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Abstract

We consider general parabolic systems of equations on the infinite time in-
terval in case of the underlying spatial configuration is a closed manifold.
The solvability of equations is studied both with respect to time and spatial
variables in exponentially weighted anisotropic Sobolev spaces, and existence
and maximal regularity statements for parabolic equations are proved. More-
over, we analyze the long-time behaviour of solutions in terms of complete
asymptotic expansions.

These results are deduced from a pseudodifferential calculus that we con-
struct explicitly. This algebra of operators is specifically designed to contain
both the classical systems of parabolic equations of general form and their
inverses, parabolicity being reflected purely on symbolic level. To this end,
we assign ¢ = oo the meaning of an anisotropic conical point, and prove that
this interpretation is consistent with the natural setting in the analysis of
parabolic PDE. Hence, major parts of this work consist of the construction
of an appropriate anisotropic cone calculus of so-called Volterra operators.

In particular, which is the most important aspect, we obtain the com-
plete characterization of the microlocal and the global kernel structure of the
inverse of parabolic systems in an infinite space—time cylinder. Moreover, we
obtain perturbation results for parabolic equations from the investigation of
the ideal structure of the calculus.
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Chapter 6

Volterra cone calculus

6.1 Green operators

6.1.1 Remark. Throughout this chapter we again employ the notations from
Notation 3.1.1 with the corresponding data fixed on the manifold X and the vector
bundles E and F'.

6.1.2 Definition. a) Let © = (6,0] with —oo

< 6 < 0, and let P €
As(('y, 0),C> (X, F)) and @ € As((—v,0),0*(X, E)) be asymptotic types.
Then an operator
Al (s,t),7:€ A B H (s,t),7:¢ A
G eﬁ(lsr}gélelﬂr{plC (X ,E)g,pgg%lel]gllc (X", E)s)
is called a Green operator with respect to the asymptotic types P and @, if
G and its formal adjoint G* with respect to the »—2 L?-inner product induce
continuous operators
G : ind-lim KEDTE XN E)s — SHXN, F),
s,t,0€
LR I (s,t),—;¢ A - A
G .18171361€1]g11C (X F)s — S (X7, E).
The space of all Green operators is denoted by Ce(X”, (v,0); E, F). If indica-

tion of the concrete asymptotic types is necessary we emphasize this by writing
CG'(X/\a (77 9)) E,F)P,Q-

A Green operator G € Cg (X", (v,0); E, F) is called a Volterra Green operator
provided that one of the following equivalent conditions is fulfilled:
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e (G restricts to continuous operators
G HED (0, 7o) x X, B) — HYD (0, 7] X X, F)

for every (some) s,t € R and every 7y € Ry.

e For every 19 € Ry we have (Gu)(r) = 0 for r > ro for all u €
CS (R4, C™®(X, E)) such that u(r) = 0 for r > ro.

e Forue L*7 2 (R ,L*(X,E)) and v € L?» 7 % (R;, L*(X, F)) such that
supp(u) < supp(v) we have (Gu,v) =0.

n
-5 2

The space of all Volterra Green operators is denoted by Cq v (X", (v,0); E, F'),
respectively Ca v (X7, (v,0); E, F)p g for the space of Volterra Green opera-
tors with respect to the asymptotic types P and Q.

6.1.3 Remark. From Definition 6.1.2 we conclude that the class of (Volterra)
Green operators is independent of the particular anisotropy ¢ € N. Moreover, it
forms an operator algebra, i. e., if H is another vector bundle then the composition
induces a well-defined mapping

CG(7V)(X/\7 (77 ®))F7 H)XCG(7V)(XA7 (77 ®))E7F) — CG(7V)(XA7 (77 ®))E7H)

The class of Green operators is closed with respect to taking formal adjoints with
respect to the 7~ % L?-inner product, i. e., the mapping

i CG(XAa (77 9);E7F) — CG(X/\a (_77 G)QF: E)
is well-defined.

6.1.4 Proposition. An operator G : C§°(Ry,C>*(X,E)) — D'(R+,D'(X, F))
belongs to Cq (X", (v,0); E, F)pq if and only if G can be represented both as

G(u) =D Aj(u,z5) 3. 85,
Gu) =D Nj(u,8)) 5 2 &,

for u € C°(Ry,C®(X, E)), where ()\;),(\;) € £*, and (z;) € K° (X", E)wo,
(sj) € SH(XNF), (25) € K*V (X", F)eo, (35) € Sg" (X", E) are sequences tend-
ing to zero in the corresponding spaces. Here we denote

’COON(XAJF)OO = ﬂ K(s’t)ﬁ;l(XA;F)éa
s,t,0€R

and analogously K= =7 (X" E) -
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In other words: G € Cq(X", (v,0); E, F)pg if and only if
G € (K77 (XN, B)oo@xSHXN, F)) N (857 (X", B)R, K7 (X, F)oo).
In particular,
Ca(X",(1,0); B, F) = 8 (X", E)®,S"(X", F)
Ny (’C(sﬂi),v;l(X/\,E)é,’C(s'7t'),w;l(X/\,F)6,)

for every s,s',t,t',5,0' € R.

Proof. By Theorem 4.3.4

5,7 BLA(XN, B), K0T (XN B)

n

BLA(XN F), KD (XA F)

(K0T, By
{KEDTEXN F) gy,

_s} and
s}

are Hilbert triples for all s,¢,0 € R. Moreover, S)(X", F) and S, (X", E) are
nuclear Fréchet spaces which are continuously embedded in the cone Sobolev spaces
by Proposition 4.3.9. Let G € Ca(X", (v,0); E, F)p,g. From Proposition 1.3.9 we
conclude that G belongs to

[SE)

[SIE]

ﬂ((IC(s’t)’_”;e(XA,E)(;@AQWS;L(XA,F)) N (S5 (XN, E)@- K (x F)(;/))
= (KX, E)ao®xSHXN, F)) N (8,7 (XM, B)8-K7 (X7, F)oo),

where the intersection is taken over all s,t,s’,t',0,6' € R. The converse is imme-
diate. We have

(KX, B)ao@xSHX", F)) N (S5 (X1, E)2, K7 (XM, F)oo) <
STNXN, E)@,8V (XN, F) — (L(KEDVE( XN B)s, K& )B4 XA F)s)
for all s,s',¢,t',6,0' € R. This finishes the proof of the proposition. O

6.1.5 Proposition. Let G € Cg(X",(7,0);E,F) and w,o
cut-off functions near r = 0. Then we have (1 — w)G(1
with goo € S™°(R,L™°(X;R;E,F)), and wG& = op,,
C’%o(]Rq,L_Oo(X;FnTHfW;E,F)) such that lim,_,q go(r) = 0.
S

€ C°(Ry) be
(:)) = Opr(goo)
(90) with go €

w3 |

For G € Cgv (X", (v,0); E,F) we even have g, €
and go € C%O(RF,L;OO(X;H%i,Y;E,F)).

(R, Ly (X H B, F))

Proof. From Proposition 6.1.4 we conclude that

(1-w)G(1—0) € S(Rx X, E)®,S(Rx X, F),
WG € Teyez (X", E)®: T2 (X", F).
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Counsider the operator Goo = (1 —w)G(1 — @): We may write

(Goou)(r) = /koo(r,r')u(r')dr'

R

for u € C5°(Ry, C*°(X, E)) with a kernel ks € S(RXR,L™*(X; E, F)). L
X € S(R) such that [x(r)dr = 1, and set a(r,r',7) = e"4"~ 7")Tk(r r)x (T )
R

Then a € S7° (R x R, L™ (X;R; E, F)) is a double-symbol in the Fourier
calculus with global weight conditions from Section 5.4, and we have G, = op;(a).
Thus we obtain g as the left-symbol a; according to Theorem 5.4.3, i. e.,

Goo(r,T) = // e alr,r + 0! T+ ) dr' dy = /e*iT’Tkoo (ryr —r")dr'.
R

If G € Cav(XM, (v,0); E,F) we have koo(r,r —r') = 0 for #' > 0, and con-
sequently g., extends as an analytic rapidly decreasing function to the upper
half-plane in view of the Paley-Wiener theorem (see also Section 1.1), i. e.,
goo € STO(R, Ly, (X; H; E, F')) as desired.

Now consider the operator Gy = wGw: We may write

@) ) = [ hotrrutr) &

,,.I
R4
for u € C§° (R, C*®(X, E)) with a kernel
ko € Tz (R1)®n Toqt 341 (R4 )@, L™ (X; B, F).

/' x(2)dz = 1. Then Gy = opj\/f_%(b) with

z
the Mellin double-symbol b(r,r', z) := (5) ko(r,7")x(z). From Theorem 5.3.2 we

Let x € S(FnT-I—l_,Y) such that

1
27i

obtain Gy = op;(;% (go) with

go(r,z) = //si"b(r, ST,z +in) % dn

R Ry
d
= /szko(r, rs ) ?S
R4
We have lim,_,o go(r) = 0 since (log(r))go(r) is bounded as r — 0.

