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Abstract

Operators on manifolds with corners that have base configurations with geometric singu-
larities can be analysed in the frame of a conormal symbolic structure which is in spirit similar
to the one for conical singularities of Kondrat’ev’s work. Solvability of elliptic equations and
asymptotics of solutions are determined by meromorphic conormal symbols. We study the
case when the base has edge singularities which is a natural assumption in a number of ap-
plications. There are new phenomena, caused by a specific kind of higher degeneracy of the
underlying symbols. We introduce an algebra of meromorphic edge operators that depend
on complex parameters and investigate meromorphic inverses in the parameter-dependent
elliptic case. Among the examples are resolvents of elliptic differential operators on manifolds

with edges.
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Introduction

Meromorphic families of differential (and pseudo-differential) operators on a compact C°*° mani-
fold X belong to the crucial elements in the description of asymptotics of solutions to elliptic
equations on a manifold B with conical singularities. Here, X plays the role of the base of a
cone that locally models B near a conical point.

Basic observations in this context go back to Kondrat’ev [12] who studied elliptic boundary
value problems in a domain with conical singularities and characterised asymptotics in terms of
the poles, multiplicities and Laurent coefficients of the inverse of a parameter-dependent elliptic
holomorphic family of boundary value problems on the base. Asymptotics can be interpreted
as a kind of elliptic regularity of solutions in weighted Sobolev spaces. Phenomena become
particularly transparent, if we embed the given operators in an algebra of pseudo-differential
operators that are of Fuchs type in the distance variable r € Ry to the conical singularity [20].

To answer similar questions for higher singularities, i.e., when X itself has conical or edge
singularities, it seems, in fact, indispensable to employ a sufficiently developed (parameter-
dependent) calculus of pseudo-differential operators on X.

The case when X has conical points has been treated by Schulze [21] in the framework of an
operator algebra with iterated asymptotics and with a hierarchy of principal symbols.

Applications in connection with Fedosov’s index formulas have been given in [5]. Meromor-
phic operator functions on X also occur in the context of Euler solutions of equations on an
infinite cylinder with cross-section X, cf. [23] for the case of smooth X, [10] for the case of
a manifold X with conical singularities. Another application concerns long-time asymptotics
of solutions to parabolic operators on spatial configurations that have conical singularities [14].
Note that parameter-dependent theories for differential equations have been studied in other
situations before, in particular, by Agranovich and Vishik in [1] in connection with parabolic
operators. Meromorphic Fredholm functions in a more general functional analytic set-up are
studied by Gohberg and Segal in [8]. Other aspects (factorisations into holomorphic invertible
and “smoothing” meromorphic factors) are investigated by Gramsh and Kaballo in [9], and Witt
in [25].



The present paper is aimed at developing the analysis of parameter-dependent meromorphic
operator families for the case when X is a manifold with edges. The values of operator functions
belong to the edge algebra, i.e., a block matrix calculus of operators on a stretched manifold W
belonging to a manifold W with edges Y, cf. [4] or [20] . The operators in the upper left corners
are edge-degenerate; other entries represent trace and potential conditions on the edge. We
study here a parameter-dependent theory, where the parameters play the role of covariables in
a higher floor of the hierarchy of operator algebras on stratified spaces, in this case on manifolds
with corner singularities, where the base manifolds are of type W, cf. also [24].

Chapter 1 presents the necessary elements of this edge operator theory. Weight and asymp-
totic data are controlled in a such a way that the edge algebra can be written as a union of
Fréchet subspaces. Their topologies are given by symbolic structures and smoothing operators
that refer to spaces with asymptotics. We mainly consider spaces and operators with contin-
uous asymptotics, formulated in terms of vector or operator-valued analytic functionals in the
complex z-plane of the Mellin covariable, with the Mellin transform operating on the half-axis
of the distance r € Ry to the edge. The motivation is that conormal symbols of operators on
a manifold with edges depend on edge variables, and the “spectral” points z (that determine
asymptotic data via inversion of meromorphic operator functions) are variable and, in general,
of changing multiplicity. A description of such phenomena by families of analytic functionals
was originally introduced in [15], see also [19] or [20]. Here we employ structures of that kind
as a part of asymptotic information associated with the model cone of W.

In Chapter 2 we construct a new algebra of holomorphic and meromorphic operator functions,
globally operating on the corner base W. Spectral points w € C determine another contribution
to asymptotics of solutions in an associated corner operator calculus, though we focus here on
meromorphic families themselves. In the case of polynomial dependence on w they are related
to the resolvent structure of differential operators on a manifold with edges. For the simpler case
of conical singularities such relations are studied in [21]; applications to heat trace asymptotics
are given by Gil [6].

We consider parameter-dependent ellipticity in our algebra and show that there are meromor-
phic inverses of elliptic elements. A crucial point is that kernel cut-off constructions (introduced
for a simpler situation in [19]) can be applied again in the corner covariable, and we show that
for an arbitrary parameter-dependent element with real parameter A there is a holomorphic
representative in w € C for A = Re w, modulo a family of order —oo.

Let us finally note that the scenario of [21] (for corners based on manifolds with conical
singularities), shows how our algebra of corner symbols can be applied again in a calculus of
Mellin operators along the half-axis ¢t € Ry for a corner singularity of base W and that iterated
edge-corner asymptotics for elliptic equations are encoded by the poles and Laurent expansions
of our Mellin symbols.



1 Elements of the edge calculus

1.1 Manifolds with edges and associated operators

Let X be a closed C*™ manifold, and form the quotient space X2 := (Ry x X)/({0} x X)
that is a cone with base X, where {0} x X is shrunk to a point v, the tip of the cone. Then
X2\ {v} 2 R, x X is a C* manifold. Two splittings of variables (r,z), (7,#) on Ry x X
are said to define the same cone structure on X" := R, x X, if (r,z) — (7, %) is induced by a
diffeomorphism R, x X — R, x X.

Given an open set 2 C R? we can pass to a wedge X x Q or to the (open) stretched wedge
X" x Q. Two splittings of variables (r,z,y) and (7,Z,7) on X x Q are said to define the same
wedge structure on X x Q, if (r,z,y) — (¥, %, %) is induced by a diffeomorphism R, x X x Q —
R, x X x Q, where #(r, 2,9)|r—0 = 0, * — Z(r, ,y)|r—0 represents a diffeomorphism X — X for
every y € , and y — §(r, z,y)|—o is independent of = and represents a diffeomorphism  — (.

A topological space W (locally compact and paracompact) is said to be a manifold with
edges Y C W, if W\ Y and Y are C*° manifolds of dimension 1+ n + ¢ and ¢, respectively,
and every y € Y has a neighbourhood V in W that is homeomorphic to a wedge X2 x © with
a fixed wedge structure on X" x Q, where X is a certain closed C*° manifold, n =dimX. In
addition, we require that such so-called singular charts V — X2 x Q induce diffeomorphisms
VY -5 X"xQand VNY — Q, and that the transition diffeomorphisms to different singular
charts preserve the local wedge structure on X" x €.

With W we can associate a stretched manifold W that is a C'*° manifold with boundary such
that W\ OW = W \ Y and W is locally near W modelled by R, x X x €. This is an invariant
definition, and OW is an X-bundle on Y.

For simplicity, in this paper we assume that our manifolds W with edges Y satisfy the
following condition. There exists a neighbourhood V of Y in W and a homeomorphism x : V —
X2 x Y that restricts to diffeomorphisms V' \Y — X" x Y and VNY — Y, such that the
local wedge structures are defined by a global splitting of variables (r,z,y) € Ry x X x Y. In
particular, we assume OW to be a trivial X-bundle. If this is not the case, we can fix an atlas
on W, where the transition maps near OW (i.e., for small r) are independent of r; this is always
possible. The essential results of our calculus extend to this situation but this would require
extra invariance discussions for our operators that we wish to avoid.

We may admit ¢ = dimY = 0; then we recover the definition of a manifold B with conical
singularities including its associated stretched manifold B. In particular, X2 is a manifold with
conical singularity and R, x X the stretched manifold. If B has conical singularities S, then
W := B x Y for any C° manifold Y is a manifold with edge S x Y, and W = B x Y is the
corresponding stretched manifold.

Differential and pseudo-differential operators on a manifold W with edges Y will be expressed
as operators on int W with a special behaviour of symbols near OW. Given a symbol

ﬁ(r7x7y7ﬁ7§7ﬁ) € Sﬁ(@+ X 2 x §) X R}’:Zfb?;q) ,



where 3 C R", (2 C R? are open sets and p € R, we form operators on R, x 3 x ) in terms of
T‘ip‘p(r’ x? y7 p? 67 77)7 Where

(1.1.1) p(ryz,y,p,&,n) == p(r,z,y,rp, &, ).

Notation in connection with classical symbols of Hormander’s type, S’ (Ry x ¥ x Q x R;E?ﬁﬂ)
as well as non-classical (denoted by S*(R; x ¥ x Q x R;:Z?ﬁﬂ)), will be explained in this section
below for an operator-valued variant that contains scalar symbols as a special case. Most of our
results (but not all) are true both for classical and non-classical symbols. If a relation is valid
in both cases we often write “(cl)” as subscript.

Symbols of the form (1.1.1) are called edge-degenerate (cf. [18]) . We will be interested, in
fact, in a parameter-dependent variant with a parameter A € R and (n,\) € R¥*! in place of

n € R?. In other words, we talk about symbols

p(ra Y, 05851, >‘) = ﬁ(ra x,y,7p, &, T, ’f')\)
for (r, @, y, 5, £,77, A) € SH(Ry x B x @ x R,
For the moment we shall omit A, but later on we return to the parameter-dependent case.
Special examples are edge-degenerate differential operators that are locally near oW, in
variables (r,z,y) € X" x Q, of the form

(1.1.2) A=rt ) aja(r,y)(—ra%)j(rl?y)“
Jtlal<p

with coefficients ajq(r,y) € C®(Ry x Q, Diff*~UHal(xy).

Here Diff”(-) denotes the space of all differential operators of order v with smooth coefficients
on the space in the brackets. In particular, the Laplace-Beltrami operator to a wedge metric on
X" x Q of the form dr? + r?gx + dy? with a Riemannian metric gx on X is edge-degenerate of
order p = 2.

The basics of the calculus of edge-degenerate operators may be found in [20] or [22], see also
the monograph Egorov and Schulze [4].

Notice that edge-degeneracy is an invariant property under transition maps that preserve
the wedge structure.

Moreover, considering W := Rl x Q as a manifold with edge Q C R?, (%,y) € W, and
model cone R" ™! = (R, x §)/({0} x S™) (with S™ being the unit sphere in R**1), substituting
of polar coordinates  — (r,z), R**1\ {0} — R, x S™, transforms every differential operator
A on W with smooth coefficients in (%, y) into an edge degenerate one on W = (R, x S™) x Q,
including the weight factor »—#, cf. (1.1.2) . In this sense, the space of edge-degenerate operators
is much larger than that of operators with smooth coefficients.



Let Diﬁ'é‘dge(W) denote the space of all differential operators A of order 4 on intW with
smooth coefficients, such that A near OW has the form (1.1.2) (this is a Fréchet space in a

canonical way). Then

p o,
1.1. H A —t—
(113 CFY A (-1 0)

k=0

with coefficients Ay (t) € C® (R, Diﬁ's&IZ(W)) is a typical differential operator on a (stretched)
corner configuration Ry x W. Operators of that kind (for 4 = 2) occur as Laplace-Beltrami
operators for corner metrics, locally of the form di? + 2(dr? + r2gx + dy?) where gx is a
Riemannian metric on X that may smoothly depend on r,t,y (smooth up to r =0, t = 0).
Examples of operator functions in w € C as they are studied below in Chapter 2 are

They have the meaning of principal conormal symbols for corner operators (1.1.3). The main
difficulty to analyse them lies in the corner degeneracy in w (which substitues —t%) that causes
terms of the form rt% in operators (1.1.3) themselves for r,t close to zero, apart from edge-
degeneracy far from ¢ = 0.

It will be convenient to reformulate edge-degenerate operators in terms of the Mellin trans-
form with respect to the axial variable r € R, , namely

Mu(z) = /0 T ()

For u € C§°(R;) the Mellin transform Mwu(z) is an entire function in z € C. Later on we extend
M to larger distribution spaces, also vector-valued ones; then the variable z will run over a line

I'g:={z€C: Re z=p}

for an appropriate 8 € R. Recall, in particular, that M extends by continuity to an isomorphism
M,y : rL*(Ry) — LQ(F;JY) for every v € R; L?-spaces are equipped with standard scalar
2

products (i.e., on Ry induced by the Lebesgue measure on R, and on I': y by R from the
2
identification of I's _, with R by z — Im z). We call M, the weighted Mellin transform with
2
weight . Often we shall set My = M. The identity —ra% = M~ 'zM (first considered on

C§°(Ry) and then on larger spaces) motivates to formulate pseudo-differential operators, based
on the (weighted) Mellin transform, namely,

2

opr,(fu(r) == 1 //000 (%)_Zf(r, r',z)u(r')%dz .
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Here, z = 5 — v + ip, and f(r r',z) is a symbol in S (R+ x Ry x F1 _) (identified with

St 1 (Ry x R+ x R) via I't_ = R). Similar notation is used for vector- Valued functions, say,
2

u € Cf°(R4,C*°(X)), and operator valued symbols

f(r,r' 2) e C°(Ry xRy, L (X I‘1 ) -

In general, if X is a C°° manifold (locally compact and paracompact), L% (X;R") denotes the
space of all parameter-dependent (with parameter A € R!) pseudo-differential operators on X
(classical or non-classical) in its natural Fréchet topology, cf. [20] and [22]. More details on the
Fréchet space aspect will be studied in Section 2.3 below. Notation on symbols and pseudo-
differential operator spaces will be added later on.

Consider charts v : Ry x U — I" on X" for a coordinate neighbourhood U on X and an
open conical set I' C R**1 \ {0}, such that

(i) v(ér,z) = ov(r,z) forall 0 € Ry, (r,z) € Ry x U,
(ii) v (z) :=v(1,z), z € U, induces a diffeomorphism vy : U — I' N S™.

