
SOME REMARKS RELATED TO DE GIORGI’S CONJECTURE

YIHONG DU AND LI MA

Abstract. For several classes of functions including the special case f(u) = u − u3, we

obtain boundedness and symmetry results for solutions of the problem −Δu = f(u) defined

on Rn. Our results complement a number of recent results related to a conjecture of De

Giorgi.

1. Introduction

In this paper, we make several observations related to the following conjecture of

De Giorgi [dG]: If u is a solution of the scalar Ginzburg-Landau equation

(1.1) Δu + u(1 − u2) = 0 on Rn

such that |u| ≤ 1 and ∂nu > 0 on Rn, and

lim
xn→±∞

u(x′, xn) = ±1, ∀x′ ∈ Rn−1,

then all level sets of u are hyperplanes, at least for n ≤ 8. Here ∂nu denotes the

partial derivative of u with respect to xn, the last component of x, and x′ denotes the

first n − 1 components of x.

When n = 2, this conjecture was completely resolved by Ghoussoub and Gui [GG].

When n = 3, it was very recently proved by Ambrosio and Cabre [AC]. Both solutions

of the conjecture are based on a Liouville-type theorem due to Berestycki, Caffarelli

and Nirenberg [BCN2]. The first partial answer to the De Giorgi conjecture is from

the work of 1980 by Modica and Motola [MM]. In 1985, Modica found a pointwise

gradient bound for all bounded solutions. This estimate was further generalized by

Caffarelli, Garofalo and Segala [CGS] to more general nonlinear partial differential

equations which include the p-Laplacian. Under more assumptions on the solutions,

for example, if u(x) = u(x′, xn) → ±1 as xn → ±∞ holds uniformly for x′ ∈ Rn−1,

the conclusion of this conjecture was confirmed in [BBG], [BHM] and [F] for any

n ≥ 2. The conjecture in its original form, however, remains open for n > 3. We

refer to [AAC] for a fuller account of the history and progress about this conjecture.

All these previous studies obtain results which are valid not only for the special

nonlinearity appearing in (1.1), but also for much more general nonlinearities. In this
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paper, we show that for some narrower classes of nonlinearities, but still including

the one in (1.1), several further results can be obtained.

Our first observation comes from a simple application of the techniques in [DM],

notably the use of boundary blow-up solutions. It implies the following result as a

special case.

Theorem 1.1. Suppose u ∈ C2(Rn) is a solution of (1.1). Then u ∈ L∞(Rn).

Moreover, u is either a constant (hence, u ≡ 1, or u ≡ 0, or u ≡ −1), or u changes

sign and satisfies |u| < 1 on Rn.

Therefore, the condition that |u| ≤ 1 in De Giorgi’s conjecture is unnecessary. This

point has already been observed by Farina [F], but his conclusion does not seem to

include those nonlinearities covered by our general result (see Theorem 2.1 below).

Our second observation is motivated by some recent results in [BBG], [BHM] and

[F]. One of the main results in these papers says that if u solves (1.1) and satisfies

|u| ≤ 1 and

(1.2) u(x′, xn) → ±1 as xn → ±∞ uniformly in x′ ∈ Rn−1,

then u(x) = u(xn). Farina [F] further observes that, under the restrictions already

put on the nonlinearity, a result in [BCN1] implies that (1.2) is equivalent to

xnu(x′, xn) > 0, ∀ |xn| > R, ∀x′ ∈ Rn−1,

for some R > 0. Or equivalently, the zero set of u, denoted by u−1(0), lies between

two parallel hyperplanes {xn = −R} and {xn = R}. This somehow relates the above

result to Theorem 2 in [BBG], which improves a result in [MM] and asserts that if a

solution u to (1.1) satisfies |u| ≤ 1 and ∂nu > 0 and that all its level sets are graphs

of Lipschitzian functions of x′, then u is a function of one variable.

All these above mentioned results are proved for rather general nonlinearities. Un-

der some further restrictions, we have a result which implies the following.

