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Introduction. We consider some statements of control problems for systems described
by partial differential equation with a small parameter multiplying the higher-order deriva-
tives (or, equivalently, a large parameter multiplying lower-order terms). It is widely
known that the asymptotic behavior of solutions to such equations is described by the
WKB approximation or the global analog, the Maslov canonical operator. In this frame-
work, it is nature to consider the same class of asymptotic solutions for controlled systems
closed by some choice of control provided that one deals with a feedback of a special form
(see below).

The approach described in the present paper formally applies to two large classes
of problems, namely, quantum-mechanical and wave propagation problems. Quantum-
mechanical problems are a subtler application in that a feedback control normally relies
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on measurement whilst quantum measurement cannot usually be precise and often de-
stroys the pre-existing state of the system. Hence a fully developed control theory of
quantum systems (even an asymptotic one) should incorporate quantum measurement
theory. However, here we do not touch these issues and consider a simplified statement
in which the description of the measurement procedure itself is this paper we give some
motivation as to why this simplified scheme still applies to quantum-mechanical problems.
As to wave propagation problems, our statement applies in full generality. The solution
of the problems stated in this paper will be considered elsewhere. At the end of this
preprint, we have placed the transparencies of the talk given at the workshop “Partial
Differential Equations” at Potsdam University in November, 2001.

Controlled Quantum Systems. We consider the system described by a differential

equation of the form!
oY 2 L
—zha + H(u,z,p)y = 0. (1)
Here h is a small parameter (h = k™! in wave propagation problems, where k is the wave
number), p = —ih d/0x, and

H: MxR"™ 5 R

is a Hamilton function depending on a control parameter u € M that range in some metric
linear space M. When considering program controls u = u(t) as well as realizations of
feedback controls, we assume that they depend on h regularly:

u(t) = ugp(t) + huy(t) + ... .

Thus, the closed system with a given program control has the form
1

—ih%—‘f + H (u(t), ,p)v =0 (2)

and is just the Schrédinger equation (or the wave equation) with Hamilton function reg-
ularly depending on time. It is well known (e.g., see [2, 6]) that the asymptotic solutions
of Eq. (2) as h — 0 are described by Maslov’s canonical operator. Hence for Egs. (1)
and (2) it is natural to consider special semiclassical states given by the canonical op-
erator. Every semiclassical state corresponds to a quantized Lagrangian manifold A, a
quantized measure dp on that manifold, and an amplitude function ¢ on A satisfying the

/|s0|2du =1L
A

'We use the notation of noncommutative analysis [3, 8]

(physical) normalization condition




The state itself has the form
lb - KA,du(pa

where K 4, is Maslov’s canonical operator on A corresponding to the measure dy and
acting by the formula

Kyap =Y Kierp,
1

where the K are local canonical operators in canonical charts Uy, I C [n], and e; is
the partition of unity corresponding to the cover of A by the charts U;. Details of the
construction can be found, e.g., in [6].

The Asymptotic Controllability Problem. For semiclassical states of Eq. (1), we
can state the following controllability problem.

Given two states 1, = Ky, gu, 1 and ¥y = K, qu,2, does there exist a
program control h(t) regularly depending on h and such that the solution of
Eq. (2) with the initial condition

¢|t:0 = TP1

satisfies the condition
Plier = 2 + O(AY),
where 7' > 0 is some number (given or not given in advance) and N > 17
The canonical operator theory says that if the initial state in the Cauchy problem

corresponds to some Lagrangian manifold, then the solution at time ¢ corresponds to the
shift of this manifold along the trajectories of the Hamiltonian system

{q = Hp(u(t)a%p);
p= Hq(u(t)a(.I:p)-

Furthermore, the measure is also shifted along the trajectories, while the amplitude func-

(3)

tion ¢ can be found from the transport equation along the same trajectories. Hence
the canonical operator theory reduces the asymptotic controllability problems for the
Schrodinger equation (1) to a hierarchic sequence of three controllability problems for the
corresponding classical objects. Here the following control problem for the Hamiltonian
system (3) is the main problem.

