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Abstract

We study the index problem for families of elliptic operators on manifolds with
conical singularities. The relative index theorem concerning changes of the weight
line is obtained. An index theorem for families whose conormal symbols satisfy
some symmetry conditions is derived.
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Introduction

This is the first paper in the series of papers dealing with elliptic theory on manifolds
with nonisolated singularities. The hierarchy of singularity types is known to play an
important role in the theory of elliptic operators on manifolds with singularities. The
simplest singularities are isolated singularities such as cones and cusps. Then the sim-
plest nonisolated singularities follow, namely, edge type singularities. In the hierarchic
approach, one naturally has to deal with families of singularities of simpler types when
analyzing operators related to singularities of subsequent types. For example, for elliptic
operators on manifolds with edges there is a naturally defined notion of edge symbol,
which is a family of elliptic cone-degenerate operators parametrized by the cosphere bun-
dle of the edge. Studying the index of this family (which is an element of the K-group of
the parameter space) is necessary if one wishes to know whether a given wedge-degenerate
operator admits elliptic wedge boundary and coboundary conditions or find specific wedge
(co)boundary conditions. Thus, even in this simple example we see how important the
study of the families index for degenerate operators is. In this paper, we study the index
of general families of elliptic operators on manifolds with conical singularities. The rela-
tive index theorem concerning changes of the weight line for families of elliptic operators
on manifolds with conical singularities is obtained. A gluing theorem is proved for the
index of two families whose conormal symbols satisfy certain matching conditions. From
this theorem, we derive a series of results for the index of families whose conormal sym-
bols satisfy some additional conditions (like symmetry conditions). In subsequent papers,
these results will be applied to the study of statements of boundary value problems on
manifolds with edge type singularities. Our results are essentially based on the general
relative index theorem for abstract elliptic families proved in [5].

1 Elliptic families on manifolds
with conical singularities

As a rule, we shall freely use the definition and notation adopted in the theory of
(pseudo)differential operators on manifolds with conical singularities. For these definitions
and notation, we refer the reader to Schulze’s book [6] as well as the papers [7, 3, 5],
where issues closely related to the topic of this preprint were studied.

1.1 Bundles of manifolds with conical singularities

Let X be a smooth compact manifold, which will be called the parameter space. Next,
let M — X be a locally trivial bundle over X with fiber M, a compact manifold M
with conical singularities. This means that there exists an open cover of X such that the
bundle is trivial over each element U of the cover, i.e., My ~ U x M (with the natural



projection to the first factor), and moreover, the transition functions
oui(z) : M — M, zrelUnU

defined on intersections U N U of the cover elements are isomorphisms of manifolds with
conical singularities and smoothly depend on x € U NU. For notational convenience,
we assume that there is a unique conical singular point « on the manifold M. By the
definition of a manifold with conical singularities, some neighborhood V' C M of the
singular point is homeomorphic (smoothly outside a) to a cone:

Vi~ Kg={Qx[0,1)}/{Qx {0}}, (1.1)

where 2 is a smooth compact manifold without boundary called the base of the cone;
this homeomorphism takes the point « to the cone vertex r = 0 (where r € [0,1) is the
variable along the cone generatrix). We assume that the homeomorphisms (1.1) have
been chosen in a neighborhood V. of the singular point «, in each fiber M, ~ M of the
bundle M and that they depend on 2 smoothly, so that we have the bundle!

K- X, K,~Kgq (1.2)
of cones over the manifold X. Under these assumptions, the following is true.

1. In the neighborhood V = U,cxV; of the set {c}.cx of singular points on M there
is a well-defined function r : ¥V — R

2. There is a well-defined bundle
Q-5 X , Q, ~ Q,
of cone bases and the associated bundle
K- X, K,~Kq={Qx[0,00)}/{Qx{0}}
of infinite cones over the parameter space X.

Under these assumptions, M will be called a family of manifolds with conical singu-
larities.