Theorem 1.2. Suppose that u ∈ C2(Rn) solves (1.1) on Rn. If u−1(0) lies on one

side of a hyperplane and touches that hyperplane, i.e., there exists ν ∈ Sn−1 and

x0 ∈ u−1(0) such that ν · (x − x0) ≥ 0 for all x ∈ u−1(0), then u depends on one

variable only (in the direction of ν).

Note that, in Theorem 1.2, a condition of the type ∂nu > 0 is not required. More-

over, no regularity on u−1(0) is assumed. In our proof of Theorem 1.2, the oddness

of the nonlinearity will be employed.

We end this introduction with the statement of a simple consequence of Theorem

1.2. Assume that M is the set of one-dimensional solutions of (1.1). Then M can be

explicitly expressed in the following way. Let v = v(t) be the function tanh(t/
√

2),

which is, up to a translation, the unique solution of the problem

h′′ = h3 − h, h(±∞) = ±1.

For a ∈ Sn−1 and c ∈ R, we let

ua,c(x) = tanh((a.x − c)/
√

2)



SOME REMARKS RELATED TO DE GIORGI’S CONJECTURE 3

Then

M = {ua,c; a ∈ Sn−1, c ∈ R}.
Corollary 1.3. Assume that u ∈ C2(Rn) solves (1.1) and the C0-distance of u to M

is less than 1, i.e.,

inf
v∈M

sup
x∈Rn

|u(x) − v(x)| < 1.

Then u ∈ M .

Note that, M is a closed set in the C0-topology, and if we denote the C0 distance

function by dist0, then, by Theorem 1.1, for any solution u of (1.1), dist0(u, M) ≤ 2.

In particular, if u = 0 , then dist0(u, M) = 1, and if u = 1 or u = −1, then

dist0(u, M) = 2.

The rest of this paper is organized as follows. In section 2, we present a general

result which implies Theorem 1.1. Theorem 1.2 will be discussed in section 3, again

as a special case of a general result.

2. Global boundedness and related results

In this section, we prove a general result which contains Theorem 1.1 as a special

case. We consider the problem

(2.1) −Δu = f(u), x ∈ Rn,

where the real valued C1 function f is assumed to satisfy

(2.2)

{
f(0) = f(1) = f(−1) = 0,

uf(u) > 0 for 0 < |u| < 1, uf(u) < 0 for |u| > 1,

and for some large constant M > 1

(2.3)

⎧⎪⎨
⎪⎩

limu→0
f(u)

u|u|2/n ∈ (0,∞],

uf(u) ≤ ug(|u|) < 0 for |u| > M,

g(u) is decreasing in [M,∞) and
∫ ∞

M

[ ∫ u

M
|g(s)|ds

]−1/2
du < ∞.

It is easily checked that if p > 1, then f(u) = u(1−|u|p) satisfies both (2.2) and (2.3).

Theorem 2.1. Suppose f is C1 and satisfies (2.2) and (2.3). Let u ∈ C2(Rn) be a

solution of (2.1). Then the conclusions in Theorem 1.1 hold.

Proof. From Theorem 5.2 in [DM] and our assumptions on f and the Harnack in-

equality, we know that any solution u which does not change sign in Rn must be

constant, that is, u ≡ 1 or u ≡ −1 or u ≡ 0. Therefore we only need to consider

solutions of (2.1) which changes sign in Rn.

Suppose now u is a sign-changing solution of (2.1). We want to show that |u| < 1 on

Rn. Let us first observe that it suffices to show |u| ≤ 1 in Rn. Indeed, if |u(x0)| = 1,

say u(x0) = −1, then, w := u + 1 satisfies

−Δw = c(x)w, w ≥ 0, w(x0) = 0,
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where c ∈ L∞(Rn) is given by c(x) = [f(u(x)) − f(−1)]/(u(x) + 1) when u(x) 
= −1,

and c(x) = f ′(−1) otherwise. Hence it follows from the Harnack inequality that

w ≡ 0, contradicting our assumption that u changes sign.