Given two Lagrangian manifolds A; and A, in the phase space R?", does there
exist a control u(t) such that the phase flow of system (3) closed by this control
takes A; to Ay in some time 717



Statements in which the control u(t) is compactly supported on the interval [0, 7]
seem to be most meaningful from the viewpoint of physics. In this case, the controllability
problem is essentially a special case of a nonstationary inverse scattering problem. There is
a vast literature concerning control of Hamiltonian systems as well as the inverse scattering
problem, and here we do not dwell on the solution of the classical problems corresponding
to a given quantum problem.

One can also consider a different asymptotic controllability problem for semiclassical
states, which is in a sense elementary (the class of states related to this problem plays
a fundamental role in quantum mechanics). Specifically, consider the semiclassical states
given by Gaussian wave packets (see, e.g., [7])

Glan Aoh) = e {1 [+ Sl —ade-a)] | @

where (, ) is the usual bilinear pairing and A = A* = A; + A, is a symmetric matrix
with strictly positive imaginary part.

A system in the state (4) is localized in a neighborhood of the point (¢,p) of the
phase space, and the matrix A (more precisely, its imaginary part) describes the so-called
“scattering ellipsoid.”

The asymptotic controllability problem for wave packets is as follows.

Given two Gaussian wave packets G(q1,p1, A1) and G(qa, p2, As), is there a
program control u(t) regularly depending on h such that the solution of the
Cauchy problem for Eq. (2) with the initial conditions

Y= = G(QlaplaAl)

satisfies the condition

Uli—r = G(g2, P2, A3) + O(R"),
where N > 1 and T > 0 is some number (given or not given in advance)?

The semiclassical evolution of the Gaussian wave packet (4) under the Schrodinger
equation (2) is as follows: the point (¢, p) moves along a trajectory of the Hamiltonian
system (3), while the shape factor A satisfies some matrix Riccati equation (too cumber-
some to be presented here). A detailed exposition can be found, e.g., in [5].

Thus, the solution of the asymptotic controllability problem for Gaussian packets can
be reduced to the pointwise controllability problem for the Hamiltonian system and the
analysis of the above-mentioned Riccati equation.



The Stabilization Problem. Let us now dwell on the stabilization problem. Here one
must choose the control u as a functional of the solution ¢ so as to ensure that a given
state 1y be stable in the closed system. Thus, what form of feedback [1] is appropriate in
asymptotic control problems? The feedback must satisfy the following conditions:

e it must be natural from the physical viewpoint;

e the closed system must be tractable by some known methods (or, otherwise, one
has to develop some new methods).

In that connection, it seems natural to take the feedback in the form of a function
of a sesquilinear functional of the solution. In particular, this guarantees that the imple-
mentations of controls regularly depend on A. In quantum mechanics, the interpretation
of this is as follows: the feedback is a function of the mean values of quantum-mechanical
variables. In the simplest case, the feedback has the form

u= (v AGw),, ()

where /f(q,p) is a symbol ranging in the linear space M and numbers over operators
indicate the order in which these operators act (e.g., see [3, 8]). Then the closed equation

—th— 4+ H || ¢, A(z, D)y

o (vt

2 L
, L, =0 6
) oy F2) ¥ (6)
is a nonlinear Schrodinger equation (more precisely, a unitarily nonlinear equation). The
word “unitarily” refers to the special form in which ¢ occurs in the coefficients of the
equation (the inner product). The stabilization problem can be stated in the framework

of controls of this form as follows:

For a semiclassical state 1 = K 4, given by Maslov’s canonical operator,
find a feedback (5) such that this state will be a stable equilibrium of the
closed system (6).

This problem, just as the previous ones, will be reduced to the corresponding classical
problems by the methods for constructing semiclassical asymptotics for unitarily nonlinear
equations.

Unitarily Nonlinear Equations. Let us briefly describe the above-mentioned meth-
ods. They were introduced in [4], where one can find a detailed exposition.
First, we give some definitions.