Let HS,o(X"), s € R, denote the space of all u(r,z) € Hf (R X X)|g, «x, such that for every

p(z) € C§°(U) for any coordinate neighbourhood U on X and every excision function x(r) (i.e.,
x € C®(Ry), x = 0 near r = 0, x = 1 near r = 0o) we have xpuorv~! € H5(R"!); here v is
any chart on Ry x U of the above kind. On H  .(X") we fix a Hilbert space structure, such
that

Hgone(X/\) = <T>_%L2(R+ X X) )

where L2(R, x X) refers to drdr with dr being associated with a fixed Riemannian metric on
X.

Moreover, let H57(X") for s, € R denote the completion of C§°(X") with respect to the
norm

1
G [ Irm M@ 2}, n = dim X
271 Fn+1_7

Here, R(p) is a parameter-dependent elliptic operator belonging to the space L (X;R) that
induces isomorphisms R*(p) : HY(X) — H'™%(X) for all t,s € R. H*(X) is the standard
Sobolev space on X of smoothness s € R, and H°(X) is identified with L?(X) with the scalar
product (u,v) fX uvdz.

Concerning basic properties of the spaces H*7(X"), cf. [20]. In the present paper a cut-off
function on R, is any real valued function w € C§°(Ry) such that w = 1 near 0. We then define

KEN(XN) = {wu+ (1 —w)v:u€ HY(X") v e HE (XM}

for any cut-off function w (the choice of w is unessential). We endow the spaces with Hilbert
space structures in a natural way, in particular, K%0(X") = 7"7%L2(IRJr x X).



Remark 1.1.1 Setting (ksu)(r,z) = 0 2 =N u(dr,xz), 6 € Ry, we get a family of continuous

operators
kst KST(XN) — K57(X7), s,v € R,

that is strongly continuous in d.

Let A be an edge-degenerate differential operator of the form (1.1.2), and suppose the coefficients
ajq to be independent of r for large r. Set

(1.1.4) aly,n) :=r"" Y ajalr,y)l 88) (rm)®

Jtlel<u

regarded as a family of operators C§°(X") — C§°(X"), parametrised by (y,n) € & x R?. Then
(1.1.4) extends to continuous operators

aly,n) : K*7(X7) = K7 1H(X7)

for every s,v € R, and this operator function may be interpreted as an operator-valued symbol
in the sense specified below.

If £ is a Hilbert space and {r;}scr, a fixed strongly continuous group of isomorphisms
ks : B — E (where rskg = Ksg), we say that E is endowed with a group action {xs}ser, . For
E = CV we always suppose kg =idp for all & € R;.

Let (£, {ks}secr, ) and (E, {n5}5€R+) be Hilbert spaces with group actions. Then, if U C RP
is any open set, S*(U x R?; E, E) denotes the space of all a(y,n) € C®(U x R?, L(E, E)) such
that

(1.1.5) y n)seu[l()xkq (n)~FH18l) |/%<*n§ (DYDEaly,n)) s (e,

are finite for all « € NP, 5 € N, for arbitrary K CC U, with constants ¢ = c¢(a, 8, K) > 0. We
consider the space S*(U x R?; F, E’) with its natural Fréchet topology given by the semi-norms
(1.1.5).

There is also a natural notion of classical symbols, based on “twisted homogeneity” of order

w:
(1.1.6) f(y,0n) = 6"ksf(y,n)k; " forall 0 € Ry .

Let S (U x (R? \ {0}); E, E) denote the subspace of all f € C®°(U x (R?\ {0}); L(E, E))
such that (1.1.6) holds. Then, S (U x R%; E, E) is defined to be the subspace of all a(y,n) €

SH(U x RY; E, E) such that there are elements a(u—j)(Y,m) € Sw=(U x (R1\ {0}); E, E), j €N,
satisfying

N
N, = aly,n) —x(n) > ag— ) e SHWH)(7 x RY; E,E)  forall N €N .
7=0



The homogeneous components a(,_;(y,7n) are uniquely determined by a(y,n). Also SHU x
R?; E, E) is Fréchet in a natural way. An adequate semi-norm system comes from all semi-
norms of a(,_j (y,n) in C°(U x (R? \ {0}); L(E, E)), j € N, together with all semi-norms of
rn(y,n) € SF=WNHD(U x RY; E, E), N € N (the choice of x is unessential).

Let S&l) (RY; E, E) denote the subspace of all elements of S&l)(U x RY; E, E) with constant

coefficients (i.e., a = a(n)). The space S&l) (R%; B, E) is closed in Séil)(U x RY; B, E) in the
induced topology, and we have Séil)(U X RY; E,E) = C®(U, Sél) (RY; E, E)).
In the case U = Q x €, for an open set Q@ C R?, (y,y’) € U, we set, for every a(y,y’,n) €

SH(Q x Q x RQ;E,E’),

(1.1.7) on(a)(y,n) = agy (Y, y's 1)y =y

and
Op(a)u(y) = // O Ma(y,y' nuy)dy'dn , dn= (2r)"%

which is the associated pseudo-differential operator on €2, based on the Fourier transform

Fulo) = [ e Muty)dy = a() in

Parallel to the symbol spaces we have so-called abstract edge Sobolev spaces introduced in [18].
Given a Hilbert space E with group action {xs}scr, , the space W* (R, E), s € R, is defined to
be the completion of S(R?, E) (the Schwartz space of E-valued functions defined on R?) with

respect to the norm
1

{ [ jamian}
We then have W*(RY, E) C §'(R?, E) (= L(S(R?), E)).

Similarly to “comp” and “loc” versions of scalar Sobolev spaces we have W¢,,, (€2, E) and
Wi (@, E), for any open set 2 C RY. Then

Op(a) : C3°(Q, B) — C®(Q, E)
for a(y,y',n) € SH(Q x Q x RY; E; E) induces continuous operators

(1.1.8) Op(a) : Weomp($2, E) — Wi QL E)
for all s € R. Basic properties on the scale of spaces W*(R?, E') may be found in [22] or [20],
see also [11].

We also employ such constructions for the case of Fréchet spaces, written as projective limits
of Hilbert spaces, F7, 7 € N with continuous embeddings E/*! < EJ and a group action on
EV that restricts to group actions on E7 for all 5. In that case we say that the Fréchet space



is endowed with a group action. We then have edge spaces W*(R?, E) = lim,_ W*(R?, E7) as

well as corresponding “comp” and “lo¢” versions on open subsets of RY.

Symbol spaces Séf: 1)(U x R E, E) also make sense for Fréchet spaces F and E with group

actions, and we use again the notation Séf: ) (R?; E, E ) for the spaces of elements with constant

coefficients. Precise definitions and further material may be found, e.g., in [22], Section 1.3.1.

Remark 1.1.2 For the operator function (1.1.4) that is associated with an edge-degenerate dif-
ferential operator we have

aly,n) € S"(Q x RI;KY(XM), K7H771(XM))
for all s € R, v € R. If the coefficients aj o are independent of r, the symbol a(y,n) is classical.

Our edge-degenerate differential operator A can be written in the form A = Op(a), and hence
A induces continuous operators

(1.1.9) AW (K57 (X1) = WEH(Q, LRI 71 (X))

loc

for all s € R (in this case we may also write “comp” or “loc” on both sides).

To get continuous operators in (1.1.9) for an edge-degenerate pseudo-differential operator A
with local symbol r#p(r, x,y, p,&,n), where p has the form (1.1.1), we apply a so-called Mellin
operator convention.

Let us content ourselves with classical symbols and operators, though many constructions
(not all) easily extend to the non-classical case. If U C C" is an open set and F a Fréchet space,
A(U, E) denotes the space of all holomorphic functions on U with values in E in the (Fréchet)
topology of uniform convergence on compact sets. We denote by Sﬁ Ry x ¥ x Q2 xC, x jo;q)

the space of all h(r,z,y,2,¢,m) € A(C,, SH(Ry x X x Q x R*")) such that
h(r,z,y, B +ip,&,n) € SH(Ry x T x Q x [g x R*H7)

for every 8 € R, uniformly in ¢ < 8 < ¢ for arbitrary ¢ < ¢/. We then employ the following
result (cf. [22], Section 3.2.2).

Theorem 1.1.3 Let p(r,z,y,p,&,7) € SH(R: x E x Q x R and set p(r,z,y,p,&,n) =

p(rsa,y,rp,§,mn). i B
Then there exists an h(r,z,y,z,&,7) € SH(Ry xExQxCxR" ) such that h(r,z,y, z,&,1) =
E(r,x,y,z,rn) satisfies the relation

(1110) Op&(h)(xvyagan) = OPr(P)(%yaf,W)

modulo C*® (2 x €, L*OO(RjL;R?;q)) for every v € R.

10



Here, and in future, the variable r that occurs as factor at covariables n as well as at p (in p)
will be treated as a multiplication from the left (in other words, symbols h and p are interpreted
as left symbols in 7). Operator families in the latter theorem are interpreted in the sense
C°(Ry) — C*°(Ry). Below we pass to several extensions by continuity to weighted Sobolev
spaces.

Definition 1.1.4 Let MJ5(X;R?) defined to be the space of all operator functions h(z,n) €
A((Ca Lgl (X,Rq)) such that
h(zaﬁ)erqu € LéLI(X;Fg x R?)

for every B € R, uniformly in ¢ < B < for arbitrary ¢ < .

The space M5 (X;R?) is Fréchet in a natural way. As a corollary of Theorem 1.1.3 we then
obtain a (y,n)-dependent Mellin operator convention as follows.

Fix an open covering {Uj, ...,Ux} of X by coordinate neighbourhoods, a subordinate parti-
tion of unity {¢1, ..., on } and a system of functions {91, ...,n }, ¥; € C§°(Uj), such that ¢; =1
on supp ¢; for all j. Let p;(r,z,y, p,&, n) be symbols of the form (1.1.1), where the open sets ¥
and (2 are simply assumed to be the same for all j = 1,..., N. Form the operator family

N

(1.1.11) p(ryys pim) =Y 0 {(x))  opa(p)) (ry ys pm) Y
j=1

where x; : U; — ¥ are fixed charts and (x;); ! the pseudo-differential operator push-forward

under Xjfl.

We then have op,(p)(y,n) € C=(Q, L (X"; R7)).

Corollary 1.1.5 Given an operator family of the form (1.1.11) there is an element fNL(r, Y, 2,1) €
C®(R, x Q, M5 (X;R?)) such that h(r,y,z,n) = E(r,y,z,rn) satisfies the relation

(1.1.12) op), (h)(y,n) = op,(p)(y,n)

modulo C®(Q, L-°(X";R?)) for every v € R. Moreover, forming po(r,y,p,n) by an anal-
ogous expression as (1.1.11) with p;o(r,z,y,p,&,n) = p;(0,2,y,rp,& rn) in place of p; and
ho(r,y,z,m) = E(O,y,z,rn), we also have

opy; (ko) (y,m) = op,(po) (y,7n)

modulo C*®(Q, L~°(X";R?)) for every v € R.

11



Remark 1.1.6 The operator function a(y,n), cf. (1.1.4), associated with an edge-degenerate
differential operator A, can be viewed as a family of the form r~Fop,(p)(y,n); in this case we
have
h(r,y,z,m) = Z aj,oa(ray)zj(rn)aa
Jtlel<p

and A = r‘”Op(opX/;%(h)) for every v € R (first, as an operator C§°(X" x Q) = C®(X" x Q)
and then extended in the sense of (1.1.9) ).

In the considerations below we need relation (1.1.12) only in the form o(r)op},(h)(y,n) =
o(r)op, (p)(y,n) for some cut-off function o(r). In other words, we may assume h(r,y, z,7j) to
have bounded support in 7. The Mellin pseudo-differential family op;\’/l(ﬁ)(y, 7) then belongs to
a global calculus on Ry, where l~1(r, y,z,7) plays the role of a left symbol that can be recovered
from the operator action on the weight line I' 1y in a unique way. Clearly, ﬁ(r, 1, % —v+ip,n)

uniquely determines the holomorphic extension for all z € C.

1.2 Asymptotics in spaces on the model cone

We now construct an algebra of parameter-dependent cone operators with continuous asymp-
totics, with parameters (y,n) € U x R?, where U C RP is an open set. These families will appear
as operator-valued symbols of the edge operator calculus below.

Let us first recall the definition of subspaces of K%7(X”) with continuous asymptotics. V
denotes the system of all closed subsets V' C C with the following properties:

(i) VN{z:ec<Rez <} is compact for every ¢ < ¢,
(ii) zp, 21 € V and Re z9p = Re 21 imply (1 = A)zg+ Az €V forall0 < A< 1.

The sets V € V will be interpreted as carrier of continuous asymptotics in the following sense.
Given a compact set K € V, K C {z: Re z < ”TH — v}, we form the space

(1.2.1) Ex(XN) i={w(r){¢,r?) : ¢ € A(K,C®(X))} .

Here, w(r) is a fixed cut-off function, and A'(K, E) for a Fréchet space E, denotes the space
of all F-valued analytic functionals carried by K. The functional ¢ in (1.2.1) is applied to r—*
with respect to the complex variable z. There is a natural isomorphism

(1.2.2) Ex(XM) =2 A(K,C®(X))
induced by the weighted Mellin transform M, : Eg(X") — A(C\ K,C®(X)) for any ' €
R such that sup {Re 2z : z € K} < § —+'. We have in fact, A'(K,C®(X)) = A(C\

K,C*(X))/A(C,C*(X)).
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Remark 1.2.1 If K C{z€C : Rez< "TH — v} is a compact set, there is a smooth curve
LC{z€C : Rez< 2 — 9} surrounding K, such that for every ¢ € A'(K,C>®(X)) there is
an f € C®(L,C* (X)) with
1
(€)= 3= [ W) ()

= i

for all h € A(C). In fact, it suffices to choose any f € A(C\ K,C™(X)) that represents ¢ and
to set f := f|L

Remark 1.2.2 Ex(X") is a subspace of K7 (X"). In fact, for every fized z € {z € C
Re z < 2 — 4}, we have w(r)r =2 € K7(X"), and z € U — w(r)r % € K= (X") defines a
continuous map for any open neighbourhood U of K, U C {z € C : Re z < ”T‘H —v}. Then,
according to Remark 1.2.1 the function ((,w(r)r—*) can be regarded as a linear superposition of
elements in KV (X") which again belongs to this space.

