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Introduction

In the construction of index formulas for elliptic operators on manifolds with boundary,
singular manifolds, or noncompact manifolds with a special structure at infinity (“cylin-
drical ends”), the problem of separating index contributions from the “interior” part of
the manifold an the boundary, singular points, or a neighborhood of infinity is often top-
ical. Putting forward this problem is justified by the “locality” of the index. The fact
that the index of an elliptic operator on a smooth compact manifold without boundary
possesses some locality property was known in elliptic theory at least since the so-called
“local index formulas” had emerged (e.g., see [15] and the papers cited therein). A local
formula represents the index of an elliptic operator D on a closed manifold M in the form

indD:/Moc(x), (0.1)



where the “local density” «(z) at a point x € M depends only on a finite-order jet of the
principal symbol o (D) in the fiber over z. A more careful consideration shows that locality
property is actually a property not of the index itself, but of the relative indez, i.e., the
difference of indices of two operators differing on some subset M C M and coinciding on
M\ M. Namely, this difference is expressed as the integral over M of the difference of the
corresponding local densities and hence is independent of the (common) structure of the
two operators in question on M \ M. For the case in which local index formulas like (0.1)
are not known a priori, the proof of the relative index locality is more complicated. For
the case of Dirac operators on complete noncompact Riemannian manifolds the locality
property was proved by Gromov and Lawson [16], whose result was later generalized in
various directions (e.g., see [3]).

We consider a general functional-analytic model in which the locality principle is valid
for the (relative) index. We point out that, in contrast with the above reasoning for closed
manifolds, the derivation of the locality principle in this model is not based on any index
formula (and hence the model applies in situations where index formulas are yet to be
obtained). This abstract model serves as a source of relative index formulas (and, under
additional assumptions like symmetry conditions, of index formulas) in various specific
cases. By way of example, we consider applications to the index of elliptic operators on
closed manifolds, the index of elliptic boundary value problems, and the index of elliptic
operators (pseudodifferential operators and Fourier integral operators) on manifolds with
singularities. While in the first two cases one deals with known theorems or their gen-
eralizations, essentially new results are obtained in the third case. Hence, let us discuss
elliptic theory on singular manifolds in a little more detail. More precisely, we speak only
of manifolds with isolated singularities.

Apparently, the main feature distinguishing the theory from its ‘smooth’ counterpart
is the fact that for the case of singular manifolds, elements of the Calkin algebra of the
algebra of pseudodifferential operators are pairs (principal symbol, conormal trajectory).
The second element of such a pair is a family of pseudodifferential operators with complex
parameter p on a smooth manifold without boundary, namely, on the base of the cone at
the singular points. It turns out that the index of an elliptic operator is not determined
by the principal symbol (as is the case on smooth manifolds) but depends also on the
conormal symbol and may vary even if the conormal symbol is perturbed by a finite-
dimensional operator with smooth kernel. Consequently, along with finite-dimensional
(topological) information, the index formula must necessarily contain infinite-dimensional
(functional-analytic) in formation in the from of dependence on the conormal symbol.
Thus, the main paradigm of index theory on smooth manifolds, stating that the index
must be expressed in topological terms, is no longer adequate for singular manifolds. (A
similar situation arises for boundary value problems with (nonlocal) conditions of Atiyah—
Patodi—Singer type, where infinite-dimensional information enters the expression for the
index via the so-called eta invariant.) It is natural to ask for conditions that must be
imposed on a ‘good’ index formula in this case. The simplest, most natural condition



here is as follows: the infinite-dimensional (analytic) information in an index formula
must be separated from the finite-dimensional (topological) information. In other words,
index formulas should be sought in the form

ind A = f(lo(A)], 0.(4), (0.2)

where [0(A)] is the equivalence class of the principal symbol in the corresponding K-
theory. Thus, the right-hand side of a ‘good’ index formula should be a homotopy invariant
of the principal symbol. However, none of the numerous index formulas known in the
literature satisfies this condition. This is by no means a mere occasion, for a formula of
the type (0.2) is émpossible in principle on the set of all elliptic WDO: the index of a YDO
on a singular manifold is not uniquely determined by the equivalence class of its principal
symbol and by the conormal symbol. Hence the problem of finding an index formula in the
class of all elliptic DO has little topological meaning, and one is forced to seek narrower
classes of operators in which a formula of the type (0.2) is possible. One of such classes
is the class of operators, satisfying the so-called symmetry condition. For such operators,
one has formula (0.2) even in the stronger form

ind A = fi([o(A)]) + fa(0c(A)) (0-3)

(that is, the index splits into the sum of homotopy invariant terms corresponding to
components of the corresponding element of the Calkin algebra). Moreover, the second
term can be expressed via rather convenient analytic invariants, namely, the multiplic-
ities of singular points of the conormal symbol. The same multiplicities occur in the
index formula for quantized canonical transformations (Fourier integral operators), which
emphasizes their important role in elliptic theory on singular manifolds. The proof of for-
mula (0.3) is based on the abstract locality principle for the relative index in conjunction
with surgery.

The structure of the paper is clear from the table of contents. We only point out that
the full version submitted for publication to Russian Mathematical Surveys contains a
detailed review of the main facts of elliptic theory on manifolds with isolated singularities,
intended to make the paper self-contained and available to wider readership. This part
is omitted from the preprint. We also note that some parts of the survey were previously
published as separate preprints by the authors (sometimes in a slightly different form).
Nevertheless, they are included here to preserve the integrity of the presentation.

1 The abstract locality principle

1.1 Bottleneck spaces

Bottleneck spaces are a natural framework in which one can deal with surgeries and
prove a rather general relative index theorem. They were introduced in [30, 26, 29, 31].



Consider the algebra C*°([—1,1]) of smooth functions ¢(¢), t € [—1, 1], on the interval
[—1, 1] with topology given by the standard system of seminorms

loll, = sup [P ()]
te[-1,1]

The multiplication in C*°([—1, 1]) is defined pointwise. Obviously, C*°([—1, 1]) is a unital
topological algebra with unit 1 being the function identically equal to 1 for all ¢t € [—1,1].

Definition 1.1. A bottleneck space is a separable Hilbert space H equipped with the
structure of a module over the commutative topological algebra C*([—1,1]) (the action
is continuous, and the unit function 1 € C*°([—1,1]) acts as the identity operator in H).

Example 1.2. Let W be an arbitrary separable Hilbert space. Then the Hilbert space
H = L*([-1,1], W) of equivalence classes of measurable functions

f:-L1]—Ww

Il ={ [ 10l dt}m

is a bottleneck measure with respect to the action of C*°([—1, 1]) given by the pointwise
multiplication

with finite norm

(@h)(t) =) @), veC>(-11]), feH.
Example 1.3. Let M be a compact C'* manifold without boundary, and let
X: M —[-1,1] (1.1)

be a smooth mapping. Then each Sobolev space H*(M) bears a natural action of
C*([—1,1]) given by the formula

(0f)(@) = p(x(@)f(z), =eM,
for any ¢ € C*°([-1,1]) and f € H*(M). This action makes H*(M) a bottleneck space.

Remark 1.4. In this example (and in more general cases, where M need not be a compact
C'* manifold without boundary), the subset

U=x4Y-1,1)Cc M,

where the bar stands for the closure, will be referred to as the bottleneck. Figure 1.1
clarifies the term. Here x = —1 to the left and x = +1 to the right of the bottleneck U
(dashed).



Figure 1.1: A bottleneck space.

Let H be a bottleneck space. Then for each h € H one can naturally define the support
of supp h as a subset of [—1, 1]. Moreover, supp h coincides with the ordinary support of
h in example 1.2 and with the closure of the image of the ordinary support of h under
the mapping y in example 1.3. The precise definition is as follows.

Definition 1.5. Let H be a bottleneck space and h € H an arbitrary element. The
support of h is the closed set

supph = ()¢ 1(0) C [-1,1],

where ¢ 1(0) is the preimage of the point 0 and the intersection is taken over all elements
p € C*°([—1,1]) such that ph = 0.

The proof of the following assertion is trivial, and we omit it.

Proposition 1.6. The supports of elements of a bottleneck space H have the following
properties:

(i) supp h is a closed subset;

(ii) supph = @ & h = 0;
(iii) supp(hy + hg) C supp hy U supp ho;

)

)

supp(ph) C supp ¢ Nsupp h, ¢ € C([—1, 1]);
(v) if hyy — h is a convergent sequence in H (weakly or strongly), then

supp h C ﬂ U supp hy,,

k n>k
where the bar stands for the closure.
Now let F' C [—1,1] be an arbitrary subset. Consider the subset
HF:{hEH ‘ supphCF}

of a bottleneck space H. Obviously, this is a linear manifold (lineal) in H.



Proposition 1.7. Let F' C [—1,1] be closed. Then so is Hp.

The proof readily follows from item (v) of Proposition 1.6. O

For an arbitrary subset F' C [—1, 1], we define Hr C H as the closure of Hp.
Remark 1.8. In general, Hr # Hp. In particular, in Example 1.3 one has

H*(M) 13y = {u € H*(M) | suppu C x H=-1,1)}
(i.e., H*(M)(-1,) consists of functions supported in the bottleneck),
HY (M), = H*(M).
(Here supp u on the right-hand side of the first formula is the usual support of u.)
Now let Fy,..., F,, C [—1,1] be disjoint subsets. In general, it is not true that
Hp.or, =Hp, @ ---® Hp,

(in particular, one usually has Hr ® H;_11\r # H). But this is true if the closures of
Fy, ..., F,, are disjoint (in particular, if the F; themselves are closed).

Proposition 1.9. Let F,..., F,, C [—1,1] be subsets such that
FinF.=2 for j#k.

Then
Hpy.ur, = Hp, @ - @ Hp, (1.2)

(the sum is direct (1.2), but not necessarily orthogonal).

Propositions 1.6 and 1.9 show that supports of elements of bottleneck spaces have the
same natural properties as usual supports of functions.

1.2 Elliptic operators

For operators in function spaces for which the Schwartz kernel theorem holds, there
is an important notion of the support of the kernel, which is a closed subset of the direct
product of the set where the functions are defined by itself. Although operators in bottle-
neck spaces cannot be described as integral operators in general, the notion of the support
of an operator defined as a subset of the square [—1, 1] x [—1, 1] is meaningful and proves
useful in studying various questions pertaining to the relative index.