!The projections for various bundles over X will be denoted by the same letter 7. This will not lead
to a misunderstanding.



1.2 Elliptic families

Now let v € R be a given number and D = {D,} a smooth family (with parameter
x € X) of elliptic pseudodifferential operators

D, : H*'(M,) — H*'(M,) (1.3)

in weighted Sobolev spaces?* H*7(M,). (Without loss of generality, we consider only
zero-order operators.) Recall that this means that the following conditions hold for each
z e X (eg., see [6, 7]).

~

1. The principal symbol D, = o(D,) is invertible everywhere outside the zero section
of the compressed cotangent bundle 7* M, (the formal ellipticity).

2. The conormal symbol D,(p) = oc(ﬁw), which is a zero-order Agranovich—Vishik [1]
elliptic pseudodifferential operator with parameter p in the Sobolev spaces H s(ﬁw),
is defined on the weight line

Ly= {Imp =~}
(this is needed for the operator (1.3) to be well defined and bounded) and is invertible
for all p € £, (in combination with the formal ellipticity condition, this is known as
the ellipticity condition.)

By a well-known theorem of the theory of pseudodifferential operators on manifolds with
conical singularities, the operators (1.3) are Fredholm (e.g., see [6]), so that we have the
Fredholm family (1.3) with parameter space X, for which the index

indD € K(X) (1.4)

is well-defined as an element of the K-group of the space X (see [2]). The index depends
only on the principal and conormal symbols and is independent of the specific choice of a
family with given principal and conormal symbols.

We study the following problems.

1. How does the index (1.4) change under variations of the weight exponent 7?7 The
corresponding assertions have been dubbed as relative index theorems in the liter-
ature; we adopt the same terminology. This question is considered in Section 2.

2. How to compute the index (1.4), and what does the index formula look like? Under
some additional assumptions (like symmetry conditions) this question is studied in
Section 3.

2In fact, the operator f)gE acts in weighted Sobolev spaces of sections of some bundles on M,. To
avoid complicated notation, we omit these bundles in the notation of Sobolev spaces.



2 Changes of the weight line
and the relative index formula

In this section, we answer the following question.

Let D = {D,},ex and D = {D,(p)}zex be given smooth families of principal and
conormal symbols on a family M of manifolds with conical singularities. Suppose also
that the conormal symbols are defined and holomorphic in some strip ¢ < Imp < b and
the compatibility condition

is valid. Then for each 7 in the above-mentioned strip there exists a smooth family of
pseudodifferential operators in the spaces H®7(M,) with given principal and conormal
symbols. We denote such a family by 57 = {131,7} Suppose that the ellipticity conditions
hold for some 7y, in this strip, so that the families D, and 7/)\72 are Fredholm. The

problem is, How to compute the difference

71

Ay, =indD,, —indD,, € K(X) (2.2)
of the indices of these families?

The answer is well known for the case in which X is a point. Namely, the difference
is equal to the sum of multiplicities p; of singular points of the operator family D !(p) in
the strip between the weight lines £, and L,,, the difference being taken with the plus
sign for 7; < 7, and the minus sign for v; > 7. In the general case, we use the surgery of
elliptic families introduced in [5] to reduce our problem to the computation of the index
of a special operator family on infinite cones. For the case in which the parameter space
is a point, X = {pt}, the index of such operators was computed in [7]. Generalizing the

computation carried out there, we obtain the desired formula for our case.

2.1 Weighted Sobolev spaces as bottleneck spaces

Let us perform necessary auxiliary constructions.