If G e Cqv(XN(v,0)FE F) we conclude that ko(r,rs~') = 0 for s > 1, and
consequently go € CF (R, Ly, (X ]HIn+1 B, F)) in view of the Paley-Wiener

theorem (see Section 1.1). O
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6.1.6 Theorem. a) Let G € Cg(X",(v,0); E) such that 1 + G is invertible

in L(KEDE(XN E)s) for some s,t,6 € R. Then 1 + G is invertible in
LKEDE XN E)s) for all s,t,6 € R, and the inverse is given as (1 + G)_1 =

1+ G, with a Green operator G1 € Cq (X", (v,0); E).

b) Let G € Cq.v(X",(7y,0); E). Then 1+ G is invertible in L(K(5D)7 (XN E);)

for all s,t,0 € R, and we have (1 + G)f1 = 1+ G with a Volterra Green
operator G € Ca,v (X", (v,0); E).

Proof. For the proof of a) note that we may write

1

(1+G) '=1-G+G(1+G) G

The operator G; := —G + G(l + G)_lG fulfills the conditions in Definition 6.1.2,
and consequently belongs to Cg(X”, (v, 0); E). Clearly, 1 + G; inverts 1 + G in
LKED XA E)s) for all s,t,6 € R.

Let us now prove b). We first consider the weight v = %. Since we have
1-Q1+@)=1+G(1-G)=1-G

where G? € Cg,v (X", (7,0); E), we just have to prove the assertion for the oper-
ator 1 — G?. We may write G? = G(G*)*. Thus Proposition 1.3.9 gives
G* € S, (XN B)8.8E (X", E)
with suitable asymptotic types P and @Q, i. e., G® has a representation
G*(u) =) Nj(u,3;), -2 2 5
Jj=1

n
2

for u € C§°(Ry.,C*(X, E)) with (A;) € £* and sequences (3;) € S, (X", E) and

(sj) € Sé (X", E) tending to zero. In particular, we have
(G*u)(r) = /k(r, ru(r') dr'
Ry

for u € L*(Ry,L*(X,E)) = K034 X" E)y with a Volterra integral kernel
ke C(Ry xRy, L(L?(X, E))) that satisfies

sup{g(r)g(r)I[k(r, ")l ez (x,m)); 77" € Ry} < o0.
Here g € C(R}) is a function of the form

g(r) =w(r)r® + (1 — w(r)r
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with a cut-off function w € C§°(R4) near r = 0 and a sufficiently small 0 < £ < &,

and thus we have
1
/ — dr < oo.
g(r)

Ry
Consequently, we may apply Theorem 1.3.6 to the Volterra integral operator G2 €
L(L*(R,,L*(X,E))) and conclude that G? is quasinilpotent. Moreover, we may
write (1 — G2)_1 = 1 — G with a Volterra integral operator G;. By a) G, €
Cav (X", (%,0); E) is a Volterra Green operator, and we have

(1-G*)7" =1-Gy € LK FH(XN E)y)

for all s,¢,6 € R. This finishes the proof for the weight v = 2.

Next consider the case of general weights v € R. We may write
1+G=r""31+G)r =% ¢ L(KEDTEHXN, E)s)

for s,t,0 € R, where G := r~(0=2)Gr"~% is a Volterra Green operator in

Cav(X", (%,0); E). From the first part of the proof we conclude that 1 + G

is invertible, and we have (1 + é)_l = 1+ Gy with a Volterra Green op-

erator G, € Ca,v(X",(%,0);E). Thus also 1 4+ G is invertible with inverse

(1+ G)_1 = 1+ Gq, where Gy := r"~2Gr~("=%) is a Volterra Green opera-
tor in the space Cq,v (X", (7v,©); E). This completes the proof of the theorem.
O

6.1.7 Corollary. Let G € Cg,v(X",(7,0);E). Then 1 + G restricts to an iso-
morphism

1+ G HEDT(0, 7o) x X, E) — HED (0,70 x X, E)

for all s,t € R and every ro € Ry, and we have (1 + G)_1 = 1+ Gy with

Gl € CG,V(X/\a (77 ®))E)

6.2 The algebra of conormal operators

Operators that generate asymptotics

6.2.1 Definition. Let 71,72 € R, and let © = (6, 0] with —co < 6 < 0. We define
spaces of (Volterra) operators that generate asymptotics as follows:

a) An operator G belongs to 0579;15()(/\, (71,72,0); E,F) for u,0 € R, if the fol-
lowing conditions are fulfilled:
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e G and the formal adjoint G* with respect to the r—% L?-inner product are
well-defined as continuous operators
G - K(s’t)”“?e(X/\,E)a — K(s_“’t)”Y?;e(X/\,F)(;,Q,
G* - /C(Syt)ﬁ“rz;f(X/\,F)a — ,C(sfuﬂf)y*vul(X/\,F)é_Q

for all s,t,6 € R.

e There exist asymptotic types P € AS((’72,@),C°°(X, F)) and Q €
As((—m,9),C>(X, E)) such that

]C(s,t)771;l(X/\7 E)5 — ]C(Pf—u,t)v’YZ;Z(X/\7 F)(jfg,
ST B) — SE(XN ),

o K(s,t),—’vz;é(X/\’F)é s Kgf”’t)ﬁ”’“l(X/\,E)(;_Q,
S™12(XMNF) — Sé” (XM E),
for all s,t,6 € R.

b) Let Cé’f{}e(X/\,(%,w,@);E,F) denote the subspace of all operators G €
Cg’g;e (X", (m1,72,0); E, F) such that one of the following equivalent condi-
tions is fulfilled:

e (7 restricts to continuous operators
G HED(0, ro) x X, E) — HETHD2((0, 1] x X, F)

for every (some) s,t € R and every ro € Ry.

e For every 19 € Ry we have (Gu)(r) = 0 for r > ro for all u €
C (R4, C®(X, E)) such that u(r) = 0 for r > ro.

6.2.2 Remark. a) Definition 6.2.1 implies that the spaces of (Volterra) operators
that generate asymptotics form (bi-)graded operator algebras, i. e., if H is
another vector bundle then the composition induces a well-defined mapping

Ol (XN, (2,73, ©):F, H) X OBl (X1, (71,72, ©); E, F)

— Céz:ﬁ‘bl)’9+g ;Z(XAa (717737@);E7H)'

Moreover, taking formal adjoints with respect to the 7~ % L?-inner product in-
duces a well-defined mapping

* 1 Céyg;l(XAa (717727@);E7F) — 0579;15()(/\, (_727_7179);}7; E);

i. e., the operators that generate asymptotics form a (bi-)graded x-algebra.
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b) For u,p € R we denote

Cll (X (11,72, 0) B, F) i= () CLES(XM, (1,72, 0); E, F),

o'€R

Céivy (X (11,72, 0), B, F) = ﬂ C” 79’ N (V1,72,0); E, F),
u'ER

CG(,V)(XA7(717727@);E7F) = ﬂ Cg(ﬁ/;)[(XAa(7177279);E7F)'
w',0'€R

The elements of the latter of these spaces are also called (Volterra) Green
operators associated with the (double) weight datum (y1,72, ©). Indeed, if v, =
Y2 we have

Covy(X", (11,72,0); E, F) = Cav) (X", (11,0); E, F)
according to Definition 6.1.2.

c) The (Volterra) Green operators form a two-sided ideal in the algebra of
(Volterra) operators that generate asymptotics.

d) If v1 = vy we simplify the notations by substituting (y1,©) for (y1,72,9).

Calculus of conormal symbols

6.2.3 Definition. a) Let (v,(—N,0]) be a weight datum, N € N. For p € R
define the space of (classical) conormal symbols with respect to the weight
datum (7, (=N, 0]) as

yHit

M(cl)(X (v,(=N,0]); £, F) == {(ho, - .. , hn—1);

HA
hj € Mp (X5 B, F), mcPBoNLag . =0}

(6.2.i)

The subspace of (classical) Volterra conormal symbols with respect to the
weight datum (v, (=N, 0]) is defined as

2NMZV(CZ)(‘XV (77(_N7 0])’E7F) = {(hOJ' . 7hN*1);

it (6.2.ii)
hj € My'p oy (X5 Hagr 53 B, F)}
We define the spaces of order —oo as
Sar(X, (v, (=N, 0]); B, F) := (] 4 (X, (7, (=N, 0]); E, F),
neR
Sarv (X, (0, (=N, 00); B, F) := [ Shi (X, (7, (=N, 0)); E, F).

neER
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These spaces do not depend on the anisotropy ¢ € N, and they consist of all
N-tuples of meromorphic (Volterra) Mellin symbols of order —oco with the same
conditions on the Mellin asymptotic types as above.