Definition 1.10. Let A : H; — H, be a continuous linear operator in bottleneck spaces
and K C [—1,1] x [—1,1] a closed subset. We say that the support of A is contained in
K if

supp Ah C K (supp h) (1.3)

for every h € H. In formula (1.3), K is treated as a self-multimapping of the interval
[—1,1]:
def
Kz = {ye[-1,1] | (z,y) € K}. (1.4)
The intersection of all closed sets K with property (1.3), is called the support of A and
denoted by supp A.

Let
AIHl—)HQ, BZHQ—)H:;

be operators in bottleneck spaces. Then the following composition theorem holds.

Proposition 1.11. One has
supp(BA) C supp B osupp A, (1.5)

where the right-hand side is understood as the composition of multimappings:

Kyo Ky = {(v,2) € [-1,1] x [-1,1] | (2,y) € K1, (y,2) € K,
for some y € [-1,1]}. (1.6)

In the theory of (pseudo)differential operators, the (pseudo)locality property plays
and important role: the kernel is supported (for YDO, modulo smooth functions) on
the diagonal. An analog of this property proves useful in the relative index theorem
for operators in bottleneck spaces. We state this analog in a form applicable to Fourier
integral operators, which, despite not being pseudolocal, satistfy our wider definition in
the cases of interest to us.

Let A C [-1,1] x [—1, 1] be the diagonal

A= {(m,x)|m S [_17 1]}7
and let
be the e-neighborhood of A.

Definition 1.12. A proper operator in bottleneck spaces H; and H; is a family of con-

tinuous linear operators
A5 : H1 — H2

with parameter ¢ > 0 such that
(i) As continuously depends on § in the uniform operator topology;
(ii) for each € > 0 there is a dy > 0 such that

supp As C A, for 0 <. (1.8)



Remark 1.13. Condition (1.8) can be restated as follows: for § < dy, one has
supp Ash C U.(supp h)
for every h € Hy, where U.(F) is the e-neighborhood of a set F.

Example 1.14. In the situation of Example 1.3, ¥YDO in Sobolev spaces can naturally
be viewed as proper operators (more precisely, included in the corresponding families) as
follows. Let

A:HY (M) — H* Y (M)

be a WDO of order [ with kernel A(x,y), x,y € M, on a smooth compact manifold M.
Next, let @s(z,y) be a smoothly depending on ¢ cutoff function on M x M equal to 1
in the d-neighborhood of the diagonal and vanishing outside the 26-neighborhood. (We
assume that M is equipped with a Riemannian metric.) The operator As with kernel
ws(x,y)A(x,y) is a YDO with the same symbol as A and is equal to A for sufficiently
large 6. One can readily see that the family Ay satisfies the conditions of definition 1.12.

Remark 1.15. The product and the sum of proper operators (if they are well define)
are proper operators; this readily follows from Definition 1.12, Proposition 1.11, and the
triangle inequality. In particular, proper operators in a given bottleneck space H form an
algebra.

Now we can give the definition of elliptic operators in bottleneck spaces.

Definition 1.16. An elliptic operator in bottleneck spaces H and G is a proper operator
Ds: H— G

such that Ds is Fredholm for each ¢ and has an almost inverse D([s_l] such that the family
D([;” is also a proper operator.

Here, as usual, the almost inverse of a bounded operator A is defined as an operator
A such that the products AAY and AYA differ from the identity operators by
compact operators in the corresponding spaces.

Example 1.17. In the situation of Example 1.3, an elliptic ¥DO A in Sobolev spaces on
a smooth compact manifold M can be treated as an elliptic operator in bottleneck spaces
(i.e., included in an appropriate family). To this end, it suffices to apply the construction
of Example 1.14 to the operator A itself an to an arbitrary WDO A=Y with principal
symbol being the inverse of that of A. Since the family A; is continuous and elliptic,
it consists of representatives of the same stable homotopy class [A] € Ell(M) of elliptic
UDO on M, and so the replacement of the operator by a family is valid in the framework
of index theory. This justifies our terminology, which does not distinguish between an
operator and the corresponding family. As a rule, we omit the parameter ¢ in the notation
of a proper (in particular, elliptic) operator.



Remark 1.18. For X = [—1, 1], the class of elliptic operators in bottleneck spaces is wider
than the class of general elliptic operators introduced by Atiyah [5] and consisting of
Fredholm operators A : H — G acting in Hilbert C'(X)-modules H and G (where C(X)
is the C*-algebra of continuous functions on a compact set X) and commuting with the
action of C'(X) modulo compact operators.

1.3 The relative index theorem

Most of the proofs pertaining to index formulas in this survey are carried out with the
help of surgery, which is a method permitting one to cut and paste (parts of) manifolds
together with operators defined there and keep track of the variation in the index under
these operations. The index variation is governed by a statement which will be referred
to as the relative index theorem. Here we state it in quite a general form, namely, in the
framework of bottleneck spaces, following [25, 26].

First of all, we describe surgery itself in terms of bottleneck spaces. The corresponding
notion in this context is modifications of bottleneck spaces, introduced in the following
definition.

Let H, and Hy be bottleneck spaces.

Definition 1.19. If for some F' C [—1,1] there is a given isomorphism (not necessarily
isometric)

j: H(F) = Hy(F),

then we say that H; and Hs coincide on F (or are modifications of each other on
[—1,1]\F). In this case, we write

F [-1,1\F
H1 = H2 or H1 — HZ-

We point out that the specific form of the isomorphism is important here (rather than
the existence of some isomorphism, which is always the case if H,(F') and Hy(F') have
the same dimension).

Example 1.20. Suppose that we modify a manifold M (Fig. 1.1) by replacing M_ by
another manifold M’ with the same boundary OM' = 0M _ (cutting and pasting), thus
obtaining a new manifold M’ (a modification), shown in Fig. 1.2. Then we can equip
H*(M'") with the structure of a bottleneck space in the same way as above, with the help
of a function x’ given by the formula

X&) = -1, zeM.

10



S S

Figure 1.2: Surgery on a manifold M.

Then H*(M) S22 H5(M) or, equivalently, H*(M) <% H*(M’). (To simplify the
notation, we write H; Pl Hy and H; FRIN H, instead of H; E_—li Hy and H; &) H,,

respectively.)

Now we can extend the notion of modifications to operators.

Definition 1.21. Let F' C [—1,1] be an open subset, and let H; £ H, and G, £ Gy be
bottleneck spaces. We say that proper operators

AliHl—)Gl,
A21H2—>G2

coincide on F if for each compact subset K C F the following condition is satisfied: there
is a number 0y = dp(K) > 0 such that

Aish = Agsh (1.9)
whenever § < §y and supph C K.

We note that (1.9) is well defined, since h € H{(K) = Hy(K) and for small § one has
Ajsh, Agsh € G1(F) =2 Go(F); the latter inclusion follows from the fact that F' is open.

In the conditions of Definition 1.21, we say that A; is obtained from Ay by a modifi-
cation on [—1, 1]\ F (or A; coincides with Ay on F') and write A, s Ay or Ay bﬂ;F A,.

We return to the example of the modification given by the transition M — M’ (see
Figs. 1.1 and 1.2). If on M and M’ there are given differential operators D and D’
coinciding on U U M, then D & (families independent of ¢). More generally, let
D and D' be YDO on M and M’, respectively, with principal symbols satisfying the
condition

o(D)=0c(D") over UUM,.

Then, using homotopies adding lower-order operators to D and D', one can include

these operators in families coinciding on (—1, 1] in the sense of Definition 1.21. By abuse

. . . -1
of notation, in this case we also write D <— D'.

11



In the following, we deal with diagrams of modifications, more precisely, squares of the
form 5
H, +— H,

Al e
D
H;y +— H,,

where the H; are bottleneck spaces and A, B, C, D C [—1,1]. This square is said to
commute if the diagram

H,(F) H,(F)
X X F=[-1,1\{AuBUCUD},
Hy(F) ~ Hy(F),

Q

of isomorphisms commutes, where the arrows are the restrictions to the relevant subspaces
of the corresponding isomorphisms occurring in Definition 1.19. A similar square of
modifications for operators is said to commute if the underlying square of modifications
of bottleneck spaces commutes.

Now we are in a position to state the main theorem of this section.

Theorem 1.22 ([25, 26]). Suppose that the following commutative diagram of modifica-
tions of elliptic operators in bottleneck spaces holds:

D <5 D_
1] T1 (1.10)
_D+ ;} Di

Then
ind(D) — ind(D_) = ind(D,) — ind(Dy).

A detailed proof of this theorem (which however occupies less than two pages) can be
found in [25], and we omit it. Note only that this proof is based on the following two
lemmas about proper operators in bottleneck spaces, which are of interest in themselves.
(These lemmas and their proofs can also be found in [25].

Lemma 1.23. Let A, = A, be elliptic operators in bottleneck spaces. Then A[fl] £
A[{l] + K, where K is a proper compact operator. In particular, for Ay, = Ay = A we find
that two arbitrary almost inverses of A differ by a proper compact operator.

Lemma 1.24. Suppose that [—1,1] = U]FJ is an open cover and Ay e Ay for all j,
where Ay and Ay are proper operators. Then A5 = Ass for sufficiently small 0.

In the next sections, we show how the general relative index theorem 1.22 almost
trivially implies various relative index theorems in specific cases.