Relation (1.2.2) gives us a Fréchet space structure in the space (1.2.1). Fix now weight data
(7,0), v € R, where © = (6,0], —o0 < 6 < 0, is interpreted as a weight interval relative
to 7 where we control asymptotics, and set Kg7(X") = (.50 K*7707¢(X") with the Fréchet
topology of the projective limit (for © = (—o00,0] we define K" (X") = £ (X")).

Write u ~ v for u,v € Ex(X") if and only if u —v € KJ"7(X"). Then the quotient space
Ex(XM)/ ~ is called a continuous asymptotic type P, associated with the weight data (v, ©).
Let As(X, (7,0)) denote the set of all such P, and write 7cP” = K N{z: Re z > 2 —y +0}.

1
For KC{z : Rez< % — v+ 60} we get the trivial asymptotic type O € As(X, (v, 0)),

characterised by mcO = 0. This is coherent with the fact that, in this case, Ex (X") C K57 (X7).
We then define

(1.2.3) KE1(XM) = K§T(XM) + Ex(X7)

with the Fréchet topology of the non-direct sum.

Let us briefly explain what we understand by a non-direct sum. If Ey, E; are Fréchet
spaces, embedded in a Hausdorff topological vector space H, we form Fy+ FE; = {eg +e; : ¢y €
Ey,e1 € E1} and endow the space with the Fréchet topology from the algebraic isomorphism
Ey+E, = Ey®E /A for A ={(e,—e) : e € EyNE}}. Moreover, if a Fréchet space E is a (left-)
module over an algebra A, [a|E for any fixed a € A denotes the closure of {ae : e € E} in E.

Let us extend the definition of spaces with continuous asymptotics to the case © = (—o0, 0],
where instead of a compact set we admit an arbitrary set V€ V, V C {z: Re 2z < ”T‘H —v}. We
simply choose a sequence (0)ken, Or+1 < 0k < 0, 8y — —o0 as k — oo, and form the sequence
of compact sets

1
Vi=Vn{z: Rezz%—’y—l—ﬂkﬂ}, keN.
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Then Vj, induces a continuous asymptotic type Py connected with the weight data (v, ©), Ok =
(0, 0], and it is obvious that we get a chain of continuous embeddings IC}’ZH (X") — IC;’I:’(X M.
We then set

5700 = lim, 5 (X1

kEN

and call P a continuous asymptotic type associated with the weight data (v, (—o0,0]). In this

case we set V' = mcP. Analogously to the above notation we denote by As(X, (v, (—o0,0])) the

set of all P arising by this construction, using the sets V' € V (clearly, in this case we have a

one-to-one correspondence {V €V : V .C{z : Rez < & —4}} © As(X, (7, (—00,0))) ).
Set

(1.2.4) SHX") == [WwIKF (XM + [1 — w]S(Ry, C®(X))

for a cut-off function w(r). The space (1.2.4) is Fréchet in a natural way. It can be written in
the form
SH(X™) = lim,  E*

keN
for a chain of Hilbert spaces (E¥)yeny with continuous embeddings EFf! «— EF — ...

E? := K%7(X"), such that {ks}scr, from the space E induces strongly continuous groups of
isomorphisms on E* for every k.

Remark 1.2.3 For every P € As(X,(v,0)) we can pass to the “compler conjugate” P €
As(X, (v,0)) by replacing the set K in relation (1.2.3) by K = {Z : 2z € K} when © is
finite; for infinite © we simply replace V. € V by V, using the one-to-one correspondence of
As(X, (y,©)) with a corresponding subset of V. Then the map u — U gives us antilinear maps
K31(X7) — IC%A’(X/\) and SL(X") — S%(X/\).

In the sequel we will have symbol spaces referring to direct sums £ = H @ ¢/ where H is one
of the spaces K7 (X") or S§}(X") with the above mentioned group action. On H & C/ we then
take the group action diag{{ss}scr, ,idg }.

In the following definition we set g = (,0,0) for 7,0 € R, ©® = (6,0], —oo < 0 < 0, and
w = (e, f;j—,j+), where e, f and j_, j4 play the role of fibre dimensions of vector bundles
below.

Definition 1.2.4 R{,(U x R?,g;w), u € R, denotes the set of all
gly,m) € [ XU x RY, LK (X", C) @ T, £27(X", CT) @ CF))
seR

such that
ntl

g0(y,n) = diag(id, ()% )g(y, n)diag(id, (7))
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satisfy the relations

go(y,n) € SHU xRGE,S) , gi(y,n) € SHU x R E,S)

for
(1.2.5) E:=KY(XNCH)eT-, S:=83xXNC)ed+
(1.2.6) E:=K>7(XNChedr, §:=8"X"C)eU-

for all s € R, where P € As(X, (0,0)) and Q € As(X,(—,0)) are asymptotic types; here
denotes the (y,n)-wise formal adjoint in the sense

(gouav);co,O(XA,cf)@cu = (u,gé‘v),co,O(XA,(ce)@@,
for all u € CP(XN,C¢) @ TU-, v € CP(XN,C)) @ T+.

The elements of R (U x R?, g;w) will be called Green symbols of order p. In particular, if
we write g = (gij)i,j—1,2, the element go; will also be called a trace symbol and g;2 a potential
symbol. Note that the lower right corner gos is a classical symbol of order p on U with covariables
n € R? in the standard sense.

The (order reduced) elements go(y,n) in Definition 1.2.4 as classical operator-valued symbols
of order u have a homogeneous principal (so-called edge-) symbol of go(y,n) of order u, denoted
by o (g0)(y,n) for (y,n) € U x (R?\ {0}). We then define

(127) ak(g)(y,m::( X |n(Tn_-;)0K(go)(ym)< X MO_%),

called the homogeneous principal edge symbol of ¢g(y,n) of order p (in the sense of DN-orders;
“DN” stands for Douglis-Nirenberg). We then have

-1
ak(g)(y,amzaﬂ( o 5%>ax(g>(y,n>< N 50n_+1>

for all 6 € Ry, (y,m) € U x (R?\ {0}).

Set RIL(U x R?,g; (e, f)) = {911 : g € RL(U x R?,g;w)}. For e = f = 1 we simply omit
(e, f) in the notation. For w = (1,1;0,0) we drop it at all.

Let R,(U x RY, g; w) p, denote the subspace of all elements of RF,(U x R?, g; w) with fixed
P and @ in formulas (1.2.6) and (1.2.5).

Remark 1.2.5 The space R,(U x R?, g;w)p,q is Fréchet in a natural way.
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To illustrate this, for simplicity, assume j_ = j; = 0. Then we have two systems of linear maps

(1.2.8) RL(U xR, giw)po — SH(U x RE K5 (X1,C4), SH(X,CT))
and
(1.2.9) REL(U x RY,g;w)pg — SH(U x Rq;;csfff(xﬁcf),sg(xmce))

with s running over N. While (1.2.8) is immediate from Definition 1.2.4, we define (1.2.9) by
the composition g — go — g5 — | where [ is given by (v := g(’)‘—ﬁ.

The space R{,(U x R?,g;w)p is then endowed with the topology of the projective limit
with respect to the mappings (1.2.8), (1.2.9) for all s € N.

Notice that we have a continuous embedding

(1.2.10) R{(U xR?,g,w)po C RE(U xRY, g;w) 5 o Whenever mc P C ncP, mcQ C me@ .
Let us set
(1.2.11) RL(U xR, g,w)o := RE(U x R?, g, w)0,0

for g = (v,0,0), where O € As(X, (0,0)) denotes the trivial asymptotic types for 6 = v and
d = o, respectively. Notice that for the special case ©® = (—o0, 0] the weight data g in (1.2.11)
become irrelevant insofar the spaces are isomorphic to analogous spaces with arbitrary other
weights. Parallel to the spaces with (continuous) asymptotics we now define spaces of Mellin
symbols that also reflect asymptotic information.

Let V € V, fix finite reals ¢; < ¢y and set K := V N S(c; — €,¢9 + €) for any € > 0,
S(B) =U{I's: B € B} for any B C C. Similarly to (1.2.1) we form the space

(1.2.12) Ex(L™(X)) == {w(r){¢,r7?) : ¢ € A(K,L™°(X))}

which is again a Fréchet space and isomorphic to A'(K,L~°°(X)). If v/ € R is chosen in such a
way that {Re z: z € K} < 1/2—+', the weighted Mellin transform M., induces an isomorphism
of Ex(L™°°(X)) to a closed subspace of A(C\ K, L™>°(X)). Let A7*°(S(c1,¢2), L7°°(X)) denote
the set of all h € A(S(c1,c2), L™°°(X)) such that hlr, € S(I'z, L~>°(X)) for every ¢; < 8 < ¢z
unifomly in compact intervals. The latter space is Fréchet, and we can form the space

(1.2.13) A™2(S(c1,¢2), L™(X)) + My (Ex(L™7(X)))

as a subspace of A(S(c1,c2) \ K,L™%°(X)) in the topology of the non-direct sum. The space
(1.2.13) is independent of € that is involved in the choice of K. Notice that for ¢; < ¢, é; > ¢ the
spaces (1.2.13) associated with (¢, é;) are continuously embedded into the ones associated with
(c1,c2). We now define M;,*°(X) to be the projective limit of the spaces (1.2.13) for ¢; — —o0,
¢z — 400. The space M,°°(X) is Fréchet (it can be proved that its Fréchet topology is nuclear).
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We identify the set V' € V with a so-called continuous asymptotic type (with coefficients in
L™>°(X)) R of Mellin symbols and set M (X) := M{;*°(X). The set of all such R, will be
denoted by As(X). In this notation we keep in mind the L™°°(X)-coefficients arising in the
spaces of analytic functionals (1.2.13). If R is associated with V' we also write n¢(R) = V.

Let M{(X), p € R, defined to be the subspace of all h(z) € A(C, Lf; (X)) such that h(z)|r, €
LY (X;Tg) for each § € R and uniformly in compact S-intervals. We consider M5 (X) with its
canonical Fréchet topology and set

MyE(X) = MB(X)+ M,>(X) ,
endowed with the Fréchet topology of the non-direct sum.

Remark 1.2.6 Given two sets Vi, Vo €V we can form Vi + Vo := (V1 U Vo)L, where
vi.= {(T=XNzo+Az1 : 20,21 €V, Rezp= Rez,0<A<1}.

For the elements Ry, Ry and R in As(X) associated with Vi, Vo and Vi + Va, respectively, we
then write R = Ry + Rs. In this case we have

M§1+R2(X) = Ml‘él(X) + MI‘;L,Q(X)
as a non-direct sum of Fréchet spaces.

A standard functional analytic argument then gives us
C(U, My, g, (X)) = C*(U, Mg, (X)) + C*(U, Mg, (X))

for an open set U C RP. With elements f(z) € M§(X) we can associate Mellin pseudo-

differential operators
0Py (£) : G (XM) = C>(X7)

whenever rcRNI' 45 = (. In that case, setting 8 = v — § for n = dim X, we get continuous
2
operators
wop,, 2 (f)@: K7 (XN) — K57 (X7)

as well as .
wopyy 2 (f)a: KEY(X7) — K& (X7

for every P € As(X, (,0)) with some resulting @ € As(X, (,©)) for any choice of the weight
interval ® and cut-off funtions w, @.
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1.3 The edge symbolic algebra

Consider the operator families op, (p)(y,n) and opﬁ/[(h) (y,m) from Corollary 1.1.5, fix cut-off
functions w;(r), 7 = 1,2, 3, such that wy = 1 in a neighbourhood of supp wy, and w; = 1 in a
neighbourhood of supp ws.

Choose any strictly positive function n — [n] in C*°(R?) such that [n] = |n| for |n| > ¢ for
some constant ¢ > 0. Set

w[3

(1.3.1) an(y,n) = wi(rfg))r +opy, * (h)(y, mws (rln])

(1.3.2) ar(y,n) = (1 = wi(rn]))r"op,(p)(y,n) (1 — ws(r(n])) -
By using Corollary 1.1.5, it is then easy to verify that
an(y,n) +ar(y,n) =r "op.(p)(y,n)  mod C*(Q, L *(X";RY)) .

For arbitrary cut-off functions o1, o9, with 09 equals 1 in a neighbourhood of the support of oy,
set

(1.3.3) ay(y,n) = o1(r){am(y,n) + ar(y,n)}o2(r).

In [4], Section 9.2.3 it is shown that the use of parameter-dependent cut-off functions in the
expressions (1.3.1) and (1.3.2) gives

ay(y,n) € SH(Q x RGOV (XN, K5~ #77#(XN))  forall s € R

The following remark establishes an alternative representation for ay(y,n), the proof can be
found in [7], Propositions A.4 and A.8.

Remark 1.3.1 Given ay(y,n) in the form (1.3.3) there exists an
fryy,2,1) € C®(Ry x Q, ME(X;RY))
such that for f(r,y,z,n) = f(r,y,z,m) we have

(1.3.4) ay(y,n) = o1(r)r "oply * (F)(ysmoa(r) + go(y, m)

for a certain go(y,n) € RL(AXRY, g, )0, Goo := (7,7 — 11, (—00,0]) (recall that the latter class of
flat Green symbols is independent of the weight in g.,). Conversely, any operator family (1.3.4)
can be rewritten as (1.3.3) mod RF(Q x R?, g )o.
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In [7], Proposition A.13, there is proved the independence of relation (1.3.4) of the cut-off
functions oy, ¢ = 1,2, and the equality

(1.3.5) ol(r)r*“opXZ%(f)(y,n)az(r) = T’“Opﬂg(ﬁ)(y,n) + g1(y,n)

(F)(ysm)(o2(r) — 1) € R(2 x

_n
2

for fi(r,y,2,n) = o1(r)f(r,y, 2,m) and g1(y,n) = o1(r)r *op,,
R?,g..)0-

Remark 1.3.2 The operator
Opy (@) : Weomp (4, K7 (X7)) = Wi (@, K577 7H (X))

belongs to LE(X" x Q) and has (up to the cut-off functions o1,02) the above-mentioned system
{r=Fp;i(r,z,y,p,&,m)}j=1,..n as local amplitude functions (where we assume that suitable com-
patibility conditions in the intersections of coordinate neighbourhoods of X are satisfied, see [20],
Definition 4 of Section 3.3).