Let G be another vector bundle over X. We define the Mellin translation prod-
uct

#: SH(X, (3, (=N, 0)); F, G)x B, (X, (7, (=N, 0)); E, F)
— SN (7, (=N, 0)); B, G),
(90 -+ s gn—1)F(ho, - hin—1) = (hoy.. . hy_y), (62D
b= 3 (To4g,)(hy),

p+q=k
where T denotes the translation operator for functions in the complex plane,
e., ((T-q9p)(hg)) (2) = gp(z = D) hy(2).
We define a x-operation via
%2 SHE(X, (7, (=N, 0]); B, F) — 57 (X, (=7, (=N, 0)); F, ),
(ho, ... shn_1)* := (ho,... ,hn_1), (6.2.iv)
hi(2) i= (hi(n +1 -k —%)",

where (*) denotes the formal adjoint with respect to the L2-inner product on
the manifold.

6.2.4 Theorem. a) The spaces of (classical) conormal symbols form a graded x-

algebra with componentwise linear operations, the Mellin translation product
(6.2.iii), and the x-operation (6.2.iv).

The conormal symbols of order —oo form a syminetric two-sided ideal.
More precisely, this means the following: Let E, F,G,H € Vect(X) be complex
vector bundles with corresponding data fixed according to Notation 3.1.1.
i) E%(d) (X, (v,(=N,0]); E, F) is a vector space with componentwise addi-
tion and scalar multiplication.

ii) The Mellin translation product induces an associative product, i. e. it is
well-defined as a bilinear mapping

# S0

it (X, (7, (=N, 0]); FL G)xS45E L (X, (7, (=N, 01); B, F)

Eﬁ;—(gl)e(Xa (77 (_Na 0])) EaG)a

and we have (a#b)#c = a#(b#c) € D223t (X (4 (=N, 0)); E, H) for

M(cl)
a € Eﬁ;&cl)(Xa (77(_N70])5G7H) b € Eﬁ;&cl)(Xa (77(_N70])5F7G), and

ce El’](}&cl)(Xa (77 (_N; 0]),E,F)
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iii) The *-operation is well-defined as an antilinear mapping
# 1 SR (7, (=N, 0D B, F) — S5 (X, (=7, (=N, 0)); F B),

and we have (a#b)* = b*#a*, (a*)* = a for conormal symbols a €

Eﬁl(cl) (X, (’77 (_Na 0]): F: G) and b € ENM;(lcl) (X, (’77 (_Na 0]): E; F)

b) The spaces of (classical) Volterra conormal symbols form a graded subalgebra,
i. e., they share the properties i) and ii) listed in a) with ¥ ;. replaced by
Yar,v(e)- Note that they are not closed with respect to the x-operation.

The Volterra conormal symbols of order —oo form a two-sided ideal.

Proof. These assertions follow via simple algebraic calculations from Theorem
5.1.8 and Theorem 5.2.4. O

6.2.5 Definition. a) a = (ho,... ,hn-1) € 4, (X, (3, (=N,0]); E, F) is
called elliptic if

e hy is elliptic as an element of M;ﬁg‘éd) (X; E,F) in the sense of Definition
5.1.12,

e there exists sp € R such that ho(z) : H(X,E) — H* *(X,F) is
bijective for all z € F"T“*”r'

b) An element a = (ho,... ,hn_1) € Eﬁzt/;;:v(cl)(X: (v,(=N,0]); E, F) is called
parabolic if

e hg is parabolic as an element of M"jjf;o(cl) (X;]HL%JV; E,F) in the sense
of Definition 5.2.7,

e there exists sp € R such that ho(z) : H(X,E) — H* *(X,F) is
bijective for all z € Hw%_,y.

6.2.6 Notation. Let E be any vector bundle over X. For the moment, we prefer
to denote the unit with respect to the Mellin translation product as

1:=(1,0,...,0) € B4F ) (X, (v, (=N, 0]); B).

6.2.7 Theorem. a) Leta € E"Af(cl) (X, (v,(=N,0]); B, F). Then the following are

equivalent:
i) a is elliptic in the sense of Definition 6.2.5.
ii) a is invertible within the algebra of conormal symbols, i. e. there exists

b € E]T{LE,:[) (Xa (77 (_Na 0])) F, E) such that

aftb =1 € E(])\;f(cl)(Xa (77 (_N7 0]);F)7

b#a =1€ E(I)\f(cl)(X’ (77 (_Na 0])’E)
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b) Let a € Eﬂ%V(CZ) (X, (v,(=N,0]); E, F). Then the following are equivalent:

i) a is parabolic in the sense of Definition 6.2.5.

ii) a is invertible within the algebra of Volterra conormal symbols, i. e. there

exists b € E&“{f(d) (X, (v, (=N,0]); F, E) such that

a#b =1c€c E(J)\ZV(CZ)(X’ (77 (_Na 0])’F)7

b#a =1c Z(J)\ZV(CZ) (X7 (77 (_N7 0]); E)

Proof. By Theorem 5.1.14 and Theorem 5.2.8 the conditions ii) in a) and b) are
sufficient for the ellipticity (parabolicity) of a in view of the definition of the Mellin
translation product.

It remains to show the necessity. Let a = (ho,... ,hny—1). We define the compo-
nents of b = (go,... ,gn—1) by induction as follows:

By Theorem 5.1.14 and Theorem 5.2.8 a is elliptic, respectively parabolic, if and
only if there exists gy € Méo”(;fl) (X;F,E), WCQOQF"T“—W = 0, respectively go €
MHe (X;]HL%JV;F, E), such that hogo = 1 and goho = 1. Assume we have

V,Qol(cl)
already constructed go, ... ,gr_1 for some k < N. Define

—p;t .
{MQk (X FLE)

— 3l .
My G, (o (X Hogs

gk = —(T—kgo) Z (quhp)gq €

pta=k
q<k

77+k;F7 E):

which is well-defined in view of Theorem 5.1.8 and Theorem 5.2.4. By construction
we at once have a#b = 1, and a short calculation reveals b#a = 1. This finishes
the proof of the theorem. O

6.2.8 Corollary. Let a € Xy (,v)(X, (v, (=N, 0]); E), where a = (ho,... ,hn_1).
Then the following are equivalent:

a) 1+ a is elliptic (parabolic).

b) There exists sg € R such that 1 + ho(z) € L(H®*° (X, E)) is bijective for all
z € FnT-I—l_,Y, respectively z € Hw%_,y.
¢) 1+ a is invertible within E(J)\f(’v) (X, (v, (=N,0]); E) with respect to the Mellin
translation product, and the inverse is given as (1 +a) ! = 1+ b with b €

2M(,V) (X, (’77 (_Na 0]): E)
Proof. Due to Theorem 6.2.7 we just have to prove that the inverse of 1 + a in
c) is of the asserted form. But this follows from the identity
(1+a)t=1-a+a#(1+a) ta

Note that b := —a + a#(1 + a) 'a € Ty v)(X, (7, (=N,0]); E) since we handle
with a two-sided ideal. O
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6.2.9 Definition. For yu, o € R the set Cf\}’i@ (el) (X", (v, (=N,0]); E, F) of (clas-
sical) conormal operators with respect to the weight datum (v, (—=N,0]), N € N,

consists of all operators A : ST(X", E) — S7(X", F) of the form

N—1
A= w;iriopir(hj)o; + G (6.2.v)
j=0

with an operator G € C4% (X", (v, (=N, 0]); B, F) and

i) cut-off functions w;,@; € C§°(Ry) near r = 0,
i) y=—3-Jj<%u<7-3

iii) meromorphic Mellin symbols h; € Ml‘;’é ) (X; E, F) such that mc P; nry ., =
0.

The subset C]’\‘/‘,f"_é V(el) (X", (v, (=N,0]); E, F) of (classical) Volterra conormal op-

erators with respect to the weight datum (v, (—NV, 0]) consists of all those operators
A having a representation as in (6.2.v) with G € Cg:‘{}e(X/\, (v, (=N,0]); E, F), and

hi € M, o (XGHy B F).

Note that the meromorphic Mellin symbols (hg,-..,hn-1) of a conormal op-

erator A € CK/I’+’0 V(e ))(X/\,('y,(—N,O]);E,F) give rise to an element in
;¢

EM( V(cl))(X’( 7( N,O]),E,F)

6.2.10 Remark. The elements of cmg(d) (X", (v, (=N,0]); E, F) are indeed

well-defined as continuous operators S7 (X", E) — S7(X", F). In fact, every
summand is continuous in

wirlopy (hj)@; : W% (X7, B) — ST (XN, F),
and we have S7(X", E) — 8% T2 (XN E) and S"t:2H(XN F) — S7(X", F).

Moreover, an operator A € C]‘\L,}i’G V(el) (X", (v, (=N, 0]); E, F) restricts to a con-
tinuous operator

A 7;*%70((077'0)7000()(7 E)) — 7;*%70((077'0)7000()(7 F))

for every o € R;.. This follows from Proposition 5.3.5 and Definition 6.2.1.