12



2 Localization in index theory on smooth manifolds

2.1 Surgery on compact manifolds
2.1.1 The general construction

We use only the simplest surgery defined as follows (see [26]). Let M be a compact
smooth manifold without boundary divided into two parts M_ and M, by a smooth
hypersurface S (Fig. 1.1), and let D be an elliptic differential operator acting between
spaces of sections of some vector bundles £ and F' over M. We cut off M along S and
attach another manifold M’ to M, such that M’ Jq M, is again a smooth compact
manifold M’ without boundary (Fig. 1.2). Needless to say, to define a smooth structure
on the manifold obtained by gluing, we must choose some direct product structure in
a collar neighborhood of S in each of the manifolds considered here. Next, we extend
the bundles E|y;, and F|y, to bundles over the entire A" and the operator D|y, to
an elliptic operator D’ on the entire M’ in spaces of sections of these new bundles. (We
assume that this is possible.) The difference

ind(D', D) = ind D' — ind D (2.1)

of indices of D" and D is called the relative index of these operators. Let us perform the
same cut-and-paste operation on the right half of the manifold replacing My by some
other part M,. We obtain new manifolds M and M'. Carrying out the corresponding
operations on bundles and operators, we arrive at new _operators D and D', which still
coincide on the right half of the manifolds, that is, on M, in this case, while on the left
half they coincide with D and D', respectively. We readily see that by homotopying all
four operators in the class of elliptic operators, one can ensure that they all coincide with
one another in U. The general relative index theorem 1.22 implies that

ind(D', D) = ind(D', D). (2.2)

(However, Eq. (2.2) for C*° manifolds trivially follows from the so-called local index
formula (e.g., see [15]): the index of an elliptic operator D on a closed manifold M is
given by the expression

iMD:/Mm (2.3)

where the “local density” a(x) at a point x € M depends only on the principal symbol
o(D) and its derivatives in the fiber over z.)
We shall apply this construction in the next subsection.

Remark 2.1. If one rejects the smoothness condition and only requires that M be a
Lipschitz manifold, then the above construction in conjunction with Theorem 1.22 gives
a theorem from Teleman’s paper [43].

13



2.1.2 The Boofi—Wojciechowski theorem

In the present subsection we study how the index of an operator that is “locally” an
elliptic ¥YDO on a manifold is changed if one performs surgery on the manifold where the
operator is defined and some associated surgery on the bundles. The index increment
formula can naturally be treated as a relative index formula. The informal motivation is
as follows: the symbol before and after the surgery is essentially the same; we deal with
different realizations of the same symbol, which depend on the way in which the manifold
was glued from pieces. This theorem (for the case of smooth manifolds) is contained in [8,
Chap. 25]. The construction is of certain interest, even though it is a special case of the
construction from the preceding subsection.

Let M be an orientable manifold (possibly, with boundary and/or singularities), and
let S C M be an embedded smooth compact two-sided submanifold of codimension 1
contained in the smooth “interior” part of M. Next, let U be a collar neighborhood of S
contained in the smooth part of M. We choose and fix some trivialization U = (—1,1) xS
of this neighborhood and use the coordinates (¢,s), t € (0,1), s € S, there. Let g: S — S
be a given diffeomorphism. We perform the following operation: we cut M along S and
glue together again, identifying each point (—0,s) on the left coast of the cut with the
corresponding point (40, g(s)) on the right coast. The resultant smooth manifold (the
smooth structure is well defined, since we have chosen and fixed the trivialization) will be
denoted by M, and called the surgery of M wvia g.

Let E be a vector bundle over M. Suppose that we are given an isomorphism of vector
bundles

p: Els = g (Els) -
Then over M, there is a naturally defined vector bundle E, , (by attaching along S with
the help of ), which will be called the surgery of E wvia the pair (g, i).
Now let E, F' be two vector bundles over M, and let
a:7m'E — n*F,

where 7 : Ty M — T; M is the natural projection, be an elliptic symbol of some order m.
By choosing the representation

Ely=7"(Els),  Flo=7"(Fls)

of the bundles E, F over U = [0,1] x S, where 7: [0,1] x S — S is the natural projection,
and by passing to a homotopic symbol if necessary, we can assume that a is independent
of the coordinate ¢ in a sufficiently small neighborhood of S (that is, a = ¢ in that
neighborhood). Consider the mapping (denoted by the same letter)

def

ag = a‘rl : T E|g-1g — T F|;-15. (2.4)

S

With regard to the trivialization chosen, this mapping can be rewritten in the form

ao(p,S,f):ES—>FS, p2+|€|27£07 3657

14



where p is the dual variable of ¢ and £ is a point in the fiber of TS over s.
Suppose that a surgery g of M and associated surgeries ug and pp of the bundles £
and F' are given. If the diagram

Es a’U(pJ S, f) y Fs
b ue(s) S b pr(s) (2.5)
Ey ao(p, 9(5),'gs(s)1€) . By

where ‘g,(s) is the transposed Jacobi matrix of the mapping g at the point s, commutes,
then the surgery takes the original symbol a to a new smooth symbol @ on the cotangent
bundle T3 M,. (The smoothness of the newly obtained symbol is guaranteed by the
independence of a on the coordinate ¢ in a neighborhood of S.) We intend to find out
how the surgery affects the index of the corresponding YDO (or a YDO on a singular
manifold, or a boundary value problem...). Since actually this index increment (the
relative index) depends only on the surgery on S, we use the results of the preceding
section to pass to the corresponding “local” model and simultaneously get rid of the
necessity to state any explicit conditions on the boundary or in the nonsmooth part of
the manifold. B

Thus, let A and A be operators with principal symbols a¢ and a on the manifolds M
and Mg, respectively, obtained from each other by the above-mentioned surgery. The
problem is to find the relative index ind A — ind A.

It follows from Theorem 1.22 that the relative index is independent of the structure
of the operators in question outside a small neighborhood of S. Hence we can use the
simplest model for the computations. Namely, consider the manifold M = S x S! and
the elliptic pseudodifferential operator

Ay : H*(M,E) — H* ™M, F)

(the bundles E and F are lifted to M with the help of the natural projection M =
S x St — S) with principal symbol ay independent of ¢ € S'. Next, let M, be the

surgery of M with the help of g, let £, ,, and E, ,, be the associated surgeries of the
bundles £ and F', and let

Ay H (Mg, Eg ) = H™" (M, Eqg iy
be the new elliptic pseudodifferential operator with principal symbol @y coinciding with
Ay outside a neighborhood of the set S, where the surgery is done.

The operators Ag and Ag are elliptic operators on compact manifolds, and their index
can be calculated by the Atiyah—Singer theorem. The index of Ay is zero, since its symbol
is independent of ¢ € S'. Hence in this model only one term in the expression for the
relative index is nontrivial: B B

indA — indA = ind A,.

Let us state the assertion that we have just proved in the from of a theorem.
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Theorem 2.2. Let S be a smooth compact manifold without boundary, and let H and
G be bottleneck spaces coinciding in a neighborhood of zero with the spaces H*(C, E)
and H*=™(C, F), respectively, where E and F are vector bundles over the manifold C' =
(—1,1) x S. (The structure of bottleneck spaces on H*(C,E) and H*=™(C, F) is defined
via the mapping x : C — [=1,1], (t,s) — t.) Next, let

A:H — G

be an elliptic operator coinciding in a neighborhood of zero with an elliptic pseudodifferen-
tial operator with principal symbol a of order m on T;C. Let b be the restriction (2.4) of
the symbol a to 7=1S. Suppose that we are given some surgery of C via a diffeomorphism
g: S — S and associated surgeries jup and pp of the bundles E and F', and moreover, the
diagram (2.5) commutes. Let A be the corresponding surgery of the operator A. Then the
relative index of the surgery is given by the formula

ind A — ind A = ind g@,

where Ay is the operator with symbol ay on T (S x St), obtained by surgery from the
homomorphism ay lifted to Tg (S x S') with the help of the natural projection along S*.

2.2 Surgery on noncompact manifolds

The locality principle in index theory on non-compact manifolds was apparently ob-
tained for the first time (for the special case of Dirac operators on noncompact Rieman-
nian manifolds) by Gromov and Lawson [16], who obtained the corresponding relative
index theorem. Later Anghel [3] generalized their result to arbitrary self-adjoint elliptic
first-order operators on a complete Riemannian manifold. In fact, these relative index
theorems are a straightforward consequence of the general results stated earlier in this
paper. In this subsection, we briefly describe the result due to Gromov and Lawson.

2.2.1 The Gromov-Lawson theorem

Let Xy and X; be complete even-dimensional Riemannian manifolds, and let Dy and
D be generalized Dirac operators on X, and X7, respectively, acting on sections of vector
bundles S; and Sy. We say that Dy and D coincide at infinity if there exist compact
subsets Ky C Xy and K; C X, an isometry

F: (Xo\Ko) 5 (X1\K)y),

and an isometry

of vector bundles such that

D1 :ﬁODOOﬁ_I on Xl\Kl-
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To simplify the notation, we identify Xo\ Ky with X;\K; and write
Do=D; on Q=X\K,= X\K,.
In this situation we can define the topological relative index ind,(Dy", D) of the operators
Dy T(Sf) = T(Sy) and Dy : [(S)) — I'(Sy)
as follows. If Xy and X; are compact, then we simply set
ind, (D", DJ) = index(D;") — index(Dy).

(The expression on the right-hand side is simply the difference of the usual analyti-
cal=topological indices of the operators D;" and Dy, expressed, say by the Atiyah-Singer
formula). If X (and hence X)) is noncompact, then we use the following procedure. We
cut the manifolds X, and X; along some compact hypersurface H C 2 and compactify
them by attaching some compact manifold with boundary H. The operators Dy and D;
can be extended to elliptic operators 153’ and 5;’ on the compact manifolds thus obtained.

Now we set B B
indt(Df, D(J{) = ind(Df) — ind(D0+). (2.6)

Using the formula
index(A) = Tr(1 — RA) — Tr(1 — AR)

for the index of an elliptic operator A (here R is a parametrix of A), the localization of
kernels of pseudodifferential operators in a neighborhood of the diagonal, and a partition
of unity, Gromov and Lawson proved that the right-hand side of (2.6) is independent of
the arbitrariness in the above construction.

Next, let the operators Di and D; be positive at infinity (the precise definition is
given in [16]; roughly speaking, this condition means that the free terms in the opera-
tors (Dy)*Dy and (D;)*D; expressed via covariant derivatives are positive). Then the
operators DJ and D; are Fredholm, and one can define the analytical relative index

ind, (DY, DF) = ind, (DY) — ind, (D). (2.7)

The Gromov—Lawson relative index theorem states that the topological and analytical
relative indices coincide:

ind, (DY, DF) = ind, (D}, DY). (2.8)

In [16] one can also find a more general theorem pertaining to the case in which the
operators Dy and D; coincide only on some of the “ends” of Xy and X; at infinity. In
this case, one again has a formula like (2.8), where the right-hand side is no longer the
“topological relative index,” but it is rather the analytical index of some elliptic Fredholm
operator on a (generally speaking, noncompact) manifold obtained from X, and X; by

17



cutting away the “common” ends along some hypersurface followed by gluing along that
hypersurface. The proof uses the same technique.

