The Resolvent of Closed Extensions of Cone Differential Operators
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ABSTRACT. We study an elliptic differential operator on a manifold with conical singularities,
acting as an unbounded operator on a weighted Lj-space. Under suitable conditions we show
that the resolvent (A — A)~! exists in a sector of the complex plane and decays like 1/|)|
as |A\| = oo. Moreover, we determine the structure of the resolvent with enough precision to
guarantee existence and boundedness of imaginary powers of A.

As an application we treat the Laplace-Beltrami operator for a metric with straight conical
degeneracy and establish maximal regularity for the Cauchy problem @ — Au = f, u(0) = 0.
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1. Introduction

Understanding the resolvent of elliptic differential operators is of central interest for many ques-
tions in pde. Following the approach suggested by Seeley, it is crucial for the analysis of the heat
operator or of complex powers. In his classical paper [23], he showed how the parametrix to an
elliptic operator on a closed manifold can be constructed as a parameter-dependent pseudodiffer-
ential operator and how the structure of the parametrix determines the essential properties of the
complex powers. He subsequently extended his methods to cover also boundary value problems [24]
and proved the boundedness of the purely imaginary powers [25]. His results have attracted new
interest in connection with modern methods in nonlinear evolution equations, where one requires
maximal regularity for the generator of the associated semigroup, which in turn is implied by the
boundedness of its purely imaginary powers.
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In the present paper we study an elliptic differential operator A on a manifold B with conical
singularities (a ‘cone differential operator’). The investigation of these operators started with the
work of Cheeger [2]. Important contributions to the index theory were made in particular by
Briining & Seeley [1] and Lesch [12]; associated pseudodifferential calculi were devised by Melrose
[15], Plamenevskij [17], and Schulze [22].

While the picture of the conical singularity helps the intuition, one prefers to perform the actual
analysis on a manifold B with boundary, thought of as the blow-up of B. A cone differential
operator of order p by definition is an operator that can be written in the form

o

A=t a;(t)(—td;)

=0

in a neighborhood of the boundary. Here ¢ is a boundary defining function and a; a smooth family
of differential operators of order p — j on JB.

We consider A as an unbounded operator acting in a (weighted) Lp-space. Our goal is to find
conditions which ensure the existence of the resolvent (A — A\)~! in a sector of the complex plane
with decay like 1/|A| as |A\| = oo and to determine its structure with enough precision to construct
complex powers and to show their boundedness for purely imginary exponents. We work with a
variant of Schulze’s cone calculus because the concept of meromorphic Mellin symbols makes it
easy to describe the connection between operators and function spaces with asymptotics.

A cone differential operator in general has many closed extensions, see e.g. Lesch [12, Section
1.3]. While, a priori, there is no preference for any of these from the analytical point of view, it
is obvious that only for few of them the resolvent will have good properties. One basic problem
therefore is to determine all possible choices. Our Theorem 2.8 completes Lesch’s results in that
we obtain an explicit formula for the domain of the maximal extension in the general situation.

Extending Theorem 3.14 from [20], we next clarify the structure of the inverse of a (bijective)
closed extension of A. In Theorem 3.4 we show how A~! can be decomposed as the sum of two
operators in usual cone calculi for different weight data.

We then turn to the analysis of the resolvent. In order to keep the exposition short and the proofs
transparent we restrict ourselves to the case where the coefficients a; of the operator A are constant
for small ¢. The general case will be treated in a subsequent publication.

Following a standard technique, we replace the spectral parameter A\ by n*, where u is the order
of A, and n varies in a corresponding sector of C. In close analogy to the above statement on the
structure of the inverse we prove in Theorem 3.5 that (A — n*)~! is the sum of two parameter-
dependent cone operators; the parameter space is the new sector. In order to establish this fact
we have to make assumptions which are restrictive but nevertheless seem natural in this context:
Clearly, we have to ask for the invertibility of the principal pseudodifferential symbol of A —n# in
the sector, with a certain uniformity as one approaches the singularity. Moreover, we require the
invertibility of A —nt, where A is the ‘model cone operator’ associated to A. It reflects the behavior
of A near the singular point and acts on a domain linked to that of A. As A- n* can be considered
the analog of an edge principal symbol for A — n#, its invertibility appears to be necessary for
the above result. Finally, we assume for technical reasons that the domain of A (or more precisely
the associated domain of 21\) be invariant under dilations (‘saturated’ in the language of Gil and
Mendoza [10]).

It follows from Theorem 5.1 and Remark 5.5 in [3] that the structure of the resolvent we obtain
from Theorem 3.5 is precisely that required for the construction of complex powers and implies
the boundedness of the purely imaginary powers; we can hence extend the results of that paper as
well as those in [4] to this new class of operators.
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The idea of analyzing the resolvent of a cone differential operator in terms of a suitable pseudodif-
ferential calculus is not new. In fact, writing the resolvent as a parameter-dependent cone operator
can be seen as a special case of the edge parametrix construction, see Schulze [6, Section 9.3.3,
Theorem 6]. Moreover, Gil [7], [8], and Loya [13], [14], also in joint work [9], used this technique
to derive results on heat invariants, complex powers, and noncommutative residues. While these
are important theorems, there is one deficiency: In all articles, the authors rely on a special form of
the above ellipticity condition, namely the invertibility of A-— n*, acting between weighted Mellin
Sobolev spaces. One can show, however, that this assumption fails in many cases, e.g. for the
Laplace-Beltrami operator in dimensions < 4, acting in L? with respect to any metric that has
a straight conical singularity. Roughly speaking, this approach works only for the minimal (and
hence by duality for the maximal) extension. The new point here is that we can now treat all closed
extensions with dilation invariant (saturated) domains, opening the way for the analysis of larger
classes of operators.

As an application we study the Laplacian in weighted Lp-spaces, 1 < p < oo. Combining our
analysis with techniques of Gil and Mendoza [10], we show in Theorems 5.6 and 5.7 how one can
always choose the domain in such a way that the above ellipticity conditions are fulfilled. This
yields maximal regularity for the Cauchy problem @ — Au = f on ]0,7[, w(0) = 0, which is the
starting point for many results in nonlinear evolution equations.

2. Cone differential operators and their closed extensions

2.1. Operators on B. Let B be a smooth, compact manifold with boundary. A u-th order
differential operator A with smooth coefficients acting on sections of a vector bundle over the
interior of B is called a cone differential operator if, near the boundary, it has the form

(2.1) A=t 3 a;(t)(=td),  a; € C([0, 1], Diff* I (IB)).
=0

Besides the standard pseudodifferential principal symbol UZ(A) € C™®(T*int B \ 0), we associate
with A two other symbols: First, there is the rescaled symbol G} (A) € C*°((T*0B x R) \ 0) which,
in local coordinates, is given by

F(A) (6,7 = 3 047 (a) (0,2, €) (—ir)

Jj=0

o (A)z) = 3 (02,  zeC.

It is a polynomial in z of degree at most p with values in differential operators on 0B of order
at most u. In particular, ofy,(A) € A(C,L(H}(0B), L(H)"(0B))), where A(C, E) denotes the
holomorphic, E-valued functions on C.

Let us define here two notions we shall frequently use throughout this paper.

DEFINITION 2.1. a) A is called B-elliptic if both o},(A) and 5,,(A) are pointwise invertible.
b) A is said to have t-independent coefficients near the boundary if the functions a; in (2.1)
are constant in t.

The operator A induces continuous actions
(2.2) AHT(B) — H, 7 H(B), s,yeER, 1 <p< oo,

in a scale of Sobolev spaces which is defined as follows:
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DEFINITION 2.2. Let s € Ny. The space of all distributions w € H, .

(int B) with
£5 77 (10,) 02 (wu) (t, 7) € Ly ([0, 1[x 3B, Ldz)  Vk+|a|<s

is denoted by H3"(B). Here, w € C5,,,([0,1]) denotes an arbitrary cut-off function.

comp

This definition extends to real s, yielding a scale of Banach spaces (Hilbert spaces in case p = 2) with
two properties we want to mention explicitly: The embedding ’HZ”V' (B) < #,7(B) is continuous
for s' > s, v' > ~, and compact if s' > s, v > ~; the scalar-product of 7—[270(]33) induces an
identification of the dual space (#,”(B))" with "7 (), where p' is the dual number to p, i.e.
L+ =1

Instead of considering A as a continuous operator in the Sobolev spaces, cf. (2.2), we shall now
study the closed extensions of the unbounded operator

(2.3) A Cop(int B) C HO(B) — HY(B)

comp

(without any difference we could also consider A on C*°>*°(B), cf. Section 6.1). A natural assumption
we from now on pose on A is its B-ellipticity. In the upcoming Sections 2.2, 2.3 we shall give an
explicit description of all possible closed extensions of A.

In the following let w € Cg5,,, ([0, 1]) denote a cut-off function (that can be chosen arbitrarily).

2.2. The minimal extension. Let us describe the domain of the closure. The following
result was shown in [10], Proposition 3.6. We give here a short proof, using some results of [12].

PROPOSITION 2.3. The domain of the closure Amin = AP of A from (2.3) is

) = fHu,’H-u—E
D(Amm) - D(Amax) ﬂ EDO p (IB)
H .
_ W,y +p—e — . _ J 0,y
(2.4) = {u € N My (B) | t jzzo a;j(0)(—t0;)’ (wu) € HY (]B%)}.

In particular,
Y+ . Atp—
HEYHH(B) — D(Amin) < HETHH(B) Ve >0.

We have D(Amin) = Hi ' #(B) if and only if the conormal symbol o'y (A)(2) is invertible for all
z with Rez = ”T“—y—u.

PROOF. According to [12], Proposition 1.3.12, we may assume that A has ¢-independent co-
efficients near the boundary. Now let u € D(Apn), i.e. there exists a sequence of functions u,, €
Cosmp(int B) such that u,, — u and Au,, — Au with convergence in H)"7(B). If w,& € Co5, ([0, 1[)

comp comp

are cut-off functions with wiw = w, and if B = Hop), "~ ? (6%,(A)~!) t* with arbitrarily small
e >0 (and € = 0 in case of the invertibility of the conormal symbol), it follows that

(2.5) wu 2w, = BA(wu,) 2222 BA(wu)

with convergence in H)7(B). By usual elliptic regularity we know that u € H 1 loc(int B), hence
(1 — w)u belongs to HE I (B) C D(Amax). Therefore wu € D(Amax), ie. Awu) € Hy7(B). From

(2.5) we thus deduce that
D(Amin) C D(Amax) N N HETEEZE(B) = V.
e>0

Since A has constant coefficients, D(Amax) = D(Amin) ® €, where £ has zero intersection with
r>10 HuHE2(B), see [12], Proposition 1.3.11. From this we immediately obtain D(Ayin) = V. O
1>
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2.3. The maximal extension. Before characterizing the domain of the maximal extension,
we shall discuss a certain type of operators necessary for formulating this characterization, namely
operators of the form

(2.6) G =w (op}; #(9) — 0p}i #(9)) 5 Co5up(OB") — C=(int B).