On the inverse of parabolic PDE in infinite space-time 163

6.2.11 Proposition. Let h € Mg”l(X;E,F), and let meRNLnps = (). Then

OPXZ% (h) extends by continuity to an operator
Op’]gi (h) : H(s,t),’Y;K(X/\7 E) — H(s—u,t),fy;e(X/\,F)

for every s,t € R.

Let ®© = (—60,0], where —o0o < 6 < 0. For every asymptotic type P €
As((y @) C’°°(X E)) there exists an asymptotic type @ € As((vy,0),C>®(X, F))
such that op 2 (h) restricts to continuous operators

s,t),7;€ s—p,t), 73
’Y—%(h) . HED 0 (X/\aE) — H(Q S (XA:F):
7;,%7P(X/\,E) —>T7%7 (X/\,F)

Proof. The first assertion follows from Theorem 5.3.6. Due to Corollary 5.1.11 we
have M&4(X; B, F) = MEY(X; E, F) + Mz>(X; E, F). Consequently, the proof
of the second assertion reduces to consider the cases h € MS;Z(X; E,F) and h €
Mg (X;E,F).

The characterization of the Mellin image of 7, = p(X", E) from Theorem 4.2.16
shows that h acts as a multiplier in the spaces

h: Mooy (Tomg p(X", B)) — Mooy (Tomy (X7, F))

with a certain asymptotic type ) both in the cases h € MO;Z(X; E,F) and h €
Mg>™(X;E,F), i e
opy 2 (h) 1 ooz (X", B) — Tomg (X, F)
as asserted.
By Theorem 4.2.16 we have H\3) (XA, E) = HE D V(XA E)+ T s p(X1, B).
Thus the remaining proof reduces to consider the case of the empty asymptotic
type,i. e., P = 0. Let h € M(’;;Z(X;E,F), and let
R*(r) € L™ (X; R B),
Rei(r) € L MHXG R F)
be parameter-dependent reductions of orders from Theorem 3.1.12. Then we have

Re#(r)h(B +iT) = (RS_”(T)h(ﬂ HiNRT() R,

~ ~

€ O (R, S° (R, H' (X, E), H' (X, F)))

and thus h acts as a multiplier in the spaces

b Mooy (HE™ (XN, B)) — Mooy (Hg ™)X, F))
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due to Theorem 4.2.16.

Now let h € M (X;E,F), and let x € C*(C) be an arbitrary mcR-excision
function. Then x(8 +it)h(B +it) € C°(Rs,S(R;, L *°(X; E, F))). Hence The-
orem 4.2.16 implies that h acts as a multiplier in the spaces

b Mooy (HE (XN B) — Mooy (K (X, F))

with a certain asymptotic type @ such that 7c@Q = ncR. Summing up, we have
shown that

n

opyy 2 (h) : HGD XN, B) — HG XA, F)

both in the cases h € Mg;l(X;E,F) and h € Mz°°(X;E,F). This finishes the
proof of the proposition. O

6.2.12 Theorem. Let A € C“’ig(cl) (X", (v,(=N,0]); E, F).

a) A extends by continuity to an operator
A ]C(Svt),’v;f(X/\,E)J N ]C(s—u,t)fr;f(X/\,F)é_Q

for all s,t,6 € R.

Moreover, for every asymptotic type P € As((vy,(—N,0]),C*®(X, E)) there
exists an asymptotic type @ € As((y, (=N, 0]),C>®(X, F)) such that A restricts
to continuous operators

RSO, B)y — KT XN P,
| SHXN, E) — SL(XA,F)
for all s,t,6 € R.

Let A € C]’\}’i;éy(X/\, (7, (=N,0]); E, F). Then A restricts for every ry € Ry
to continuous operators

A HYDTE(0,ro]x X, B) — HY D7 ((0,70]x X, F)
for all s,t € R.

b) The formal adjoint A* with respect to the r—% L*-inner product belongs to
Chi Geny (X", (=7, (=N, 0)); F, E). More precisely, let
N—
A= w;r! opyy(hj)a; + G
7=0

>_a
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be a representation of A from (6.2.v). Then
N-1 o
A=Y Gropy T (e + 6

=0
hy(2) == hyn+1-j -2 € ML, (X; F, E),

is a representation of A* in the sense of (6.2.v), where *) denotes the formal
adjoint with respect to the L?-inner product on the manifold.
Proof. From Theorem 5.3.6 we obtain that every summand
wjrjopy\,’}(hj)wj :]C(s,t)rerr%;f(XA;E)é N ;C(sfmt)wﬁgﬂ;f(XA,F)oo
in the representation of A from (6.2.v) is continuous for all s,¢,d € R, and we have
;C(SJ),WZ(XA,E)& N ’C(S7t),’7j+%;l(X/\,E)6’
]C(s—u,t)m+§+j;€(X/\7F)oo N K(S_”’t)”“e(XA,F)OO.

This proves the first assertion in a). The continuity of A in the subspaces with
asymptoticslfollows from Proposition 6.2.11.
If Ae Cyfiayv (XN, (7, (=N,0)); B, F), then

A HEDTE(0, ro) x X, B) — ST (0, ro] x X, F)
is continuous due to Proposition 5.3.5 and Theorem 5.3.6, respectively.
Let us now prove b). Using Theorem 5.3.3 and Proposition 2.6.4 we may write
(wiropyy(hj)@)" = Djopa” " (hy(n + 1 = 2)™)rie;
= agrlopy” " ().
This finishes the proof of the theorem. O

6.2.13 Lemma. Let h € M&Y(X;E,F), and let w,0 € C&(Ry) be cut-off
functions. Moreover, let v1,72 € R, 71 < 72, such that chﬂl“%f = () and
chﬂl—‘%_ =0.

Then the operator

71
V2

. . n n
wopy ()@ — wopyi (W)@ € Ca (X7, (12 + 5,7 + 5, (=00, 0]); E, F),

and it is finite-dimensional. If WCPHF(% = () then the operator is identi-

—72,5—71)
cally zero.
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Proof. Using the residue theorem we may write

(opX}[(h)u) (r) — (op}(f,(h)u) (r) = Z resy (r_zh(z)(/\/lu)(z))

pemcPNI'y
for u € C§°(Ry,C* (X, E)), where I := (3 — 72, % — 7). Let (p,m,L) € P such
that p € mcPNI'y, and set

Up = {3 cpur 108 (r); ey € (LIC®(X, E))) € C=(X, F)}.
k=0

Then we have res, (r~*h(z)(Mu)(z)) € Up, i. e.

(wop} (h)@ — wop)2(h)@) (CS° (R4, C°(X, E))) Cw Z U, =EQ(X", F)
pEmcPNI'y

with the induced asymptotic type Q@ € As((v1 + £, (—00,0]), C>(X, F)). Since
C°(Ry,C®(X,E)) is dense in K12 +3¢(XN E)s for all s,t,6 € R, and
EQ(XN, F) is finite-dimensional, we conclude

wop ik (h)@ — wop)z (h)@ : KED2H 8 XA B)s — Eo(XN, F).
Theorem 5.3.3 implies
(wop]} (h)& — wop)2(h)@) " =Gopy,t (M@ — Dopyt " (h)w

with A(z) := h(n + 1 —2)®), where *) denotes the formal adjoint with respect to
the L2-inner product on the manifold, and thus we obtain with the same reasoning
as above

(wopj (h)& — wop}(j(h)tb)* KNS XA Yy — EQ(X/\,E)

for all s,¢,6 € R with an asymptotic type Q € As((—yz -4, (=00,0]),C>(X, E))
(I

6.2.14 Remark. In the notation from Lemma 6.2.13 assume furthermore that
Yy—5—73<m,y2 <v— % for somey € R and j € Ny. Then we conclude that

wrjop}(}[(h)@ — wrjop}y\f[(h)@ € Ca (X", (v,(—00,0]); E, F),

and it is finite-dimensional. If WCPHF(%JV
cally zero.

slom) = (), then the operator is identi-

6.2.15 Lemma. Letw,® € C§°(Ry) be cut-off functions, and let ¢, € C°(Ry.).
Moreover, let v — 5 —j < v <v—%,J € No, and h € Ml’i;e(X;E,F) such
that rc PNy, = 0, respectively h € M“jjf;(X; Hy s E,F). Then the following
holds:

Vi
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a) wrioply(h)e, ¢riop);(h)w, vriopy(h)e € CLL L) (X7, (7, (=00,0)); B, F),

b) If j > 0 then wriop);(h)® € C“(ev)( , (v, (=4,0]); E, F).

Proof. Let © € C§°(Ry) be a cut-off function such that &y = ¢, and write
wriopyy(h)p = (wriop)i(h)D)e.
For every s,t,6 € R we have

_{S’Y(XA,E) —>3”f ](XA E),

K(sﬂf),v;l(X/\’E) — ]CES_Z)’?/OJ] (X/\,E)oo:

o 3’“2 (XN, E) — SL(XNF),
wrjop;(/}(h)@ . { s?ﬁo,O] [CH4 @ — HA
K5 XA B) e — KT (XA, F)o

with a certain asymptotic type @ € As((% (—00,0]),C>*(X, F)) due to Proposi-
tion 6.2.11, i. e.