We can conclude (as is easily seen from the second theorem) that the topological index
actually has nothing to do with the Gromov-Lawson relative index theorem: this theorem
states the equality of the analytical relative indices for two pairs of operators obtained
from each other by simultaneous surgery on a part of the manifold where they coincide;
the topological index occurs in the answer only if the newly obtained operators fall within
the scope of the Atiyah-Singer theorem. (On the other hand, naturally, the applications
of theorems of that type are just related to transforming the original operators to new
operators such that the Atiyah—Singer theorem or any other theorem expressing the index
in topological terms can be used.) As to the equality of analytic relative indices, it directly
falls within the scope of Theorem 1.22.

3 Localization for boundary value problems

In this section, we describe some applications of the locality principle for the relative
index to the theory of boundary value problems for elliptic differential operators.

3.1 Some notation

Let X be a smooth compact n-dimensional manifold with boundary 0X =Y that is a
smooth closed manifold of dimensional n — 1. We choose and fix a representation of some
collar neighborhood U of the boundary in the form of a direct product

U~Y x[0,1), (3.1)

where Y is taken to Y x {0} by the identity mapping. The coordinate on [0, 1) will be
denoted by ¢, an the local coordinates on the boundary by y = (y1,...,4yn_1), so that
local coordinates on X in U have the form

x=(21,...,2,) = (y,1).

If E is a vector bundle over X, then the restriction F|y is isomorphic to the lift to U of
the restriction F|y of the same bundle to the boundary:

Ey ~m;Ely, (3.2)

where 7y @ U — Y is the projection naturally associated with the representation (3.1)
Now let R
D : C®(X,E)) — C®(X, E) (3.3)

be an elliptic differential operator of order m on X acting in sections of finite-dimensional
vector bundles E; and FE,. Then, using the trivialization (3.1) and the associated repre-
sentations (3.2) of £} and Ey over U as the lifts of E|y and Es|y, we can represent the
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operator (3.3) in U in the form

where

D;(t) : C=(Y, Eily) = C2(Y, Byly)

is a differential operator of order m — j in sections of bundles over Y, depending on the

parameter t. Next, the coefficient D,,(t) is a differential operator of order 0, i.e., a bundle

homomorphism, and since D is elliptic, this coefficient is a bundle isomorphism. Dividing

the operator D in U by this coefficient on the left, we can assume without loss of generality

that the bundles E|y and Es|y coincide and the coefficient itself is the identity operator.
The operator family

D(p) = Zﬁj(o)pf L HA(Y) — H ™Y (3.5)

acting in Sobolev spaces! on Y and obtained from the representation (3.4) by freezing the
coefficients at the boundary ¢ = 0 and by replacing the operator —id/dt with the variable
p will be called the conormal symbol of the operator D.

If w € H°(X) is an element of a Sobolev space on X, then for s > m — 1/2 by
trace theorems we have a well-defined jet of order m — 1 of u on Y. With regard to the
identifications (3.1) and (3.2), it can be rewritten in the form

j;?_lu = (u

Boundary value problems for D are stated in terms of the boundary jet (3.6) of u, to
which one applies some differential or pseudodifferential operators. Since for m > 1 the
space on the right-hand side in (3.6), which for brevity will be denoted by

oy,
t=0 T otmt

@
=0’ Ot

t=o

) cH Y Y)o---0 H ™AY).  (3.6)

m—1
Hy V) = @ H (Y, (3.7)
k=0

is a direct sum of Sobolev spaces of distinct orders, the orders of YDO in such spaces
must be understood in the sense of Douglis—Nirenberg.

'In what follows, we usually omit the bundles in the notation of Sobolev spaces.
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3.2 General boundary value problem

General boundary value problems, which include classical boundary value problems
as well as nonlocal problems of the Atiyah-Patodi-Singer type (in particular, nonhomo-
geneous) were introduced in [39]. Let D be an elliptic differential operator (3.3) on a
manifold X. A general boundary value problem for D is a problem of the form

{ Du = feH ™X),

~ 3.8
Bjiplu = gecL, (3:8)

where s > m — 1/2, the element u € H*(X) is to be found, £ is a Hilbert space, and B
is a continuous linear operator in the spaces

B:HTVAY) > L (3.9)

Ordinary boundary value problems are the special case in which £ is a Sobolev space of
sections of some vector bundle over the boundary and B is a (pseudo)differential operator.
If D is the Dirac operator on an even-dimensional manifold X, L is the positive spectral
subspace of the tangential operator, and B is the orthogonal projection on £, then we
arrive at the Atiyah-Patodi-Singer problem [6], more precisely, a more general problem
in which the nonlocal boundary data may be nonzero.

As shown by these examples, of main interest is the case in which £ is not an abstract
Hilbert space but rather a subspace of some Sobolev space on the boundary? and B is a
WDO. More precisely, we shall consider only subspaces that are ranges of pseudodifferen-
tial projections. If P is a pseudodifferential projection on some subspace L of a Sobolev
space of sections of some vector bundle F' over Y, then the principal symbol P = o(P) is a
projection on a subbundle L C 7#*F over 1Y, where 7 : 1Y — Y is the natural projec-
tion. The subbundle L is called the principal symbol of L. The pseudodifferential version
of the general boundary value problem (3.8) for an unknown function v € H*(X, E}) has
the form R

{ _ Duo= Je B, Ey), (3.10)
Bjr—tu = ge PH(Y,F),

where H (Y, F') is a Sobolev space of sections of a bundle F' over the boundary (we inten-
tionally omit the index on this space, since it can be a usual Sobolev space or a space
of the form H2, (Y)) and B : Hi /> — H(Y,F) — is a ¥DO such that R(B) C R(P).
(The last inclusion necessarily implies that R(B) C R(P) = L.)

Of general boundary value problems (3.8), we single out problems that are a straight-
forward (nonhomogeneous) analog of the Atiyah-Patodi-Singer problem. Namely, let an
operator D of order m be given. On the basis of the conormal symbol (3.5) of 13, we shall
construct a pseudodifferential projection

P, HE(Y) = HE(Y) (3.11)

2In particular, the entire Sobolev space.
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in the Cauchy data space (3.7). The construction is as follows (see [27]). On the basis of
the operator family (3.5), we construct the matrix operator

o= (V) = Hy (Y,

m m

0

0

1
—D,_

@)OOF—‘
®>Oi—*©

0

0

0
D, -D, —
where lA)j o lA)j(O), in the Cauchy data space. The operator p — 2, p € C, is invertible if
and only if so is the operator D(p), and moreover,

(p—2A)"' =D(p)"Q(p),

where the entries @ (p), 7,k =0,...,m — 1 of the matrix Q(p) are differential operators
polynomially depending on p whose total order (with regard to the parameter, to which
we assign the unit weight) does not exceed

ordqjp(p) <m—1+7—k.

Since the operator Dis elliptic, it follows that the polynomial family ©(p) is Agranovich—
Vishik elliptic with parameter p [1] in the double sector

A, ={largp| < e} U{|r —argp| <e}

on the complex p-plane for some € > 0 and elliptic in the usual sense for all p € C. It
follows that the family ©(p) is finitely meromorphically invertible in the entire complex
plane and the sector A, contains only finitely many poles of the operator function D~ (p).
Thus, the operator ®(p) (and hence p — 2A) is invertible on the line Imp = § for all
sufficiently small § > 0.

We set S s
0T
P, = 2 (p— Ql)—l@, (3.12)
211 J—sotis p
where 0 > 0 is sufficiently small. This integral specifies a well-defined continuous projec-
tion R
P, H(Y)— H(Y) (3.13)
in the Cauchy data space (e.g., see [27]). This projection corresponds to the spectral points
of the operator 2l in the upper half-plane. If D is the Dirac operator, then the projection
f’+ thus introduced coincides with the Atiyah—Patodi—Singer spectral projection. In the
following, we also set

P.¥1-p,. (3.14)
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The spectral boundary value problem is problem (3.8) of the special form

{Du—f&%s “(X)

3.15
P lu=ge P.HL (). (3.15)

Problem (3.15), which will be denoted by (D, P,), is always Fredholm. The index of

a general Fredholm boundary value problem (3.8), which will be denoted by (ﬁ, §), is
expressed by the formula

ind(D, P) = ind(D, P,) + ind(B : P,H: (V) — L). (3.16)

Problem (3.10) is Fredholm if and only if the principal symbol B of the operator B is an

isomorphism between the principal symbol L, of the subspace L+ = P+ v 1/Z(Y) and
L. In this case, the above general index formula (3.16) is valid.

3.3 Model boundary value problems on the cylinder

Applications of the locality principle and the corresponding surgery to boundary value
problems, given later on in this section, use model boundary value problems on the cylin-
der as the simplest model to which more general problems are reduced by surgery. In this
subsection, we consider these model problems.

Let Y be a closed C*° manifold. On the cylinder

C=Y x|[-1,1] (3.17)

with boundary
oC = (Y x {-1}) U (Y x {+1})

consisting of two separate components (faces) Y x {£1}, we consider an elliptic differential
operator D of order m with coefficients independent of the coordinate ¢t € [—1,1]:

R ' a m m—1 . . a J
D= <—z§> +3 Dj<—z§> . (3.18)

Here 13]- is a differential operator of order m — j on Y'; in accordance with the preceding,
we assume that D, (the coefficient of (—id/0t)™) is the identity operator.
The conormal symbol of D on each of the faces has the form

D_1(p) =p™ + Z D;p’ on Y x{-1}, (3.19)
Di(p) =D_1(—p) = (—p)" +”.L ﬁj(—p)j on Y x{1}. (3.20)



We denote ® _;(p) simply by D(p) and the corresponding positive spectral projection in
H: (YY) by P.. Then the positive spectral projection corresponding to ©;(p) differs from

P_=1- P, by a finite-dimensional operator (and coincides with P_ if D(p) is invertible
for all p € R).