With the notation of Corollary 1.1.5, we set, for (y,n) € U x (R? \ {0}),

(1.3.6) ol () m) = wi (rln)r*opyy * (ho) (, mwa (rln]),

(1.3.7) on(ar)(y,n) = (1 = wi(rnl))r*op,(po)(y,n) (1 — wa(r|nl)).

The edge calculus contains another kind of operator-valued symbols, namely the smoothing
Mellin symbols. In this case we set

g=07—w0) for®=(-(k+1),0]

with reals v, p € R and £ € N.
Given any
fly,z) € C*(U, Mp~(X)) ,

R € As(X) and a weight § € R where

(1.3.8) y—j§5§7fors0mejEN,OSjSk,W@RﬂFnTH_(;:@,
we form

B o
(1.3.9) m(y,n) = wi(rn])r— " opy, 2 (f)(y)n“wz(rn]) .

Remark 1.3.3 Operator families of the form (1.3.9) belong to Sé‘l_jﬂa‘(U X RY; E,E) for E =
K37(XM), E = K7 #(X") as well as for E = K37 (X"), E = Ko7 H(X") for all s € R and
every P € As(X, (v, 0)) with some resulting QQ € As(X, (y —p, ©)) that depends on P, f and on
the weight §.
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Operator valued symbols of the form (1.3.9) have been studied in [20], Section 3.3.3., and it is
known that when we form

_n
2

m(y,n) = @ (rfn))r " opy,

(f) ()n“@2(r[n])

with the same f(y, z) as before but other w;, i = 1,2, and ) , satisfying analogous conditions as
(1.3.8), we have m(y,n) — m(y,n) € RZ_J—HO“(U x R?, g). In the latter notation the dimension
data w are (1,1;0,0).

Note that, by Remark 1.2.6, we can find, for every R € As(X) and f(y, z) € C*(U, M, (X)),
and every decomposition R = R'+R? for R', R? € As(X), elements l;(y, z) € C*(U, M (X)),
i = 1,2, such that f =y 4+ ls. We apply this to f in (1.3.9) for the case 7 > 0 and choose an
arbitrary decomposition R = Rg +R; € As(X) satisfying mc Rg QF”T“—B =mch; mF"T“—ﬁ =0
for reals B # 3, v—j < 8,8 < v, and write f(y, z) = ls(y,z) +15(y, z) for corresponding /g and
l@' Then, if we set

n(y,m) = wi(rlnl)r "+ {opls * (15)(y) + op@_%(lg)(y)}n“wz(r[n]) :
we have
(1.3.10) m(y,n) =n(y,n) mod RL (U xRI, g)p

for certain P € As(X, (y — 1,0)), Q € As(X, (—v,©)), depending on R, 8, 5. Because of the
semi-ordering of the spaces of Green symbols in the sense of relation (1.2.10) we can choose P and
@ in (1.3.10) in a suitable way, such that (1.3.10) holds for every decomposition of f into I3+ lg"
for arbitrary S, B satisfying the above-mentioned relations. Previous considerations also say that
one can fix P and @ in (1.3.10) not depending on 0 < j < k. This is also true when, instead of
f,in (1.3.9) appears a finite sum over |a| < j of Mellin symbols fj.(y,z) € C*(U, M}E;f(X))
(W@Rja N FnTH_(; = @)

Let R}, (U xR?, g) denote the space of all operator functions of the form m(y,n) +g(y,n),
for arbitrary g(y,n) € RE(U x R?, g), where

k ~
(13.01)  m(y.n) =il 30 r7 D fophy” F(1g, )W) +opyy”
=0 Jal<j

(Ug,,) () 0w (r(n])

with given Mellin symbols

(1.3.12) 1 (4,2) € OF(U, M2 (X)), 15, (4,2) € C(U, Mz (X))

for Rju, Rjo € A8(X), ¥ — 5 < Bjas Bja <, Bja # Bia for j > 0, and

(1.3.13) MeRja NTus1_g = TcRjo N Pugi_j =0 forallja.
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By virtue of Remark 1.3.3, operator families of the form (1.3.11) represent classical symbols of
order u, with spaces F and E as in Remark 1.3.3.

Let us set .
i (m+9)(yn,2) = > fialy,2)n*,
|| <3

called the conormal symbol of (m + g)(y,n) of order p — j, j =0, ..., k. We then have
b (m+9)(y,m,2) = 0 for 0 < j <k & (m+g)(y,n) € REU xR, g) .

Using the fact that elements (m + g)(y,n) € R}y, , (U x R?,g) are classical symbols of order ,
define the homogeneous principal (so-called edge) symbol of order y by

(1.3.14) on(m+g)(y,n) :=oh(m)(y,n) + ox(9)(y,n),
where ok (g)(y,n) is given by (1.2.7) and (in the notation of formula (1.3.11))

ol (m)(y,m) = wi (rin))r “er S fop ™ 15, )(w) + op ¥ (15, )W)} wnlrin).

Jj=0 |al=3

We now want to define a system of Fréchet subspaces of RY, +G(U X ]I?q,g). For this purpose

let us consider a fixed sequence R = (RjavRJa)OS\aISj,OSjSk with Rj., Rjo € As(X) such that
Roo = Ryo and satisfying conditions (1.3.13) with

~ 1~ 2
(1.3.15) Bja = Pja =7 forj=0, ﬁja:')/—g,ﬂja:'y—g for j > 0 for all |a| <7 .
Choosing any l’ﬂj (y,z) € C>®(U, M}gjoo(X)) and ll@ (y,2) € C(U, M;*°(X)) satisfying
« @ o o

(1316) fjoa(ya Z) = lﬂja (ya Z) + lﬁja (ya Z) = l,,B]-a (ya Z) + llgja (y,z)

in the space C*°(U, MROO+R (X)), and forming a family of operators m/(y,n) as in (1.3.11)
Jo Jo

with l’ﬂja and l~ instead of [, and ! Bia? respectively, we get, for suitable asymptotic types
P e As(X, (v, 9)) and Q € As(X, (=7 + 1, 0))

(1.3.17) m(y,n) —m'(y,n) € RE(U xR, g)po.

We call P and @) compatible to R if their carriers are chosen so large (which is always possible)
that (1.3.17) holds for every Ig, , g, l’ﬁj , llﬁ satisfying relation (1.3.16).

Let Asyig(X,g) for g = (7,7 — 1, 0) denote the set of all sequences S = (R; P,Q), for
R = (Rja,R]a)0<|a‘<] 0<j<k With Rjq, Rja € As(X) being as before and P € As(X, (v, 09)),
Q € As(X, (—v + p, ©)) compatible to R.

We then denote by RM+G(U x R?, g)g, for S € Aspyr+a(X,g), the subspace of all elements
of Ry, (U x RY,g) of the form m(y,n) + g(y,n) with m(y,n) being given of the form (1.3.11)
with the weights defined by (1.3.15).
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Remark 1.3.4 For every fized S € Aspric(X,g), the space R“M+G(U x R, g)s is a Fréchet
space in a natural way.

In fact, let T denote the subspace of all a(y,n) € R“M+G(U x R?,g)s such that the coefficients
fialy, z) of a7 (a)(y,n, z) belong to C=(U, Méﬁj(X)) for all |o| <7, j=0,...,k. In a similar
manner we define T' by requiring f;.(y,z) € C*(U, M}%;:(X)) for all j,« (here, by definition
Ry = Roo). We introduce Fréchet topologies in T and T and then set R“M+G(Uqu,g)5 =T+T
in the topology of the non-direct sum. To apply the general notion of a non-direct sum of Fréchet

spaces, we have to choose a Hausdorff topological vector space H containing the summands as
subspaces; in our case we can set H = Séil)(U X RY; V(X N), Ko9Y=#(XN)) for any real s. Let

us consider T, for T" we can proceed in an analogous manner. The space T is isomorphic to

k

(1.3.18) {EB P =, ng‘f(X))} ® R, (U x R, g)pg,
§=0 |a|<j

since opr 1 @ — om(a) .= {fjatal<jj=0,..,c defines a surjective map of T' to the space in the
brackets {...} in (1.3.18), where ker op; = Ri:(U x R?,g)p,g. Moreover, oy has a right inverse,
namely

k n
onr(a) — wi ()™ S0 3 ophs™ ™ (fra) (W) wa(rln])
=0 fal<j

for any fixed choice of cut-off functions wi,wy and weights 3;, as in (1.3.15). The summands in
(1.3.18) are Fréchet spaces, hence T itself becomes a Fréchet space.
It can be proved (by using a Cousin problem argument) that the space Ry, (U x R?,g)s

with its Fréchet topology from 7'+ T' only depends on the sequence
(1.3.19) S = ((Rja + Rja)al<jjo...s P, Q)

but not on the specific decomposition of Sj, = Rjo + f%ja which justifies the notation in the
previous formula.

Similarly to Definition 1.2.4 we can introduce the space Ry, (U x R?, g;w) as the set of all
( gn 8 > (y,n)+9(y,n) for arbitrary g(y,n) € RE(U xR?, g; w) and an f X e-matrix m(y,n) of
elements in RY, , (U xR, g). Let RYy, , (U xR, g;w)s for S as in (1.3.19) denote the subspace
of all a(y,n) € Ry, (U x R?, g;w) such that the entries of the (f x e)-matrix valued upper left
corner belong to Rf, +G(U x R?,g)s while the other entries are Green of asymptotic types P,
Q. The Fréchet topology of Ry, (U x RY, g;w)s is immediate from that of the (f x e)-upper
left corners and the one of the Green families in the other entries.

22



Definition 1.3.5 R*(U x R?,g;w) for g = (y,y — 1,0), © = (=(k +1),0], £k € N, and
w = (e, f;j—,7+) is defined to be the space of all operator families

(1.3.20) a(y,n) = < g(aM+aF)6 % ) (y;m) +r(y,m),

where (apr + ap)(y,m) is an f X e-matriz of elements (1.3.3) with arbitrary cut-off functions
o(r), 6(r), with & = 1 in a neighbourhood of supp o and r(y,n) € Ry, (U x R!, g;w).

Remark 1.3.6 Set E = K%7(X",C¢) ® U~ and E = K¥~#7~H XN, C) @ T+ endowed with
the group actions diag(ﬁ5,5nTH)5eR+. We have RM(U x RY, g;w) C SH(U x RY; E, E) for every
s € R. Moreover, for every a(yn) € R*(U xR?, g;w) and every P € As(X, (v,0)) thereis a Q €
As(X, (y—p,©)) such that a(y,n) € SH(U x RY; Ep, Eq) when we set Ep = K37 (X", C¢)@U-,
Eg = ICZ{‘W*“(XA,(CJC) ® T+, for all s € R.

If a € R*M(U x RY, g;w), let us set, for (y,n) € U x (R?\ {0}),
@ = (OO ok,

where of(apr + arF)(y,n) is the matrix with elemts given by (1.3.6) and (1.3.7) and o/ (r)(y,n)
as in (1.3.14).

In an obvious way we can define subspaces R*(U x R?;g; w)g of R*(U x R?; g; w) (for fixed
asymptotic data (1.3.19)) by considering in (1.3.20) r(y,n) € R}, o(UxR?, g;w)s. We conclude
this section by introducing a Fréchet topology in these subspaces. Since R}, +qU xR g5w) s
is already treated, it remains the space of upper left corners.

Equality (1.3.5) tells us that the space to topologyse is ¥*([0,c)o) defined to be the space of
all operator families of the form r_“opz/f_f (f)(y,n) with f(r,y,z,n) := f(r, y, z,rn) for arbitrary
f(’f’, Y, z, ﬁ) € COO([(), C)U X U7 Mg(X) R%))

To introduce a Fréchet topology in W ([0, ¢)o) it suffices to establish a canonical isomorphism

UH([0,¢)g) — C°°([0,¢)0 x U, Mg(X;R%))

and carry over the Fréchet topology from the space on the right to U#(]0,¢)¢). This isomorphism
can be defined to be the composition of well-defined maps

by, m) € WH([0,)o) = r*bly.n) = rbly, ) = symb(rb(y, 7).

where “symb” means the symbolic map

) fry,20)

w[3

opyy 2 (f)(y
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that is well-defined as a map to a parameter-dependent left symbol (with respect to r) that
n+1

first gives the values on Re z = — v but then extends in a unique way to a holomorphic
function in z € C.
Summing up, the space U#([0,c)o) is now equipped with a natural Fréchet topology, and we

can pass to the non-direct sum of Fréchet spaces
(1.3.21) RAU x BY), g;w)e,s := (W([0,c)0) @ {0}) + iy (U x Y, g5 w)s

for fixed S € Aspr+c(X,g), ¢ > 0. The space R*(U x R?, g; w) itself is the union of the spaces
of the form (1.3.21) over all ¢ > 0 and S € Aspy+¢(X,g).

1.4 Edge operators

Let W be a compact manifold with edge ¥ and W the associated stretched manifold. By
the assumptions of Section 1.1 we have a global splitting of variables near OW, i.e., there is a
neighbourhood of OW of the form

V=[0,1)x X xY, (r,z,y)€V.

Let {Vi,...,VL} be an open covering of Y by coordinate neighbourhoods and x; : V; — Q,
[ =1,...,L, charts for some open 2 C R?. Then the sets [0,1) x X x V; form a open covering of
V, and we have diffeomorphisms

X :[0,)x X xVi—=[0,1)x XxQ, [=1,..,L.

Taking the sets [0,1) x X x © as local models of W near 0W, the transition maps between
different such “singular charts” are independent of r and x. Let Vect(W) denote the set of all
smooth complex vector bundles £ on W, where we assume that the transition maps between
realisations of E|jg 1)y xxy; on [0,1) x X x  are independent of 7.