Here, OB" := R, x OB. Moreover, g is a meromorphic Mellin symbol with asymptotic type P as
in Section 6.5; for the definition of opﬁ_n/ ? see (6.12). Note that we could replace g by g + h for
any h € M (0B) without changing G also we could take as domain S*°(9B") or Cooy, . (Ja, b[ x IB)

comp
with arbitrary 0 < a < b < co without changing the image of G). Let

Np
(2.7) S Rpp(z — p) =Y, Ry, € L™°(9B),
k=0

denote the principal part of g around p € mcP. Recall that the Ry are finite rank operators.

LEMMA 2.4. Let G be as in (2.6) with v1 < v2, and Ry, as in (2.7). Then G is of finite rank and,
for u e Co, (OB,

(Gu)(t,z) = w(?) 2 lng Gy (u) (2) 7 (log 1)’

pEmncP

—v2<Rep— ";1 <-m

with the linear maps Cp : Cooy,(0B") = im Ry + ... +im Ry, C C*°(OB) given by
i@ = 5 - O My, 2)
pIVRE) = 2 i — 1)1 PR k=t AP T

where M = M,_,, denotes the Mellin transform.

The proof is a straightforward consequence of the residue theorem, since, by definition of op$,,
Gowa=([ [ e = [ M)
Popro e, ¢

with a path C simply surrounding the poles of g in the strip ”T“ —v2 <Rez< ”T“ — 1. For the
detailed calculations, and also an expression for rank G see [12].

REMARK 2.5. Let v with v1 < v < 72 be given. If G; = w (opX}F%(g) - op;(/;%(g)), then G =
G1 — G2 and
imG =im G ©im Gs.

In fact, by the previous lemma, the images on the right-hand side have trivial intersection, and
Gous only depends on finitely many Taylor coefficients of the Mellin transform Mwus in the poles
of g lying in the strip ”TH — v <Rez < ”T“ — . The analogous statement holds for Grui. Then
the result follows from the following observation: Given finitely many points py,...,pny € C and,
in each of these, a finite number of Taylor coefficients, there exists a u € Coyy,,(Ry) such that the
Taylor expansion of Mu in each p; starts with these prescribed values.

Now let A be as in (2.1) and set
1 » .

(2.8) Aiz) =5 O(diaj)(())zf, E=0,...,u—1.
1=

In particular, fo = of,(A) is the conormal symbol of A. Due to the B-ellipticity of A, fy is
meromorphically invertible and f; ! can be written as the sum of a meromorphic Mellin symbol
and a holomorphic symbol in M,"(9B) (see Theorem 6 in Section 2.3.1 of [22]). We now define
recursively

-1

(29) go = fO_17 g1 = _(Tilfo_l) %(Tﬁjfjfl)gﬁ [ = ]-7 ey ]-7
j=
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with 77, o € R, acting on meromorphic functions by (T f)(z) = f(z + o).

Moreover, choose an € > 0 subject to the following condition: If p is a pole of one of the symbols

gos .- +,9u—1, then p either lies on one of the lines F"T“—v—u-i-k’ k=0,...,u, or has a distance to
all of these lines which is larger then e.
DEFINITION 2.6. Let go,...,gu—1 be as in (2.9) and € > 0 as described before. Then we set

EZEX :imGo—}—...—}—imGu,l,

k
where the operators Gy, = 3 G = Co5, (OB) = C7°°T=(B) are defined by
=0

tute—1-1% +tp—e—%
Go =Goo =w (Op}yu” T (go) —opy Z(go)) :
and if 1<k<pu—1,0<I1<k,
G = wt! (Opﬁwg*k*l*%(gz) — Opﬁwsfkfg(gz)) :
The space & is a finite-dimensional subspace of C°7¢(B) and consists of functions of the form
N 1
(2.10) u(t,r) = w(t) 3 3 ujp(x)t™% loght
j=0 k=0
with complex numbers g; with ”T‘H —v—p < Reg; < ”T“ — and smooth functions uj; € C*°(0B).
Note that in case A has constant coefficients we have, due to Remark 2.5,
(211) £=imGo @ ... ®imG, 1) = imw (opﬁ“_s_%(aﬂ(zﬁl)_l) — opﬁs_%(aﬂ(A)_l)) .
PROPOSITION 2.7. For any 0 < k < pu— 1 let ugi, ..., ukn, € Co5,(0B") be chosen such that
{Grourj | 1 <j <ny} is a basis of im Gro. Then
{Grug; |0<k<p—-1,1<j<n}CE
is a set of linearly independent functions such that
span{Grup; | 0 <k <p—1,1<j<ng}ND(Amin) = {0}
In particular,

dim & > dimimw (op;(;r&% (oh (A1) — op;(;rufgig(aﬁ/‘,(A)*l)) .

We have equality at least in the cases where A has constant coefficients near the boundary, or
1 n+1

ohr(A)~! has no pole on the line Rez = "2t —~ — .
Proor. Let aj;, € C and
p—1 nyg
Z Z ajkaukj =u € D(Amin) - ’Hg’v—‘rﬂ_s(ﬁ).
k=0 j=1
Setting [ = 4 — 1, we obtain

ny [—1 ng ny ~
Y aiGug =u— Y > ajpGrury — Y aGrug,
j=1 E=0 j=1 j=1

where we have set Gy = Gy — Gyo. The right-hand side belongs to HoyHE=(B) + Hy T (B). The

n;

intersection of this space with im Gy is trivial, hence > ay;Giou; = 0. Therefore oy; = 0 for all
j=1

1 < j < my, since the Gyouy; are linearly independent, by assumption. Iterating this process (i.e.

taking | = p — 2,1 = p — 3, etc.), we see that all aj;, must equal zero.

The estimate on the dimension follows from (2.11), as well as the equality in case A has constant
coefficients. The remaining claim we shall obtain as a by-product of the following theorem. O
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We are now in the position to describe all closed extensions of A.
THEOREM 2.8. The domain of the mazimal extension Amax = ALE. of A from (2.3) is
D(Amax) = D(Amin) + &

with £ from Definition 2.6. The sum is direct at least in the cases where A has constant coefficients

near the boundary, or of;(A)~" has no pole on the line Re z = ”TH — v — . In any case,

D(Amin) NE Cimaw (0p3 " ¥ (0 (™) —opi " E(oh (7).

Consequently, any closed extension A = AVP is given by the action of A on a domain

(2.12) D(A) = D(Amin) + &, & subspace of .
PROOF. Choosing a cut-off function & € Cgy,,,, ([0, 1]) supported sufficiently close to zero, the
~ Il , ~
operator A =wt * 3 a;(0)(—t0:)7 + (1 —w)A is still B-elliptic, and D(Amin) = D(Amin) by [12],

7=0
Proposition 1.3.12. Moreover,

D(Amax) = D(Amin) & €
with & given by the right-hand side of (2.11), and
dim D(Amax) /D(Amin) = dim D(Apayx) /D(Apin) = dim E.
The latter statements are due to [12], Proposition 1.3.11, Corollary 1.3.17. By Proposition 2.7 it
therefore suffices to show that £ C D(Amax)- In fact, we shall show that im Gy, belongs to D(Amax)

for any k. Since this is easy to see for £ = 0, we shall only consider the case k > 1. If f, are the
holomorphic Mellin symbols from (2.8), then

p=1l
A=t Y topy (f;) +th A’
j=0
with a p-th order cone differential operator A’. Taking into account that im Gy, is a subset of
¢oovtute—kH=1(B) we thus obtain for u € S (9B")
k k—j
A(Gru) € 7-[2"’(]]3) = WYy > topy(fi)(Gru) € HZ’WJF“(IB).

§j=01=0

Choosing w with Ww = w, using the elementary rule

Py (f)t70p%s (9) = 0P (T f)g),
and rearranging the order of summation, we see that A(Gru) € H)" (B) if and only if
k. J
533 (o3 TR fim0g) — opd TR 09 ) (u) € HY T (B).
j=0 1=0
However, this expression actually equals zero, since by definition of the symbols g;, cf. (2.9), we

have '

j

S (T fi-1)a = boj) 0<j<k,

1=0
with J;o denoting the Kronecker symbol. This shows the claim.
Let us turn to the remaining claims of the theorem. If A has constant coefficients near the boundary
the intersection of D(Amin) and € is zero by (2.11). Using the description of elements u from £ given
in (2.10), and the fact that D(Anyin) C H®YT#=9(B) for any positive §, we see that if u € D(Amin)NE
then u is of the form (2.10) with Regq; = 2 — v — p. Since also wopy, (o, (A))(u) is contained
in H97(B), v must be an element of imw (opy”_g_ﬁ(aﬂ(fl)_l) - opﬁ“Jrs_f(af\”/[(A)_l)). In

particular, the intersection is trivial if o;(4) ! has no pole on the line Rez = 2 — y — p (this
then also proves the last claim of Proposition 2.7 as we announced in the previous proof).
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Since £ is finite-dimensional all the operators A are in fact closed extensions of A. O

2.4. The model cone operator. Freezing the coefficients of A at the boundary leads to a
differential operator

(2.13) A=t7m3 a;(0)(—10,)
j=0

on the infinite half-cylinder dB" := R, x OB. We shall refer to this operator as the model cone
operator of A. Let us first introduce a suitable scale of Sobolev spaces the operator A acts in.

To this end let B = X; U...U X, be an open covering of 0B; let x; : X; — U; be coordinate
maps and {¢1,...,¢s} a subordinate partition of unity.

Given a function u = u(t,z) on R x 0B, we shall say that u € H .,,.(R x OB) provided that, for
each j, the function

v(t,y) = @j(w)u(taw% T = "': (y/< >)
is an element of H,(R x R") (we consider the right—hand side to be zero for ¢ Uj). In other
words: ¢;u is the pull-back of a function in H;(]R”“) under the composition of the maps

idxkj:RxX; 3 (t,z) = (t,kj(x) e RxUj

and
X Rx U3 (t,y)=(t, (t)y) € R,
so that the definition extends to distributions in the usual way for s € R, 1 < p < 0.

