consider the case in which the bundles F; remain unchanged and there is a

continuous family f;(7) : H—s F;, 7 € [0,1], of suitable finite-dimensional approxima-
tions. For this family we can construct a continuous family of suitable inner products
(see Remark 2.10), so that as the result we obtain a continuous homotopy of E, while F’

remains unchanged. Next, consider an embedding F; C ﬁ} and the associated passage
from the approximation (2.31) to the approximation

fi:H— Fj, (2.32)
where f; is the composition of f; with the embedding. Then }7’] can be equipped with a

suitable inner product whose restriction to Fj coincides with the original one; the bundles
E and F will be accordingly replaced by

N:E@é}?f andﬁ:éﬁ;zF@éﬂﬁ
=0 =0 =0

where F3- is the orthogonal complement to Fj in F Obviously, [E] — [F] = [E] — [F].
Flnally, from the approximation (2.32) one can pass to any other approximation

gi:H— G (2.33)
by embedding F; and G into F; @ G; and then by joining f; ® 0 with 0® g; by the linear
homotopy

oy (A=7)f; 0
fi(r) = < 0 )7 TE [0, 1]. (2.34)

The suitability of f;(7), that is, the fact that it is monomorphic on certain subbundles
for each 7, follows from the suitability of f; and g;.

c) [E]—[F] is independent of the choice of objects 2—5. Now let us show that our
definition is independent of the choice of the partition, the weight system, the number
e > 0, and the admissible cover {U,}. Standard reasoning implies that it suffices to show
that [E] — [F] remains unchanged if we refine the cover, add a new point to the partition
or the weight system, or diminish €. The only nontrivial case is adding a new point to the
partition 7'. In the other cases, finite-dimensional approximations, inner products, and
morphisms W;(---) suitable for the “new” objects are also suitable for “old” ones, and
we obtain the same class [E] — [F] as before by using “old” admissible staircases. (Here
we have used the already known independence of [E] —[F] on the choice of objects 1,6-8.)
Now let us add a new point to the partition 7" between ¢; and tﬁl We denote the
new point by Z;41/2 to avoid renumbering. Obviously, I'.(U, [t;,t;41]) = (U, [t;,tj41/2)) N
Lo (U, [t41)2, ]+1]) for any subset U C X. We denote by E and F' the bundles constructed
for T and by E and F the bundles constructed for the partition 7' = TU{tj11/2}. (Weshall
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use tilde to indicate objects corresponding to the latter pair of bundles.) We assume that
all other objects (except for morphisms on the interval [t;, ;1] and objects pertaining
to the point ¢;,,/,) are the same for both pairs. In particular, F; = f‘i, 1 =0,1,...,7,
i # j+ 1/2. Obviously, in the construction of E it suffices to use only e-admissible
staircases such that the stairs on the intervals [t;,¢;;1/2] and [tj11/2,t;41] are the same
(and hence lie in I'.(Us, [t,t;41]) for the corresponding element U of the cover). Next,
using the construction (2.2)—(2.6) for the morphisms, we can assume that

Wj71(717’727 U) = %71/2(717 V2, U) o A/jfl(’Yl: V25 U) (2-35)
for any pair of admissible stairs v1,72 € I'.(U, [t;,t;41]) and any open subset U C X.
For F' we thus obtain

F=F®Fj. (2.36)
The bundle E is thus locally (i.e., in the charts U,) of the form (see Fig. 5)
Ey = By ® [5,0] @ [a, 0] @ [a, 754, (2.37)

where a = a;y1/2 and b = b;, 1/ are chosen in Uy arbitrarily under the same conditions
as the other a;, b;, and we have omitted the subscript j + 1/2 in the notation of spaces.
Since

(s 0] @ [0, 81" @ [0, vs] = Fjiape],, -

we have B B
E; = Es ® Fiyip, - (2.38)
We claim that globally one also has
E=E®Fj, (2.39)
so that [E] — [F] = [E] — [F]. Thus, to complete the proof of Theorem 2.15, it remains

to prove the following lemma.
Lemma 2.16. Relation (2.39) holds.