STXN E) — SH(XNF),

LUT']OpM(h)SO : {K(s,t)7'y;l(X/\ E)§ — KS_N’t)’FY;Z(XA F)oo

Moreover, we have

SN E) — 8], (XN F),

KED7E( XN, E)y — K0T (XN, F)oo

¢riopy;(h)w, ¢riopy(h)p : {

Theorem 6.2.12 implies

(wriopjs(h)p)" =riop, " " (),
(priopyr(h)w)™ =wriopy " ()3,
(vriopy;(h)e)" =riopy " ()3,

with A(z) = h(n +1 —j — %)™, and from the already proven result we ﬁnally

obtain assertion a). Note that if h € M{,‘f;(X Hy_.; E,F) then wriopyr(h)e,
Yriop,;(h)w and ¢riopy; (k)¢ are Volterra operators that generate asymptotics
since they fulfill the defining mapping property in Definition 6.2.1, which follows

from Proposition 5.3.5.

Let us now prove b). Due to Lemma 6.2.13 we may write

wrlopyy(h)& = wrjop}(,f_%_s(h)d) +G



168 T. Krainer and B.-W. Schulze

with a Green operator G € Cq (X", (7, (—00,0]); E, F) which is independent of
e > 0, provided that € > 0 is sufficiently small. Consequently, the operator
wriop,i (k)& — G is continuous in the spaces

STXMNE) — (ST (XNF) =S, (X, F),
e>0
KD XN, B)y — [ K075 X0, F)oo = K57 (X ),
e>0

which shows that there is an asymptotic type @ € As((y, (—j,0]), C*®(X, F)) such
that
$(XNE) = S F)

J ~ .
wr OpM(h)W : {K(s,t),’y;l(X/\,E)a N ’C s—p,t),73l (XAaF)OO

for all s,t,d € R. From Theorem 6.2.12 we conclude that the same arguments apply
to the formal adjoint operator. If h € M{jjf;(X; Hy_. ; E, F) then wriop)}(h)@ is a
Volterra operator that generates asymptotics since it fulfills the defining mapping
property in Definition 6.2.1. |

6.2.16 Lemma. Let w;,@;,0;,0; € C§° (_ ) be cut-off functions. Moreover, let

vj,%; € R such that vy — & — j <v;,%; <vy— 1%, and let h; € M”’ (X;E,F) with
chjﬁF%_w = chjﬂF%_%_ = (). Then

N-1 ' N-1 o

> wirlopiy(hy)a; — 3 @yrlopyy (hy); € CEY (XM, (v, (=00, 0)); E, F).

Jj=0 j=0

il . . il . .

Ifhy € M% (X;Hy B, F)NMES (X3 Hy s 5 B, F) then

N—1 ' N—1

wirloply (hj)a; — Y @irlopyy (hy)a; € CHL (XM, (7, (—00,00); E, F).
7=0 j=0

Proof. We have w; = ©; +v; and ©; = ©; + ¢, with ¢, ¢; € C§°(Ry ). Thus the
assertion follows from Lemma 6.2.13 and Lemma 6.2.15. O

6.2.17 Lemma. Let H be another vector bundle over X, and let w,&;,w,w €

Cs°(Ry) be cut-off functions. Moreover, let 1,72 € R such that vy — 2 —k < 1 <
Y= andy—2—j <4y <y—1 andlet g € Mj_ifcl)(X;F, H),he Mg(c‘;)(X E,F)

with chﬁr%_,ﬂ =0, WcQﬁF%_W = (). Then

(wrk op); (g)d)) (d}rj op); (h)d)) = rkti opj(,[((T_jg)h)w +G
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with an operator G € Cgﬂ‘l;e(X/\, (7,(—=00,0]); E,H), and vy — 2 —k —j <7 <
v — 5. Here T' denotes the translation operator for functions in the complex plane,
i e
. "y
((T_j9)h) (2) = gl= - f)h(=) € METH (X B, H).
14 . . "¢ ) )

If even g € My, (X;Hy  ;FH) and h € M{5  (X;Hy B, F) we
may also choose ¥ € R such that (T_jg)h € MU+ ;Z(X;]HLZ ;E,H), and

V,R(cl) 5=
G € CEVHXN, (7, (—00,0)); B, H).

Proof. We may write
(wrkop}i(9)@) (wriop}z(h)w) = '+ (wopih ™ (T—;9)@) (Dop}2 (h)w).

Choose 71 — j < ¥ < 72 such that no singularity of T_;g and h lies on the weight
line ['1 5. From Lemma 6.2.13 we conclude

(wopjy Y (T;9)@) = (wopy, (T—-;9)@) + Gi,
(&)opXj(h)d)) = (d)op?v[(h)w) + Gs,
with Green operators

~ n . n
G1 € C(;(XA,(’)/—l— 57'71 -J+ 57(_0070]);F7H)7

G € Co(X7, (12 + 5,7+ 5, (=00, 0]); B, F).

Using Proposition 6.2.11 we obtain the following:

e GG, € CG(XA7 (72 + %771 -Jj+ %7 (—O0,0]);E,H),

o (wop},(T-j9)@)G2 € Ca(X", (12 + 5,7 + 5, (—00, 0); E, H),

o Gi(@opy,(M@) € Ca(X™, (7 + 5,m — j + 5, (—00,0]); E, H),
and consequently

ar) (wop}(}fj (T_;9)@) (@op)2 (h)w) = r*+ (wopj’w(T,jg)aD) (&)opz/f(h)d))

modulo Ci (X", (7, (—00,0]); E, H). We may write

(wr* T opy, (T-j9)@) (w0, (M)w) = (wr* T op}, (T-j9)h)o)

— (wrk¥top] (T j9)(1 — @@)opy, (A)w) .

v

=G
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According to Proposition 6.2.11 we have for s,t,d € R

é :K(s,t);y;((X/\,E)& N K(s,t),’y—i—%;Z(X/\,E)d — H(s_wvt)’:y—‘r%;e(XA,F)
(0P, (h)@)
= RN E) T T (e
(1-ew) ’ (0P (T-;9))

(s—p—p't),7:l A
(wﬂf) ICQ (X 7H)OO

with certain asymptotic types @, Q
Analogously, we obtain G : SY(X",E) —» S%(X/\,H), and the same ar-

guments also apply to the formal adjoint operator G*, i. e., we have G €
CETHE(XN, (7, (—00,0)); E, H). This implies the first assertion.

In case of Volterra operators we first observe that due to Lemma 6.2.13 we may
choose the weight 7 := v — § — k — j, which produces a Green operator as error
term, i. e.

G i= (wrkop}} (9)@) (@rfop} (@) —wrkHop) 2 T (T_9)h)e

€ CEMH (XN, (3, (=00, 0)); B, H).

We have (T_jg)h € M“ﬁ{g;l‘; (X;Hn%7v+k+j;E,H), and consequently G fulfills
the defining mapping property for Volterra operators that generate asymptotics
in Definition 6.2.1, which follows from Proposition 5.3.5. This proves the lemma.

O

6.2.18 Proposition. Let w;,@; € C5°(R4) be cut-off functions near r = 0. More-
over, let h; € M*(X; E, F) such that mcP;ATy
v — %. Assume that

N-1
wirlopyy(h;)a; : ST(XM, E) — SH(XM F)
=0

<

with an asymptotic type Q € As((v,(8,0]),C>®(X, F)), where —oo < 6 < —(N —
1). Then hj =0 for j =0,... ,N — 1.

Proof. The proof follows by induction over NV € N: Let N = 1. From Proposition
6.2.11 we conclude

(X/\ E) — 77‘(7%,(700,0](XA7F)7
(XAJE) — ﬁ—%,Q(X/\JF)

3

(1 —wo)opyy * (ho) : T
: Ty -

wooppr (o) (1 — @)

[NE)
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with an asymptotic type Q € As((% (—00,0]),C>*(X, F)) Using the assumption
we obtain .
oppr 2 (ho) : Ty (X" E) — Toon r(X7, F)

with an asymptotic type R € As((v, (6,0]),C*(X, F)), and by possibly passing
to a smaller weight interval (6,0] we may assume that R = (#,0] is the empty
asymptotic type. Consequently, hy acts as a multiplier in the spaces

ho : S(FnTH__Y,COO(X, E)) — MV*% (TY—%,(ﬁ,O](X/\JF))'

Let ¢ € CSO(FHTH_,Y) such that ¢ = 0 for |Im(z)] > 2, and ¢ = 1 for
[Im(z)] < 1. Hence ¢(z)(ho(z)u) = 0 for z € [api_ such that Im(z)| > 2,
for all u € C*°(X, E). From Theorem 4.2.16 and uniqueness of analytic continu-
ation we obtain ¢(z)(ho(z)u) = 0 for all z € [AFEER. and all uw € C*°(X, E), and
thus ho(z) = 0 for all z € ['ngi_ such that [Im(z)| < 1. By the meromorphy of
ho we conclude hg = 0 everywhere on C. This finishes the proof in the case NV = 1.