DEFINITION 2.9. K7 (9B") is the space of all distributions u € Hy |, .(Ry x OB) such that, for an
arbitrary cut-off function w,

wu € Hy'(B) and (1 -w)u€ H,

p,cone

(R x OB).

A acts continuously in this scale of Sobolev spaces,
A3 (0BY) — K371 (0BY),  s,7€R 1<p<co.
We shall now consider the model cone operator as an unbounded operator, namely

A0, (0B") C K97 (9B ) —s K07 (9B").

comp

If A satisfies condition (1) of Section 3.2 below, the domains of the closed extensions of A can be
read off from A. In analogy to Theorems 2.3 and 2.8 we have:

PRrOPOSITION 2.10. If A satisfies condition (1) of Section 3.2, then
D(Emin) = {u € EQO KCh+r==(5B") | Au e IC?,"’(]B%)}.
This simplifies to D(Awin) = Kkt (OB”) if and only if oy (A) is invertible on the line Lupr
If € is the space defined in (2.11), then
D(Anax) = D(Aumin) © €.
Hence, any closed extension AA ofg is given by the action ofﬁ on a domain

D(AA) = D(A\min) D, & subspace of £.

—Y—u’

PrOOF. Welet P = Z?:o aj(z,D,)(—0;)7 —n*. This is a non-degenerate parameter-dependent
differential operator with coefficients independent of ¢. It follows from assumption (1) that the
parameter-dependent principal symbol

I
o, &, mm) = o™ ( &)(—ir) —n*
7=0
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of P is parameter-elliptic. Hence there exist parameter-dependent symbols §o of order —p and r
of order —1 such that

(2.14) Podo = 1+ -
The operator P = t”(f/l\ — n*) has the principal symbol
U:Z (P) (w7 t7 67 T? n) = pNO ($7 67 tT? tn)'

Under the push-forward induced by T := x o (id x ;) the operator P transforms into a weighted
SG-pseudodifferential operator of order (u, 1); modulo terms of order (u—1, u—1) its SG-symbol is
given by the push-forward of o/, (P). Indeed, for a differential operator this is a simple calculation,
a proof for the general pseudodifferential case is given in [19], Theorem 3.8; details on SG-symbols
can be found in [18]. Now equation (2.14) implies that the push-forward of o, (P) is SG-parameter-
elliptic if we restrict to a subset of Ry x 0B away from the boundary, say to {t > 1}. Hence, on
this set, there is a parameter-dependent SG-parametrix S of order (—u, —p) to the push-forward
T.P of P (i.e. we have SoT,P = I + R, where R is an integral operator with a rapidly decreasing
kernel). As the operator of multiplication by t* remains unchanged under the push-forward and is
an SG-operator of order (0, i), S o t# is an SG-parametrix of order (—u,0) to A — nH.

With this information we conclude the proof in the standard way: Given u € /Cg"’, a cut-off function
w equal to 1 in {¢t <1}, and a function ¢; in the partition of unity on 0B,

(2.15) SothoTl, ((21\ -n*)(1 - w)goju) =T(1 —w)pju+ RT.(1 — w)pju

Assume additionally that u belongs to D(A\max), Le. Au € ng”Y. Standard elliptic regularity implies

that u € H}| .. Hence A1 - w)pju € K7, as it coincides with (1 — w)gojﬁu outside a compact
set, and its push-forward via T' belongs to H)(R""!). In view of the fact that St : H)(R"*!') —

H}(R"!) is bounded, we deduce from (2.15) that (1 — w)u € HE ,no(R x OB). On the other

p,cone
~

hand, we trivially have u € D(Ani,) for every w in H# (R x 0B) supported in {t > 1}. As a

p,cone
consequence, the domains of all extensions of A coincide with Hf' .,,.(R x 9B) away from {t = 0}.

Close to {t = 0}, however, the analysis is the same as in the standard case. This completes the
argument. |

3. Structure of the resolvent

Let us now come to the main objective of this paper. We shall consider a closed extension of a
cone differential operator and give conditions that ensure that its resolvent exists in a given sector
A (up to finitely many exceptional points). We shall describe the structure of this resolvent in
terms of a class of parameter-dependent pseudodifferential operators. As an application we derive
boundedness of purely imaginary powers.

Before considering the resolvent, we want to investigate the inverse of a given closed extension. This
is a simpler problem but already illustrates some of the structures we shall see in the discussion of
the resolvent.

3.1. The inverse of a closed extension. Let A be a cone differential operator and assume

that
A:DA) =HETHB) ®E — ’Hg"’(]B%)

is bijective (for a fixed p). We shall analyze the structure of its inverse. Since £ is finite-dimensional,
A HEYTH(B) — HOY(B) is a Fredholm operator. In [20] we have shown that the Fredholm
property is equivalent to the ellipticity of A, i.e. A is B-elliptic and the conormal symbol is invertible
on the line F"T“—W—M‘ In other words, A is an elliptic element of the cone algebra CH(7y + p,, k)
for any k € N. The cone algebra on B was introduced by Schulze; for its definition we refer to [21]
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(and, concerning notation we use here, to the corresponding definitions of the parameter-dependent
version given in the appendix).

Let us now set F = A(£). This space is finite-dimensional and H)"7(B) = A(HL#(B)) © F.

LeEmMMA 3.1. There exists an asymptotic type Q@ € As(vy,k), k € N arbitrily large, such that F =
A©) Ce3(®)

ProOF. Let u be of the form (2.10), and choose a cut-off function & with @ww = &. Then, with
A asin (2.1),

(Au)(t) = ot i > a; (1) (t0;) (et~ log" t) + (1 — @)(t)(Au) (1).
7j=0g¢q

The second term belongs to Cgy,,,(int B). Now a Taylor expansion of the coefficients a; in ¢ at 0
shows the claim. O

Let us now denote by

me i HETTHB) O E — &, mp: AMHETTPB) @ F — F

the canonical projections, and let
B=(1- WQ)A_l : ’Hg”Y(IB) — ’HZ’“‘”(IB)
be a left-inverse of A : HE TH(B) — HO(B).

LEMMA 3.2. 1 — AB = 7wz belongs to Ca(v,7, k) for arbitrily large k € N.

Proor. By construction, it is clear that 1 — AB = 7wx. Let wi,...,wn be a basis of F.
Then we can write 7£(:) = Z;\;l 1j(-)w; with functionals I; on HJ7(B). By duality there exist
v € ’Hg,’_’Y(IB) such that [;(-) = (','UJ'>HO,O(B). Then, for all u € Hy7TH#(B),

N
0=7r(Au) = Z(Au )00y Wi = 22 (Uy AT0j)5,0.0 (5 w5,

=1 j=1
where A* denotes the formal adjoint of A, which belongs to C*(—v, —y — p, k). Hence v; € ker A*
for j = 1,...,N. Since with A also A* is an elliptic cone operator, ker A* C C;’""(B) for some
asymptotic type Q' € As( ,k) by elliptic regularity, cf. [22], Theorem 8 in Sectlon 2.2.1. Thus
7z has a kernel in F ® Cy ( ), and therefore is a Green operator. O

PROPOSITION 3.3. B is an element of C*(v,v + u, k) for arbitrarily large k € N.

PROOF. Since A is an elliptic element of C*(y + u,~, k) as we have shown above, there exists
a parametrix C' € C7#(y,v+ u, k), i.e

AC-1=GRreCs(v,7,k), CA-1=GLeCqly+upy+mnk).

Multiplying these identities from the left, respectively from the right with B yields B = C — BGg
and B=CAB —-GLB =C —C(1—-AB) — GLB. Inserting the first equation into the second gives

B:C—Cﬁ£—GLC+GLBGR.

The third term on the right-hand side is a Green operator, since Green operators are an ideal in
the cone algebra. The same is true for the second and fourth term in view of Lemma 3.2 and the
continuity of B, respectively. |

THEOREM 3.4. A™' = B+ G for some B € C~"(v,vy+ u, k) and G € Cg(v,v, k) with arbitrarily
large k € N.
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Proor. We decompose A™" = (1 — ng)A™t + A~ lny = B + G. By Proposition 3.3, B is as
claimed. From the proof of Lemma 3.2 we know that mx has an integral kernel in F ® Cg’,’_”(]BS)

for some type Q' € As(—v, k). Therefore, A~'mx has a kernel in £ ® C%‘?’*V(]BB), hence is a Green
operator. (|

As we shall explain in Section 4.1, this shows that the invertibility of A = A, is independent of
1<p<oo.

Theorem 3.4 especially implies that A™! € Co" +Cq(7,7,¢). The main result of the present paper
says that for the resolvent of A there is a parameter-dependent analogue of this statement.

3.2. The ellipticity assumptions and statement of the main result. Let A be a p-th
order cone differential operator whose coefficients on [0, 1] x OB are independent of ¢. Let

A:D(A) = D(Amin) ® € C 1y (B) — H,7 (B)
be a closed extension of A as described in the Section 2.1. Let us now assume

(1) Both o7;(A) and &},(A) have no spectrum in the sector A,

-~ -~

(2) With the above choice of £, the domain D(A4) = D(Amin) ® £ of the model cone operator
is invariant under dilations,
(3) The sector A\ {0} contains no spectrum of the model cone operator

A:D(A) C K57 (9B") — K97 (IBM).

Condition (2) means the following: whenever u = u(t,z) belongs to D(A), the same is true for
the functions u,(t,z) = u(ot,x), 0 > 0. It is easy to see that the domain D(A) is invariant under
dilations if and only if this is true for 5, (0B") & £.

comp

Note that condition (2) is always satisfied for the minimal extension, the maximal extension, and
for extensions with domain equal to D(Amax) NHy 7 (B) and v —pu < o < 7. For concrete examples
see Section 5 below.

In (1) and (3), A = Ay is a closed sector in the complex plane containing zero, i.e.
Ay ={z € C| |argz| > 6} U{0},

where 0 < 6 < 7 and —7 < argz < w. For notational convenience let us fix a sector X such that
the mapping n — n* induces a bijection ¥ — A. Instead of working directly with A we shall use
this sector 3.