On the infinite cone Kgq, we define the Hilbert space H*77*(Kgq) (see [7]) as follows.
The cone Kq can be viewed as a compact manifold with two conical singular points (a
“spindle”): one point corresponds to = 0, and the other to r = oo (the radial variable 7’
in a neighborhood of the second point is related to by the change of variables " = 1/r).
Then H*"7?(Kq) is the weighted Sobolev space of order s with weight exponents 7, at
r =0 and (—72) at 7' = 0. This choice of notation is related to the fact that in this case

H*"(Kgq) = H(Kq),



where the right-hand side is the “standard” weighted Sobolev space on the infinite cone

with the norm
s/2
ull?, / \(1— (—) —AQ) ]

For 71 < v < 7, one has the continuous embedding H*"7(Kq) C H*772(Kq), and for
Y1 > v 2 72 the opposite embedding holds by duality.

Let A = A(p) be a given conormal symbol on 2. Suppose that it is defined on the
weight line £,. Then we define an operator

@dw

0

.LA,y =A (ZT&

) O (i) — O (Ka), (2.3

where Kq = 2 x (0,00) is the cone with vertex deleted, by the formula
A, =M o A(p) oMM, (2.4)

where

D Ju(p) = = / (25)

is the Mellin transform with respect to the variable r with weight line £, and

[ ](r) \/_/ “Py(p (2.6)

is the inverse transform. The operator K7 extends by continuity to a bounded operator
(denoted by the same letter)

A, : HY(Kg) — H*(Kqg) (2.7)

(recall that we consider only operators, and, accordingly, conormal symbols, of order zero).
Next, suppose that the conormal symbol A(p) is holomorphic in the strip a < Imp < b.
By the Cauchy theorem, the operator (2.3) is independent of v € (a,b) and extends to be
a continuous operator

~

Ay H2(Kg) — HY92(Kg) (2.8)

V1,72

for a < 7 < 72 < b. To prove the last assertion, note that on compactly supported
functions the operator A, can be represented in the form

A=A +Ap = A, 01 + A, e,
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where (), ¢2(r) is a smooth partition of unity on Ry, such that o,(r) = 0 for r > 1
and @o(r) = 0 for r < 1/2. (From now on, until the end of the paper, we assume that
this partition of unity has been chosen and fixed.) Both terms in this representation are
continuous in the desired spaces as compositions of continuous operators:

K71¢1 : HS:’Yl,’Yz(KQ) L HS,’Yl(KQ) L HSKH(KQ) C HS(Yl,’Yz(KQ)’
N P2 2&72
A")’ZSO2 : H5771772(KQ) — Hs:72(KQ) _— H5772(KQ) C H5771772(KQ).

This implies the continuity (2.8).

Let us equip the spaces H*Y(M) and H*77?(Kq) with the structure of bottleneck
spaces [4] in the following standard way. Consider a smooth function x(r) defined on the
interval r € [1/2,1] and possessing the following properties:

1. x is a monotone increasing map of the interval [1/2,1] onto the interval [—1, 1];
2. x®(1/2) = x®(1) =0,k =1,2,....

This function can be treated as a function on M or Kgq defined for 1/2 < r < 1 (this is
possible by virtue of our definitions) and then extended to the entire M (respectively, Kgq)
by the value —1 for r < 1/2 and by 1 on the remaining set. The continuation (which will
be denoted by the same letter) is an infinitely differentiable function. Then we can define
the action of A = C*°([—1,1]) on H*7(M) (respectively, H*""7*(Kq)) by the formula

d:ef(

p(u) = (pox)-u, (2.9)

so that these spaces become bottleneck spaces [3]. Moreover, it follows from our as-
sumptions about M that this bottleneck space structure in each H*7(M,) (respectively,
H#*m2(IC,)) gives families of bottleneck spaces over X in the sense of Definition 2.1 in [5].