Assume we have already proven the proposition for some N € N, and
ijrjopM @j : ST(XN, E) — SH(XN, F)

with an asymptotic type @ € As((v, (9 0]),C*®(X, F)), where —oo < 6 < —N.

By Lemma 6.2.15 the operator wyrNop}y (hy)an € C4Y(X7, (v, (=N, 0)); E, F),
which shows that

ijrjopM j :S’Y(XA,E)—>S%(X/\,F)

with an asymptotic type Q € As(('y, (=N,0]),C>(X, F))
Hence hj =0 for j =0,... ,N — 1 by induction, i. e.

wnrNoply (hn)on : ST(XMN E) — S, (XA F),
and consequently

wnoplY (hn)on = 8Y(XM, E) — SN (XN, F)
with an asymptotic type R € As(('y — N, (6,0]),C>~(X, F))

Choose v — § <4 <7y —4§ — N —6 such that r¢PyNI'y_5 = (). Due to Lemma,
6.2.13 we may write

(.AJNOD?VIULN)CDN = wNop;(}[" (hn)on + G
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with a Green operator G € Cq(X", (¥ + 2,7n + %, (—00,0]); E, F). This shows
wroply (hy)on = STHE (XN E) — SHNV (XN, F)NSTHE (XA, F)
with an asymptotic type R’ € As((y — N, (6,0]),C>(X, F)), while

— Ln +2
SN (XN, F)NSTHE (XN F) = S:oo] (X", F)

with some —oo < 6 < 0. Hence the first part of the proof implies hx = 0, and by
induction the proposition is proved. |

6.2.19 Remark. Let A € C};%7, ) (X7, (7, (=N,0]); E, F). From Lemma 6.2.16

we obtain that in the representation (6.2.v) any change of the cut-off functions

wj,w; as well as of the weights v — ¢ — j < v; < v — § results in an error in

Cé;Z(XA, (7, (=00,0]); E, F) only.

Consequently, the following simpler representation of conormal operators is valid:
An operator A : §7(X", E) — S7(X”",F) is a conormal operator in the space
Chi% Geny (X", (v, (=N, 0)); B, F) if and only if

N-1
A= wriopyy(hj)w + G (6.2.vi)
j=0

with an operator G € Cé’Q;Z(X/\, (v, (=N,0]); E, F), and
i) a cut-off function w € C§°(R4) near r = 0,

i) y—3—-j<v<v—73,

iii) meromorphic Mellin symbols h; € Mp’ icl) (X; E, F) such that mc P; nry ., =
0.

Moreover, A : S7(X",E) — S7(X",F) is a Volterra conormal operator in the
0

space OMiG V(cl)(XA,( ,(=N,0]); E, F) if and only if
N—1
A= wr h jw+G (6.2.vii)
7=0

with a Volterra operator G' € C4%5 (X", (v, (=N, 0]); E, F), and

WV

i) a cut-off function w € C§°(R4) near r = 0,
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ii) meromorphic Volterra Mellin symbols h; € M“j;éj(cl) (X; Hag B, F).

=7+i’
6.2.20 Definition. We define the conormal symbol mapping

OM Cﬂié@v@[)) (X/\, (’77 (_Na 0]): E; F) — Eﬂ?v(c[))(){: (77 (_N7 0]); E: F)

as follows:
Let A € C]’\‘/[’JF’G( V(cl))( ,(7,(=N,0]); E, F), and let
N-1
A= w;r? opM o+ G
j=0

be a representation according to (6.2.v). Then ops(A) is defined as
/0 —(N-1) o
om(A) = (op(A),... o (A)) := (ho,--- ,hn—1). (6.2.viii)

The component U]T/‘,k (A) is called the conormal symbol of order —k of the operator
A. The conormal symbol ¢9,(A4) of order 0 is also called the conormal symbol
simply.

6.2.21 Theorem. a) CM+’G V(Cl))( , (v, (=N,0]); E, F) is a linear space.

b) The conormal symbol mapping is well-defined, and provides a linear surjection

. gt (X", (7, (=N, 0)); E, F) — s

M+G(,V(cl)) (7V(c[))(X7 (77(_N7 0]))E7F)

with kernel

ker(oa) = C&5 e

GV )(XA( ,(=N,0]); B, F).

¢) The quotient spaces

QUOtﬂig( V(cl))(XA: (’7: (_N: 0])5 E, F) =
C]L\}i_é( Vel)) (X/\a (77 (_N7 0])5 E: F)/Cg’(%‘f) (XAa (77 (_Na 0])) E: F)

do not depend on ¢ € R, and for p' > p the embedding

QUOtM+G( V(el)) (X7, (7, (=N, 0)); B, F) <
Quothy’ ¢ 4y (X7 (7, (=N, 0)); E, F)

is well-defined.
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d) Taking the formal adjoint * with respect to the r~* L*-inner product induces
antilinear mappings

Ol Gien (X7 (0, (=N, 01); B, F) — 420, ) (X7, (=7, (=N, 0]); F, E),

Quothi’, ¢y (X", (7, (=N, 0)); B, F) — Quothi’, ;) (X", (=7, (=N, 0]); F, E).

For A € c;;%(d) (X", (7, (=N,0)); E, F) we have oar(A*) = (oar(A))" with

the x-operation (6.2.iv).

e) Let H be another vector bundle over X. The composition as operators on
S7(XN, E) is well-defined in the spaces

Cﬂiﬁé@v(cl))(){/\a (’77 (_Na 0]): F: H) Xcﬂfci*?v(cl))(X/\a (’77 (—N, 0]): E; F)

— CRHGEV S (X7 (7, (=N, 0)); E, H).

For

A ecﬂigﬁV(cl))(X/\: (77 (_N7 0])) F: H):

B ecjl\}f(;:l;7v(cl))(X/\a (77 (_Na 0])) E: F)

we have op(AB) = op(A)#oym(B) with the Mellin translation product
(6.2.iii).

In particular,

CEEN (XN, (7, (=N, 0); F, H)x Clhy 2 ) (XD, (7, (=N, 0]); B, F)

— CEIET XN, (3, (=N, 0]); B, H),
Chi vy (XN (7, (=N, 0)); F, H)xCl 83 (XM, (7, (=N, 0)); B, F)

— CEIET XN, (3, (=N, 0]); B, H),

and the composition is well-defined on the quotient spaces.

03¢ . .
Proof. Let 4,B € Cylc vy (X" (v, (=N,0]); E, F). According to (6.2.vi),
(6.2.vil) we may write

N-1 N-1
A= Z wriopyy(hj)Jw+ G, B= Zwr%p}(}(%)w—f—é,
7=0 j=0

and thus

N-1
)\114 + )\2B = Z UJT‘jopX}(}th + Agﬁj)w + ()\1G + )\2(;)
j=0
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for A1, A2 € C. This proves a). b) follows from a), Lemma 6.2.16 and Proposition
6.2.18, and c¢) is a consequence of b). d) is subject to Theorem 6.2.12. It remains
to prove e). Note first that by Theorem 6.2.12 the composition is well-defined in
the spaces
CEER (XN, (7, (=N, 0); F, H)x Clypt i ) (XD, (7, (=N, 0]); B, F)
— CEIEEUXN, (v, (=N, 0); E, H),

Chi ey (XN (7, (=N, 0)); F, H)xCl 83 (XM, (7, (=N, 0)); B, F)

— CEIEEUXN, (v, (=N, 0); E, H),

and consequently the complete assertion e) follows from Lemma 6.2.15 and Lemma,
6.2.17. 0

6.2.22 Remark. By Theorem 6.2.21 we have the following:

The conormal operators {Cﬁié(d) (X", (v,(=N,0]); E, F)} form a (bi-)graded x-
algebra, and the conormal symbol mapping induces a *-homomorphism of graded
algebras onto the algebra of conormal symbols. The kernel of this homomorphism
is the (bi-)graded symmetric ideal {C%%“(X", (v, (=N,0]); E,F)} of operators
that generate asymptotics.

The Volterra conormal operators {C]‘\‘/[’f;g Vel) (X", (v,(=N,0]); E,F)} are a (bi-)-

graded subalgebra, and the conormal symbol mapping restricts to a homomor-
phism of graded algebras onto the algebra of Volterra conormal symbols. The
kernel of the restriction is the (bi-)graded ideal {C’g’f{}l(XA, (v, (=N,0]); E, F)} of
Volterra operators that generate asymptotics.