Proof of the lemma. Let us analyze the transition functions of the bundles on the right-
and left-hand sides of the identity to be proved. The transition functions of £ and E are
direct sums of transition functions on pairs of components (see (2.25) and (2.26)), and
moreover, they coincide for the corresponding pairs in £ and E with the only exception
for the pairs that do not have counterparts, namely, the pairs

E( '@ E(+1/2 = [aj, 755l @ [Vsg, V412
E](+)1/2 ® E( = [a, 75J]J+1/2 @ ['759: J+1]J+1
E( '@ E(+1 = [aj, Vs5l; @ [Vsss bjali

corresponding to the intervals [t;,%11/2], [tj+1/2,tj41], and [t;,¢;41] of the partition. Con-
sider the intersection Uy, = U, N U;. Let us write out the critical components® of the

6The components where there may be differences.
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bi 4
1 b
T bi+1
[
'
t/' t;‘+1/2 t7+1
a]' -1 a/'+1
Ta

Figure 5. Adding the point ¢/, to the partition

transition functions gy of the bundle E and gs @ id of the bundle E & ﬁjﬂ/g. All critical
components of the transition function gy @ id are necessarily contained in the diagram
(where we write v = ,; and 7 = 5, assume without loss of generality that v < 7 and
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omit the subscript j + 1/2 on spaces, that is, write [v, w]j11/2 = [v, w])

[a;,7]; © [7,0j11]j1 @ Fji1/2

AL N

[a’ja ry]] S [rya Y ; S [?7 bj-l—l]j—l—l @ [% :Y] D [:}77 b] S [CL, ’Y] & [CL, b]J_

H -9 [ I

[aj7 7]]' Y [;7:%]]41 D [?7 bj+1]j+£ D LY:ﬂ @ [:Y{, b] Y [CL, ’7] @ [a7 b]LJ

[aj,7]; @ [, bj41] 41 ® Fii1y2

(2.40)

(in the following, we shall see that this diagram still contains some noncritical element).
The critical components of the transition function g, are contained in the diagram

[a;, 7] o [0 © [ob" o [a, 7] & [, b1l

N N

[aja 7]] S [rya Y15 D [?7 b] S [CL, b]J_ S [CL, fy] S [77 :Y/] S5 [:y/a bj+1]j+1
T I TR R
[aja 7]] S [rya Y15 D [?7 bl S [CL, b]J_ S [CL, fy] & [77 :ﬂ S [?7 bj+1]j+1J

-~

[aja ’7]] D [77 b] D [aa b]J_ Y [aa 7] D [77 bj+1]j+1
(2.41)
Dropping coinciding morphisms in (2.40) and (2.41), we see that
gs1 D id=Gy,® wsla gsl =Ga® 7Zsla (242)

where G, is the direct sum of all common components of the mappings gy @ id and g,
and

g = (Wj—l(%% 0) : [ A; [v, M+

: ® — O (2.43)
0 id [v,7] [v,7]

D = (~ 0 N %—1/2(%@) : [75,9’” — he,]j]j+1 (2.44)
Wia(r7) 0 [, 7] [v,7]
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The isomorphisms (2.43) and (2.44) are homotopic; namely, the homotopy has the form

Pa(T) = ([ Wit [L=r+ir(l- T)]fW/“”) , T€0,1], (2.45)

1—74(1— T)]Wj,l Tid

where the arguments ,7 are omitted for brevity. Indeed, 15 (0) = Dyl Ya(l) = g let
us verify that the morphism (2.45) is invertible for all 7 € [0, 1]. Let

Wi 1—74+r(1- T)]fW/j_l/Q <u> _
1—74+ (1 —7)|W;4 Tid v 7

TW_ju+[1—7+ir(l — T)]Wj,l/gv =0,
[1—7+ir(l— T)]Wj_lu +7v = 0.

that is,

We multiply the first equation by 1—7+i7(1—7) and subtract it from the second equation
multiplied by 7W;_; . With regard to (2.35), we obtain

{7’2 —l—-7+ir(1- 7')]2} W 100 =0,

whence it follows that v = 0, since W;_; 5 is an isomorphism and 72 —[1 — 7 +i7(1 —7)]?
does not vanish on [0, 1]. By substituting v = 0 in our equations, we find that u = 0, as
desired.