Model problem 1 (a spectral problem)

Du = feH(0),
Puyiigu = g€ Pon (), (3.21)
s—1/2
Pj lyu = he Py, (Y.

In this problem, the boundary conditions are determined by complementary projections
(Py + P_ = 1) on the faces of the cylinder.

Theorem 3.1. The index of the model problem (3.21) is zero.

Model problem 1' (a spectral problem)

Du = f e H(0),
D s—1/2
Pyt = 9Pt () 3.2)

Here 16_1 and ﬁl are arbitrary pseudodifferential projections with the same principal
symbols as P, and P_, respectively (say, the Calderén projections).

Theorem 3.2. The index of the model problem (3.21) is equal to
ind(D, P_,, P\) = ind(P,, P_,) + ind(P_, P,), (3.23)

where ind(]3, @) s the relative index of two projections P and @ differing by a compact
operator.

Proof. This is a special case of the general formula (3.16). O
Model problem 2 (a classical problem)

Du = feH0),
L7Yx{ 1} g€ HNY, Fy), (3.24)
Bl]YX{l} — h - Hl(Y, Fl),

B_

where E_l and El are operators of classical boundary conditions on the faces of the
cylinder satisfying the Shapiro-Lopatinskii conditions and F_; and Fj are some bundles
over Y.
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Theorem 3.3. The index of the model problem 2 is equal to
ind(D, B_y, B)) = ind B, (3.25)

where B is an elliptic operator on' Y n the spaces

B : HEV2(Y) = HYY, Foy) @ HY(Y, F) (3.26)
with principal symbol
Bl L+ 7T*F71
B= & :0® — @ (3.27)
B2 L_ 7T*F1

Here L, and L_ are the ranges of the principal symbols of the projections ﬁ+ and P_
(the Calderén bundles), i.e., the principal symbols of the spaces L, and L_.

Proof. Theorem 3.3 follows from formula (3.16) applied to problems (3.21) and (3.24)
with regard to Theorem 3.1. U

3.4 The Agranovich—Dynin theorem

This theorem, as well as the ‘dual’” Agranovich theorem considered in the next sub-
section, expresses the locality principle as applied to boundary value problems. Both
theorems were obtained at very early stages of the development of index theory of bound-
ary value problems. The history of the topic is described in [2], where one can also find
references to the original papers.

Theorem 3.4. Let D be an elliptic differential operator on a compact C* manifold X
with boundary 0X =Y, and let 31 and B2 be two operators each of which specifies elliptic
(in the sense of Shapiro—Lopatinskii) boundary conditions for the operator D. Then the
relative index of the elliptic boundary value problems (13, El) and (13, §2) is equal to

ind(D, B;) — ind(D, By) = ind (B, o B}") (3.28)

where (By o By') is an elliptic WDO on'Y with principal symbol (B o By''); here By and
By are treated as the restrictions of the principal symbols of the operators 31 and B2 to
the subbundle L., which is the principal symbol of the subspace L+

Proof. We shall derive this well-known theorem from the locality principle for the
relative index. We equip Sobolev spaces on X with the structure of bottleneck spaces
using a function x : X — [—1, 1] equal to —1 in a neighborhood of Y, equal to 1 outside
the collar neighborhood U of Y, and increasing from —1 to 1 in U. In various function
spaces on Y, we also introduce the structure of bottleneck spaces by setting

pg = p(~1)g (3.29)
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for any elements g of such spaces and any ¢ € C*°([—1,1]). Then elliptic boundary value
problems generate elliptic operators in bottleneck spaces (this follows from the structure
of parametrices of boundary value problems; e.g., see [17]). Without loss of generality,
we can assume that the coefficients of D are independent of the collar variable ¢t in U.
Consider the diagram of modifications shown in Fig. 3.1. Here 130 in the right column

By By ﬁ_
-1 -1
Y
\
4
' == Ur )
By By ﬁ_

Figure 3.1: Modifications for boundary value problems.

of the diagram is the operator on the cylinder naturally obtained from D by freezing the
coefficients on the boundary.
By the locality principle for the relative index, we have

ind(D, B,) — ind(D, B,) = ind(Dy, By, P_) — ind(Dy, By, P_). (3.30)

The indices on the right-hand side can be computed by formula (3.16) with regard to the
fact that the index of the problem (Dy, Py, P_) is zero. We have

ind(ﬁo, El; ﬁ,) = 1Hd(§1 : E+ — £1),

ind(ﬁo, Bg, ﬁ_) = lIld(Eg : Z+ — Eg),
where £; and L, are the Sobolev spaces on Y in which the operators El and §2 act. Then
ind(Dy, By, P_) — ind(Dy, By, P_) = ind(B,BY ™ : £y — £) =ind(B,B;Y), (3.31)

as desired. (By B\g_ﬂ we denote the almost inverse of Bs.) O
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3.5 The Agranovich theorem
The Agranovich theorem deals in a sense with the opposite case.

Theorem 3.5. Let 131 and 132 be two elliptic dimensional operators on a compact C'™
manifold X with boundary 0X =Y coinciding in a collar neighborhood of the boundary,
and let B bea boundary operator satisfying the Shapiro—Lopatinskii conditions with respect
to D, _(and hence with respect to Ds). Then the relative index of the problems (D;, B)
and (Ds, B) is equal to

ind(Dy, B) — ind(Dy, B) = ind(D,D; "), (3.32)
where D1 Dy " is a WDO on X with principal symbol D, Dy acting as the identity operator
of functions supported in a sufficiently small neighborhood of the boundary.

Remark 3.6. The operator Dy D5 obviously requires no boundary conditions.

Proof. The operators 151 and 132 can be extended to the double 2X = X %/J X as

elliptic operators (see [41]).

Since IA)I and 132 coincide near the boundary, we can assume that the extensions
coincide on the second copy of X. Let us denote these extensions by 2; and 5. Now
consider the modification diagram shown in Fig. 3.2.

+1

|

+1

|

I
—
I
—

Figure 3.2: Extension to the double.
By the locality principle for the relative index, we obtain
ind(Dy, B) — ind(Dy, B) = ind(®,) — ind(D,) = ind(D,9; ).
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But it is obvious that

—

ind(©,9,') = ind(D, D, 1),

since the symbol D05 " of the operator ®,9; "' is equal to unity on the second copy of
X and in a neighborhood of Y, so that this operator can be homotopied to an operator

acting as the identity operator on functions supported on the second copy of X or in a
neighborhood of Y. O

3.6 The Bojarski theorem and its generalizations

In the mid-seventies, Bojarski put forward the following cutting conjecture in the
framework of a surgery proof of the Atiyah—Singer index theorem, which he was developing
at the time. Consider a Dirac operator D on a closed connected manifold M. We cut M
by a two-sided hypersurface S into two parts M, and M_, OM, = 0M_ = S, and equip
the resulting Dirac operators on M, and M_ with the Atiyah-Patodi-Singer conditions
Piuy =0, P u_=0. Then the index of the Dirac operator on M is equal to the relative
index of the Fredholm pair of subspaces

(E+ :Imﬁ+, _/L\, :Imﬁ,)

Later, this conjecture was proved (the Bojarski theorem); see the book [8] for details.
Here we shall prove a theorem on cutting an arbitrary elliptic operator into boundary
value problems. R

Let M be a closed C'*° manifold, D an elliptic differential operator on M, and S C M
a smooth two-sided hypersurface. We cut M along S into two manifolds M, and M_
with boundary OM, = OM_ = S and consider general elliptic boundary value problems
on M, and M :

ﬁu+ = f+, on My, (
=~ e 3.33)
{ B jgtuy = gy €Ly,
lA)qu = f., on M_,
~ 3.34
{ B jo iy = g el ( )
where
v H L (S) = Ly (3.35)
_H(S) = Lo, (3.36)

are some operators of boundary conditions such that problems (3.33) and (3.34) are
Fredholm and £, and £_ are some Hilbert spaces. The restrictions of B+ to L+ and B_
to L , where Li =Im Pi and the projections Pi correspond to the conormal symbol of
the operator D, will be denoted by the same letters.
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Theorem 3.7.

~ o o B, L. L.
indD:ind(D+,B+)+ind(D,B)—ind( ®:® — @ ) (3.37)
B L. L_

Proof. Consider the modification diagram shown in Fig. 3.3.

@D

+1

(i i ) =k R

Figure 3.3: Cutting into boundary value problems.

— N
(¢ W\
—_~
N—”’

»
»

In the left column, the main elliptic operator is the operator D on M and its restrictions
to My and M_. In the right column, the main operator is given by the extension to the
finite cylinder C' of the operator D with coefficients freezed on S. Needless to say, just as
before, we assume that the coefficients of D are independent of the collar variable t. By
the relative index theorem, we have

ind D — ind(D,, B,) —ind(D_, B_) = ind B, & B_

(the remaining two terms on the right-hand side are zero). The proof of the theorem is
complete. 0
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3.7 Boundary value problems with symmetric conormal symbol
On a C* manifold X with boundary 0X =Y, we consider an elliptic boundary value
problem
Du=J, (3.38)
Bjy tu=g€ L.
Suppose that the conormal symbol 130 (p) of the operator
D : H*(X,E) — H* ™(X, F)
satisfies the symmetry condition
Dy(p) = Dy(—p).

(One can also consider the more general case in which the symmetry includes a diffeo-
morphism ¢ : Y — Y and associated bundle isomorphisms

pe : Ely = ¢"Ely, pr: Fly = g Fly).

In this case, using the general index locality principle, for the index of the boundary
value problem (3.38) one can give a simpler formula than the general Atiyah-Bott formula
[4].

Indeed, consider the surgery that takes two copies of the operator { D, Bj;’l} to a new

operator D on the closed manifold (double) 2M and the operator Dy = Dy (—id/0t) with
coefficients independent of ¢ on the cylinder Y x [—1/2,1/2] with the boundary conditions

B]ﬁE}Q}u = 01,
B]ﬁ__lb}u = g2
on the faces.