THEOREM 3.5. Let A satisfy conditions (1), (2), and (3) with respect to the sector A. Then

a) A has at most finitely many spectral points in A.
b) There exists a parameter-dependent cone pseudodifferential operator

c(n) € CoM () + C"(Z;7,7,¢)

with a certain € > 0, such that (n* — A)~! = ¢(n) for n € ¥ with |n| sufficiently large.

For the notation used in part b) of this theorem we refer to the appendix (see Definition 6.6
and Definition 6.13). Note that part a) of the theorem follows from b): Since the domain of A is
compactly embedded in ’H%’Y(IB), A has a compact resolvent, hence a discrete spectrum.
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3.3. The proof of the main result. We shall use the material and notation given in the
appendix. Let us write a(n) = n* — A. Then

a(n) € C5(X) C CH(579,7 — w, k)

for any 4 € R and k € N. The ellipticity assumption (1) on A ensures that a(n) is B-elliptic with
respect to the sector X, i.e. satisfies condition (E) from Sections 6.3 and 6.6. In particular, the
conormal symbol of a(n) respectively A is meromorphically invertible. Note that we do not require
A to be conormal elliptic with respect to the weight v + pu, i.e. the inverted conormal symbol
possibly has a pole on the line FnTHJﬁ”. By Theorem 6.15 we then get:

PROPOSITION 3.6. Let € > 0 be sufficiently small. Then there exists a parameter-dependent cone
operator by, (n) € C™*(X;y — u+e,v+ ¢, 1) such that

(3.1) br(ma(n) —1=gr(n) € C&(Z;7 +&,7+ ¢, ).

In this context, ‘sufficiently small’ means 0 < € < gp such that the conormal symbol is holomor-

phically invertible in the strip ”T'H —v—un<Rez< ”T'H — 5 — i+ €o.

PROPOSITION 3.7. To any sufficiently small e > 0 there exists a parameter-dependent cone operator
b-(n) € C~H(Z;v—¢e,v+ p—e, ) such that b.(n) 3 () 18 independent of the choice of € for any
s€R and 1 < p < co. Moreover,

br(n) = bs(n)mgﬂ(ﬂg) 3’H2”(]B) — D(Amin)
and, for a suitable asymptotic type Q € As(y+¢,1 — 2¢),

PROOF. Let us first view a(n) as an element in Cf(X). According to Theorem 6.8 there exists
a flat parameter-dependent cone operator b(n) € C,"(X) such that

(3:3) a(m)bn) — 1 = w(tl) o () woltln])  mod C()u
with a holomorphic Mellin symbol f € M~ (dB; X). Setting fo(z) = f(z,0), we have
(3.4) w(tn]) {opy, T (D) —op; # (fo) Jwoleln]) € C&(34,1,054,1,0)

for any 4 € R. In fact, by Taylor expansion, f(z,tn) = fo(z) + > (tn;) fi(z,tn) for suitable
fi(z,m) € C®(%, M5°°(0B)). Therefore, the operator-family in (3.4) pointwise has the mapping
properties of Green symbols from R%(¥;9,1,0;7,1,0), cf. Definition 6.11. Moreover, it is homo-
geneous of order 0 for large |n| in the sense of (6.9) with respect to the group action of (6.10),
hence also satisfies the required symbol estimates.

Next, we are going to modify IN)(n) by a smoothing Mellin term, i.e. we set

(3.5) b-(n) = b(m) + w(t[m)) * op); 2 (f)wo(tln),

where we determine f in such a way that the conormal symbol of a(n)b.(n) — 1 vanishes, i.e.

0= ofs(ab:)(2) — 1 = 0% (ab)(2) + oy (a)(z = ) f(2) = 1 = fo(2) + oy (a)(z — ) f (2).
Solving this identity for f yields the choice
f(2) = —ohy (@) (z = wfolz) = ofy(a) H(z = 1) — 03/ (B)(2).
By the holomorphy of the conormal symbol of a(n) in a strip nTH —v7—p<Rez< nTH —7y—p+eo,
the action of b.(n) on H,7(B) is independent of 0 < & < o, and by the description of D(Amin)
given in Proposition 2.3, indeed b (1) maps H97(B) to the domain of Apyi,. Choosing a cut-off
function wy with ww; = w it follows from formulas (3.3) and (3.4) that

(3.6) a(m)b-(n) — 1= wi(tln]) opy; "~ * (fo) wo(t[m]) +wi (tn]) aln) w(tln]) t* op); % (£) wo(t[n])
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modulo C(Z;7—¢,1—2¢,0;v+¢,1—2¢,0). Here we employed the fact that changing w in (3.3)
to wy only causes a remainder in C%(X)s0, and used Lemma 3.11 (applied to v — € instead of 7).
Since a(n) = n* — t™*op,s (0l (a)) on [0,1] x OB, the second term on the right-hand side of (3.6)
equals

no o~

—w1 (tn]) op3 " (fo) wo(tln]) — w(t[m]) (tn)* op}, % () wolt[n]) -
w1 (tn]) op), = F (T 0l (@) (1 = w)(¢[m) opy ™~ (f) wo(tln))-

Here, T'™* is the operator of shifting by —pu, cf. Theorem 6.7. The first term cancels with the first
term of (3.6), the other two particularly belong to C%(3;v —e,1,0;v +¢,1,Q), where @ is the
asymptotic type induced by the meromorphic structure of (T~Fok (a)~1)*. |

Passing in (3.1), (3.2) to the principal edge symbols, cf. (6.15), and solving for (n# — A\)’l yields
(for sufficiently small € > 0) the identity

(37 = A) =0x b)) — on (b)) (9r) (1) + o0 (gL) ) (" — A) 1o (9r) (1)
on K7 (0B"). Here we have set o, (br)(n) = o,"(be)(n) Ko (oA )

that the second and third term on the right-hand side of (3.7) are the principal edge symbol of a
parameter-dependent Green operator. Let us set

(3:8) g =& mimw (op) " (o (4) ) —op} T E (o (4) ),

We are now going to show

1 on the line Rez =

i.e. we add to £ the asymptotic terms coming from the poles of oy, (A)~
B -y -
PROPOSITION 3.8. There exists a Green symbol g € RE(3;v,€;, p+¢€) for some e > 0 such that

ox"(9)(m) = —o 7" (br) ()R (gr) () + 02 (91) () (" — A) 7" (9r) ()
and the integral kernel kg of g, cf. (6.1) and Theorem 6.12, satisfies

k(0,8 2,1, a") € S (S, S (0B") ©r SI7(0B")) = S(T) &r Sg (OB") ©x S/} (9B"),

where we set S¢, (OB") = Sg/g”(BIBA) & & and £ is as described in (3.8).

PROOF. For brevity let us write g(n) = o,"(g)(n), and analogously for the principal edge
symbols of b, g1, and gg. By the previous proposition, we have

K37 (9B") < K370 (0B") 247 S3+2 (9BY) <> S5 (0B)),

where for the last embedding one considers @) € As(y + ¢,1 — 2¢) as an asymptotic type () €
As(y — p + €, ). By standard mapping properties of cone operators there exists an asymptotic
type Q' € As(y + ¢, ) such that by (n) : ST (OBN) — S5 (0BN) < 8P, (0B"), where for the
last embedding we consider Q' as an element of As(y, u+¢). Making similar considerations for the
adjoint, we thus obtain EL(n)gg(n) € Rg”)(z;%s;%u +e).

Next, (p* — A)~! is a smooth function on ¥\ {0} with values in C(IC?,”(&)IBA),D(AA)). In view of
assumption (2) on the scaling invariance of £, it is (twisted) homogeneous of order —u in the sense
of (6.9). In particular, (" — A)~' € SC1)(3; Ko7 (0B"), Ky 7+ (0B ) for sufficiently small € > 0.

But then it is clear that g, (n)(n* — AA)’lﬁR(n) also belongs to R~ (X:~,e;7, u + €). If we now
define

g(n) = x(m{=br.(Mgr(n) +g(m)(" — A~ gr(n)}
with an arbitraray zero excision function x(n), then g € R%(X;v,€;7, p+¢) and the principal edge
symbol is given by the formula stated in the proposition. It remains to investigate the kernel.
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Since g(n) is a Green symbol of the given class (and by the kernel characterization) there ex-
ists some asymptotic type @ € As(y,u + 5) such that the integral kernel k, of g(n) belongs to

SH(E) ©r SLT(OB") ©r S_3(0B"). According to Definition 6.10,

e/2
SLT(0B") = Sy (0B") @ .
By possibly shrinking e, we may assume that @) contains no triple (g,l, L) with Req < ”TH —7— U
By possibly enlarging ) we can assume that £ C &g, and therefore £g = £' @ V for a certain
finite-dimensional space V. Therefore k, can be written as k, = k) + k; with k) containing the
contribution of £', and k; that of V. However, from identity (3.7) one sees that g(n) maps into the
domain of A, and therefore k; must equal 0. This then finishes the proof, since St (oBr) =

STH(9B"). 0

With bg(n) from Proposition 3.7 and g(n) from Proposition 3.8 let us now define for certain cut-off
functions o, 09 € C3,,([0, 1))

comp

(3.9) b(n) = br(n) + 0 g(n) oo = b(n) +w(tly) t* opy, ~ * (f) woltl]) + o g(n) o
(as an operator-family )7 (B) — D(A)). More detailed, by the construction of br(n), cf. (3.5)
and the definition of C¥%(X) in Definition 6.6, we have

b(m) = o {t opy; ¥ () (n) + w(tlr]) #* op} (N wo(tln) + 9(n) } o0 + (1= o) pln) (1 = o),

where h, p, and the cut-off functions o, 09,01 are as described in Definition 6.6 and the paragraph
thereafter. Since, due to A having constant coefficients,

on" (br)(n) = t* oy, * (h)(n) + w(tln]) #* opry 2 (F) wo(tln]),
and o,"(g)(n) = g(n) for large enough |n| by construction of g, we obtain that

(3.10) b) =0 (" =)~ oo+ (L=0)pl) (L=0n), 2R,
for a sufficiently large R > 0. Moreover, we observe that changing the cut-off functions in (3.10)

only alters b(n) by a nice remainder:

LEMMA 3.9. Let 6,690,061 € Coonp([0,1]) be cut-off functions satisfying the conditions posed in

Definition 6.6 and the subsequent paragraph. Then, using the notation from (3.10),
b(n) =5 (" = A) 60+ (1=6)p(n) (L —61) +r(m),  In|> R,
with a remainder r(n) having an integral kernel (with a certain € > 0)
kr(1,9,9') € S(Z,C577 (B) @5 277 (B)).
Here, we have set Cg,”" (B) = C2*7 T @ £'. In particular, (1) € S(2, L(H" (B), D(A))).