2.2 The relative index theorem

Now let us analyze the relative index (2.2). We assume that 7, < 5. (Otherwise, we
just exchange the families.) Along with the original elliptic families D,, and D,,, we also
consider the elliptic families

D71 = {DVE,%}J D72 = {D€C;72}= D71:72 = {Dxﬁly’m} (2'10)

on the infinite cone K with parameter space X. All above-mentioned families are abstract
elliptic families in families of bottleneck spaces (more precisely, can be embedded in such
families if we multiply the Schwartz kernels by cutoff functions whose supports shrink to
the diagonal; for details, see Subsection 2.3 in [5] and also [3]) in the sense of Definition 2.5



in [5]. We have the following commutative diagram of surgeries of abstract elliptic families
over X in the sense of Subsection 2.4 in [5]:

~ ~ 1 ~ ~
D'Yl @ D’Y2 D’Yla’Y2 57 D’Y2

OS] (2.11)

Dn oD

Dy, @ Dy, Mo
The surgeries occurring in this diagram can be described geometrically as follows. (See
Fig. 1, where the parts of manifolds corresponding to bottlenecks in the corresponding
function spaces are dashed.)

First of all, the surgeries are performed “fiberwise,” that is, separately (but continu-
ously in x) for each parameter value x € X. The fiber for each entry of the left column
in the diagram is the disjoint union of the manifold M and the cone K, and the fiber
for each entry of the right column is the disjoint union of two copies of the cone K. The
vertical surgeries consist in cutting away the conical “caps” {x = —1} of two compo-
nents of the disjoint union and pasting them back interchanged; the horizontal surgeries
amount to cutting away the interior part {x = 1} of the manifold M and replacing it by

the corresponding part of the infinite cone. By applying Theorem 3.1 in [5], we obtain
indD,, ® D, —indD,, ® D, ,, = indD., ., ® D,, —indD,, ®D,, ,, =0,

since the surgery in the second column is just the interchanging of summands in the direct
sum. Since D,, is a family of invertible operators, it follows that the desired relative index
has the form R R R

indD,, —indD,, =indD,, ,,. (2.12)

Thus we have reduced the computation of the relative index (2.2) to the computation
of the index of a family of operators with coefficients of the radial variable r in special
weighted Sobolev spaces on the infinite cone. This problem was solved in [7] for the case
of a single operator. For convenience, let us state the desired assertion from [7] as a
theorem. We recall that v; < 7, by assumption. Then for € X the following assertion
holds.

Theorem 2.1 (cf. [7]). The operator ]31‘,71,’72 is an epimorphism. The projection on its
kernel is given (on compactly supported functions) by the formula

~

P$;71,72 = (D_l - D_l )[@%Dx,v]; (213)

T,71 Z,72

where the choice of v € [a, b] is irrelevant.

Remark 2.2. 1. Informula (2.13), the function vy = @o(r) is a element of the previously
fixed partition of unity on R, . Needless to say, the projection depends on the choice
of the partition of unity in general. (That is why we have fixed the choice.)



Figure 1. The surgery diagram for the relative index theorem

2. The difference of the operators in parentheses on the right-hand side in (2.13) need
not be zero, since the family D;'(p) may have poles between the weight lines £,
and L,,. If there are no such poles, then the projection is zero and the operator
f)gg’nn,n72 is an isomorphism.

Now let us compute the index of the family f)%m. Since the operators ]A)xmm are
epimorphisms (that is, have trivial cokernels), it follows that their kernels form a finite-
dimensional vector bundle over X. Thus, the following assertion holds.
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Theorem 2.3. For vy, < 7, one has

indD,, ,, = [ImP,, ] € K(X). (2.14)

V1,72
Combining this with (2.12), we finally arrive at the following theorem.

Theorem 2.4. The relative index (2.2) is given by the formula

[Imf)’yh’m] € K(X)7 T S Y2,

0B (2.15)
_[ m ’72,’71] € K(X)7 T > Y2,

ind 671 —ind 672 = {
where f’%w = {f’xmm}wex is the projection family (2.13).

Indeed, the first line in (2.15) readily follows from (2.12) and (2.14), and the transition
to the case 7, > v, is obvious.