The index of this model boundary value problem on the cylinder is equal to the index
of the spectral problem for Dy plus the index of the operator

E E+ E
E . /@ — @
I c,

~ m—1
where Ly C @ H* Y?7%(Y,E|y) are the Calderén subspaces [9] corresponding to the
k=0
left and right faces of the cylinder. Without loss of generality (say, adding a constant
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to D, which does not affect the index) we can assume that Do (p) is invertible for real p.
Then the index of the spectral boundary value problem for Dy is zero and

m—1

L.ol =@H ' HY,EBly)
k=0

by the symmetry condition. Finally, we obtain the following theorem.

Theorem 3.8. The index formula

~ ~ 1 ~ ~ m-
ind(D, B o j~!) = 5{ind(D) +ind<B @ -

k=0

M

- YEIy)—>£@£>}

18 valid.

If the boundary value problem (3.38) is classical, then both terms in this index formula
are the indices of elliptic operators on closed manifolds. The exposition in this subsection
generally follows [37, 38].

4 Localization in index theory on singular manifolds

4.1 The index of elliptic pseudodifferential operators

We freely use the notation and results of the theory of differential equations on man-
ifolds with singularities (e.g., see [38] and references therein).

4.1.1 Index on manifolds with cuspidal singularities

Here we show that computing the index on manifolds with cuspidal singularities can
always be reduced to the conical case.

Let M be a manifold with singularities a, ...y of cuspidal type of orders ky, ..., ky,
respectively. (We do not exclude the case in which some k; = 0, i.e., the corresponding
points are conical), and let M’ be the corresponding manifold with conical singularities
ay,...,ay. This means that the underlying manifold with isolated singularities is the
same for M and M’, and only the additional structures differ.

Theorem 4.1 (e.g., see [38]). Let D be an elliptic WDO in the Sobolev spaces H' (M)
on the manifold M with principal symbol o(D) and conormal symbol Dy(p) = o.(D), and
let D' be an elliptic VDO in the Sobolev spaces H*Y(M') on M'" with the same principal

and conormal symbols. Then R R
indD =ind D'.

With this theorem in mind, in all subsequent exposition we consider only elliptic ¥DO
on manifolds with conical singularities.
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4.1.2 The relative index formula

Let M be a manifold with conical singularities ay,...,ay (the bases of the corre-
sponding cones will be denoted by €, ...,Qy), and let an elliptic principal symbol D of
some order m on T*M\{0} and conormal symbols D;(p) on ;, j =1,..., N, satisfying
the matching conditions

o(D;(p)) = Dlgrens, j=1,...,N, (4.1)

be given. Suppose that D;(p) depends on p analytically and is and elliptic ¥DO with
parameter p in the sense of Agranovich-Vishik in the strip a; < Imp < b;. For every
vector v = (71, ...,7n) of weight exponents such that v; € (a;,b;), j=1,..., N, we can
uniquely (modulo compact operators of lower order) defined an operator

Dy : H*/(M) — H*™(M) (4.2)

such that R R
o(Do) =D, 0(D,) = D;(p)le, - (4.3)

The operator ﬁ7 is Fredholm for all v such that none of the lines £, contains singu-

lar operators of the corresponding conormal trajectory acj(l/i,) (such v are said to be
admissible).
The relative index theorem describes the increment

~ ~

ind(Ds) — ind(D,) (4.4)

in the index of this elliptic operator in the passage from one admissible v to another.

One can readily see that the increment (4.4) is the sum of increments obtained when
only one of the weight exponents varies. Hence we state the theorem for the case in which
the weight exponent changes only for one singular point «.

Theorem 4.2. Suppose that the conormal symbol D(p) of the operator D at the stngular
point « is analytic in the strip a < Imp < b. Next, let v and 7 € (a,b) be two admissible
values of the weight exponent at o, and moreover, v > . Then

ind(ﬁg) —ind(D,) = — ZTrace P})Je_s (D_l(p)agiz()m> , (4.5)

where the sum is taken over all poles p; of the family D~ (p) in the strip v < Imp < 7.

4.1.3 Statement of the problem

It was shown in the preceding item that the index of an elliptic operator

D, : H>'(M) — H*™™ (M), (4.6)
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~ ~

of order m with given principal and conormal symbols o(D) and o.(D) on a manifold M
with conical singularities in general depends on 7 (and is independent of s), and moreover,
the relative index, i.e., the increment in the index of D resulting from the variation of vy
can be expressed via some invariants of the conormal symbol D(p) = 06(13), namely, via
the multiplicities

D
m; = Trace Res D(p)_18 (p)

4.
p=p; dp (47)

of its singular points pj, i.e., the poles of the inverse family D(p)~!. Hence it is a natural
conjecture that the index itself can be represented as the sum of two terms, one of which
depends only on the invariants of the conormal symbol (and on v) and the second only
on the stable homotopy class of the principal symbol. Having this in mind, we seek an
index formula for the operator (4.6) in the form

ind(D,) = fi({m;},7) + f2([o(D))), (4.8)

where

[0(D)] € K (T"M)
is the class of stable homotopy equivalence of the principal symbol in K-theory with
compact supports on the manifold 7% M with boundary. Unfortunately, a formula of the
form (4.8) cannot exist in the class of all elliptic WDO on M for deep topological reasons.
(For spectral boundary value problems, this was for the first time indicated in [36].)

On the other hand, function (4.8), if it exists, has obvious advantages in that it
explicitly separates topological information (which depends only on topological invariants
of the principal symbol) and analytical information (depending on analytic invariants of
the conormal symbol). In contrast with the case of smooth manifolds, there is no purely
topological expression for the index of YDO on manifolds with singularities. Hence a
formula like (4.8), where the inevitable analytical information is isolated and expressed
via analytic invariants (multiplicities of singular points) is satisfactory in the situation in
question.

Our subsequent program is to obtain conditions under which a formula like (4.8) is
possible and find the index formula for the classes of operators satisfying these conditions.
The second part of this program has yet been implemented only partly: there is an
important class of operators (operators with symmetry conditions) for which the desired
formula has been obtained. The problem of finding a formula of the form (4.8) for arbitrary
classes of operators satisfying necessary and sufficient conditions for the existence of such
a formula remains open.

4.1.4 The spectral flow

The notion of spectral flow is well known for families { A;} of self-adjoint elliptic oper-
ators (see [7]). It was generalized in [36] to families of normally elliptic operators, which
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permitted considering the problem on invariant index formulas for spectral boundary value
problems for differential operators. To analyze elliptic operators on singular manifolds,
we need the more general notion of the spectral flow of a family {D,(p)} of conormal
symbols elliptic in the sense of Agranovich—Vishik. This notion was introduced in [26, 31],
is closely related to some results from [23], and contains the above-mentioned notions as
a special case with D;(p) = p — A;.

Let © be a smooth compact manifold without boundary, and let {D;(p)} be a family
of Agranovich—Vishik elliptic conormal symbols in some strip [Imp| < R, continuously
depending on the parameter t € [0, 1]. We shall define the notion of spectral flow st{D;(p)}
of the family {D;(p)} across the real axis (from the open lower half-plane to the closed
upper half-plane). We temporarily assume that Dy(p) and D;(p) are invertible everywhere
on the real axis. For each value of ¢, the family D;(p) has finitely many singular points
in the strip |Imp| < R/2, and the set of singular operators continuously depends on ¢. It
follows that there is a finite partition of the interval [0, 1] into smaller intervals [t; 1,;],
t=1,...,N, where

O=to<ti <...<ty=1,

and numbers ~y; such that
(@) =7 =0, |l <R/

(b) the conormal symbol D,(p) is invertible on the weight linel, = {Imp = ~;} for
t € [ti, ti].

Figure 4.1 shows an example of such a partition.

oy

72
R

| Y4

TN
N : N .

0 t1 to t3 tg - ty_1 tn

Figure 4.1: Example of a partition.

We define the contribution l; of each point t;, i =1,..., N — 1, to the spectral flow by

the formula
li =+ Z m(pj),
J
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where p; are the singular points of Dy, (p) between the weight lines £, and £, (note
that by condition (b) there are no singular points on the weight lines themselves) and
m(p;) are their multiplicities; the sign “+” or “—” is chosen if v; < 741 or vi > 7Yit1,
respectively.

Theorem 4.3. The sum Nijl l; is independent of the choice of the partition {t;} and the
numbers {v;} satisfying coZ;cllitions (a) and (b).

Hence the following is well defined.
Definition 4.4. The spectral flow of the family {D;(p)} is the number

sf{D,} = L.

The multiplicities of singular points are always integer, and so is the spectral flow.
Now let us remove the restriction that Dy(p) and D;(p) must be invertible on the real
axis. Namely, we set

st{D;} = EE)IEO st{D,(p — i¢)}.

For all sufficiently small ¢ > 0, the family D,(p — i€) is invertible on the real axis. The
spectral flow is continuous and hence is independent of €, and so to find sf{D;} one can
take a finite value of €.

The role of the spectral flow in index theory of operators on singular manifolds is
determined by the following theorem.

Theorem 4.5 (a generalized relative index formula). Let {ﬁt}te[o,l] be a continuous
family of formally elliptic operators (i.e., operators with invertible principal symbols) on a
manifold M with conical singularities. Suppose that Dy and Dy are elliptic in {H**(M)}
(i.e., the conormal symbols o,(Dy) and o,(Dy) are invertible on the weight line Lo =
{Imp = 0}). Then
ind(Dy) — ind(Dy) = sf(o.(Dy)). (4.9)
From the generalized relative index formula, one can readily derive a criterion for the
existence of index formulas of the from (4.8) with splitting into invariant summands.

Theorem 4.6. Let K be a subclass of the class of formally WDO on a manifold M with
conical singularities determined by the condition o.(D) € X, where X is a class of conormal
symbols. The following assertions are equivalent: (a) for elliptic operators of the class IC,
there exists an index formula of the form

indD = f, + fo, (4.10)

where f1 depends only on the conormal symbol ac(ﬁ) and fo depends only on the principal
symbol o (D) and is homotopy invariant (in the class K); (b) one has

sf{Bi(p)} =0 (4.11)
for an arbitrary periodic family By € X.
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4.1.5 Symmetry conditions and the index formula

In the preceding item, we established conditions for the existence of a splitting index
formula in a given class of elliptic operators on a manifold M with conical singularities.
This condition says that the spectral flow must be zero for an arbitrary periodic family
of conormal symbols of operators of this class. Since on an arbitrary compact manifold
2 there is a family of conormal symbols with nonzero spectral flow (an example can be
found in [36]), it follows that a splitting formula of the from (4.8) is impossible in the
class of all elliptic operators on singular manifolds.