Thus, we have obtained a homotopy gs(7) = G4 @ 15 (7) of the transition functions
gs of the bundle E to the transition functions gs @ id of the bundle E & }7’]-+1/2. Note
that for any value of the homotopy parameter 7 the transition functions gy (7) satisfy the
cocycle condition. Indeed, consider a nonempty intersection Uy, = Us; N U; N U, and

assume that, say 7, =7 < v =7 < ¥m = 7. Then for all 7 € [0, 1] one has the identity
wsm (7—) = d)sl(T) S5 wlm (7—)

following from the direct additivity of the morphisms W(---) and W(---). Hence the
desired cocycle condition follows. (We omit computations, similar to the preceding ones,
in which critical terms are singled out.) Thus, the bundle E is homotopic and hence
isomorphic to the bundle E & ﬁjﬂ/g. The proof of Lemma 2.16 and Theorem 2.15 is
complete. O

3 Homotopy Invariance and the Main Theorem

In this section we show that the spectral flow of a family of conormal symbols with param-
eter space X is a stable homotopy invariant of such families and establish a relationship
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with other homotopy invariants, namely, the index of the same family treated as a family
of pseudodifferential operators with the (noncompact) parameter space X x R? and the
index of the corresponding family of pseudodifferential operators with parameter space X
on the infinite cone.

3.1 The spectral flow is a stable homotopy invariant

Theorem 3.1. Let Dy(7), t € [0,1] be a family of conormal symbols with compact param-
eter space X continuously depending on the additional parameter 7 € [0,1]. Suppose that
for each T condition 2.1 holds. Then the spectral flow sficio1 Dy(7) is independent of 7.

Proof. Each point 75 € [0, 1] has a neighborhood such that for all 7 from that neighbor-
hood in the construction of the spectral flow sf;c(o 1] D, (7) one can take the same partition,
weight system, number ¢, and admissible cover and the same e-admissible staircases in
elements of the cover. In a possibly smaller neighborhood, one can take fixed suitable
finite-dimensional approximations for all points of the partition and then equip them with
suitable inner products continuously depending on 7. Then the corresponding bundles £
and F' determining the spectral flow continuously depend on 7 in that neighborhood, so
that the desired assertion holds in that neighborhood. It remains to use the compactness
of the interval [0, 1]. O

Next, it is obvious that the spectral flow remains unchanged if we add a direct sum-
mand identically equal to the identity operator to the family. In conjunction with the
theorem we have just proved, this shows that the spectral flow is a stable homotopy
invariant.

The spectral flow of nonanalytic conormal symbols. Using the stable homotopy
invariance, we can define the notion of spectral flow for families defined only for p € R
(nonanalytic in p) and depending on the parameter ¢ only continuously. Namely, we apply
the standard smoothing with respect to ¢ (convolution with a J-like sequence of compactly
supported smooth functions) and analytic smoothing with respect to p (convolution with
the d-like scaling of the Fourier transform of a compactly supported smooth function) [17],
thus obtaining a sequence of operator families smoothly depending on ¢ and analytic in
p. For sufficiently small values of the smoothing parameters, these families are families of
conormal symbols analytic in a strip, so that the above definition applies. By virtue of
the homotopy invariance, the spectral flow of the smoothed family is independent of the
choice of smoothing, and we define the spectral flow of the original family as the spectral
flow of the smoothed family.
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3.2 The spectral flow and the index of families on the infinite
cone

We introduce a smooth monotone nondecreasing function

§: Ry —[0,1]
equal to 0 for r <1 and 1 for sufficiently large r.

Theorem 3.2. Let D, = D, 4, t € [0,1], be a homotopy of families of conormal symbols
with parameter space X satisfying Condition 2.1. Then the following elements of the
K-group K(X) coincide:

1) the spectral flow sfycjo11 Dy given by Definition 2.14;
2) the index of the operator family’

1

p

D, (? ira—> L HY(Kg) — H*™(Ky)
T

in weighted Sobolev spaces on the infinite cone, where Dy(r,p) = Dy ¢y (p);