Smoothing Mellin and Green operators

6.2.23 Definition. We define the space of smoothing (Volterra) Mellin and Green
operators with respect to the weight datum (v, (—N,0]), N € N, as

CM+G’(,V)(X/\7 (77 (_Na 0]))E7F) = ﬂ C]L\’}ié’(’v)(XAa (77 (_Na 0]))E7F)
m,0€R

Consequently, A : §7(X",E) — S7(X", F) is a smoothing Mellin and Green
operator in Cprrq(X", (v, (=N,0]); E, F) if and only if

N-1
A= Z wriopyy(hj)w + G (6.2.ix)
j=0

with a Green operator G € C(X", (v, (—N,0]); £, F), and
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i) a cut-off function w € C§°(Ry) near r = 0,
i) y—§-j<v<v-
ili) meromorphic Mellin symbols h; € M;,jOO(X; E, F) such that WCPjﬁF%Mﬁ =
0.
Moreover, A : S7(X",E) — S7(X", F) is a smoothing Volterra Mellin and
Green operator in Caryq,v (X", (v, (=N, 0]); £, F) if and only if
N—

1
A= wriopy 7 (hj)w+ @ (6.2.x)

Jj=0

with a Volterra Green operator G € Cg v (X", (v, (=N,0]); E, F), and

i) a cut-off function w € C§°(Ry) near r = 0,

LB, F).

ii) meromorphic Volterra Mellin symbols h; € M‘;i’,?] (X; H’%fvﬂ"

6.2.24 Remark. According to Theorem 6.2.21 the smoothing (Volterra) Mellin
and Green operators form an ideal in the algebra of (Volterra) conormal operators,
i. e., the composition as operators on S7(X”, E) is well-defined in the spaces

oot )(XA,( (=N, 0]); F, H)xCarp V)( , (7,

ey N,0)); B, F)

(=
— Carya(v) (X7, (7, (=N, 00); B, H),
Crrav) (X", (7, (=N, 0)); F, H)Xcﬂic V)( (v, (=N, 0]); E, F)
— Crra(v) (X7, (v, (=N, 0]); B, H)
for vector bundles E, F, H € Vect(X).

6.2.25 Definition. a) Let A € Cya(X", (7, (=N,0]); E). Then the operator
1+ A is called elliptic if there exists sp € R such that the operator family
1+09,(A)(2) : H*(X,E) — H®* (X, E) is bijective for all z € Pupr

b) Let A € Cpya,v (X", (7,(=N,0]); E). The operator 1 + A is called parabolic
if there exists sp € R such that 1+ 09,(A4)(z) : H*(X,E) — H*(X,E) is
bijective for all z € H%f

6.2.26 Remark. The identity belongs to CR,’[(:;_lG,VCl(XA,(%(—N, 0]); E) with
conormal symbol given as oy (1) = 1:

With a cut-off function w € C§°(R;) near r = 0 write

1 =wlw+ (wl(l —w)+ (1 —w)l),
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where (wl(l —w) + (1 —w)l) € Cg;’,o‘;/l(XA; (7, (—00,0]); E).

Let A € Cuyya(v)(X™, (7,(=N,0]); E). Then we see that 1 + A is elliptic
(parabolic) in the sense of Definition 6.2.25 if and only if opr(1+ A) = 14+ oa(A)
is elliptic (parabolic) in the sense of Definition 6.2.5.

6.2.27 Theorem. a) Let A € Cpya(X", (v, (=N,0]); E). Then the following
are equivalent:

i) 1+ A is elliptic in the sense of Definition 6.2.25.

ii) There exists B € Cyya (X7, (v, (=N, 0]); E) such that (1+ A)(1+ B) =
1+ Gy and (14 B)(1 + A) = 1+ G2 with Green operators G1,G3 €
CG(X/\J (’77 (_Na 0]): E)

b) Let A € Cyrrc,v(X”, (7, (=N,0]); E). Then the following are equivalent:

i) 1+ A is parabolic in the sense of Defintion 6.2.25.

ii) There exists B € Car,v (X", (7, (=N, 0]); E) such that (1+A)(1+B) =1
and (1+ B)(1+ A) =1, i. e., 1 + A is invertible with inverse (1+ A)~! =
1+ B.

Proof. According to Corollary 6.2.8 the operator 1 + A is elliptic (parabolic)
if and only if there exists a (Volterra) conormal symbol b := (go,... ,gn-1) €
Eamvy (X7, (7, (=N, 0]); E) such that 1 4 o (A) is invertible with respect to the
Mellin translation product with inverse 1 + b. Hence we conclude from Theorem
6.2.21 that the conditions ii) in a) and b) are sufficient for the ellipticity (parabol-
icity) of the operator 1 + A.

Now assume that 1+ A is elliptic (parabolic). With (go,... ,gn—_1) we associate
an operator C' € Crryq(,vy (X", (v, (=N, 0]); E) via

N-1
C=> wriopii(gw
j=0

in the sense of (6.2.ix) or (6.2.x), respectively. Theorem 6.2.21 implies (1+ A)(1 +
C)=1+G; and (1+C)(1+A) = 1+G; with (Volterra) Green operators G1, G €
Cavy(X", (7, (=N, 0]); E). Hence the proof of a) is finished with B := C.

In case of b) the operators G; and G» are Volterra Green operators. Hence, by
Theorem 6.1.6, 1 + G and 1+ G5 are invertible with inverses (1+G1) ! =1 +G,
and (1+Gs) ! = 1+G>, where G, Gy € Cg,v (X", (v, (=N, 0)); E). Consequently,
1+ A is invertible with inverse (1 + A)~! = 1 + B, where

B:=G,+C+CG, =Gy +C+GyC € Cpigv(X", (v, (—N,0)); E).

This finishes the proof of the theorem. (|
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6.3 The algebra of Volterra cone operators

6.3.1 Notation. Let Y be a topological space. For functions ¢,¢ : Y — C we
write ¢ < 4 if ¥ = 1 in a neighbourhood of supp(yp).

6.3.2 Definition. Let (v, (—N,0]) be a weight datum, N € N, and let u, 0 € R.

a) We define the space C("C’l‘;;Z(XA,(%(—N, 0]); E,F) of (classical) cone pseu-

dodifferential operators (of order (u,p)) associated with the weight datum
(7, (=N, 0]) as follows:

A:S87(XN E) — S (X", F) belongs to C(”Cf)?f (X", (v, (=N,0)); E, F) if and
only if

e for all cut-off functions w,® € C§°(R,) near r = 0 we have
wAD = oplr 2 (h) + Apsc (6.3.1)

with some h € C?(RJF,M(‘;;(ZCD (X; E,F)), and a smoothing Mellin and

Green operator Ay € Carva(X7, (3, (=N, 0)); B, F),
e for all cut-off functions w,® € C§°(R,) near r = 0 we may write
(1 -w)A(l —@) = opr(a) (6.3.ii)
with some a € S2(R, ij) (X;R; E, F)),

o for all cut-off functions w, & € C§°(Ry) near r = 0 such that w < & we
have

wA(l — @), (1 - ®)Aw € Cq(X", (v, (=N, 0)); E, F). (6.3.1ii)

b) The subspace C“j’(‘)c;f) (X", (v, (=N,0]); E, F) of (classical) Volterra cone pseu-
dodifferential operators (of order (u,p)) associated with the weight datum

(7, (=N, 0]) is defined as follows:
A: 8V (X" E) — S7(XN, F) belongs to C"j’("c;f) (X, (v, (=N,0)); E, F) if and
only if

e for all cut-off functions w,& € C§°(R,) near r = 0 we have

wAD =op,; * (h) + Amtc (6.3.iv)

with some h € C?(@+,M{};é(d) (X;E,F)), and a smoothing Volterra

Mellin and Green operator Ayt € Cyuta,v (X, (7, (=N,0]); E, F),
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e for all cut-off functions w,® € C§°(R,) near r = 0 we may write
(1 —-w)A(1 — &) = opr(a) (6.3.v)

with some a € S¢(RR, L’(}fcl) (X;H; E, F)),
e for all cut-off functions w,@ € C§°(Ry) near r = 0 such that w < & we
have

WAl — @), (1 —&)Aw € Ca v (XN, (7, (=N, 0)); E,F).  (6.3.vi)

6.3.3 Theorem. An operator A : CP(XMNE) — C®(XM F) belongs to

C’("V"(é))(XA,(%(—N, 0]); E,F) if and only if for some (all) cut-off functions
w3 < w1 < Wy We may write

A= wlop;(/;% (h)ws + (1 —w1)opr(a)(l —ws3) + Ap+a, (6.3.vii)
where

Amia € Cruravy(X7, (7, (=N,0)); E, F),
o0 (T H4 .
h € O ([Ry, M o) (X B, F)),
{S (R, L”*)(X R; E, F))

(ct
Se(R, L% (X;H, E, F)).