To show |u| ≤ 1 on Rn, we adapt the argument used in the proof of Theorem 5.2

in [DM].

Let h(u) = −g(u + M) for u ≥ 0 and h(u) = −g(M) for u < 0. Then h is positive

and due to (2.3), we can use the proof of Theorem 1 of Keller [Ke] to conclude that

the problem

Δu = h(u), u|∂B = ∞
has a unique positive solution u∞, where B stands for a ball centered at the origin

with small radius (the proof in [Ke] actually shows that minRn u∞ → ∞ as the radius

of B goes to 0). It follows that v∞ = u∞ + M is a positive solution to

−Δv = g(v), v|∂B = ∞.

We claim that u ≤ c := minB v∞(x) on Rn. Otherwise, we can find x0 ∈ Rn such that

u(x0) > c. Define v(x) = v∞(x−x0). We find that the set {x ∈ B(x0) : u(x) > v(x)}
has a component Ω whose closure lies entirely in the open ball B(x0) = {x : x− x0 ∈
B}. On Ω, we have u(x) > v(x) ≥ c > M and Δu+g(u) ≥ 0 = Δv +g(v). Moreover,

u = v on ∂Ω. As g(u) is decreasing for u > M , from

Δ(u − v) + c(x)(u − v) ≥ 0, c(x) = [g(u) − g(v)]/(u − v) ≤ 0 on Ω

and the maximum principle, we deduce that u ≡ v in Ω. This contradiction shows

that we must have u ≤ c on Rn.

Applying the above argument to w = −u which satisfies

−Δw = g(w), g(w) = −f(−w),

we deduce that u ≥ −c on Rn. Therefore we have

−c ≤ u(x) ≤ c, ∀x ∈ Rn.

Let uc and u−c denote the unique solution of

(2.4) u′ = f(u), u(0) = u0,

with u0 = c and u0 = −c, respectively. Then it follows from elementary analysis that

uc(t) → 1 and u−c(t) → −1 as t → +∞. On the other hand, u, uc and u−c are all

bounded solutions of the parabolic problem

ut − Δu = f(u).

Since uc(0) ≥ u(x) ≥ u−c on Rn, by the parabolic maximum principle and the

boundedness of u, uc and u−c ([Fr, Theorem 9, page 43]), we conclude that u−c(t) ≤
u(x) ≤ uc(t) for all t > 0. Letting t → ∞, we obtain −1 ≤ u(x) ≤ 1, as required.

This finishes our proof of Theorem 2.1. �
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Remark 2.2. As was remarked in [DM], the behavior of the function f near infinity

described by (2.3) is necessary for Theorem 2.1 to hold true. One can find functions

f which satisfy all the other conditions in (2.2) and (2.3) except the restriction near

infinity in (2.3), such that, (2.1) has unbounded entire positive and negative solutions.

The interested reader may check [DM] for more details.

3. Odd nonlinearity and related results

In this section, we prove a generalization of Theorem 1.2.

We first recall two lemmas. The first one is from [BHM] which is a simple conse-

quence of Lemma 2.1 in [BCN1].

Lemma 3.1. Let f be a Lipschitz continuous function, non-increasing on [−1,−1+δ]

and on [1− δ, 1] for some δ > 0. Assume that u1, u2 are solutions of (2.1) over some

open connected set Ω ⊂ Rn and |ui| ≤ 1 (i = 1, 2). Assume further that u2 ≥ u1 on

∂Ω and either u2 ≥ 1 − δ or u1 ≤ −1 + δ in Ω. Then u2 ≥ u1 in Ω provided that

Rn \ Ω contains an infinite open connected cone.

The second is Lemma 2.4 in [F] which follows from Lemmas 3.2 and 3.3 in [BCN1].