3) the element Bind D, ,(p) € K(X), where ind D, (p) is understood as an element of
the K-group K.(X x Rx (0,1)) with compact supports (note that the family Dy ,(p)
is invertible outside a compact set in X x R x (0,1)) and

f: K (X xRx(0,1)) — K(X)
s the Bott periodicity map.
The proof of the theorem is based on the following two lemmas.
Lemma 3.3. There exists a number N and a family
D,.(p) : C=(2) ® C2(Q, CY) > C2(Q) ® C%(9,,CY)

of elliptic operators with parameter p such that the operators of the family are invertible on
the real line and the principal symbol of that family is obtained from the principal symbol
of the original family by the direct summand equal to the unit symbol:

0(Dat(p)) = 0(Da(p)) © L. (3.1)

"We use Feynman indices showing the order of action of operator arguments; see [9], [15].
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Proof. Consider the family D, ;(p). By assumption, it is invertible outside some compact
set in the parameter space X X [0,1] x R and is Fredholm everywhere on that space.

Just as in the theory of families index, it follows (e.g., see [4]) that for some N there
exists a family

K(z,t,p) : C®(,) ® C®(Q,, CY) — C®(£2,) ® C(£2,,CY)

of compact operators vanishing outside a compact set in the space X x [0,1] x R such
that the family

D,.(p) ® 1y + o' (z,t,p)

is everywhere invertible. To complete the proof, it suffices to apply analytic smoothing
with respect to the variable p to the family K (e.g., see [17]). O

The following lemma pertains to the homotopy classification of conormal symbols
with unit principal symbol (cf. [12], where the classification was obtained for the case
X = {pt}).

By C we denote the abelian group of stable homotopy classes of families, parametrized
by points x € X, of conormal symbols with unit principal symbol invertible on the real
line. Let Cp(X x R,K(L?*(Q))) be the C*-algebra of sections, decaying at infinity on the
space X X R, of the bundle of C*-algebras K(L?(2,)) of compact operators in the spaces
L?(,) of functions on the fibers ,. The natural mapping

C — Ki(Co(X x R K(L*(%2)))),

where K is the odd K-group of an algebra [6] and the operator is mapped to its condition
symbol at infinity, is an isomorphism. Indeed, the algebra of conormal symbols with
zero principal symbol is a subalgebra in Cy(X x R, K(L*(Q2))) closed with respect to
holomorphic functional calculus.

On the other hand, the latter K-group admits the explicit description

K (Co(X x R K(L2(Q)))) ~ K, (Co(X x R)) = K'(X x R) ~ K(X).

The composite homomorphism
a:K(X)—C

from the topological K-group can be expressed as follows: to a vector bundle V' € Vect(X)
we assign the conormal symbol

a(V)(z,p) =1—-Q(z) + Qz)f(p), (3-2)

where

Q(z) : L*() — L*(52)

is a family of orthogonal projections on the finite-dimensional subbundle consisting of
smooth functions and isomorphic to V. One can obtain such a family by realizing V' as
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a subbundle in a trivial finite-dimensional bundle and then embedding the trivial bundle
as a subbundle in the bundle of Hilbert spaces L*(f2). This is possible, since L?(Q) is
infinite-dimensional. Finally, by f we denote a function analytic in a neighborhood of the
real axis, tending to 1 as p — £oo and such that the degree degf of the corresponding
map R — St is equal to 1. For example, one can take

_p—i
f(p)—pﬂ.-

The argument carried above shows that the following lemma holds.

Lemma 3.4. An arbitrary family D.(p), x € X, of conormal symbols that has a unit
principal symbol and is invertible on the real line is stably homotopic to a conormal symbol

of the form (3.2)

Proof of the theorem. It follows by simple reasoning from Lemmas 3.3 and 3.4 that it
suffices to carry out the proof for the case in which

D.u(p) =1+ 1Q(x)(f(p) — 1) (3.3)

(the notation is the same as in Lemma 3.4. For such families one can always construct an
admissible e-staircase globally on X, and the proof of the fact that the elements 1) and
2) in the statement of the theorem coincide is carried out in the same way as in [14] with
regard for the relative index theorem in [11].

To prove that the elements 2) and 3) in the statement of the theorem coincide, we
note that for families of the form (3.3) one has

ind D, <72“,i7“%> = [V]degf = [V] € K(X)

(we omit the corresponding surgery-based computation). On the other hand, the index
of the corresponding family D, ,(p) is equal to the product

b[V] e K(S*X x (0,1) x R),

where b € K((0,1) x R) is the Bott element.
This completes the proof. O
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