3 The sum of indices formula for operator families
on manifolds with conical singularities

In the subsequent two sections we shall prove several theorems concerning the index

of operator families on manifolds with conical singularities under additional conditions

imposed on the conormal symbol. But first of all, in this section we shall prove a general

theorem that permits one in a sense to “glue” together two operator families of this sort,
thus obtaining a family of operators on a closed manifold without singularities.

3.1 Conditions on operator families

Let
M; 5 X, i=1,2, (3.1)

be two locally trivial bundles of compact manifolds with conical singularities over X of
the type considered in Section 1; the fibers of these bundles will be denoted by M;, 1 = 1,2
and the corresponding bases of the cones by €2;, © = 1,2. We assume that 2; and {2, are
in fact diffeomorphic: Q; = Qy = ). Next, let

O X, i=1,2, (3.2)

be the corresponding bundles of cone bases. Suppose that we are given an isomorphism

ﬂl lﬂ (3:3)



of these latter bundles over the identity morphism of X. Thus, for each x € X there is
an isomorphism h; : {1, — (ly;, which continuously depends on the point z.
Finally, consider two families D; = {D;; },cx of elliptic pseudodifferential operators

Dig : H*"(Myg, Eig) — H*'(Myg, Fip), i=1,2, (3.4)

on the respective families of manifolds with conical singularities. Here & = {E;,}, F; =
{Fi;} are some families of vector bundles over the corresponding manifolds with conical
singularities. We assume that the following conditions are satisfied.

1. The conormal symbols

(here we for brevity do not distinguish between, say, E;, and E;,

o, in the notation)
are holomorphic in some strip |Imp| < R including the weight line L£.,.

2. These conormal symbols satisfy the matching condition?

Dlx(p) = %xh;DZx(_p) (h;)_lﬁwa (3-6)
where
Uyt By — W Eoyy, 5t Wy Fyy — Fy (3.7)

are some bundle isomorphisms.

3.2 The index summation theorem

The matching condition (3.6) implies a similar matching condition for the principal
symbols of the operator families D; and D,:

0(D12) |ypeng oy = el (Bo (Do) [y n, 10 (1)~ s, (3.8)

where we denote the lifts of h,, 9, and ¢ to the cotangent bundles by the same letters and
[ is the change p — —p of the conormal variable in the symbol. Condition (3.8) permits
us to perform the following operation. Assuming that the coefficients of our operators
are independent of r for small  (which can always be achieved by a homotopy), we can
cut away the small conical caps {r < e} from both M;, and M,, for each x and glue the
resulting manifolds with boundary together using the isomorphism

h:c : le = aMlx — QQI = 8M2x (39)

3The case in which the matching condition involves some reflection p — py — p rather than p — —p
can be reduced to this one by a standard shift in the complex p-plane, which is represented in the weighted
Sobolev spaces by multiplications by powers of r; cf. [7, 3].
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of their boundaries. Let us denote the manifold obtained as the result of gluing by
M, Uy, My, and the corresponding family of compact smooth manifolds with parameter
space X by M; U, My = {My, Uy, Mo, }. Now we can concatenate the bundles Fy, and
E,, using the morphism 9, and likewise the bundles Fi, /@nd F;, using the morphism
»,. Condition (3.8) ensures that the principal symbols of D;,, i = 1,2 continuously glue
together to form some elliptic symbol over M; Uy, My; the corresponding elliptic operator
(defined modulo compact operators) will be denoted by D;,00D,,. As a result, we have
the elliptic family

D1DD2 {DMDD%}%X (3.10)

Now note that owing to the matching condition (3.6), the conormal symbols of both
operator families are invertible not only on the Welght line £,, but also on £_,. Tt follows
that not only the families D1 ’D1 ~ and ’D2 D2 v, but also the families D1 ’.131,,7 and
D2 = DQ, » obtained by the transition to the opposite weight line, are elliptic families
with parameter space X. Consider the surgery shown in Fig. 2.