Lemma 3.2. Let f be a Lipschitz continuous function which is positive over (0, 1),

and satisfies f(1) = 0, f(t) ≥ δ0t on (0, t0] for some small δ0 > 0 and t0 > 0. If u is

C2 on the half plane ΣM := {x ∈ Rn : xn > M} and satisfies

Δu + f(u) ≤ 0, 0 < u ≤ 1 on ΣM ,

then u(x′, xn) → 1 uniformly in x′ ∈ Rn−1 as xn → +∞.

Theorem 3.3. Suppose f is Lipschitz continuous and satisfies

f(−1) = f(0) = f(1) = 0, tf(t) > 0 when 0 < |t| < 1,

and for some small positive constants δ0, t0 and δ,

f(t)/t ≥ δ0 when 0 < |t| < t0,

f is non-increasing on [−1,−1 + δ] ∪ [1 − δ, 1].

Furthermore, assume that f(t) is odd in t. Then the statement in Theorem 1.2 holds

for any solution u ∈ C2(Rn) of (2.1) satisfying |u| ≤ 1.

Proof. Through a rotation and translation, we may assume that the hyperplane is

given by xn = 0, u(0) = 0 and u−1(0) ⊂ {x : xn ≤ 0}. We may assume that

u(x′, xn) > 0, ∀x′ ∈ Rn−1, ∀xn > 0; the other possibility that u(x′, xn) < 0, ∀x′ ∈
Rn−1, ∀xn > 0 can be handled analogously.

For τ ≥ 0, let us define

uτ (x
′, xn) = −u(x′, 2τ − xn).

Since f is odd, we easily see that

−Δuτ = f(uτ ).
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Clearly

u|{xn=τ} ≥ 0 ≥ uτ |{xn=τ}.

We want to show that for every τ ≥ 0, u ≥ uτ on the half space {x : xn ≥ τ}.
Since u(x) > 0 when xn > 0, it follows from Lemma 3.2 that u(x′, xn) → 1 as

xn → +∞ uniformly in x′ ∈ Rn−1. Therefore, for large τ we can apply Lemma 3.1 to

Ω := {x : xn > τ}
to conclude that u ≥ uτ on Ω. Now define

τ0 = inf{τ ∈ [0,∞) : u(x′, xn) ≥ uτ (x
′, xn), ∀x′ ∈ Rn−1, ∀xn ≥ τ}.

Claim: τ0 = 0.

Otherwise, τ0 > 0 and u(x) ≥ uτ0(x) on the set Ω0 := {x : xn ≥ τ0}. Clearly

w := u − uτ0 satisfies

−Δw = c(x)w, w ≥ 0, ∀x ∈ Ω0,

where c ∈ L∞(Ω0). Since u > 0 > uτ0 on ∂Ω0, by the definition of τ0, we have two

possibilities:

(a) w(x0) = 0 for some x0 ∈ Ω0, or

(b) w(x) > 0 in Ω0 and w(zk) → 0 for some zk ∈ Ω0 with |zk| → ∞.

If case (a) occurs, then the Harnack inequality forces w ≡ 0 on Ω0, which is

impossible as w > 0 on ∂Ω0.

If (b) occurs, we set uk(x) = u(x + zk). By standard elliptic estimates, up to

extraction of a subsequence, uk converges in C2
loc(R

n) to a solution u∗ of (2.1) as

k → ∞. Moreover,

v := u∗ − u∗
τ0

satisfies v(0) = 0 and

−Δv = c∗(x)v, v ≥ 0, ∀x ∈ Ω∗,

where c∗ ∈ L∞(Ω∗) and Ω∗ = {x : xn > τ ∗} with τ ∗ ∈ [−∞, 0] determined by (passing

to a subsequence when necessary)

τ ∗ = − lim
k→∞

d(zk, ∂Ω0).

If 0 ∈ Ω∗ then we obtain from the Harnack inequality that v ≡ 0 on Ω∗, i.e.,

(3.1) u∗(x′, xn) = −u∗(x′, 2τ0 − xn), ∀x′ ∈ Rn−1, ∀xn > τ ∗.