For local considerations it will be convenient to work with R, x X x €; contributions for
large r will be unessential after applying corresponding cut-offs. Let e be the fibre dimension of
E. Then we form the spaces

(XN, C8) == K57 ( X)) @ C°
and, similarly, £37(X",C?) for some P € As(X,g), g = (v,0). This gives rise to spaces
WS

comp

(Qv ICS”Y(XAv (Ce))a Wlsoc(Qv ICS”Y(X/\v (Ce))

as well as
Wgomp(Qalc}g;’y(X/\a (Ce))a WISOC(QJC?’Y(XAa (Ce)) .
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They are invariant with respect to transition maps such that we have the spaces
Wgomp(vv ICS{Y(X/\v E|X/\ ><V)) )

(where V' denotes one of the sets in the covering of Y') as well as those with asymptotic types
P and with subscript “loc”. Now if o(r) is a cut-off function supported in a neighbourhood of
r =0, and if {¢1,..., o1} is a partition of unity subordinate to {V1,..., Vi }, we set

L
Ws,'y(W7 E) = {UZ prup + (1 - U)uint}
=1
where u; € WE _(V}, K$V(X, E|xrxv;)) and uing € H (intW, E).
Similarly, we define the spaces W5 (W, E) by inserting K3' (X", E|xaxy;) in place of
ICS’7(XA,E|X/\><VI).

Remark 1.4.1 The space W5 (W, E) for every fized asymptotic type P can be written as a
projective limit of Hilbert spaces; as such it is a Fréchet space with a countable system of norms.

Bundles E € Vect(W) are assumed to be equipped with Hermitian metrics that are independent
of r for small r (i.e., lifted Hermitian metrics from E|sw in a collar neighbourhood 2 [0,1) x X xY’
of OW). We then have WOO(W, E) = h~ 2 L*(W, E) where L*(W, E) is the space of square
integrable sections in F (with a measure that treats W as a C°° manifold with boundary) and
h?, p € R, is a strictly positive function in C°°(intW) such that A” = r” in a neighbourhood of
0.

The WY- scalar product then induces a non-degenerate sesquilinear pairing

WSN(W, E) x W77 (W,E) - C for every s,y € R

Definition 1.4.2 An operator G : WYY (W,E) — W% (W, F), for 7,6 € R and E,F €
Vect(W), is said to be a smoothing Green operator with asymptotics of types P € As(X, (4, 0)),
Q € As(X, (—,0)) (for some weight interval © = (0,0]) if, for all s € R, G and G* induce
continuous operators

(1.4.1) G : W' (W, E) = WX (W, F) and G* : W (W, F) — Wy (W, E).
Here G* denotes the formal adjoint of G in the sense
(Gu, v)woow,ry = (U, G V) oo,y for all u € C§°(intW, E),v € C5° (intW, F).

It suffices to require conditions (1.4.1) for all s € Z; then the operators G are continuous for all
s € R. Set g = (v,0,0) and let Y~°(W, g; £, F)p denote the space of all smoothing Green
operators with asymptotic types P and ). The definition gives us linear maps

(1.4.2) yioo(wvg;EuF)P,Q — LV>T(W, E)vwlgoyry(WJF))a
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(1.4.3) V=(W,g;E,F)pg — LWV (W, F), Wz (W, E))
for all s € N, where (1.4.3) is defined as G — L, obtained as a composition G — G* — L where
Lv :=G*7, v € W (W, F). For every fixed s the spaces on the right hand side of (1.4.2) and
(1.4.3) are Fréchet spaces with a countable system of operator norms, obtained in terms of the
contable systems of norms in the respective spaces with asymptotics, c¢f. Remark 1.4.1.

In the space Y~°(W, g; £, F') p¢ we introduce the Fréchet topology of projective limit with
respect to the mappings (1.4.2), (1.4.3), s € N. This enables us to define parameter-dependent
Green operators with parameter A € R'. We set

y_oo(W7g;E7F;Rl)P,Q = S(RZJ:))_OO(WJQ;EJF)P,Q)'

In an analogous manner, given elements E, F € Vect(W), J_, J; € Vect(Y), we define the
spaces
Y™(W,g;v)pq and Y~°(W,g;v;R ) pg

for v = (E,F;J_,J;), where G € Y~°(W, g;v)p, is defined to be the space of all operator
block matrices

W (W, E) W (W, F)
G = (Gij)i,j:1,2 : D — D
H5(Y, J_) C>(Y, J;)

such that the formal adjoint with respect to the W?(W,.) & H'(Y, -)-scalar products have an
analogous mapping property with opposite weights and the asymptotic type @ in the image,
for all s € R. We endow the space Y~>°(W, g;v)p o with a natural Fréchet topology that is
defined in an analogous manner as that for the corresponding space of upper left corners. Let
Y~®(W, g;v;R) denote the union of all the spaces Y~°(W, g;v;R)p g over all P, Q.

Next we pass to pseudo-differential operators on 2 with amplitude functions

ay,y',mA) € RY(Q x Q x R, giw)

for g = (v,y —1,09), ©® = (—(k+1),0], k € N, and w = (e, f;75_,7+). If we form operator
families Op(a)(\) where, first for u(y) € C§°(2, K7 (X", C¢) & T-),

Op(a)(Nuly) = // STV Ma(y, of 1, Nuly)dy'dn

we get, for all A, continuous operators

Wgomp(Qa ’C577 (X/\a (Ce)) Wlsozﬂ(Qa K:Siu”yiu(X/\a (Cf))
Op(a)() : W2 — O
Heomp (2,C-) Hy' 7 (2,0%).
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There is then invariance under substituting transition maps from E,F € Vect(W), J_,J; €
Vect(Y'), between trivialisations of the respective bundles belonging to “charts” x; : Ry x X x
Vi = X" x Qand x] : Vj = (, respectively (see also the notation at the beginning of this
section). This gives us operators

Weomp (Vi, K27 (X1, B)) oo (Vi, K3 =RY=H(XA, F))
(1.4.4) AN : ® s @
s—"T""l s—u—"T"'l
Hcomp (VLJ*) Hloc (W7J+)'

Here, for brevity, in the spaces we wrote the bundles themselves rather than their restrictions
to X" x V; and V], respectively.

Let us now fix cut-off functions o(r), &(r), (r), supported in [0,1), such that 06 = o,
06 = &, choose a partition of unity {1, ..., 1} subordinate to {Vi,...,Vp}, and let {¢1,...,91}
be functions ¢; € C§°(V;) such that p;i; = ¢; for all j. Moreover, let LE, (intW; E, F'; R') denote
the space of all classical parameter-dependent pseudo-differential operators on intW, operating
between spaces of distributional sections of bundles £, F. In the following definition we set
g=7y—p0)andv=(E,F;J_,J;) for y,p € R, © =(0,0], —00 <0 <0, E,F €Vect(W),
J_,Jy €Vect(Y).

Definition 1.4.3 Y*(W, g;v;R!) is defined to be the space of all operator families

L

AN = Y diag(opj, ;) A; (N diag(5¢;, 45)

j=1
+ diag(1l — 0,0) Ajys (V) diag(1 — 7,0) + G(N)

for arbitrary operators of the form (1.4.4), an operator Aint(\) € LY (intW; E, F;R') and G(\) €
Vo2 (W,g;v; R p o and Aj(N) of the form (1.4.4).
The case [ = 0 in Definition 1.4.3 is also admitted. In this case we write Y*(W, g;v) for the
corresponding space of operators. Note that A(X, ) € y“(W,g;v;Rf\+5l\) implies A(X, \g) €
YW, g;v; Rl)\) for every fixed Ao € R,

Let us set W7 (W;m) = W7 (W; E) & HSJLTH(Y, J), s € R, for any pair m € Vect(W) x

Vect(Y). Similarly, we define W37 (W;m) = W3 (W, E) @ H S_nTH(Y, J) for any asymptotic
type P € As (X, (7,0)).

Theorem 1.4.4 The elements A(\) € Y*(W, g;v;R) for v = (E,F;J_,J.) induce families
of continuous operators

AN : W (W m) — WS~ (W; )
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form=(E,J_), n=(F,Jy), as well as
AX) : WET (W, m) — Wg“ﬁ*“(W;n)
for every P € As (X, (y,0)) with some resulting Q € As (X, (y — u, 9)).

Theorem 1.4.4 is a consequence of corresponding local continuity results, cf. relation (1.1.8)
and Remark 1.3.6, together with (1.4.1) for global smoothing operators. Let us now establish
the (parameter-dependent) principal symbolic structure of operator families A()) as in the
previous definition (for convenience, we often write A instead of A(\)). Incidentally, we write
A = (Aij)ij=1,2 and ul.c. A (upper left corner of A) in place of A;;. We then have a space of
upper left corners

VMW, g; E,F;RY) = ulc. Y*(W,g;v;R)
where

VAW, g; E, F;R") C L*(intW; E, F; R") .

Here, analogously to notation in Section 1.1, Lé‘l(-; E, F;R') is the space of all classical parameter-
dependent pseudo-differential operators on a manifold (indicated by the dot), operating between
spaces of sections in the respective vector bundles E and F. In our case the manifold is intW
and we have standard parameter-dependent homogeneus principal symbols

afZ(.A) = Ui(u.l.c. A)

that are bundle homomorphisms
O-ql/fv (A) : 7ri*ntWE - 7Ti*ntVV‘FJ

where Tingw 1 (7% (intW) x R} )\ 0 — intW is the canonical projection. In our case, because of the
edge-degenerate nature of operators, we have in the splitting of variables (r,z,y) € [0,1) x X xQ
near 0W with covariables (plus parameter) (p,&,n,A) a representation

UQ‘Z (A) (T7 T,Y,p, 57 7, >‘) = &Z(‘A) (’)", T,Y, ﬁa 57 ﬁ? >‘) |,5=Tp,ﬁ=7“77,5\=1“)\ ’
where &fZ(A) is smooth in 7 up to 0 and has an invariant meaning as a bundle homomorphism
oy(A) : TE — T3 F

between pull-backs to a so-called stretched cotangent bundle (4+parameter) T*(W x R) \ 0 (0
means (g, &, 17, 5\) = 0) with the canonical projection 7y : T*(W x R')\ 0 — W. In addition,
the homogeneus principal edge symbols of local operator-valued amplitude functions that are
involved in A;()), cf. the previous definition and Section 1.3, gives us a bundle homomorphism

’Cs,fy(X/\) ® E' ]CS—IJ;’Y—#(X/\) ® F!
oh(A) : 7y ® — 7y )
J- Jy
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between pull-backs of corresponding bundles with infinite-dimensional fibres to (T*Y x R )\ 0
with respect to the canonical projection 7y : (T*Y x R')\ 0 — Y, E' := E|gw, F' := F|aw .
We now set

o(A) = (o (A), o (A)) |
called the principal symbol of A of order .

In the above definitions of symbol and operator spaces the order is the same as p in the

weight data g = (y,y — p, ©). We can also define symbol spaces R” (U x R?, g; w) with the same
g but any other order v € R such that 4 —v € N.
The generalisation for Green symbols is straightforward; concerning smoothing Mellin symbols
it suffices to replace r~# in formula (1.3.11) by r~%, while for the non-smoothing parts a;(y,n)
and ap(y,n) we simply take symbols of order v instead of . We then get associated operator
spaces V' (W,g;v;R!) for p —v € N, g = (v,7 — u, ©), with associated principal symbols
0”(A) = (0y,(A),0%(A)). Note that then

V' W, gsvR) = {A €V (W,g;u;R') : 0”(A) =0}
Remark 1.4.5 A € Y*~Y (W, g;w;R) implies that
A WHT(W;m) — W HTH(W; n)
is a compact operator for every s € R and A € R.

Theorem 1.4.6 Let Aj()\) € VW, g;v;R), j €N, be an arbitrary sequence and suppose
that the asymptotic types in the Green symbols (of the local representations) are independent of
j. Then there is an A(X\) € Y¥(W, g;v; R such that, for every N € N,

N
AN =D AN € YN (W, gs os R,
j=0

and A(N) is unique mod Y~ (W, g;v;R').

This result is a consequence of the fact that local amplitude functions belonging to A;()\) can
be summed up asymptotically, uniquely with remainders of order —oo. In the following theorem
we consider operators B and A with weight and bundle data

f:(’y,’y—l/,@), w:(EaG;J—a‘])

and
g=0-v,y—(v+p),0), v=(GF;JJ)

respectively, and set
fog:(7a7_(y+u)a@)a wov:(E,F;J_,J+).

The next Theorem is proved in [22], Section 3.4.4.
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Theorem 1.4.7 Let A be in Y*(W,g;v;R) and B be in Y (W, f;w;RY). We then have for
the composition AB € Y*V(W, g o fyw o v; R, and o(AB) = o(A)o(B) (with componentwise
composition).

1.5 Ellipticity and parametrices

We now turn to (parameter-dependent) ellipticity of elements in the space

(1.5.1) VW, g;v; RY),

where W is a (not necessarily compact) stretched manifold with edge Y, and

(1.5.2) g=07-m0), v=(EFJ  J;)

for ® = (—(k+1),0], k e NU{oo}, 7,1 € R, and E, F €Vect(W), J_, J; €Vect(Y).

Definition 1.5.1 An element A(X) in (1.5.1) is said to be (parameter-dependent) elliptic (of
order u) if

(i)
oy (A) : T E — Ty F
is an isomorphism, fy : (T*W x R) \ 0 — W;
(i)
K& (XM @ B = (XM) @ F!
on(A) = Ty ® — Ty ®
T I,

is an isomorphism for some s € R, my : (T*Y x R)\ 0 — Y.
The case | = 0 is also admitted; we then talk about ellipticity (without parameters). Notice that
when A(M\) € Y*(W,g;v;R!) is parameter-dependent elliptic, A(\g) € Y*(W, g;v) is elliptic
without parameters for every Ay € Rl.