The corresponding commutative diagram of surgeries has the form

61’7 ) 62’7 (;) ]/:\),y ) ]/:\),

-] [- (3.11)
D,

ﬁl DﬁQ %1)

The families in the top left corner are the original families ’131 and 52 on M; and M.,
acting in weighted Sobolev spaces with the weight exponents v and —~, respectively. In
the top right corner we have two operators on the families of infinite cones (the notation
is the same as in the preceding commutative diagram (2.11)) in the spaces H*®? and
H* 7 respectively. (In fact, these operators pass into each other under the change of
variables 7 — 1/r.) The notation of the operators in the bottom row is now perhaps
self-explanatory. The “vertical” surgeries consist in deleting two conical caps on the left
and replacing them by a “tube” joining the two resulting parts. The “horizontal” surgeries
consist in deleting the interior part of the manifold and replacing it by the corresponding
infinite part of the cone. For convenience, weight exponents are shown next to each of
the conical points.

Let us have a closer look at this diagram. Note that all operators occurring in the
right column are actually invertible, which shows that the relative index of the vertical
surgery in this column is zero. By Theorem 3.1 in [5], the same assertion holds for the
first column, and accordingly we obtain the following theorem.

Theorem 3.1. Under the above assumptions, the following identity holds:

ind D, , + ind D,,_, = ind D; 00D, € K(X). (3.12)

13
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Figure 2. The surgery diagram for the gluing of two families

Observe that under the symmetry condition (3.6) the contributions of conical points
to the index of the two summands cancel out, and we can just glue the two families into
a single family of elliptic operators on a closed compact manifold without singularities.

4 The index of operator families satisfying
symmetry conditions

Now we shall use Theorem 3.1 to obtain various assertions concerning the index of
cone-degenerate operator families under certain additional conditions. First, let us con-

14



sider the case of a single elliptic cone-degenerate operator family 57 on M satisfying the
following conditions.

1. The conormal symbol D, (p) is holomorphic in the strip |Imp| < R, where v €
(—R, R), for every =z € X.

2. The following symmetry condition holds:

D..(p) = 2:h; Dy (=p) (h) Ve, (4.1)

where (in contrast to (3.6)) we have the following commutative diagram of maps:

h
—

N
—

Q
|7 (4.2)
o

<

Here g : X — X is some smooth mapping (not assumed to be a diffeomorphism)
and h : 2 — €2 is a smooth mapping such that each

hx =h : Qx — Qg(m)

Qg

is a diffeomorphism. Just as before, s, and ¥, are appropriate vector bundle iso-
morphisms.

Now we can obviously apply Theorem 3.1 to the operator families 137 and g*ﬁ_ﬂ,.
Combining this with the relative index theorem (2.15), we arrive at the following lemma.

Lemma 4.1. Under the above-mentioned assumptions, one has
ind D, + ¢*ind D, = ind DOg*D + ¢*R,,, (4.3)

where R, depends only on the conormal symbol and is given by the expression (2.15) for
the case in which v = —v and v, = 7.

Remark 4.2. In formula (4.3), g* stands for the map induced by ¢ in the K-theory of X:
g K(X) — K(X).

We can find the index of 137 from the formula obtained in this Lemma provided that
the operator 1 + ¢* is invertible in K-theory. This, of course is not always the case. But
still there are some important situations in which one can actually prove the invertibility
of 1 4+ ¢g* (possibly after passing to an appropriate quotient group of K (X)) and thus
obtain useful corollaries from Lemma 4.1.

15



4.1 The case in which ¢ is homotopic to the identity map
In this case, the map ¢* : K(X) — K(X) is the identity map, and Eq. (4.3) becomes
2ind D, = ind DOg*D + R.,. (4.4)

In general one cannot divide by 2 in K-theory; this is possible only modulo 2-torsion.
Thus we arrive at the following theorem.

Theorem 4.3. Suppose that the operator family D satisfies the assumptions given in the
beginning of this section and g is homotopic to the identity map. Then

1 P
ind D, = {indDg'D+R, |, (4.5)

where the identity holds in the quotient of K(X) by the 2-torsion subgroup.