ProoF. This statement is easily seen, if we use the representation of b(n) in (3.9). Changing
cut-off functions alters b(n) only by a flat Green symbol in C ™ (X)o0, which has in particular a
kernel of the mentioned structure. It remains to note that og(n)og — 6g(n)do = og(n)(co — o) +
(6 —0)g(n)do and both these terms have the required structure (recall that they are Green symbols

of order —oo, since both ¢ — o and oy — 6o belong to Cg,y,, (10, 1[)). O

ProprosITION 3.10. If b(n) is as in (3.10), then for |n| large enough
" = A)b(n) =1 =rrm),  d)" —4) =1=ry(n),

for certain remainders (with a certain € > 0)

rr(n) € C5™(Z;7,7v,6),  ro(n) € S(E,L(D(4)))-
In particular, (n" — A) : D(A) — MY (B) is invertible for sufficiently large |1|.
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PROOF. Since A is a local operator, we can write (n* —A) = o(np*—A)oo+(1—0)(n*—A)(1—0)
with cut-off functions mentioned before. Then

(" =A)b(n) = o 0" —A)oob(n) + (1 —0o) (n* — A) (1 — 71) b(n).
To treat the first summand choose a representation of b(n) as in Lemma 3.9 with 609 = 9. Then
oM —A)oob(n) =0 +o @ —A)oor(n),

where the second term belongs to C;;*(¥;7,7,¢) (recall Lemma 3.1). For the second summand
we choose for b(n) a representation with &o such that o169 = 9. Then

1=0)m" -A)(1-01)b(n) =1 -0)+(1—-0)((n" —Apn) —1)(1-01)
modulo a remainder of the prescribed form. However, by (parametrix-)construction the term on

the right-hand side of the last relation is of the form (1 — o)a(n)(1 — 1) with a(n) € L~°°(2B; %),
hence is a remainder of the desired form. The considerations for b(n)(n* — A) are analogous. O

To finish the proof of Theorem 3.5.b), it remains to modify b(n) in such a way that we ob-
tain the inverse of n* — A. To do so, we may assume that rg(n) of Proposition 3.10 satisfies
||rR(n)||£(Hg,7(B)) < 1 for all n € ¥ (otherwise we multiply rg(n) with a suitable zero excision

function x(n)). But then 1+ rg(n) € L(H)7(B)) is invertible for all 7 € ¥ and
L+ram) "t =1=rr() +reM @ +rrM) rr) = 1+r().
Clearly, r(n) belongs to C;°(X3;7,7,¢), again. Hence, by Proposition 3.10 and (3.9),
(" = A = b(n) (L +rr(m) " = b(n) + b(n)r(n) = b(n) + 7(n)
for large |n|, with 7(n) € C;"(X;7,7,€) (note that the smoothing Mellin term in
Mira(Esy =+ n—e,p) C Cg"(E5,7,¢)).

(3.9) belongs to

LEMMA 3.11. Letye R and 0 <e < % Then
C&(5:7,1,057,1,0) € CG(S57,1 = 26,057 + 26,1 = 2, 0).
PROOF. Let g(n) € C&(Z;7,1,0;v,1,0). Then, by Definition 6.13, we can write g(n) =

oa(n) oo + r(n) with a(n) € RE(Z;7,1,0;7,1,0) and r(n) € C;*(Z;7,1,0;7,1,0). We now
have to show that

(3.11) a(n) € RY(Z;7,1 — 26,057 + 26,1 — 2¢,0)

and that r(n) € C;°(Z;7,1—2¢,0;7+2¢,1—2¢,0). We restrict ourselves to the proof of (3.11),
since the symbol r(n) can be treated in an analogous, even simpler way. By Theorem 6.12 it suffices
to show that

S7(0B") & S, 7(0B") € S (0B") &r Si 1. (0B")
= [ST155 (0BY) ©x Sy 7 (9BM)] N [S777 (OB") ©r Sy . (0B")]

(recall that we write S = S} if O € As(v,0) is the empty asymptotic type). By Proposition 4.5
of [27] (in a version for operators on 0B") we have

ST (OB") & S; 7 (OB") = AN SY(OB) . S; " (OB").
Taking the parameter o = 1 yields
S} (OB) ®r S; 7 (0B") C 87 (OB") &, S, 7 (0B") = ST (0B ) &, S, " (OB),

where the last identity directly follows from the definition of the involved spaces. Inserting o =
2¢ + 4, § > 0 small, yields

S (OB") Er ST (OB") C ST, 5(0B") B S5 (0B") € S3(9BY) 8 S, _,(0B").
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Passing to the intersection over all § > 0 gives
S (OB") &r S;7(9B) C ST (OB) @ S;7,. (OBM).

This finishes the proof. O

4. Spectral invariance and bounded imagainary powers

4.1. Independence on the choice of 1 < p < co. The invertibility result of A = A of
Theorem 3.5 a priori holds for a given, fixed p = py. However, the inverse ¢(r) of Theorem 3.5.b)
induces continuous operators

c(n) : Hy?(B) — D(A) = D(4,)

for all 1 < p < oo. Moreover, ¢(n)(n* — A,) =1 on C°>°(B) © £ for each p, since this is true for
p = po and the left-hand side of the latter equation is independent of p on C**°(B) @ £. Similarly,
(" — Ap)e(n) =1 on C°°(B) for all p. Thus a density argument shows:

REMARK 4.1. If A= A satisfies Theorem 3.5.b) for one p, then automatically for all 1 < p < co.

The constructions of Section 3.3, cf. (3.7), show that

(" — A)"" € REW(S) + RS (57, 7€),

P
where R(—#)(X) denotes the space of all principal edge symbols 5" (c) with ¢ € Cp*(X). Thus,
arguing similarly as above, we obtain

REMARK 4.2. If A = A, satisfies ellipticity assumptions (1), (2), and (3) of Section 3.2 for one p,
then automatically for all 1 < p < c©.

4.2. Bounded imaginary powers. In the paper [3] we have shown that the closure of a cone
differential operator — under ellipticity conditions (1) and (3) with £ = {0} — posseses bounded
imaginary powers whose operator-norm in ’Hg” (B) can be estimated by cpeg‘z‘, where 6 is the angle
determining A = Ay. We also had pointed out in Remark 5.5 of [3] that the validity of this result
‘only’ relies on the structure of the resolvent and not on the fact that we dealt with the closure
of the operator. But Theorem 3.5 now states that the resolvent of a general closed extension has
exactly this required structure (in [3] we described the resolvent (A — A)~! in terms of anisotropic
symbols, while here we described (n* — A)~!. However, both ways are obviously equivalent). Thus
we have the following result:

THEOREM 4.3. Let A be a closed extension of a cone differential operator A, satisfying the ellipticity
assumptions (1), (2), and (3) with respect to A = Ay. Then there exists a constant ¢ > 0 such that
A + c has bounded imaginary powers and, for a certain constant c, > 0,

(4 + C)iQHL(Hg"(B)) < cpell VeeR

Let us mention that the operator A + ¢ does not satisfy the assumption of constant coefficients
near the boundary (since we have to write ¢ = t~#(¢*¢)). However, the structure of the resolvent
remains uneffected by the shift with a constant c.

In [3] we did not assume A to have t-independent coefficients near the singularity, but additionally
required A to be conormal elliptic with respect to the weight vy + p, so that D(Awin) = HE 7 TH(B),
cf. Proposition 2.3. Using the method of proof in Section 3.3, this additional assumption is obsolete.
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5. Example: The Laplace-Beltrami operator

Let the interior of B be equipped with a metric that coincides on )0, 1[ x OB with dt? +t*g for some
fixed metric g on 0B (straight conical degeneracy). The associated Laplacian A is a second order
cone differential operator, and

A = t72{(t0y)? + (n — 1)td; + As}, n = dim OB,
near the boundary of B, where Ay denotes the Laplacian on B with respect to g.

Clearly, —A satisfies ellipticity condition (1) of Section 3.2 for any sector A not containing positive
reals.

5.1. The conormal symbol. By the definition given in the beginning of Section 2.1, the
conormal symbol of the Laplacian is

o2 (A)(2) = 22+ (n — 1)z + Ap.

Let us investigate the inverse of this function. To this end let 0 = Ag > A1 > ... be the eigenvalues
of Ap and Ey, E1,... the corresponding eigenspaces. Moreover, let 7; € L£(L2(0B)) denote the
orthogonal projection onto Ej.

The non-bijectivity points of 03,(A) are exactly the points z = q;.' and z = a with
_ 1)\ 2 .
6.1) =2t/ N, den.

Note the symmetry qj+ = (n—1) —¢; and that 2> — (n — 1)z + \; = (2 — q;r)(z —q;) It is
straightforward to calculate that in case dimB > 3

(22— (n—1)z+Ap) ! Ej:q+1 j (z—qj-c)*1 nearz:q;-E

J J
modulo holomorphic functions (respectively germs). In case dim B = 2 the same formula holds near
z::qji if 7 > 1 but

(22 +Ap) t=mp2? near z = 0.

5.2. Maximal domain and dilation invariance. With q]j.E we associate we associate the
function space

Ep = F Dwt™ ={e(@)wt)t™% |e€ B}, jeN

and for g we set

(5.2) £ s =

')

Ey@w+ Ey®wlogt dimB =2
By @ wtih dimB >3
Note that ¢i = g, = 0 in case dim 0B = 1. Furthermore, for v € R, set
L={¢ ljeN}n]=t —y—2,22 —y[={¢ |jeN}n ]2 -y 1,252 —y +1[.
Applying Theorems 2.3 and 2.8 to A = A, we get the following:
PROPOSITION 5.1. Consider A as an unbounded operator in H)"7(B). Then the domain of the

mazimal extension is

D(AmaX) = D(Amin) © D Ep.
q€ly

In case qji # ML — 5 — 2 for all j, the minimal domain is D(Awin) = H27T(B).