Definition 1. The space S*®(R¥) consists of functions u(z) € C®(RF) such that

AmV1l sup(l+ |$|)_m‘u(l)(:r)‘ < 00 (7)
RE

The convergence in this space is determined by the family of seminorms given by the
suprema in (7). The space S~*°(R") is the (topological) dual space of S®(R¥). Next,
G(RF) is the space of maps f : R — R such that

/()]

P a]

< oo and sup|f*(z)| < oo

for every «.

Let us also introduce some notation concerning the symplectic structure. The variables
in the symplectic space R?" will be denoted by z = (¢,p). Then the symplectic form is

1
w? = inz A dz,

(% 0)

is the matrix of the symplectic structure (the Darboux matrix).
Now we can introduce the notion of a classical Hamiltonian.

where

Definition 2. A Hamiltonian is a smooth map

H : S (R™) x GR*™) — S®(R*"),
(fsv) — HI[f, ],

such that
H[y" f,v09](z) = H[f,7](2)

for every canonical transformation v € G(R?").

An example of a classical Hamiltonian is given by the formula

HIf0)(2) = Holz) + / V(e o(2) /() 2

where

Here Hy(z) is the “nonperturbed” Hamiltonian, and the integral term describes the self-
consistent particle interaction. Such Hamiltonians occur, e.g., in the classical Vlasov
equations as well as the quantum Hartree and Hartree—Fock equations.

6



In the back of an integral term, we arrive at the ordinary Hamilton function. Thus,
the new notion includes the old one. Associated with a given Hamilton function H are
two important equations, namely, the Vlasov—Liouville equation and the Vlasov—Hamilton
equation. They are analogs of the Liouille and Hamilton equations, respectively, of the
ordinary classical mechanics.

The Vlasov—Liouville equation has the form

B_F + {H[F,id],F} =0, (8)
ot
where id is the identity map, F € S~°(R?") is a given distribution (the classical density
function), and

/., 0f Og
{f,9) = <J$, £>

is the usual Poisson bracket.
The Vlasov—Hamilton equation has the form

Z = VH[Fo,Z]7 (9)

/of 0
v, = <J$, a_>

is the Hamilton vector field and Z € G(R*") is the unknown map to be found. We equip
this equation with the initial condition

where

Zli—o = id . (10)

In turns out that under some (rather weak) conditions on the Hamiltonian and the
initial density function Fp, both the Vlasov—Hamilton and the Vlasov—Liouville equations
are uniquely solvable, and their solutions are related by a simple, important formula.

Theorem 1. Suppose that the classical Hamiltonian H and the initial function Fy satisfy
the following conditions:

1) The map

G(R*") — S®(R*")
OH

v —> E[Fo,v]

extends to be a Lipschitz continuous map in the L? topology;



2) the derivative

15 uniformly bounded for each v > 2.

Then the Viasov—Hamilton equation (9) with the initial conditions (10) has a unique
solution for all t, and moreover,

1) Z(t) € G(R*™) for all t;
2) Z(t) is a canonical transformation ? for all t;

3) (corollary) if Ay is a Lagrangian manifold, then A(t) = Z(t)Ao is also a Lagrangian
manifold for all t;

4) the Vlasov-Liouville equation (8) with the initial condition
Fli=o = Fy;
15 uniquely solvable for all t, and the solution has the form

F(t) = (Z(t))' .

The last assertion of the theorem is more or less trivial. The most difficult result
concerning the existence of solutions of the Hamilton—Vlasov system can be proved essen-
tially in the same way as the existence and uniqueness theorem for ordinary differential
equations, that is, by Picard’s method.

Now we introduce some objects related to the construction of the canonical operator
on the Lagrangian manifolds obtained from the initial manifold by the Hamilton—Vlasov
flow. The trajectories of the Hamilton—Vlasov equation are given by the formula

(o) 220 ().