4.2 The case in which ¢ is homotopic to a constant map

In this case the image of ¢* in K(X) is equal to Z, the subgroup of classes of trivial
vector bundles over X. Factoring out this subgroup, we arrive at the following answer in
this case.

Theorem 4.4. Suppose that the operator family D satisfies the assumptions given in the
beginning of this section and g is homotopic to a constant map g : X — {xo} € X. Then

ind D, = ind DOg*D € K(X)/Z, (4.6)

where Z corresponds to trivial vector bundles.

4.3 The case in which g is of finite order

Let ¢ = id. We additionally assume that g,...,¢" ! have no fixed points. Then
p: X — X/G, where G is the cyclic group generated by g, is an n-sheeted covering and
there is a well-defined direct image map

p e K(X) — K(X/Q),
(ME)y = ®pep-1yly, E € Vect(X), ye X/G.

Moreover, the diagram
K(X) 4= K(X)

al |

K(X/G) —— K(X/G)

commutes. Once we apply the map p, to both sides of Eq. (4.3), ¢* turns into the identity
map, and factoring out 2-torsion we arrive at the following theorem:.

16



Theorem 4.5. Suppose that the operator family D satisfies the assumptions given in the
beginning of this section and g is the generator of a finite cyclic group G of diffeomorphisms
acting freely on X. Then

~ 1 ~ ~
indD, = 3 {ind DOg*D + Rv} € K(X/G)/{2-torsion subgroup}. (4.7)

5 The index of operator families over a fibered
parameter space

In this section we consider the case in which the parameter space X is mapped into
another parameter space Y by some map g : X — Y (in particular, one can imagine a
fiber bundle X with base Y'), there are two bundles

M| "5 X, My Y (5.1)

of manifolds with conical singularities over X and Y, respectively, and we deal with two
families D1 ~ and D2 ~ of elliptic cone-degenerate operators on M; and M. Next, suppose
that there is a commutative diagram of mappings

| |7 (5.2)

between the corresponding bundles of cone bases such that

hy =nh

: le — Qgg(x)
Qla:

is a diffeomorphism for each x € X. Let the conormal symbols of our operator families
satisfy the symmetry condition

D12 (p) = 262/ Daga) (—p) (h3) ' e, (5.3)

where 3¢, and ¥, are appropriate vector bundle isomorphisms. Then we can apply the
gluing Theorem 3.1 to the operator families D; , and ¢g*D; _, and obtain

indD, , + ¢* ind D, = ind D, ind D,. (5.4)
By passing to the quotient group K(X)/g*K(Y), we arrive at the following theorem.

Theorem 5.1. Under the above assumptions, the following index formula is valid:

indD, , = ind D;0ind D, € K(X)/g"K(Y). (5.5)
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Remark 5.2. Even though the operator family on the left-hand side depends on v, the
expression for the index on the right-hand side is independent of . This precisely means
that by varying v we obtain a relative index that is the lift of some class from K*(Y).
This is not surprising in view of the fact that the conormal family, owing to the symmetry
condition (5.3), depends effectively on the parameter space Y (more precisely, is the lift
to X of some family on Y').

Remark 5.3. A special case of this situation arises when one deals with the edge symbols
of wedge-degenerate operators. The edge symbol 0,(A), where A is a wedge-degenerate
operator, is a family of cone-degenerate operators parametrized by the cosphere bundle
X = 5"Y, where Y is the edge, while the conormal symbol of the edge symbol does not
depend on the covariables and is a family of conormal symbols with parameter space Y. If
we find an elliptic cone-degenerate operator family with parameter space Y that, together
with the edge symbol, satisfies the symmetry condition (5.3), then we shall be able to
write out the element ind o, (A) € K(S*Y)/K(Y'), which is exactly the obstruction to the
existence of elliptic boundary and coboundary wedge conditions for A.
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