Let us now describe the closed extensions A of A satisfying condition (2) of Section 3.2. For con-
venience such extensions we shall call dilation invariant extensions. A straightforward calculation
(or an application of Lemmas 5.11 and 5.12 of [10]) yields:
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PROPOSITION 5.2. Consider A as an unbounded operator in H)"(B). The dilation invariant ex-
tensions A are precisely those with a domain of the form

(5.3) D(A) = D(Apin) @ 691 &y £, subspace of &,
qely
where in case dimB = 2 either £, = {0} or £y, = By @ w or £y = &y, ¢f. (5.2).

Let us point out that in (5.3) the sum is taken over all ¢ € I, and that the summand £, = {0}
may occur several times.

5.3. Adjoint operators. Since the scalar-product (-,-)o o of Hy°(B) yields an identification
of the dual space of H)"7(B) with ’Hg,’_’Y(IB), we can associate with each extension A in H)”(B) an

adjoint operator A*. This adjoint is then an unbounded operator in ’Hg,’fw(]B) which is given by
the action of A on the domain

DA") ={veHy"B) | If e Hy "(B) VueD(A): (v, Audoo = (f,u)o0}-
It is easy to see that A*. = A and AX = Apin.

min max
The goal of this subsection is to describe explicitly the adjoints of dilation invariant extensions A.
For an analysis of adjoints of general cone differential operators (in case p = 2) see the paper [10].
Define the pairing
() : Dy (Amax) X Dy (Amax) — €, (u,v) = (Au,v)0,0 — (4, Av)o,o,

where the indices o,r in DJ now indicate that we consider the Laplacian in the Sobolev space
#%9(B). Then the domain of the adjoint operator A* is just the orthogonal space (with respect
to this pairing) to the domain of A, i.e.

D, (A%) = Dy (A).
Since (u,v) = 0 whenever u or v belong to the minimal domain, the crucial part for calculating the
orthogonal space is to understand which elements of ©,e;_ &, are orthogonal to a given element
of Dyer, Eq.

Let u = ewt™? with ¢ = q;.r or ¢ = g¢; and e € Ej for some fixed j € No. If vy = fcut_qlci with
f € Ej, an elementary calculation yields
(Au)ox —uAvg = 2(gf — q) e?ww't*q*qki*l,
hence (u,v+) = 0 if and only if q,f =qor (e, f)r,om) = 0.
If dimB =2 and v = cw + dwlogt with ¢,d € C and vy = fwt"lki with f € E and k # 0 then
(Au)TE — uAvg = 2f(d + cgif + dgi- log t)ww't*qki*l,
hence (u,v+) = 0, since (1, f),om = 0. If u is as before and u = cow + dowlogt with cop,dy € C,
then L
(Au)T — uAv = 2(cod — doc)ww't >,
hence if both u and v are different from zero, (u,v) = 0 if and only if v is a multiple of u.
From this we derive the following description of adjoints of dilation invariant extensions:

THEOREM 5.3. Let A be a dilation invariant extension of A in 7—[2’7(153) with domain

DI(A) = D) (Ain) & @ &,
qu’y

as described in Proposition 5.2. Then the domain of the adjoint A* is

D_;FY A* :D—,’Y Amin gJ_a
A =D (A @ & &,

where the spaces Q;‘_i are defined as follows:
2
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i) If either qji # 0 or dimB > 3, there exists a unique subspace E; C Ej such that Qq_i =
2
+
E; Qwt % . Then we set
1 1 7q:.F
éqji - E] ®Wt 7y

where EJL is the orthogonal complement of E; in E; with respect to the L, (0B)-scalar

product.
ii) If dimB =2 and g = 0 define £ = {0} if £y = &, £y = &o if £y = {0}, and E5 =&,
Zf§0 = EO ® w.

Note that Q;‘i is a subspace of Eq; or, equivalently, Q;‘ is a subspace of E(n_1)_q-
J J

COROLLARY 5.4. The selfadjoint dilation invariant extensions A of A in ”Hg’o(]B%) are those with
a domain of the form

Dg(é) = Dg(Amin) o Db &

q€lo

with Q;‘ = é(nfl)fq for all q € Iy (in particular £, = Ep @ w in case dimB = 2).

Applying Theorems 8.3 and 8.12 of [10], the Friedrichs extension of A has the domain

DY(Amin) @® © £ ® (Bo ®w) dimB =2
R g0
DY Amin)® & & dimB > 3"
g€lo
Reg< 23+

DH(A) =

In particular, the Friedrichs extension is dilation invariant.

REMARK 5.5. fﬂl the results of Sections 5.2 and 5.3 hold true in an analogous form for the model
cone operator A considered as an unbounded operator in K37 (OB").

5.4. Elliptic extensions. Proposition 5.2 provides a complete description of the closed ex-
tensions A of A such that —A satisfies the ellipticity conditions (1) and (2) of Section 3.2. Now we
discuss how extensions look like that also satisfy condition (3). We shall assume that |y| < %dim B
(the choice of this range is connected to the scale of natural L,-spaces on B as we shall explain
below). Then to each given v we find at least one extension having property (3), but in case
dimB < 3 we find more than one. However, the extensions we describe might not represent all
possible choices.

THEOREM 5.6. Consider —A as an unbounded operator in H)"(B) and assume dimB > 4. Then
conditions (1), (2), and (3) of Section 3.2 for any sector A C C\ Ry are fulfilled by —Ap,ax in case
0<y< %dim]B% and by —Anin in case —%dim]B% <v<0.

The assumption on the dimension of B in the previous theorem ensures that A in ’Hg’O(IB) is
essentially self-adjoint or, in other words, the inverted conormal symbol has no pole in the interval
Iy. We shall omit the proof of this theorem, since it is a simpler version of that for the following
one (cf. also the proof of Theorem 7.1 in [3]).

THEOREM 5.7. Consider —A as an unbounded operator in ’Hg”(]B%), assume dimB < 3, and let
|v] < tdim B. An extension —A satisfies conditions (1), (2), and (3) of Section 3.2 for any sector
A C C\ Ry, provided we choose its domain

Dp(8) =Dy (Amin) & g4

according to the following rules:

() Ifqe IL,NI_y, then £ =E, 1) -
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(i) Ify>0andge I, \I -, then&, =&,.
(i) Ify <0 andqe I ,\ I, then £, = {0}.

In particular, D) (A) = D) (Amax) if ¥ > 1 and D)(A) = D) (Amin) if v < —1.

ProoOF. By Remark 4.2 we may assume that p = 2, and by duality it suffices to treat the case
v > 0. Let A, denote the selfadjoint extension of A in H)*(B) with DJ(A) C DY(A,). Such an
extension always exists due to assumption (i) on the domain of A and by Corollary 5.4; its domain
is

DYIA) =DV Anin)® @ & @ &,
5(4y) 2 ( ) ernr 1% By &

If we then pass to the associated model cone operators and use Remark 5.5, we get that

(5.4) A+A:DIA) — K)7(0BY),  A¢Ry,

is injective, since spec(—A,) C Ry and DJ(A) € DI(A,).

By Theorem 5.3 (in the formulation for model cone operators), the adjoint é* of A has the domain
DAY =D, Bum)® © £

gel,ni_, 1

~ %

Now let A € C\ Ry and u € D, 7(A ) be an element of the kernel of A+AT e (A+A)u = 0. We
shall show now that this implies u = 0. To this end write u = ug + u; with ug € Dy 7 (Apin) and

u; € © &, Note that ug,u; € /Cg70(8IB/\) by the assumption on the dimension of B and the
gel NI
structure of the domain of A. Since Auy € CZ5,,,(int B) (as this is true for any linear combination

of functions from the spaces &,), we obtain (A+A)ug = —Auy — Auy € K3°(9B"). But this means
that

Up € Dg(amax) N D;V(ﬁmin) = Dg(amin) 5% ©® Eq C DS(AO)
qEIo\I,,Y
The last inclusion is valid by construction of A,. This yields u € D (AO) and (A + ﬁ)u = 0, hence
u = 0, since spec(—4,) C R;.
This shows the bijectivity of (5.4), since there A + A is a Fredholm operator (this follows from
[12], Proposition 1.3.16), hence has closed range. O

5.5. The Cauchy Problem. Let 1 < p < oo and let L,(B) denote the Lp-space on intB
associated to the measure induced by the conical metric on int B. Then

Ly(B) =Hy*(B),  %={n+1)(5-3)

p

In fact, away from the boundary these spaces coincide by definition; thus it suffices to consider
functions supported close to the boundary. But then, cf. Definition 2.2,

nt1l
Wil = [ EFEruap e = [t o)l tdtde = fulf .
"' (B) [0,1] x5 ¢ [0,1] %8B L2 ®
Clearly, |v,| < nTH = %dimIB when p ranges from 1 to co. Therefore the results of the previous

Section 5.4 can be applied to the Laplacian in L,(B), 1 < p < oco.

Combining these results with Theorem 4.3 and the Dore-Venni theorem (Theorem 3.2 in [5]), one
obtains maximal regularity for solutions of the Cauchy problem:

THEOREM 5.8. Consider A as an unbounded operator in L,(B), 1 < p < co. If A denotes any
extension from Theorems 5.6 or 5.7 associated with v = vy, the Cauchy problem

w(t) — Au(t) = f(t) on 0<t<T, u(0) =0,
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has for any f € Ly([0,T], Ly(B)), 1 < g < 00, a unique solution
u € qu([oaT]:LP(]B)) n Lq([O:T]aD;p(é))

6. Appendix: Parameter-dependent cone pseudodifferential operators

Let us review a calculus of parameter-dependent pseudodifferential operators on B. It was intro-
duced by Schulze [21], [22]. Our presentation follows [26] and [11]. While there the parameter-space
was R?, we focus here on a subsector of the complex plane. The proofs pass over to this situation
without any changes, and thus will be dropped here.

We split the presentation into two parts: In Sections 6.1 to 6.3 we describe a sub-calculus of flat
operators. This is relatively simple to describe, and already contains n* — A for a u-th order cone
differential operator A and — under suitable ellipticity assumptions on A — a rough parametrix. To
describe the resolvent (n* — A)~! we need to enlarge this calculus. This shall be explained starting
with Section 6.4.

In the following, ¥ is a closed sector in the complex plane (identified with R?) containing zero, i.e.
Y={neC| b <argn <6}U{0}, -7 < 601,02 <.

If E is a Fréchet space, we let C*°(X, E) denote the space of all continuous functions ¥ — E that

are smooth in the interior of ¥ and whose derivatives have continuous extensions to the whole

sector X. The space of rapidly decreasing functions S(X, E) refers to the decay of functions for
In| = 0.