Here we describe an important class of operators for which the formula exists and
write out the index formula for operators of that class.

Let € be a smooth compact manifold, and let E and F' be vector bundles over 2. We
say that a conormal symbol

D(p): C*(Q,E) - C*(Q, F)

defined in some strip |Im p| < R satisfies the symmetry condition [40] if there exists bundle

automorphisms
o: BFE—FE, oy F'— F|

such that
D(—p) = 09D(p)o;, for allp. (4.12)
Along with condition (4.12), one can consider the slightly more general condition [40]
D(po — p) = 01D(po + p)oa, (4.13)

obtained from (4.12) by a shift with respect to p (for the corresponding operators on man-
ifolds with conical singularities, condition (4.13) is taken to (4.12) by the transformation

D f7'Df, (4.14)

where f is a nonzero smooth function equal to rP° in a neighborhood of the conical
point). This shift and the transformation (4.14) readily reduce all results for (4.13) to
the corresponding assertions for (4.12), and so in what follows we consider only condition
(4.12).

Let us introduce the objects occurring in the index formula under condition (4.12).

Let M be a manifold with conical singularities. To simplify the statements, we assume
that M has a single conical singular point with base 2. Next, let D be a formally elliptic
UDO on M whose conormal symbol o.(D)(p) is defined in the strip [Imp| < R and
satisfies the symmetry condition (4.12) in that strip:

0.(D)(—p) = 020.(D)(p)or, (4.15)

where
o1 E|Q—)E|Q, o9 : F|Q—)F|Q (416)

35



are bundle automorphisms on 2. (The operator D itself acts in sections of bundles £ and
F over M).

Consider the double 2M of M. (Figure 4.2 shows the manifold M, the blow-up M",
and the double 2M.) It is constructed as follows. Let M”" be the blow-up of M; this
is a manifold with boundary 0M”" = Q. We glue two copies of M" together (along the
identity map) along Q and denote the resulting manifold by 2M”. This is a smooth
compact manifold without boundary.

i

7AN

= <
)
\4
)
A

Figure 4.2:
The automorphisms o; and oy permit one to construct the doubles 2E and 2F of

the bundles E' and F'. For example, 2F is obtained as the link of two copies of E over
respective copies of M” along the mapping o; on :

2F = E| JE;

likewise,



It follows from the symmetry condition (4.15) that the principal symbol
o(D): mE — *F,

where

7 T"M\{0} - M
is the natural projection, satisfies the symmetry condition
§*0(D)orar = 7 (02) (D) |or- s (07), (4.17)
where
j:0I"M — O0T*M
(w,p,q) = (w,—p.q), (w,p) €T peR,

is the inversion in 0T*M and 7*(0;) and 7*(0y) are the natural automorphisms of the
bundles 7*F and 7*F induced by the automorphisms (4.16). It follows from condition
(4.17) that the two copies of the principal symbol are continuously glued into some elliptic
symbol

~

20(D) : m*(2F) — 7*(2F), (4.18)
(where this time 7* : T*2M — 2M). If in the given trivialization of the collar neigh-

borhood the symbol o(D) is independent of ¢ for small ¢, then the symbol (4.18) will be
smooth. One can always ensure this by homotopying the operator D with the preserva-
tion of the conormal symbol. Throughout the following, we assume that this condition is

satisfied. Note that the class of

20(D)] € K (I*2M),
is independent of the specific choice of the homotopy.

Now we can state the index theorem. It follows from the formal ellipticity condition
that the conormal symbol o.(D) has a discrete set of singular points in the strip [Imp| < R
and there are finitely many singular points in each proper substrip. For arbitrary 7,
|v] < R, such that the weight line £, does not contain singular points of o.(D), the
operator N

D,: H>(M,E) — H*™™ (M, F)
is elliptic.

Theorem 4.7. Under these conditions, one has the index formula
A LJ. ~
ind D, = 3 ind2D — Z m; ¢,
Im pj| <y

where 2D is an operator on the closed manifold 2M with principal symbol 20(13) and the
m; are the multiplicities of the singular points p; of the conormal symbol o.(D).
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Let us outline the proof of 4.7. (A complete proof by a different method can be found

in [40].)
We treat M as a manifold with a cylindrical end, assuming that the coefficients of
the operator D, are independent of ¢ for sufficiently large ¢ on the cylindrical end. We

also set 5
ﬁ[h = ac(ﬁ) (—z§> : H>'(C,E) — H*"(C, F),
where C' = Q X (—00, 00) is the infinite cylinder. Now consider the following two surgeries
shown in Figs. 4.3 and 4.4. (Next to each manifold, the corresponding operator is shown;
bottlenecks are dashed.) The surgery shown in Fig. 4.3 is clear; the surgery in 4.4 is just
cutting off the left ends of two cylinders and then interchanging them.
Then we have the modification diagram

Dy®D ., «= Dy ® Dy,

17 -1

~ ~ 1 ~ ~
Since ind Dy, = 0, from the DB Ee rdative & Meorem we obtain

~ ~

ind(D,) + ind(D_,) = ind(2D). (4.19)
On the other hand, by the relative index theorem,

ind(D,) —ind(D_,) = — Y my. (4.20)

IImp; | <y

Solving the simultaneous equations (4.19) and (4.20), we arrive at the assertion of the
theorem.

4.1.6 Historical remarks

Let us briefly describe the history of symmetry conditions of the form (4.12), which
permit one to extend the operator D to the double 2M of the original manifold. Analogs
of these conditions for manifolds with boundary occur as early as in the papers [19, 20,
42] (moreover, they include an involution g : £ — ) reversing the orientation of the
boundary), where they were applied to the computation of the signature of a manifold
whose boundary admits an involution of this sort. Later, Gilkey and Smith [13, 14] used
condition (4.12) for specific operators to compute the eta invariant in some cases. For
operators on manifolds with conical singularities, condition (4.12) was introduced in [40].
Later, in [12], the result of [40] was essentially combined with the ideas of [19, 20, 42]
and a symmetry condition including an involution of the base of the cone was considered.
The case of general diffeomorphisms g : Q — 2 was considered in [25, 26, 31]; the
most important feature distinguishing the condition introduced there from all preceding
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Figure 4.3:

conditions is that it is imposed on the principal symbol of the conormal symbol (that is,
the restriction of the interior principal symbol to the boundary 07*M) rather then on
the conormal symbol itself.

As to index formulas for operators on singular manifolds without symmetry conditions,
we recall the following results.

In [33], an analytic index formula was obtained for YDO on manifolds with conical
singularities. Naturally, it comprises three terms, of which the first is expressed via the
interior principal symbol, the second is a regularization of the expression

oo+iv

/ Tr(A(A)A(A) "L dN),

—oo+iv

2ri

where A(A) is the conormal symbol,and the third is responsible for the relative index
arising from changes of the weight exponent and is determined by the singularities of
the conormal symbol. Next, in [34, 35] for the case in which the base of the cone is a
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Figure 4.4:

sphere (which can be understood as an operator on a smooth manifold with an isolated
discontinuity of the symbol), it was analyzed how one can simplify the index problem
by a stable homotopy of symbols, that is, within a single class of the K group of the
symbol algebra. In particular,it was shown that for an odd-dimensional manifold the
pair (interior symbol , conormal symbol) can be split, which reduces the problem to
two already solved problems, one for the index of an operator on a manifold without
singularities and the other for the index of a one-dimensional singular integral operator
with operator-valued symbol. In even dimensions, there is a topological obstruction to
this homotopy, but it can be removed by an index-preserving surgery. In [35], the case of
a symbol that has a discontinuity on a manifold of codimension 1 was considered. Here
also a complete splitting was obtained (by a homotopy and an index-preserving surgery)
into a nonsingular operator and an operator-valued ¥YDO on the discontinuity manifold.

4.1.7 Example

Here we consider an example of an operator satisfying the symmetry conditions. It
was partially considered in [40].

The Euler operator on a manifold with conical singularities. Recall (see [32])
that the Euler operator on a smooth manifold M is defined as the operator d + ¢ acting
from the space of differential forms of even degree on M into the space of differential
forms of odd degree. Here d is the exterior differential and § = (—1)"?T"*1 x dx is the
adjoint operator (x is the Hodge operator corresponding to some Riemannian metric.)
We use the same definition to construct the Euler operator on a manifold M with conical
singularities. For simplicity, we assume that there is only one conical point. In the conical
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neighborhood U of the singular point,
U={Qx(0,1)}/{Q?x {0}}, (4.21)
we use the natural conical direct product metric
g = dr® + 1%, (4.22)

where ¢ is some Riemannian metric on €2. For the computations, it is convenient to use
the cylindrical coordinates, where the metric acquires the standard form

g =e 2 (dt* + 7).

Let A®(U) and A°%(U) be the bundles of even and odd forms, respectively, on U, and let
A% (Q) and A°%(Q) be the corresponding bundles for the manifold 2. The direct product
structure on U specifies the natural isomorphisms

Aev(U) (] 7.‘.*Aev (Q) P W*AOdd(Q),

(4.23)
Aodd(U) (Y] ﬂ*AOdd(Q) P W*ABU(Q),

where 7 : 2x(0,1) — € is the natural projection on the first factor. These decompositions
are obtained as follows: Each form on U is uniquely represented as
W= wi + dt A\ wy,

where ord w; = ord w, ord wy, = ordw — 1, and the forms w; and w, contain only differen-
tials of coordinates on €. The mapping w +— (wy,ws) specifies the isomorphisms (4.21).
Accordingly, d 4+ ¢ in U can be represented by the matrix operator

o O (1% A€ (Q) O 71_>1<Aodd 9

i+5 % . (@()) R (@ o (4.24)
o _iih | |
Vil —(d+9) C> (r*A%44(Q)) C=(r* A (Q)).