Consider a quantized Lagrangian manifold Ay equipped with an action function Ag
and a quantized measure dug. For an arbitrary function ¢ € S®(R*"), we set

(Fy, ¢) = / oo . (11)

Ao

2Since the equation is nonlinear, these transformations fail to form a one-parameter group, except for
the case in which the initial distribution is trajectory invariant.



Thus we have defined a classical density function Fy. Let Z(t) be the corresponding
solution of the Hamilton—Vlasov system, and let A, = Z(¢)A¢ be the corresponding family
of Lagrangian manifolds. The action function on A; is given by the formula

Si = (Z@)l)*{so + [od - HIF Z(6))(a.9) dT}. (12)

The Quantum Problem. Now we can describe the construction of semiclassical asymp-
totics for the closed equation (6). Suppose that the classical Hamiltonian occurring in the
equation has the form

H[p] = Hlp,id].

In other words, it is included in a family parametrized by canonical transformations.

In this case, to construct the asymptotics, one can use the above-mentioned machinery
of classical mechanics for the Hamilton—Liouville equation. Thus, consider the unitarily
nonlinear Schrodinger equation

oY

with the initial conditions

Q/)|t=0 - %(ff) = KAO,dHQO(fL'),

where K, is Maslov’s canonical operator on the Lagrangian manifold Ag equipped with
the measure dyu. To find the asymptotics of the solution, we first construct the asymptotics
of the quantum density function

n/2
1 ~ i
=|— TR, 1

Py (4, p) (%h) U(g)p(pe (13)
The equation for p, (the Vlasov-Wigner equation) and the initial conditions have the
form

0 18 18

9Py i{H 'd(2 —'h—)—H 'd( ik 2)} —0

g5 T Hlew idl(¢p—i 9 [Py, id]{ g — i op?) P =0 (14)

Py li=0 = Puyo

For ¢ = 0, the initial density function has the asymptotics

Flieo = |[*0n.au + O(h?), (15)



which can readily be verified with the help of the stationary phase method. Here d, g, is
the delta function on the initial Lagrangian manifold with the measure du. We seek the
density function in the form

o0
pp = F+Y (—ih)*F*. (16)

k=0
Then for the leading term F' of the density function we obtain the Liouville-Vlasov equa-
tion with the initial condition (15). The subsequent terms of the expansion are given by
regular perturbation theory. Once we find the asymptotics of the density function, we
can substitute it into the Hamiltonian, and then Eq. (13) becomes a linear equation for
the function 1, which can already be solved by the standard canonical operator method.
One can verify that the solution thus obtained just results in the density function that

has been found by solving the Vlasov—-Wigner equation.

The Stabilization Problem for the Schrodinger Equation with a Unitarily Non-
linear Control. We see that if the feedback has the form (5), then the unitarily non-
linear Schrédinger equation (6) can be solved by semiclassical asymptotic method.

Now let us state the semiclassical stabilization problem.

For given system (1) and a semiclassical state 1)y = K, 4, given by Maslov’s
canonical operator on a quantized Lagrangian manifold with a measure du
and an amplitude function ¢, find a unitarily nonlinear feedback (5) such that
the solution of the closed equation (6) with this feedback and the initial data
1y satisfies the condition®

b(t) = eip + O(hY) (17)

on the time interval [0,7/h], where N > 0, A € R and 7" > 0 is independent
of h.

Thus, one actually specks of finding a feedback such that the state 1) is a metastable
state of the closed system. The number A (which is independent of h or depends on h
regularly) is naturally interpreted as the energy of this metastable state.

The construction of asymptotics of unitarily nonlinear equations (see the preceding
section) reduces this stabilization problem to the study of invariant Lagrangian manifolds
of the Hamilton—Vlasov and invariant solutions of the corresponding transport equation.

In closing, let us note that the choice of the control in the form (5) apparently permits
one to sidestep issues related to the measurement procedure provided that this procedure
is not separated from the substitution of the “measured” mean value into the equation
(in other words, the control process itself is quantum rather than classical).

3This definition of asymptotic eigenfunctions is due to Maslov.
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