6.1. Smoothing elements of the flat calculus. The space C°*°(B), consisting of all func-
tions that are smooth in the interior of B and vanish to infinite order at the boundary, is Fréchet
in a natural way. Taking the projective tensor product yields the space

C®(B x B) = C°®°(B) ®, C>(B).

DEFINITION 6.1. Let C;*°(X)o be the space of all operator-families r(n) : C°*>°(B) — C°°(B),
n € X, such that

[r(m)ul(y) = / ke (.9, )u(y') dy',

where dy' is a measure induced by a conic metric on B, and the kernel k, € S(X,C°**°(B x B))
depends rapidly decreasing on n € X.

Besides this kind of smoothing operators — which act globally on B and depend rapidly decreasing
on the parameter — there appears another kind of smoothing operators that are localized near the
boundary but have a non trivial dependence on n € X.

To this end let S*°(OB") denote the space of smooth functions Ry x 9B — C that vanish to infinite
order in ¢t = 0 and decrease rapidly for ¢ — co. We then define

S®(9B" x OB") = S (OB ) &, S™(OB").

DEFINITION 6.2. Let R, (X)so, pt € R, denote the space of all operator-families a(n) : S (0B") —
S©(0B"), n € X, such that

(6.1) fa(n)u](t, z) = )"+ /6 ot ol e o) £ i

with an integral kernel satisfying
ka(n,t,z,t',2') € S%(2,S(0B" x OB")) := S (%) &, S (0B" x OB").

Using such operator-families, the so-called flat Green symbols or parameter-dependent flat Green
operators are defined as follows:
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DEFINITION 6.3. For p € R let CL(X) oo denote the space of all operator-families g(n) : C°°°(B) —
C>>®(B), n € X, such that

(6.2) g(n) = o a(n) oo +r(n)
for some cut-off functions 0,09 € C*°([0,1]), a € RE(E) oo, and 1 € C5%°(X)oo-

Note that if ¢ is as in (6.2), then g(n) = da(n) 6o + 7(n) for any choice of cut-off functions
7,00 € C*([0,1]) with a resulting 7 € Cf*°(¥). Moreover, the (pointwise) composition of such
operator-families is again of the same type, i.e. the composition yields a map

(6.3) CE (D)oo X CEH (D)oo —> CET(D) .

6.2. Holomorphic Mellin symbols. A holomorphic Mellin symbol of order u € R is a
function h : Ry x C — L% (0B;X) depending smoothly on ¢ € Ry and holomorphically on z € C.

cl
It has its values in the Frechét space of parameter-dependent pseudodifferential operators on the

boundary of B. Moreover we require that

ci(8) := sup (8)' [|0h(t, 6 + ir)]|
>0

is a locally bounded function of § € R for any I € Ny and any semi-norm ||-|| of L%, (0B; R, x X). Let
us denote the space of all such symbols by M/ (R4 x 0B; X). The space of t-independent symbols
is denoted by M} (9B; X).

With h € M} (R, x OB; ¥) we associate an operator-family S (9B") — S>(9B") by

(6.4) [opas (R)(M)u](t, z) = /Ft_zh(t,z,tn)(Mu)(z,x) dz, u € S®(0B"),

where T' is an arbitrary vertical line in the complex plane (the choice of it is arbitrary due to
Cauchy’s integral formula). Note that on the right-hand side of (6.4) we do not use the symbol
h(t,z,n) itself, but the ‘degenerate’ one h(t, z, tn)). Operators of that kind we refer to as parameter-
dependent Mellin pseudodifferential operators or, shortly, Mellin operators.

REMARK 6.4. If A is a cone differential operator as in (2.1) then, for any ¢ € C*°([0,1]),

o — A) = pt P opy (W), h(tzm) =1 — 3 ()0,

7=0
Mellin operators behave well under composition:
THEOREM 6.5. Let hj € M} (Ry x OB;X) for j =0,1. Then

. d
(6.5) (ho#ha)(t, 2,m) = // s ho(t, z + i, m)hy (st, 2, s7) ?SJT
defines an element ho#h, € M5°+“1 (Ry x OB;X), the so-called Leibniz-product, and
ob s (ho)(m)opas (h1)(n) = opas(ho#thi)(n) Vi € X.

The right-hand side of (6.5) is understood as an oscillatory integral in a suitable sense.

6.3. The calculus of flat cone operators. The operator-families we now consider are,
roughly speaking, those which in the interior of B are usual parameter-dependent pseudodifferential
operators, and which near the boundary are parameter-dependent Mellin operators. The global
smoothing elements are flat Green symbols. Let us make this precise:

DEFINITION 6.6. Let i € R. Then CH(X) denotes the space of all operator-families C°>°(B) —
C>>°(B) of the form
(6.6) c(n) =ot™"opy(h)(m)oo + (1—0)p(n) (1 -01) + g(n),

where o,00,01 € Cooy,, ([0, 1]) are cut-off functions satisfying coo = o, 001 = 01, and
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a) h(t,z,n) € ME(Ry x OB;X) is a holomorphic Mellin symbol, cf. Section 6.2,
b) p(n) € L', (2B; X) is a parameter-dependent pseudodifferential operator on 2B,
¢) g(n) € CL(X)oo is a Green symbol, cf. Definition 6.2.

One can always achieve that for any choice of 0 < ¢ < 1 the symbols h and p in the representation
(6.6) are compatible in the sense that

e {t™opy (W) —p(M} ¥ € CG7° ()oY 0,00 € Coomp(lo, 1]).

In order to formulate the calculus in a smooth way, we shall fix such a ¢ and shall always assume this
compatibility relation to be satisfied. Moreover, we assume the involved cut-off functions o, og, 01
to be identically 1 in a neighborhood of [0, g]. Occasionally, we shall write ¢(n) = op(h,p, g) if ¢(n)
is as in (6.6).

THEOREM 6.7. The pointwise composition of operator-families yields a map
05 () x C5' (T) — C& ().
More precisely, if c;(n) = op(hj,pj,9;) for j = 0,1, then
co(n)ci(n) = op((T** ho)#h1, pop1, )
with a resulting Green symbol § € C’ggﬂ“ (X)oo. Moreover, the shift-operator T°, § € R, is defined
by (T°h)(t,z,n) = h(t,z + d,n).

The operator-families from C5(X) introduced above are a certain subclass of parameter-dependent
pseudodifferential operators on the interior of B. In particular, we can associate with them the usual
homogeneous principal symbol

(6.7) oy (c)(y,0,m) € C*((T"int B x ) \ 0)

with (y, ) refering to variables of the cotangent bundle of int B. In the coordinates y = (¢, ) near
the boundary with corresponding covariables p = (7,£), the principal symbol has the form

zp( )(t T,T, 67 ) —tfup(u)(t;l“;tﬂf;“?)

with a function p(,)(t, =, 7,,n), which is smooth in (¢,z) € Ry xR" and 0 # (7,&,n) € RMHL x X
and is positive homogeneous of order x in (7,&,7). Passing to the symbol p(, (0, z,7,&,7) globally
leads to the definition of the rescaled principal symbol

(6.8) &4 () (2, 7,€6,1m) € C((T"0B x R x £) \ 0).

Roughly speaking, this rescaled symbol describes the behaviour of the principal symbol in the
conical singularity itself. We call ¢(n) € C§(X) B-elliptic if

E) both the principal symbol ¢/ (¢) and the rescaled symbol 6/ (¢) are pointwise everywhere
i tibl v v
invertible.

This condition allows the construction of a rough parametrix:

THEOREM 6.8. Let ¢(n) = op(ho,po, go) € C5(X) be B-elliptic. Then there exists an operator-family
b(n) = op(h1,p1,91) € C;"(X) such that

b(n)e(n) =1+ w(tn]) opar (fr)(n) wo(t[n]) + gr(n)

c(m)b(n) = 1+ w(tn]) opy (fr) (M) woltn]) + gr(n)
with an arbitrary choice of cut-off functions w,wo € Coonp([0,1[), Mellin symbols f1, fr € M5

(Rt x OB;Y), and flat Green symbols gr,gr € C&(X)eo. Moreover, fi, = (T*hy)#ho — 1 and
fr= (T_Nho)#hl —1 on [0, ].[
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Hence, elliptic symbols can be inverted up to smoothing remainders. However, this parametrix is
not quite satisfactory, since a smoothing Mellin term is present and the Green symbols still have
order 0. To improve the quality of the remainder, one has to enlarge the calculus substantially
(and has to pose additional ellipticity conditions). The elements of this enlarged calculus will be
described in the next sections.

6.4. Green symbols with asymptotics. Let E7, j = 0,1, be Banach spaces and K =
{wi | o >'0} C L(E?) a strongly continuous group on EJ, ie. k] =1 and k)k] = k), . We also
refer to k7 as the group action of E7.

A function a € C* (X, L(E®, E)) is said to be a symbol of order p € R, if

5} sy Oxa(n) Ky Ml o 1) < ca ()71

uniformly in 7 € ¥ and for all multiindices . Then we shall write a € S#(X; E°, EY).
A function a € C*(Z \ {0}, L(E®, EY)) is called twisted homogeneous of order u € R, if
(6.9) a(on) = 0" kya(n) Ky,  Yo>0,n#0.

The space of such functions we shall denote by S(~#)(X; E°, E'). Using this notion of homogeneity,
the standard concept of classical (respectively polyhomogeneous) symbols having asymptotic ex-
pansions into homogeneous components, passes over to this more general situation. We then write
a€Sh(ZE° EY).

As a straightforward modification, one also can admit E' to be a Fréchet space, which is the
projective limit of Banach spaces, E' = m, E} with E{ < E} « ..., such that the group
action on E} induces (by restriction) the group actions on all E}, k € N. Then we simply set

Sélcl)(z;anEl) = kQN Sébcl)(z;anEli)

General Green symbols now shall be first introduced as such operator valued symbols with a specific
choice of Banach spaces. In a second step we shall see that they also can be described with integral
kernels in the spirit of (6.1).

We now work with distribution spaces on 0B" = Ry x OB. The group action & on the various
spaces occuring is — as a rule — always that induced by

(6.10) (kou)(t,7) = 0"F u(ot,z), € Coop(OB").

DEFINITION 6.9. Let v,0 € R and § > 0. An asymptotic type Q € As(v,8) is a finite set of triples
(¢,1, L), where q is a complex number with ”TH —v—0 <Reg< ”TH —v,1 €Ny, and L C C*(IB)
is a finite-dimensional space of smooth functions. We shall write Q = O if Q) is the empty set.