Taking xn = τ0 we deduce u∗(x′, τ0) = 0. This implies that {d(zk, ∂Ω0)} is bounded,

for otherwise, due to u(x′, xn) → 1 uniformly in x′ ∈ Rn−1 as xn → +∞, we would

have u∗ ≡ 1. The boundedness of {d(zk, ∂Ω0)} and the fact that u(x′, xn) → 1

uniformly in x′ ∈ Rn−1 as xn → +∞ imply u∗(x′, xn) → 1 uniformly in x′ ∈ Rn−1 as

xn → +∞. This together with (3.1) implies that u∗(x′, xn) → −1 uniformly in x′ as

xn → −∞. Hence we can use Theorem 1 in [BHM] to conclude that u∗(x) = u∗(xn)

and is increasing in xn. On the other hand, since uk(0) = u(zk) > 0, we have

u∗(0) ≥ 0, a contradiction to the monotonicity of u∗(xn) and u∗(τ0) = 0.
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If 0 ∈ ∂Ω∗, we necessarily have d(zk, ∂Ω0) → 0 and hence τ ∗ = 0, Ω∗ = {x : xn > 0}.
As before, this implies that u∗(x′, xn) → 1 uniformly in x′ as xn → +∞. Moreover,

for any η ≥ −τ0, since uk(x
′, η) = u((x′, η) + zk) ≥ 0, we deduce

u∗(x′, η) ≥ 0, ∀x′ ∈ Rn−1.

In particular,

(3.2) u∗(0, xn) ≥ 0, ∀xn ≥ −τ0.

As v(0) = 0, we have u∗(0) = −u∗(0, 2τ0). Therefore we necessarily have u∗(0) =

u∗(0, 2τ0) = 0. In view of (3.2), the function g(t) := u∗(0, t) has a local minimum at

t = 0 and at t = 2τ0. Therefore, g′(0) = g′(2τ0) = 0. This implies that ∂nv(0) = 0.

Since v satisfies

−Δv = c∗(x)v, v ≥ 0, ∀x ∈ Ω∗, v(0) = 0, 0 ∈ ∂Ω∗,

an application of the maximum principle and the Hopf boundary lemma gives v ≡ 0,

i.e., u∗(x′, xn) = −u∗(x′, 2τ0−xn) for all x′ ∈ Rn−1 and all xn ≥ 0. We can now argue

as in the case that 0 ∈ Ω∗ to conclude that u∗(x) = u∗(xn) and is increasing in xn.

But this is in contradiction with our earlier observation that u∗(0) = u∗(2τ0). This

proves our Claim.

From τ0 = 0 we obtain u(x′, xn) ≥ −u(x′,−xn) for all x′ ∈ Rn−1 and xn ≥ 0. Hence

w(x) := u(x′, xn) + u(x′,−xn) satisfies

−Δw = c(x)w, w ≥ 0 on Ω := {x : xn > 0}, w(0) = 0,

where c ∈ L∞(Ω). By Harnack’s inequality and the Hopf boundary lemma, we have

either w ≡ 0 or ∂nw(0) > 0. A direct calculation yields

∂nw(0) = ∂nu(0) − ∂nu(0) = 0.

Hence we must have w ≡ 0 on Ω, i.e., u(x′, xn) = −u(x′,−xn) for all x′ ∈ Rn−1 and all

xn > 0. Recall that we have u(x′, xn) → 1 uniformly in x′ ∈ Rn−1 as xn → +∞. The

above identity gives u(x′, xn) → −1 uniformly in x′ as xn → −∞. Therefore we can

use Theorem 1 of [BHM] and conclude. The proof of Theorem 4.2 is complete. �

Remark 3.4. Clearly, if f satisfies also the conditions in Theorem 2.1, then |u| ≤ 1

is satisfied.
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