If (ii) is satisfied for some s = sp € R, then it is true for all s € R. This is a consequence of
the fact that the upper left corners of edge symbols belong to the cone algebra on X" and are
elliptic for (7, ) # 0 both with respect to the tip of the cone and to r — oo, the exit of X" to
infinity. Moreover, as is well-known, kernel and cokernel are independent of s.

Theorem 1.5.2 Let A € Y*(W, g;v;R') be elliptic. Then there is a parametriz P of A with
Pey  (W,g v iR, g7l = (v - 1,7,0), v = (F, B3 Jy, J).

This means
IT-PA€Y ®(W,§;5;R), T—APc Y 2(W,g;5;R),
where g = (7777 9)7 v = (EJE; J77J*)7 5 = (’Y — MY — N’7®)7 1:7 = (FJF;J+7J+)'
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For the proof see [22], Section 3.5.2.

Corollary 1.5.3 Let A € Y*(W,g;v) be elliptic and assume
u € WU (W;m), Au = f e WHEITTH(W;n),

for some s € R. Then we have u € WY(W; m). Moreover, Au = f € Wéfu’A/*“(W;n) for a
Q € As(X, (y—p, ©)) implies u € W57 (W; m) for a resulting asymptotic type P € As(X, (v, 9)).

Corollary 1.5.4 Let A € Y*(W,g;v;R) be elliptic. Then
(1.5.3) AX) : W (W;m) — WEHT™H(W;n)

s a family of Fredholm operators for all s € R. In the case | > 0 the operators are of index zero,
and there is a C > 0 such that (1.5.3) are isomorphisms for all |\| > ¢ and all s € R.

We conclude the section with a remark that has been proved in [3].

Remark 1.5.5 For every p,y € R, | € N and E €Vect(W) there ezists a parameter-dependent
elliptic element R(\) € YM(W, g; E, E;R!) that induces isomorphisms

R(\) : W (W, E) — W BT MW, E)  foralls € R NeR,

where R™Y(\) € Y™H(W,g~ 1 E, E;RY), R7Y(\) = (R(\)~L.

2 Meromorphic corner symbols

2.1 General kernel cut-off

In this Section we prepare some general constructions on operator-valued symbols that depend
holomorphically on a complex covariable. Symbols of that kind may be constructed in terms of
so-called kernel cut-off operators. Let us first introduce spaces of parameter-dependent operator-
valued symbols with holomorphic dependence on parameters. In Section 1.1 we have defined
the symbol spaces Séf: ) (R™; E, E) (with constant coefficients), where E and E are spaces (either
Hilbert spaces of Fréchet spaces written as projective limits of Hilbert spaces) with group actions
{H5}5€R+ and {ﬁ5}5€R+, respectively.

The following considerations will be formulated for the Hilbert space case. The generalisation
for Fréchet spaces is straightforward and will tacitly be used below.
Definition 2.1.1 Let Séﬁ:l) (R xC'; B, E) denote the space of all h(n, z) € A(C., Séﬁ:l) (R%; E, E))
such that h(n,\ +it) € SV )(RqH'E,E) for every 7 € Rl and uniformly in 7 € K for every

l (cl A
K CCR.
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Note that Séf: ) (R? x (CZ;E,E’) are Fréchet spaces in a canonical way (an adequate semi-norm
system immediately follows from the definition).
Let us set

K@)0.0) = 20" [ ea(n A

this exists as an element of S'(R), L(E, E)) for every fixed 7, and we have x(0)K (a)(n,0) €

S(RY, L(E, E)) for each excision function x (i.e., vanishing in a neighbourhood of 0 and being 1
outside another neighbourhood of 0). We have

p(0)K (a)(n.0) € S'(R', L(E, E))

for every ¢ € C§°(IR!), and we set

H(g)a(n, A) = / &N p(0) K (a) (1,0)d6

We call H(p) a kernel cut-off operator.
The following results and observations on kernel cut-off constructions may be found in dif-
ferent versions in [19] or in [20], Section 3.2.2, [3], Section 1.5.2.

Theorem 2.1.2 Let ¢(0) € C°(R') and a(n, \) € ¥

(cl)(RqH;EaE)-
Then H(p)a(n,\) € Sé‘cl) (Rit!; B, E), and there is an h(n, z) € S*

(cl)
h(1; 2)|tmz=0 = H(p)a(n, A) -

Clearly, h(n, z) is uniquely determined by ¢ and a, and we will also set h(n,z) = H(p)a(n, 2).

(R? x C'; E, E) such that

Remark 2.1.3 For every fived p € C§°(R!) the map a(n, \) — H(p)a(n,z) defines a continuous
operator

H(p) : Sy (RT B, E) = Sfy)

Moreover, if a(n,A) € S&l)(R‘I”;E, E) is fized, the map ¢ — H(p)a defines a continuous

(R? x C"; E,E) .

operator
C§°(R') = Sfy(R? x C; B, E).

Remark 2.1.4 Let a(n,\) € S&l)(R‘I”;E, E), and define h(n,z) = (H(p)a)(n,z) as before.

Then, for every fized T € R! the restriction a,(n, \) = h(n, \+iT) admits an asymptotic expansion
aT(nu >‘) ~ Z CQDKCG’('UJ >‘)
a€EN

in the space Sébd) (R B, E), with constants cq = cal@,7), @ € N4, If o € CP(R') equals 1 in

a neighbourhood of @ = 0, we have ¢y = (p,7) =1 .
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Remark 2.1.5 The kernel cut-off construction can also be started from elements b(n,\) =
h(n, X +it) for any h(n,z) € Sél)(Rq x C': E,E) and any fived T € R,
For every ¢ € C°(R) we then obtain a map

HT(QD) : Séﬁ;])

when we set H(¢)h(n,z) = H(p)b(n, z).

(R x C'; E,E) — S*

l. n
(R x C; B, E)

Theorem 2.1.6 Let ¢y € C§°(R!) be a function such that 1(8) = 1 in a neighbourhood of 6 = 0,
and let a(n, \) € Sél)(Rq“;E, E). Then h(n,z) = H)a(n,z) € Sél)(Rq x C'; E, E) satisfies
the relation

h(n,2)|imz=0 = a(1,A) mod S™*(R; B, E) .

Remark 2.1.7 From Remark 1.1.51 of [22] we get the following property. Let a and i as in
Theorem 2.1.6, and set 1, (0) := ¢ (rf) for r > 0. Then H(¢r)a(n, z)|m =0 — a(n, A) tends to
zero in S~ (Rt B E) as r — 0.

Corollary 2.1.8 Let h(n,z) € Sé‘cl) (R x C'; E,E), and let 7 € R be fized.

Then h(n,\ +i1) € Sél_)l(RZ;l;E,E) implies h(n,z) € Sél_)l(Rq x C'; E,E). In particular,

h(n,\+it) € S™>( q:;l;E,E’) entails h(n, z) € S~ (R! x C"; B, E).

Remark 2.1.9 The above kernel cut-off constructions directly extend to the spaces of symbols
Séﬁ:l)(U X R‘J‘H;E,E’) with “non-constant” coefficients dependent on y € U, cf. the notation in
Section 1.1. The kernel cut-off operators only act on covariables; in the sequel we tacitly use

results in the evident generalisation to the y-dependent case.

2.2 Further results on the edge-operator algebra

To carry out our program on edge operator-valued meromorphic functions we now study the
structure of edge pseudo-differential operators in more detail.

First, if @ C R? is an open set, E and E Hilbert spaces with group actions {fs}scr . and
{Rs}ser, » respectively, we have our spaces of symbols a(y,y',n,A) € Sé‘cl)(Q x QO x RItL B E)
and associated parameter-dependent pseudo-differential operators

Lébd (Q;E,E’;Rl) = {Op(a)()\) saly,y,m,A) € SEL(2 x Q x Rq"'l;E,E’)}.

) (cl)

The following considerations are valid with obvious modifications also for the case of Fréchet
spaces E or E with group actions, and we then employ that without further comment. More-
over, let us mainly discuss the classical case; the considerations for non-classical symbols and
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operators are completely analogous. We want to endow the space Lffl(Q; E,FE; Rl) with a canon-
ical Fréchet topology. To this end we first observe that L~°(Q; E, E) := ﬂ LM ELE) is
pER

isomorphic to C®°(Q x Q; L(E, E)) such that L~=°°(; E, E) becomes Fréchet, and then we set
L~®°(Q;E,E;R) := S(R', L~°(O; E, E)).

Moreover, let K C €2 x Q be any proper relatively closed set containing diag(2 x ) in
its interior, and let w(y,y’) € C®(Q x Q) be any element supported by K where w(y,y') = 1
in a neighbourhood of diag(€2 x ©). A well-known construction for scalar pseudo-differential
operators then also applies to the vector-valued case. Every A()\) € Lé‘l(Q; E,E;Rl) admits a
decomposition

(2.2.1) A(N) = Ag(N) + C(N),

where the £(E, E)-valued distributional kernel of Ag()) is supported by K for all A € R, while
C(\) € L= E, E;R).

Given A(A) = Op(a)(X) as above, it suffices to set Ag(A) = Op(wa)(A). Let Lt (Q; E, E;RYg
denote the subspace of all A(\) € L’C‘l(Q;E,E’;Rl) with distributional kernel supported in
K. Elements in LZ(Q;E,E;Rl)K induce families of maps C$°(Q, E) — C°(Q, E) as well as
C®(Q, E) — C®(Q, E). In particular, setting e,(y) := ¢¥" we can form A(A)e,u € C®(Q, E)
for every u € E.

Lemma 2.2.1 Given Ay(\) € LY (Q; E, E; R i we have
a(y,n,A) = e_n(y) Ao(Ney () € SH(Q x RIS B, E) ke
and Ap(X) =Op(a)(X). Moreover,
SH(Q X RIS B, B) e = e y(y) do(Nen() = Ao(N) € LA B, B R}

s a closed subspace of Sfl(Q X R‘J‘H;E,E’) (concerning the Fréchet space structure of classical
symbol spaces, cf. Section 1.1).

The proof is similar to the corresponding case of scalar operators.

Remark 2.2.2 The correspondence Ag(\) — a(y,n,A) from Lemma 2.2.1 yields an isomor-
phism

(2.2.2) LA B E;R ) g — SH(Q x RITL B E) .

We now get a Fréchet topology in the space LY (Q; E, E; R g by using (2.2.2), i.e., carrying over

the Fréchet topology from the space S (Q x RIT: E, E)k. Relation (2.2.1) gives us

(2.2.3) LY B, B;R) = LY B, B R ) i + L™°(% B, B R)
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as vector spaces. Both summands on the right are Fréchet (and contained in the space of linear
and continuous operators W2 (Q, E) — WS *(Q, E), cf. relation (1.1.8)). We then endow

com
(2.2.3) with the Fréchet topology of non- dlrleogt sum; an easy consideration shows that it is
independent of the specific K.

We now specify these constructions for symbols of the classes R*(2 x Q x RI*! g;w) and
for the subspaces Ry, (2 x Q x Rt g;w) and RE(Q x Q x RIT g;w).

Let us start from Green symbols, cf. Definition 1.2.4. For simplicity, we take upper left
corners and assume e = f =1, cf. (1.2.5) and (1.2.6); the considerations for block matrices in
general are completely analogous and left to the reader. In other words, we have the Fréchet
spaces R (Q x Q x Rt g)pg for g = (7,0,0), with asymptotic types P €As(X, (0, ©)),
Q €As(X, (—7,0)), cf. Remark 1.2.5.

Lemma 2.2.3 If g; € R“ ](Q x Q x RItt g)ro, 7 € N, is any sequence, there is a g €
RA(Q x Q x R‘I‘H,g)p’Q that is the asymptotic sum, i.e.,

N
g-— Zgj € RLGL_(NH)(Q x QxR g)po
=0

for every N € N, and g is unique mod R, (€2 x Q x RIt g)po.

Lemma 2.2.3 is a direct consequence of Definition 1.2.4 and of the fact that symbols in the
context of twisted homogeneity can be summed up asymptotically within the classes.
Let P €As(X, (0,0)), Q €As(X,(~7,0)), g = (v,0,0), and set

(2.2.4) VE(X" x Q,g;R) pg :={Op(g)(A) : g(y,y',m ) € RE(Q x QxR g)po}.

(2.2.4) is just the space of parameter-dependent edge-operators of Green type on the (stretched)
wedge X x Q. From the definition we have
(2.2.5)

Ve(X" x Q,g:R)pg C{OP(9)(N) : gly,y',m, A) € SH(Q x Q@ x R L7(X7), SE(XM))}

for all s € R; an analogous relation is true for the space of adjoints; both inclusions then
characterise the space yg(X NxQ,g; R p,@- In particular,

CeY ®X"xQgR)pg = VAX"xQgR)pg
neR

is characterised by the relations
C € S(R,0®(2 x , SFXN &L > 7(X"))),

C" € SR, 0%(Q x 0, 857 (X")&:K" (X))

35



for all s € Z. This employs the fact that
LKT(X"), SP(XM)) = SP(XM)@L™577(X"),

and, similarly, for dual maps.

The above constructions for “abstract” operator-valued symbols and associated pseudo-
differential operators may be applied to (2.2.5) and (2.2.4), and we have to observe that general
results specialise to the specific case of Green symbols and operators in the right way. As noted
before, the above Hilbert space E may be replaced by a Fréchet space with group action, and
in the present case we have S%(X"). To define a semi-norm system for the Fréchet topology in
the space Y5 (X" x ©Q,g;R')p g we consider the relations for all s € Z (which suffices) together
with analogous relations for adjoints. The discussion for adjoints will be easy as well and left to
the reader.

Let K C Q x Q be as before, and assume for simplicity that (y,y') € K < (v,y) € K.
Then YA(X" x Q,g;R)p . denotes the subspace of all G(A) € V4(X" x Q,g;R)p o whose
(operator-valued) distributional kernel (with respect to (y,y’)-variables) is supported by K.
Then every G()\) € Y&(X" x Q,g;R) p g admits a decomposition

G(A) = Go(N) +C(N)

for Go()\) c yg(X/\ X Q,g;Rl)p,Q;K, C()\) c y_OO(X/\ X Q,g;Rl)p,Q.
In other words, we have

(2.2.6) VE(X" x Q,g;R) po = VE(X" x QR por + V(X" x Q,g;R)pg

as vector spaces. J~®°(X" x Q,g;R) p,@ is Fréchet in a canonical way. So we have to Fréchet
topologise the space yg(X N xQ,g; R P,Q;k- This can be done as in the general situation.