The conjugate type to Q is the set of triples (q,l, L), where (q,l,L) € Q. This type we shall denote
by Q € As(v,0).

With an asymptotic type @ = {(g;,l;,L;) |j = 0,...,N} € As(v,0) we associate a finite-
dimensional subspace of C5>7(OB") (respectively H>>7(BB)), namely

N
(6.11) o = {(t,x) S wt) S wr(e)t™Y loght | ug € Lj}.

j=0 k=0
Here w € C5mp ([0, 1]) is an arbitrary cut-off function.
DEFINITION 6.10. Let s € R and @ € As(v,60) be an asymptotic type. Then define

Ky h(0BY) = &g & rgéic;ﬂ”*g(aw)
>
822(8153/\) ={uce IC;?Q(BIBA) | (1 —-w)u e S(OB")}.

In case Q@ = O being the empty set, we agree to write K';(0B") and S (0B ), respectively.
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Note that the spaces are independent of the choice of the involved cut-off function, Moreover, both
spaces are Fréchet and can be written as a projective limit of Banach spaces. In particular, we can
speak of operator-valued symbols in the above sense.

DEFINITION 6.11. Let ) € As(—~,0), Q' € As(v',0") be given asymptotic types. Then let us denote
by RE(2;7,6,Q;7,6',Q") the space of all functions a : ¥ — LK (0BN), K7 (OB")) with
a€ SIQR SH (25 K57 (0B"), S (9B)), a* € SQR SH(Z K377 (0B1), S, (0BM)).

Here, the x refers to the pointwise adjoint with respect to the scalar product ofng’0 (OB"). Moreover,
we set

Re(%57,6,7,6) = U Ba(%57,6,0:7,6,Q")
and we agree to write RE(X;7,7',6) if 0 = 6'. The corresponding spaces of (twisted) homogeneous
functions of order u we denote by R(Gfb)(E; cl).

As an example, flat Green symbols from Definition 6.2 are very special symbols of that type,
namely
RE(D) =) RES:7,6,057,6,0),

v'0,
The last definition is most convenient for checking wether a given function is a Green symbol.
However, for other purpose it is also important to know that such symbols have integral kernels
with a specific structure to be explained now. To do so, set

SY(OB) = {u € K37 (OB") | (1 — w)u € S(AB"), (log* t)wu € K37 (OB ) Vi € Ny }.
THEOREM 6.12. Leta: X — E(ICg’W(a]BSA),ICg’V’ (OB")) for given asymptotic types Q € As(—,0)
and Q' € As(y',0"). Then a € RL(X;7,0,Q;7,6',Q") if and only if a satisfies (6.1) with a kernel

ko € S"(S) Br S (OB") By S5 (9B"),
where we have set
54 (0B") G 857 (9B) = [, (9B") 8 S5 (9B N S5 (9B) & S (9B")].

To define general Green symbols on B we need to introduce some function spaces on B:
C>7(B) = {u € C>®(int B) | wu € Sy (0B")},
ng(B) ={uelC®@ntB) | wu e S%(@]B%A)},
/H;”ZQ(IB) ={ue H,, (intB) | wu e K;zzg(a]l’ﬂ/\)}.
These are subspaces of H;7(B), independent of the choice of the involved cut-off function w. We
shall write C;~"(B) and H," (B) if @ = O € As(v,6) is the empty asymptotic type.
Now we define C5>°(Z;,6,Q;7',0", Q") as the space of all functions r : ¥ — L(Hy" (B), 7—[3”' (B))
such that
—00 (3. 287 00,7’ * —oco(y. 278~ 00,—7
rE sEIRS (25 H5 (]B%),CQ, (B)), " e SQRS (355 (]B),CQ (B)),
where * refers to the adjoint with respect to the scalar-product of ’Hg’O(IB) and all spaces are
eqipped with the trivial group action x = 1.

Such operator-families posses an integral kernel in analogy to Definition 6.1, but now the kernel
satisfies )
kr € S(X) ®xCo" (B) ®r C%""”(]B),

where, similar as above,

c5”'(B) BrCZ 7 (B) = (€57 (B) 8, C> 7 (B)] N [ (B) B, €37 (B)].
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Taking the union over all possible asymptotic types leads to the spaces C™(X;7v,6;7',0") and
Ce™(Z;7,7,0)if0=¢".
DEFINITION 6.13. Let CF(X;7,0;7',0") denote the space of all operator-families g(n) : C*°7(B) —
C>7'(B), n € ¥, such that

9(n) = o a(n) oo +r(n)
for some cut-off functions o,00 € C*°([0,1[), a € RE(X;7,0;7',0"), and r € C;°°(%;7,0;7',0").

Note that the (pointwise) composition of such operator-families is again of the same type, i.e. the
composition yields a map

CE(S57,07:7",0") x CEH(S57,0;7,0") — Claetr (35,057, 6").

6.5. Meromorphic Mellin symbols. An asymptotic type for Mellin symbols P is a set of
triples (p,n, N) with p € C, n € Ny, and N a finite-dimensional subspace of finite rank operators
from L~°°(0B). Moreover, we require that 7cPN{z € C | —J <Rez < §} is a finite set for each
0 > 0, where

mcP={peC|(p,n,N) € P for some n, N}.
We shall write P = O if P is the empty set.

A meromorphic Mellin symbol with asymptotic type P is a meromorphic function f : C —
L=>°(9B) with poles at most in the points of mcP. Moreover it satisfies: If (p,n, N) € P, then

n
the principal part of the Laurent series of f in p is of the form Y Ry(z — p) %! with Ry € N;
k=0

if x € C*>*(C) is a m¢P-excision function (i.e. identically zero in an e-neighborhood around m¢ P
and identically 1 outside the 2e-neighborhood), then ¢(0) = |||(xf)(d + i7)]||| is a locally bounded
function in § € R for each semi-norm of L=°(0B; R, ) = S(R,, L~°°(9B)).

As in (6.4) we can associate with meromorphic Mellin symbols a pseudodifferential operator. How-
ever, this operator will depend on the choice of T in (6.4). We shall define op),(f) by

(6.12) fopl, (F)ul(t, z) = / 7 F(t 2) (Mu) (2, 7) dz.

T
15

Of course, we also have to require that none of the poles of f lies on the chosen line; this we always
shall assume implicitly.

DEFINITION 6.14. Let v, € R and k € N. Then C};, (357, — p, k) denotes the space of all
operator-families C°*7(B) — C®7~H(B) of the form

(6.13) (S, 55 oni ™ (o)) + gl
7=0 |a|=

where w,& € C5,([0,1]) are arbitrary cut-off functions, g € CL(Z;7,v — . k), fia € M;]io for

comp

certain asymptotic types Pj, and weights vjo € R with v — j < yjo < 7.
Changing the cut-off functions w,® in (6.13) only yields remainders in C% (X;7v, vy — u, k).

6.6. The calculus of cone pseudodifferential operators. For v, € R and k£ € N let
(6.14) CH (37,7 — k) = CH(2) + Chria(EZy,7 — m k)
with C§(X) from Definition 6.6 and C};, ;(%;7,7 — p, k) from Definition 6.14. The elements of

that space are operator-families C*7(B) — C°7~#(B) (that extend continuously to the Sobolev
spaces). Pointwise composition induces a map

CHo (839 — pa,y — 1 — po, k) X CPH (5579, — pn, k) — CHOTHY(S5y,y — g — o, k).



THE RESOLVENT OF CLOSED EXTENSIONS OF CONE DIFFERENTIAL OPERATORS 27

Now let ¢(n) € C*(X;7,y — u, k) be given; then

c(n) = ot " opy 2 () (1) o0 + (L = 0) p(n) (L = o1) + (m + g) (1),
where the first two terms are as in (6.6) and (m + g)(n) is as in (6.13). Since (m + g)(n) has, in
particular, a smooth distributiontheoretical kernel, ¢(7) is a parameter-dependent pseudodifferen-
tial operator on the interior of B, and we can associate with it the principal symbol and rescaled
symbol as in (6.7) and (6.8), respectively.

Let us furthermore introduce the principal edge symbol (the terminology ‘edge’ shows up here, since
parameter-dependent cone operators serve as symbols for pseudodifferential operators on manifolds
with edges)

k—1

X etopy (Fia)1® )@ (thl) + gy (),
J=0|a|=j

(6.15) ok (e)(n) = ¢ " opy, ¥ (ho) () + witln]) (
where ho(z,n) = h(0, z,1) and g(,)(n) is the homogeneous principal symbol of g(n) € Rz (X;v,v —

i, k). We consider the principal edge symbol as an operator-family

o)) : K57 (9B) — K3 m7H(0B"), 0 #£0,
for s € R and 1 < p < oo. Finally, the conormal symbol of ¢(n) is the meromorphic function
(6.16) ah(€)(z) = h(0,2,0) + foo(z) : H;(0B) — H, "(9B), z € C,
respectively a meromorphic function with values in L, (0B).
We shall call ¢(n) € CH(Z; v,y — u, k) elliptic, if

(E) both oy;(c) and & (c) are pointwise everywhere invertible (i.e. c(n) is B-elliptic),
(EA) the principal edge symbol ok (¢) is pointwise everywhere invertible.

Here, the second condition initially is required to hold for some s and p; but then it holds for
all. Note that if ¢(n) satisfies only one of the conditions (E) or (EA) then the conormal symbol is
meromorphically invertible. It is bijective on the vertical line I'nt1 __ in case c(n) satisfies (En).

THEOREM 6.15. Assume c(n) € CH(X;7y,v — u, k) satisfies condition (E) and the conormal symbol
is invertible on the line U'nyy . Then there exists a b(n) € C~H(Z;v — p,v, k) such that

bn)e(n) =1 € CG(S;v,7.k),  cmb(n) =1 € C&(E;y — u,y — 1, k).
This (still rough) parametriz b(n) is uniquely determined modulo C" (X5~ — p, 7, k).

THEOREM 6.16. Let c(n) € C*(E;v,7 — p, k) be elliptic. Then there exists a b(n) € C~H(X;y —
Wy, k) such that

b(ne(n) —1 € C5% (57,7, k), c(mb(n) =1 € Cg™(E;7 —p, v — 1, k).

The parametriz b(n) is uniquely determined modulo C;™ (35 — p, 7, k).
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