Here d and 0 = (—1)®™ DP+%d% are the exterior differential and its adjoint on €.
The conormal trajectory of the operator (4.24) has the form

D(p) = ( d,+6 jp N ) (4.25)
ip  —(d+9)

and satisfies the symmetry condition

D(—p)=<(1) _01>D(p)<(1) _01>,
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i.e., the symmetry condition (4.12) with the automorphisms

1 0
01 =— 09 = 0 —1 .

This permits one to compute the index of the Euler operator in an arbitrary scale H*? (M)
provided that D(p) is invertible on the weight line £, = {Imp = ~}. To this end, we note
that the operator 2D in the index theorem is just the Euler operator on 2M.

Hence the answer is

ind(d + 0 : H*'(M, A (M)) — H*""'(M, A¥(M)) = % (X(2M) - ij) . (4.26)

where the m; are the multiplicities of the solution points of the family D(p) in the strip
—v < Imp < 7. (This formula is valid for v > 0; for v < 0, one must take the strip
7 <Imp < —7, and the terms m; occur in the sum with the opposite sign).

In particular, for small v the conormal symbol D(p) has the unique solution point p = 0
in this strip. Indeed, there are no other singular points on the real line: if D(p)u = 0,
u =" (u1,us), then

(d+0)uy +ipuy = 0,
—(d+&)uy +ipuy = 0,
and so (for p # 0)

l

uy =

Substituting u; into the first equation, we obtain

T, = .

——(d+ 6)*us + ipup = 0

p
or L

(d + 5)2'&2 — p2U2 = 0,
ie.,

AU’Q - p2u27

where A is the nonpositive Laplacian on €. For p? > 0, this equation has only the trivial

solution uy = 0, and so u; = 0.
Next,

D(0) =d+0d: @A) - @) C=(A* (M)

is the (total) operator d + 6 on Q. Hence the multiplicity mg of the singular point p =0

is equal to
n—1

mo = dim Ker D(0) = Zbi(Q),

J=0
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where the b;(Q2) are the Betti numbers of the manifold . (Recall that the kernel of the

operator d + 6 coincides with that of the operator A = (Elv+ 5)2 and consists of harmonic
forms on §2; it remains to apply Hodge theory.) Thus, for sufficiently small |y| we have

ind(d + 0) : H*7(M, A (M)) — H>"(M, A°*(M))

-1 (><<2M> s ibjm)) ,

J=0

and the index of the operator d 4+ 0 is expressed in purely topological terms.

4.2 The index of elliptic Fourier integral operators
4.2.1 Statement of the problem

In the theory of Fourier integral operators (FIO) on smooth manifolds (e.g., see [22],
[10], [17], [18], [24], etc.), a distinguished role is played by FIO associated with contact
(or homogeneous canonical) transformations, that is, FIO for which the associated La-
grangian manifold in 7%(M; x M,)\{0} is the graph of some (homogeneous) canonical
transformation

g: T*M\{0} — T"M,\{0}.

Namely, such FIO are continuous in the entire Sobolev scale, and their order coincides
with the order of the symbol as a homogeneous function. They are elliptic if the symbol
does not vanish outside the zero section, and for such operators, Weinstein [44, 45] posed
the index problem, which was solved in a special case by Epstein and Melrose [11] and
in the general case (for smooth manifolds) by Leichtnam, Nest, and Tsygan [21]. We
are interested in the Weinstein problem in the framework of manifold with singularities,
and so we deal only with FIO associated with homogeneous canonical transformations
of phase spaces where the corresponding configuration spaces have conical singularities.
For the structure of classical canonical transformations and the construction of quantized
canonical transformations (i.e. Fourier integral operators), we refer the readers to [28].

4.2.2 The relative index formula

Just as with DO, we begin the analysis of the index problem by establishing the rel-
atiwe index formula for FIO. Later, in conjunction with symmetry conditions and surgery,
this will give the desired general index formula.

Let T =T(g,a) be a formally elliptic FIO on M with conormal symbol o.(T") = Ty(p),
and let y; < 72 be weight exponents such that the weight lines £,, and £,, do not contain
poles of the family Ty (p)~". Then the operators

T, : H*"(H) — H* ™% (H)
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induced by 7' in the corresponding scales of weighted Sobolev are elliptic and hence
Fredholm. Under these conditions, the following theorem holds.

Theorem 4.8 (the relative index formula).
ind7, —indT),, = - > m; (4.27)
Y1<Imp;<ya
where the m; are the multiplicities of the poles of the family To(p)—*.

Remark 4.9. Formula (4.27) exactly coincides in form with the corresponding formula for
WDO. This is by no means accidental. We return to the original relative index formula
for ¥DO if g is the identity transformation.

4.2.3 Symmetry conditions and the index formula

Here we apply the same technique as in item 4.1.5 to continue an elliptic FIO T'(g, a)
to the double 2M and, using the index locality principle, obtain a second equation sup-
plementing the relative index formula, so that the resulting system will give the value of
ind7T'(g, a) in terms of the operator on the double 2M and the contribution of the poles of
the conormal symbol. Needless to say, this is possible only certain symmetry conditions.

Fourier integral operators in bottleneck spaces. First of all, we shall show that
Fourier integral operators on a manifold M with conical singularities can always be viewed
as elliptic operators in bottleneck spaces of some special form.

x——1 x—+1

WY o<

M

Figure 4.5:

Namely, we treat M as a manifold with a cylindrical end and equip H*?(M) with
the structure of bottleneck spaces by the standard construction: the action of a function
¢ € C*([—1,1]) on an element u(z) € H*Y(M) is reduced to the multiplication by the
function ¢(x(z)):



where x(x) is a smooth function growing from —1 to 1 in the bottleneck and constant
outside the bottleneck (see Fig. 4.5, where the bottleneck is dashed).

Let T = T(g,a) be an elliptic FIO on M. Then it can be included in a continuous
family 7'(0) of operators such that

(i) {T°(6)} is a proper operator in H*7(M) for each v;
(ii) {T,(9)} is elliptic for all v such that 7T is Fredholm.

We can ensure condition (ii) by using homotopies that preserve the conormal symbol:

whereas the amplitude ranges in the class of elliptic symbols.
As to condition (i), the possibility to ensure it can be derived from the following
lemma.

Lemma 4.10. There is a homotopy
gr: T*M\{0} — T*M\{0}

in the class of homogeneous canonical transformations such that g, = g and gy commutes
with translations along the t-axis for sufficiently large t on the cylindrical end.

Let us introduce the simplest symmetry condition
To(p) = To(—p). (4.28)
Then the conormal family
gp: T"Q—=T7Q, VpeR
of the canonical transformation ¢ satisfies the condition
9p=9-p PER (4.29)

Now if we cut away a neighborhood of infinity in the cylindrical end 7" M and paste
the resulting two manifolds with boundary with overlapping, we obtain the canonical
transformation

2g - T*(2M)\{0} — T"(2M)\{0}

(See Fig,. 4.6, where the pasting is shown; the bottleneck is dashed as usual.). One can
also prove that the symmetry condition ensures the smooth pasting of the amplitudes.
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Figure 4.6:

Theorem 4.11. Let T be a formally elliptic FIO on a manifold - M with conical singu-
larities satisfying the symmetry conditions (4.28). Then

1
ind T, = = | ind 27" >oomy|, (4.30)

—y<lImp; <y

for any v > 0 such that the conormal symbol To(p) is invertible on L. Here the p; are
the poles of the family To(p)*, and the m; are their multiplicities. For -y < 0, one has a
formula similar to (4.30), with “+” instead of “—” on the sum of multiplicities.

Proof. Consider the modifications of operators in bottleneck spaces shown in Fig. 4.7
(surgery of Fourier integral operators) and 4.8 (another surgery). The geometric and
analytic construction, with regard to the preceding, is completely similar to that for
WDO.We have the modification diagram

T,6T ,®B, > B,®B ,®B,
17 -1
2T, ® B,®B , <= B,®B,®B .,

which implies the desired result with regard to the fact that ind B, = B_, = 0 and with
the use of the general relative index theorem . O

4.2.4 Example

In conclusion, we give an example of a canonical transformation ¢g for which there
exists a FIO T with conormal symbol satisfying the symmetry condition Ty(p) = To(—p).
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More precisely, the transformation g will be described only near the conical operator (only
this is essential to the behavior of the conormal symbol). Let the base € of the one be
the circle S with mod 27-coordinate w. We must specify the canonical transformation
for large ¢ on the infinite cylinder C' = (—o0, 00) x S* with coordinates (¢,w). Let p and
q be the coordinates dual to ¢t and w, respectively, and let

g: (t,w,p,q) — (', w0, q)

be specified by the generating function

S(p,q,t',w'") = /p?+ ¢? (4.31)
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Expressing the primed variables via nonprimed, we see that the transformation is given
by

P=p t=t- e,

P*+¢
! __ _ q I 4
W=w——, ¢ =g (4.32)

The second line in (4.32) specifies the conormal family
gp: T*S' — T*S1

of g. One can readily see that the symmetry condition g, = g_, holds. To construct
some operator 1" corresponding to ¢ in a local chart near the singular point, we must
smooth the function (4.31). Let x(7) be a smooth compactly supported function such
that x(0) = 1 and x(—7) = x(7), and let x(p) be its Fourier transform. The the function

S, q) = VP2 + @ *X(p) = /55(1)—77)\/772+q2d77

has the same asymptotics for large |p| + |¢|, p € R, as the function (4.31) but is analytic
in the entire p-plane. Moreover,

S(=p,q) =S (p, 9)- (4.33)

Now we define an operator T' on (—o00,00) x S! by setting

¢ .0 .0
T = exp {ZS <—za, —z%> } .

The conormal symbol Ty(p) of this operator has the form

To(p) = exp {iS <p, —ia%> } :

or
To(p)y = ) e S0itetly,
k=—00
where the 1)y, are the Fourier coefficients of 4 in the system {e™*}:
Y = Z eiwk
k=—00

Obviously, Ty(p) satisfies the symmetry condition 4.28). Note that this symbol has no
singular points (poles of Ty(p)~!), so only the topological term in the index formula
survives.
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