Lemma 2.2.4 Given Go(A) € V4(X" x Q,g;R) p g we have

(2.2.7) gy, n,A) = e_y(y)Go(Ney(-) € RG(Q x R g)p i

where Go(X) =0p(g)(A), and the space RE(QUXRIT g)p 0.k, defined to be the set of all g(y,m, \)
when Go(A) runs over Yiu(X" x Q,g;R) p .k, is a closed subspace of Rl (Q x RIT g)pq.

Proof. The arguments are practically the same as in the set-up with abstract operator valued-
symbols, cf. the beginning of this section, because Green symbols are, up to conditions for
pointwise adjoints, operator-valued symbols where the second space E is Fréchet. O
Now the bijection between Y54 (X" x 2, g; Rl ) p o, and RE(Q x R g)p . i gives us a Fréchet
topology also in V5 (X" x Q,g;R') pg. k., and (2.2.6) can be equipped with the Fréchet topology
of the non-direct sum.

The next step is the space of smoothing Mellin plus Green symbols R, 102 x Rt g)s
that we consider for the weight data g = (v, — p, (—(k+1),0]), £ € N, and a given sequence S
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of asymptotic types, cf. formula (1.3.19). Because of the representation of the Mellin part of a
symbol as a sum (1.3.11) with symbols (1.3.12) satisfying condition (1.3.13), we may concentrate
on the space counsisting of first or second parts of such sums; the full space is then a corresponding
non-direct sum. In addition, we observed that weights may be normalized as (1.3.15). For that
reason, it suffices to study that case.

Let us take smoothing Mellin sums with S, as in (1.3.15). In other words, we content
ourselves with the space of Mellin plus Green symbols Ry, (2 x Q@ x RT™ g)g that is defined
to be the set of all

a(y,y',n,A) =m(y,y' 0, N) + gy, y',n, \)

where
9(y.y',n,A) € RE(Qx QxR g)p g
and
k n
(2.2.8) m(y,y',n,A) = wi(rn, A) > Z{OPM 2 (Lia) (95 ) Hn, N wa(r[n, A])

J=0 al<j

with Ui (y,v', 2) in C*(Q2 x Q, Mlgjoo(X)), meRja Nlups_g = (). In this case the fixed asymp-
«a > o N
totic data are given by S1 := ((Rja)|a|<j,j=0,...k P> Q). If we consider 3;, as in (1.3.15) and set
Sy = ((Rja)‘a|<j,j:07___7k;P, Q), W(cha N Fn_+17ﬂ~j = (), we can define exactly in the same way
— 2 «@

the space R, La(2xQx Rt g)s,. In what follows we carry on the discussion by considering
RY (2 x Q x RIT g)g, but same results hold, of course, for Ry, (2 x @ x RI*! g)g,

Proposition 2.2.5 Let w(y,y') € C®(Q x Q) be as before, then if one defines g(y,y',n, \) :=
(1 —w(y,y"))m(y,y',n,\) where m is given by (2.2.8), we have

Op(9)(N) € Y~=(X" x 2,9;:R)po
for suitable asymptotic types P and Q).

Proof. Analogously to the standard pseudo-differential calculus, from symbols g(y,y', 7, A) we
can pass to left symbols gz (y,y’,n, ), such that Op(g — gz)(\) is of order —co (here, with
parameters). gr,(y,n,A) is determined by the asymptotic formula

L(ym, A Z D59,y m )|,
Moreover, because of the factor 1 — w(y,y') all summands in the previous formula vanish, i.e.,
we may set g, = 0, and hence Op(g)(A) itself is of order —oo. O

Let Vi (X" x Q,g; R!)g, denote the space of all Op( )(A\), where a(y,y’,n,\) belongs to
Rh (2 x Q@ x RIT g)g, and let Vi, (X" x ©,g;R)g,;x be the subspace of all elements
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whose distributional kernel (with respect to (y,y')-variables) is supported by K. Then every
AN) € Vi o(X" x Q,g;R)g, admits a decomposition A(X) = Ag(A) + C(A) for Ag(N) €
Vhia(XN x Q,g;R s,k and C(A) € Y™°(X" x Q,g;R')p . This gives us a decomposition

(229 Vi o(X " xQgR)s =V (X" x Qg Rk + Y XX xQ,9;R )pg

)

as vector spaces. To get a Fréchet topology we have to Fréchet topologize the first summand on
the right of (2.2.9).

The bijection between Vi, (X" x Q,g;R)g,;x and Ry, (2 x R g)g i gives us a
Fréchet topology in the operator space and then the Fréchet topology of (2.2.9) as non-direct
sum. In a similar manner we can define Y}, (X" x Q,g; R')s, and Vhiva(XN xQ,g;R?) gk
and topologize the former space by means of the latter. We finally set

V(XN x Qg R g = VL (XN x Qg5 R g, + Vi (X x Q,g; R,

as a non-direct Fréchet sum.
A standard procedure now gives us a Fréchet topology also in the spaces V4, +G(W, g;v,R)g,
S € Aspria(X,g;v), namely, as non-direct sum of spaces like

[0l Vb (W), 50, R)s[ih] + Y7 (W, g5 0, R ) pg

where {¢;}, {1;} are C* functions in a collar neighbourhood of OW, written as a union of
neighbourhoods W;, and ) ¢; = 1 near OW, 1; = 1 on supp ¢; for all j.

2.3 Holomorphic families of edge operators

Similarly to the previous section one could show that the space Y*(W, g; v; R™) of parameter-
dependent edge operators with parameters (\,7) € R“*™ can be viewed as a union of Fréchet
subspaces of the kind Y*(W, g; v;R*+™)g, R € Asyriq(X,g;v); recall that R contains asymp-
totic information that is contained in Green and Mellin operators. However, we want to avoid
here the corresponding lenghty discussion and proceed in a more direct way.

Let w =748, 7, B € R", and set '3 := {w € C" : Im w = B}. If the parameter
7 = Re w varies on I'g, we also write Y*(W, g; v; R x I's)r.

We want to get an analogue of Section 2.1 to operator families A(X, 7) € Y(W, g;v; RH™)
with respect to the parameter 7 € R. This may be done for the summands in the representation

L
A1) = ) diag(op;, 9))Aj (N, 7)diag (545, ;)
7j=1
+ diag(l — 0,0)Ain (A, 7)diag(l — 6,0) + G(A, 7)

separately, cf. the notation of Definition 1.4.3.

38



Let us first define Y~°°(W, g; v; RIH™ x C™)p as the space of all operator functions
(2.3.1) g\ w) € AC™, Y (W,g5v;R') p)

such that
g T +if) € V(W g;v; R\ pg

for every 8 € R™, uniformly in 8 € K for every K CC R™. Recall that ~>°(W, g; v; Rl)\tfn) PQ

is a Fréchet space in a natural way, cf. Section 1.4. Moreover, the space Lffl(intW; E, F;R' xC")
is defined to be the set of all

(2.3.2) p(A\,w) € A(C™, LY (intW; E, F; RY),
such that
p(\, 7 +if) € LY (intW; B, F; RE™)

cl

for every g € R™, uniformly in g € K for every K CC R™.
Holomorphic dependence of summands A; (A, w) on w € C™ will be introduced on the level of
local amplitude functions in R#(Q x Q x R;If)\lim ,g;w). We take the representation of Definition

1.3.5 for U = Q x Q and RI7H™ in place of R? and consider the summands of a(y,y',n, A, 7)
separately, that means

(U(aM + aF)a-) (y7 ylu 1, >‘7 T)

and
r(y, 0, A T) € Rl (2 x Q@ x R giap).

Definition 2.3.1 Let U C R” open, S € Asyya(X,g). Then Ry (U x RIH x C™, g;w)g is
defined to be the space of all

a(y, m, >‘7 w) € A(CzrunaRuM+G(U X Rq+lag; w)S)
(¢f. Remark 1.3.4) such that
a(y,n, A, 7 +if) € Ry, (U x RT™ giaw) g

for every B € R*, uniformly in B € K for every K CC R™.
Let us now turn to (a(aM + ap)&) (y,4y',m, A, 7). According to Remark 1.3.1 we have

(233) (U(aM + aF)a-) (y7 y,7 1, >‘7 T) = O'T_Mopf]{/[_n/Q(f)(y7 y,7 1, >‘7 7-)6 + 90 (y7 y,7 7, >‘7 T)
with
(2.3.4) Fry sz A1) = F(ry,y',2,mm, e, rr)
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for f(r,y,y',z,ﬁ,j\,f') € Cm(@+XQXQ,M5(X;Rqﬁ+;J;m) and a certain go(y, y',n, A, 7) € RE(2x

Q x RIHH™ g Yo, The flat Green symbol can be subsumed under r(y, ', 1, A, 7). Holomorphy
of Green operator families is covered by Definition 2.3.1. Thus it remains to look at the first
summand on the right of (2.3.3).

Given any family f(r,y, 4, 2,1, A, 7) of the form (2.3.4) for a given f, we set o (f)(y, 1/, 2) ==
f(O,y,y’,z,O, 0,0) which is, by notation, the conormal symbol of (2.3.3) from the calculus for
conical singularities.

In the following, assume for a moment that operator-valued functions are independent of y
and y'. An f(r,z,n, \,w) for (r,z,n,\,w) € Ry xC, x jol x Cp with values in LY (X)) is said
to be edge-degenerate and holomorphic in w € C™, if there is an L!j(X)-valued function

Fr, 20, 0) € A(CE, C=(Ry, MA (X RIY))

such that f(r, 2,1, \,w) == f(r,z,rn,7A, rw) belongs to the space A(CJ, C®(Ry, Mk (X; RZ;Z))
and f(r,z,7,\, 7 +irfB) to in C°(R, Mg(X,Rf;;\lJ;m)) for every 8 € R uniformly in ¢ < 8 < ¢

for every ¢ < ¢. Let
(2.3.5) MA(X; R x R < Cm)
denote the space af all edge-degenerate holomorphic operator families in that sense. Similar
notation makes sense for the case of vector bundles E', F' on X; we then write, for the corre-
sponding spaces, My (X; E', F'; Ry x Rgt\l x C™).
Let us now consider an element h(r,z,n,\,7) = ﬁ(r,z,rn,r)\,rr) for any E(r,z,ﬁ,j\,f') in
™ [
C(Ry, Mb(X;RILE™)), and
(2.3.6) K(h)(r,z,n,\,0) = /eiTah(r,z,n,A,T)JT.
Theorem 2.3.2 For every (0) € C§°(R™) the function
(237) H)br 20 w) = [ €7 p(O)K (0)(r,2m. 0, 0)d0
belongs to the space Mb(X; Ry x RITL 5 C™); if 4(0) is a cut-off function, we have

H(w)h(lrazana Aaw)hm w=0 = h(TaZ,W, >\7 T)

modulo elements of the form c(r,z,n,\, 7) = &(r, z,rn, A, 1) for &(r,z,7, A\, 7) in

COO(K+,M6°°(X;R%—|;;M)). Moreover, we have oy (H(9)h)(z) = op(h)(2).
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Proof. For convenience, we concentrate on the case of r-independent l~z, ie., E(z,ﬁ,jx,?) €
Mg(X;RqJ“Hm). The extra r-dependence in the general case, smooth up to r = 0, does not
cause any difficulties and may be ignored. Let us set

K(h)(r,z,n,\,0) = /eiTah(r,z,n,)\,T)dLT

and

R(0)(r2,1,3,0) = [ ¢ hir,z,.5,7)a7
where h(r,z,m,7) = h(z,n,77). For arbitrary cut-off functions v (#) and 4(#) we then have

(H(y)h)(r,z,n, A, w) = /eiwaiﬁ(@)K(h)(r,z,n,)\,H)dH

and

Let us now show that

(H(Qﬁ)h)(’l“, 2,15 A, w) = (H(qﬁr)il) (Ta 2,1, TA, Tw)

for 1, (0) = 1(r@). In fact, we have
K(h)(r,z,n,\,0) = /eiT‘gh(r,z,n,)\,T)cTT
:/eiT‘giL(r,z,rn,r)\,rT)ch

:rm/e"lﬁiz(r,z,rn,r)\,%)d?

= TﬁmK(h)(T} Z? ﬁ? >\7 Tﬁle) |ﬁ:r7],5\:r)\'

Now the properties that are required for the space (2.3.5) are satisfied for (2.3.7); all steps to
verify that are evident by the general properties of kernel cut-off operations (see Section 2.1).
The only more subtle point is perhaps the smoothness in » up to zero. However, this is a
consequence of Remark 2.1.7.[]

Remark 2.3.3 There is an immediate analogue of Theorem 2.3.2 for the case of y-dependent

functions h in C>(U, COO(EJF,M(’;(X;R?;';m))), U C RP open, as well as in the context of

pairs of vector bundles E', F' on X.

Notation in the following definition are analogous to those in Definition 1.4.3.
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Definition 2.3.4 Y*(W,g;v; R x C™)g for R € Asyriq(X,g;v) is defined to be the space of

all operator families

L

(2.3.8) AN w) = diag(ops, ;) Aj(A, w)diag (545, ;)
7j=1

(2.3.9) 4+ diag(1 — ,0) Ajns (A, w) (1 — 7,0) + g(\, w)

or arbitrar amilies of operators ./4‘ A, w) with local amplitude functions being block matrices
y p ] ’ p g
0? the iorm

bi(y,n, A\, w 0
a’j(yanaAaw): ( ](y% ) 0 >+Tj(y7777>\7w)

for rj(y,n, A, w) € R“M+G(Q x RIt x C™, g;v)R, ¢f. Definition 2.3.1, and

bj(ya m, >‘7 w) = UlrilLOp’]);/[ii(fj)(ya m, >‘7 w)517
filry, zm, A\, w) € C®(Q, M5L(X;E', F';Ry x Rgt\l x C™)) with cut-off functions o1(r) and
o1(r) such that o1 = 1 on supp o and o1 = 1 on supp &. Moreover, we assume Ajn(\,w) €
LY (intW; B, F; R x C™), and g(A,w) € A(C™,Y°(W,g;v; R ) pg) (with P, Q being contained
in R, cf. notation of Section 1.3) such that

9N w)|rixr, € 8T,V (W, g;v;R)pg)

for every B € R™, uniformly in 8 € K for every K CC R™.

Set VH(W,g;v; R x C™) =, V*(W,g;v; R x C™)p.

The space Y*(W, g;v; Rl x C™) may be regarded as an analogue of Y*(W, g;v;R!) with
holomorphy in a extra complex parameter w € C™. To introduce holomorphy combined with
parameter-dependence we also could refer to a Fréchet topology in Y*(W, g;v; Ry for every
R. Our point of view makes it necessary to explain differentiations of A(A, w) with respect to
parameters on the level of amplitude functions that are involved in Definition 2.3.4, but this not
a problem. In particular, we can form

DSDB AN w)  for A\, w) € VMW, g;u; R x C™)
for every o € NI, 8 € N™, and get again elements in Y*(W, g; v; R' x C™).

There is, in fact, a decrease in the orders when we differentiate. First, let us formulate the
following observation.

42



Remark 2.3.5 Let A\, 7) € Y*(W,g;v; R x C™), and set

As(\,7) := AN, W) |im wep € V*(W,g;v; R x Tp).
Then,
(2.3.10) oy (A) =0y (Ag),  oh(A) = oi(Ap)

are independent of the choice of S.

This is a consequence of the properties of the kernel cut-off construction, applied to the involved
amplitude functions in expression (2.3.8). As usual, we set

Recall that we assumed g = (7, — u,0). Write, for abbrevation,
V= YH(W, g;u; R x C™),

and the same with the subscript R; set Y* ! := {A € Y* : o#(A) = 0}. This space still refers
to g, and we have a pair of principal symbols o#~1(A) for the elements of Y*~!. We now define
inductively, for all 7 = 1,2, ...,

YT = {Ae -1, Uu*(jfl)(A) =0}.

Remark 2.3.6 For A\, w) € Y* we have D‘)’\‘DE,.A(A,w) e Yr=UalHBD) for every a € N,
B eN",

Theorem 2.3.7 For every sequence Aj € y}g‘j, R € Aspy1g(X,g;v), j €N, there exists an
element A € yﬁ such that

N
A=y ey

j=0

for all N € N, moreover A is unique mod )713‘3 (with asymptotic types P, Q defined by R).

Proof. It is a direct consequence of corresponding results on asymptotic summation of under-

lying local amplitude functions. [
Given any A(X,7) € YH(W, g;v; RF™) g, we set K(A)(A, () = [ €A\, 7)d 7 and

Hg) A\ w) = / (K (A) (A, O)dC |
for any ¢ € C°(R™) and w =7 +iff € C™.
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Theorem 2.3.8 For every ¢(¢) € C°(R™) the operator H(yp) induces a linear map
H(p) : (W, g;0; RT™) g — VH(W, g;0; R x C™)p
for every u € R. For every f € R™ there are constants co(p; B) such that

(2.3.11) H(p) A7 +i8) ~ Y calp; B)DEA(N, )

aeNm
as an asymptotic sum in Y*(W, g;v; RH™) .

Proof. The kernel cut-off operation H(y) can be applied to all the local amplitude functions
that are involved in the summands of the representation A(X, 7) € Y*(W, g;v; R™). For all
those amplitude functions we have an analogue of Remark 2.1.4, here with 7 as a parameter.
This gives us formula (2.3.11).00

From Theorem 2.1.6 and its analogues for specific amplitude functions involved in the rep-
resentation of A(X, 7) we get the following result.

Theorem 2.3.9 Let A\, 7) € YH(W,g;v;R*™) . and let () € CPR™), () =1 in a
neighbourhood of { = 0. Then we have

(2.3.12) AN, 7) = H) AN 1) € Y™(W, g;0; RT™)p o
for P and Q defined by R. Moreover, we have in formula (2.3.11) for 1 instead of , co(1;0) = 1.

Remark 2.3.10 (i) Let 1, e C§e(R™) be functions as in Theorem 2.3.9, apply H('L/;) to

H(y)a(A\, 1) and let H(y)H (¢)a(\, w) denote the corresponding extension as an element
in the space Y*(W, g;v; Rl x C™)g. Then we have

H($)a(A\,w) = H)H()a(A,w) € Y™2(W, g;0;R x C")pg -

(i) A\ w) € VH(W,g;v;R x C™) g and A\, 7+1if) € Y~°(W, g; v; R x C™) i for any fived
B € R implies A\, w) € Y °(W,g;v; R x C")pg.

Remark 2.3.11 Let A(\, 1) € YH(W, g;v; RH™) p be parameter-dependent elliptic.
Then H(p) AN T+ i8) is parameter-dependent elliptic for every B € R™, uniformly for
varying in any compact set of R™.
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2.4 Ellipticity of holomorphic families

Definition 2.4.1 An element A\, w) € Y*(W, g;v; R x C™) is called elliptic, if there is a 3 €
R™ such that A\, T + i) € Y*(W, g;v; R&":Tm) is parameter-dependent elliptic with parameters
A, T in the sense of Definition 1.5.1.

Remark 2.4.2 The ellipticity of A\, w) € Y*(W, g;v; R x C™) is independent of the choice
of B in Definition 2.4.1. This a direct consequence of Remark 2.3.5.

An element P(\,w) € Y #(W,g ;v R x C™) is called a parametrix of the element A(\, w)
in YH(W, g;v; R x C™), if

(2.4.1) C\w) =TI — P\, w)A\,w) € Y™°(W, §; ;R x C") ,

(2.4.2) Cr(\w) =T — A\ w)P(A\w) € Y™°(W,g;5; R xC™) ,
cf. notation of Theorem 1.5.2.

Remark 2.4.3 Assume an element P(\,w) € Y™H(W, g~ v~ R x C™) satisfies the following
conditions

for one B € R™. Then, by virtue of Remark 2.3.10, P(\,w) fulfills relations (2.4.1) and (2.4.2).

Theorem 2.4.4 Let A\, w) € Y*(W, g;v;R x C™) be elliptic. Then there is a parametriz
P\, w) € YH(W,g Lo LR x C™).

Proof. Applying Theorem 1.5.2 to A(X\,7) € Y*(W, g; U;Rl)jf%) we get a parametrix F(\, 7) €
YV=H(W, g~ v RHA™). Choose any 1(¢) € C§°(R™) that equals 1 in a neighbourhood of
¢ =0 and form P(\,w) = H()F(\,w) € Y *(W,g ;0 LR x C™). Then relation (2.4.1)
shows that P(\,7) € y_“(W,g_l;v_l;Rl)\J“Tm) is also a parametrix of A(\, 7). The assertion
then follows from Remark 2.4.3.0J 7

Remark 2.4.5 Let A\, w) € VMW, g;v; R x C™) be elliptic. Then, for every s € R
(2.4.3) AN, w) : WPT(W,m) — W HT7H(W,n)

s a family of Fredholm operators holomorphic in w € C™, and there exists a ¢ > 0 such that
(2.4.3) is invertible for |(\,w)| > 0.
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Theorem 2.4.6 Let A\, 7) € Y*(W,g;R*™)r be a parameter dependent elliptic element,
and let (¢) € C§(R™) be a cut-off function (that equals 1 in a neighbourhood of ( = 0). Then
Ao\, w) := H() A\, w) € YH(W, g;v; R x C™) g is elliptic in the sense of Definition 2.4.1.

Proof. By virtue of Theorem 2.3.9 we see that Ag(\, w) € Y*(W, g;v; RH™)g is parameter-
dependent elliptic, with parameters (\,7) € RI*™. Thus, Ag(\, w) satisfies conditions of Defi-
nition 2.4.1 for § = 0, and hence, by Remark 2.4.2 for all 5 € R. [J

2.5 The algebra of corner symbols

We now specify our holomorphic operator spaces to the case m = 1 and introduce notation in
analogy to cone Mellin symbols (cf. Section 1.2). Let

M (W, g5 0 R) = {A(N,w) : A\, iw) € VH(W,g;v; R x Cy)r} -

We call A(\, w) elliptic if A(A,4w) is elliptic in the sense of Definition 2.4.1. For the case [ = 0
we simply omit R in the notation.

Remark 2.5.1 Let A(w) € MY ,(W,g;v) be elliptic. Then there is a countable set D C C,
where DN {w € C: a < Re w < '} is finite for every a < o, such that the operators

(2.5.1) A(w) : W (W m) —s WS BI=H(W; )

are isomorphisms for all w € C\ D and all s € R, and there is an S € Asyq(X, g7 v™Y)
such that A=Y (w) € A(C\ D,Y"(g~ ;07 1)s).

It is known, from “abstract” holomorphic Fredholm families operating between Hilbert spaces
that A~!(w) extends to C as a meromorphic operator function with poles at points d; € D of
certain multiplicities n; 4 1, where the Laurent coefficients at (w — dj)_(k+1), 0 <k < nj, are
operators of finite rank. In the present situation we know more, and the corresponding result
below, can be formulated in terms of discrete asymptotic types.

Let us fix S € Aspyya(X,g;v) and let As®*(X;v)s denote the set of all sequences T =
{(d;,nj, Lj)}jez, so-called discrete corner asymptotic types (associated with S), where the in-
tersection of the set mcT = {d;j}jez C C with {w € C: a < Rew < o'} is finite for every
a<d,njeN and L; C Y (W, g;v)pg (with P and @ defined by S) is a finite-dimensional
subspace of operators of finite rank for all j.

Definition 2.5.2 The space M7 (W, g;v) for S € Asyya(X,g;v) and T € As*(W,v)g is
defined to be the set of all F(w) € A(C\ ncT,Y">°(W,g;v)pq) that are meromorphic with
poles at the points d;j € mcT of multiplicities n; + 1 and Laurent coefficients at (w — dj)_(k"'l)
belonging to Lj; for all0 < k < nj, j € Z, such that for any ncT-excision function x(w) we have
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x(w)F(w)|r, € Y=°(W,g;v;T'5)pq for every B € R, uniformly in c < B < ¢ for arbitrary c,d
(the latter condition means the corresponding property on the level of local amplitude functions,
see Definition 2.3.4).

Here, by a mcT-excision function we mean any x € C°°(C) that vanishes in a neighbourhood of
ncT and equals 1 on {w € C: dist (w, 7cT) > ¢} for some ¢ > 0. Let us set

(2.5.2) M (W, g;v) = M (W, g;v) + MgF (W, g;v)
as a non-direct sum.

Theorem 2.5.3 Let A(w) € MY (W, g;v), B(w) € MY (W, g;0) for pairs of asymptotic
types 7

(R, V) € Asyia(X,g;v) X As* (W v)g
(R, V) € Asyia(X,§;5) x As®(W;6) 5,
where

g=0-v,y—(p+v);0), v=(G,F;J J;),
62(777_V;@)7 6:(E7G;J77J)'

Then we have (AB)(w) € M’é}”(W,h;w) for a resulting pair (S,T) € Aspyyc(X,h;w) x
As* (W, w)g, where h and w are given by

h=(,y—(p+v);0), w=(EF;J_ Jy).
Proof. From Theorem 1.4.7 we have a corresponding composition result for
Apg(7) := A(w)|re w=p and Bg(7) := B(w)|Re w=p
for every 8 € R such that (rcV UncV)NTs = 0. In other words, it follows that
Ag(7)Bs(r) € Y (W, g;v;T5)s

for a suitable S € Asyiq(X,h;w). For the case mcV = ncV = 0 this holds for all 8 € R,
and we immediatelly obtain A(w)B(w) € Mgg(w,h;w). In the general case there is an

additive decomposition A = Ap +C, B = Bp + D for Ap € My, ,(X,g;v), C € METH(X, g;v),
- oo -
Bo € MVR,O(X,Q,'U), De MR,V(X,g,v).
It is an easy consequence of the definitions that

AoD, CBp, CD € ME,OTO(X,h;w)
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for suitable (S,T') as asserted.r

An element A(w) € Mg}y(W,g;v) is called elliptic, if A(—p + i) € Y*(W,g;v;R;) is
elliptic for some § € R where n¢T'NT_g = (.
Clearly, this definition is independent of the choice of 5.

Theorem 2.5.4 Let A € M‘;?/’V(W,g; v) for R € Asy1q(X,g;v), V € As*(W;v)g be elliptic.
Then there is an element A™! € ME,L}(W,gfl;vfl) for certain S € Asyiq(X,g hv ),
T € As*(W,v 1) such that A~! is the inverse in the sense of Theorem 2.5.3.

Proof. By construction, A can be written as A = H + G for certain H € M‘éyo(W,g; v) and
G € MV (W,g;v). Clearly, H is also elliptic, and by Theorem 2.4.4 we can find a parametrix
P e Mgﬁo(W,gfl;vfl) of H for a certain S; € Aspyiq(X,g ;v 1. This gives us PA =
PH+PG =1+ L+ PG for certain L € M7 (W,g; ) (cf. notation of Definition 1.5.1), where
by Theorem 2.5.3 PG € ME;OVI (W, g; o) for certain asymptotic data Se, S3, V3. We now apply
Lemma 2.5.5 below that gives us (1 + £+ PG)~! =1+ M for a certain M € M5, (W, g; D).
Applying Theorem 2.5.3 we obtain A~ = (1+M)P € Mg’}(W, g~ v~!) for certain asymptotic
types S,7T.0J

Lemma 2.5.5 Let L € MLT (W, g;v) be an arbitrary element. Then there is an element
M € MGF(W,g Y071 such that (1+ L£)~1 = (1+ M).

Proof. The proof is formally similar to a corresponding result of [16], Lemma 4.3.13, and can
easily be adapted to the present situation.[]
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