V(el)

Proof. Let A € C”’Q;l y (X7, (7, (=N, 0]); E, F), and let w3 < wy < ws be ar-

bitrary cut-off functlons near r = 0. Moreover, let &,& € C§°(R,) be cut-off
functions such that © < w; < @ for j =1,2,3. We write

A=uw ((.AAJA(.AAJ)W2 + (]. —wl) ((]. —LD)A(]. —(.:J)) (]. —UJ3) + (wlA(l —UJ2) + (]. —wl)AW3),
and consequently A is of the form (6.3.vii) by Definition 6.3.2.

For the proof of the converse note that it suffices to treat each term in the repre-
sentation (6.3.vii) separately:

Step 1: A =wiop); * (h)ws € CHY4 (XA, (3, (—N,0)); B, F):

Let w,© € C§°(Ry) be arbitrary cut-off functions near r = 0. We have

wAD = op); * (w(r)wi (r)h(r, 2)ws (F& (),
w(r)ws (Nh(r, 2)wa(r)(r) € CF (B xRy, MU o0 (X5 E, F)),

and thus we conclude from Theorem 5.3.2 that wAw = op}(;%(g) with the

left-symbol g € C'F (K+,M(‘“}£)O(cl)(X;E,F)) associated with the double-symbol
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w(r)wy (r)h(r, z)w2 (r")w(r"). This proves that wA® is of the form (6.3.i) or (6.3.iv),
respectively.

Next consider

(1-w)A(1 =) = ((1 = w)wn)op); 7 () (ws(1 - @))

with 91,19 € C§°(Ry+). According to Theorem 5.2.10 and Theorem 2.6.18 we may

write
,,,,I

opyy ? (h) = op(a) +0pa 2 (1= ) ()

with a function ¢ € C§°(R;) such that ¢ = 1 near r = 1, and a(r,7) :=
Qy—=(p,h)(r,r7), where Q,_= is the inverse Mellin quantization with respect

to the weight v — & (cf. Definition 2.6.15). Moreover, Theorem 5.2.10 implies

S0~ (Rx R, L{¥) (X; R; E, F))

S (RxR, Lii(,) (X; B E, F)),

and from Theorem 5.4.3 we conclude that ¢ o0p,(a)y2 = op,(@) with

Pr(r)alr, )2 (r') € {

(e))

S—°(R, L, (X E, F)).

i {Sw(R,L” (X;R E, F))
a €
(cl)

Next observe that

!

wopyy ¥ (11— o) (51 = 0p)y F ()1 - ) (5 )alr' ),
D)L~ ) () Vhlr,2) € O3 (o B, M (X3 B, ),

P1(r)(1 — @)(;)wz(r')h(r,z) =0 for |% -1 <e

with a sufficiently small € > 0. Proposition 5.3.4 implies

/ n .

dropyy ¥ (1= @) (Z) s = opjy ¥ (B)

with b € CF (Ry, M5 (X; B, F)). Let ¢ € C5°(Ry ) such that ¢1,9» < . Then

we see by construction that
opys 2 (B) = Popy, * ()Y,

and thus Theorem 5.3.6, Theorem 5.3.3 and Proposition 5.3.5 (in case of Volterra
operators) imply

op}y ¥ (h) € Cavy (X7, (7, (—00,0)); E, F).



On the inverse of parabolic PDE in infinite space-time 181

So far we have proved that
(1-w)A(l — &) =opr(a)+G

with @ as above, and G € Cg(,v)(X", (7, (=00,0]); E, F) such that G = e
From Proposition 6.1.5 we obtain G = opr(g) with

{ (R, L~ (X;R; E, F))
be
(R, L, (X;H E, F)),
W) =

and consequently (1 —w)A(1 — op,(c) with

_ (S (R, L* (X R E, F
c:“be{ (R, Ly ( )

SR, L) (X B E, F)).

This shows that (1 —w)A(1 — @) is of the form (6.3.ii) or (6.3.v), respectively.
Next assume that w < @. Then we have
WA(1 — @) = (wwi)op)y 2 (h) (w2 (1 — @)
= dop), % (),
(1-@)Aw=((1- Jj)wl)op;(/[_% (h) (waw)
= pop}, * (W)@
with cut-off functions @, € C§°(R4) and ¢,y € C§°(R, ), such that &) = 0 as
well as we = 0. From Proposition 5.3.4 we conclude that
@opy; £ (W) = opj; £ ()
hy € C%o(@—i-: (V)O(X E, F)),
popir * ()& = opiy * (k)
hy € CF (R, (V)O(X E F)).

Let ¢ € C5°(R, ) and n € C5°(R,) such that 1, < 9 as well as &, 0 < 1. By
construction we have

From Proposition 2.6.4 we conclude op;&_%(hl) = opL_%(hl) as operators on
C§ (XM, E), for all v' € R. Hence we obtain from Theorem 5.3.6

nop (b)) : KD XN E)g — S (XN F),

—00,0]

Popyy * (ha)y s KDV, B)y — S1_ (X, F)
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for all s,t,6 € R Using Theorem 5.3.3 we obtain with the same reasoning

(P = (h)w)" = dop,, 2 () : KD VHXA, F)s — S )
(dopyy * (ha)n) " =Topy, 2 (h3)dh - KD 75X, F)s — ST, (XN, )

(X", E),

for all s,t,0 € R. Summing up, using Proposition 5.3.5 in case of Volterra opera-
tors, we have shown

WA(]' - UD), (1 - (.:J)AUJ € CG'(,V) (XAa (77 (—OO, 0])) EaF)
This finishes the proof of Step 1.

Step 2: A = (1 —wi)op,(a)(1 —ws) € CH%Y (XM, (7, (=N, 0); E, F):

Let w,@ € C°(R4) be arbitrary cut-off functions near r = 0. We have

(1= w)A(1l = &) = op, (((1 —w(r) (1 = wi(r)))a(r,7) ((1 = ws () (1 = &(r")))),
(1 =w(r) (1 —wi(r))a(r,7)((1 —ws(r))(1 —o(r")))
{SQO(]RX]R{ LY (X R E F))

(cl)
SeO(RxR, LY! (X H E, F)).

V(cl)
Consequently, (1 —w)A(l — @) = op,(g), where

SO(R, L¢ (X H; E, F))

{S (R, L} (X; R B, F))
g€
V(cl)

is the left-symbol associated with the double-symbol

(1= wr) @ = wi(m))alr, ) ((1 - ws(r')(1 = &(r")))

according to Theorem 5.4.3. This shows that (1 —w)A(1 —®) is of the form (6.3.ii)
or (6.3.v), respectively.

Next consider the operator

wAD = (w(1 = wi))opy(a) ((1 — ws)@) = Yr0pr(a)Ps

with 91,15 € C§°(Ry+). According to Theorem 5.2.10 and Theorem 2.6.18 we may

write ,

op(a) = on}; 2 (1) + op, (1= ) (5 )a),

where ¢ € C§°(Ry) such that ¢ =1 near r = 1, and h(r, z) := Q(yp, a)(r, z) with
a(r,7) := a(r,r~17). Here @ denotes the Mellin quantization, see Definition 2.6.15.
From Theorem 5.2.10 we obtain

V1 (r)h(r, 2)12 (') € CF Ry xRy, MES ) (X B, F)),
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and consequently
B

bropyy % (W) = oy * ()
with the left-symbol h € O (R, M(“‘;,[)O(cl)(X; E, F)) associated with the double-
symbol ¢ (r)h(r, z)12 (') according to Theorem 5.3.2. Moreover, we have

r S (RxR, L*! (X;R; E, F))
1 B r ‘ , 9 (cl) ) Ny )
Pi(r)(1 — o) ( . Ja(r, )2 (r') € {S_oo,_oo(Rx R, L () (O HL B, F)),

,,_I
1 (r)(1 — go)(?)a(r, T (r') =0for |r —7r'| <e
with some sufficiently small € > 0. Hence Proposition 5.4.5 implies
TJ
Prop,((1 - <p)(7)a)¢2 = op;(c)

with a symbol

STRR, L™ (X R EL F))

c

SR, Ly™ (X; H; E, F)).

Let ¢ € C$°(R4) such that 1,1, < . Then we have 1/~10pr(c)1/~1 = op,(c) by

construction, and from Theorem 5.4.7, Theorem 5.4.4 and Proposition 5.4.6 (in
case of Volterra operators) we conclude

Popr(c)th € Cav) (X7, (7, (=00, 0)); B, F).
Summing up, we have shown that wA® is of the form (6.3.1) or (6.3.iv), respectively.
Next assume that w < @. Then we have
wA(l — @) = (w(l —wi))opr(a) (1 — ws)(1 —@))
= wop,(a)(1 — @),
(1-@)Aw = ((1 = @)(1 — wi))opr(a)((1 — ws)w)
= (1= @)op,(a),

where ¢, € C§°(R;), and &, € C§°(R,) are cut-off functions satisfying ¢ < @
and ¢ < w. From Proposition 5.4.5 we conclude
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Choose 17 € C¢°(R,) and ¢ € C§°(R,) such that ¢, < ¢, and 5 < &,@. Then

we have

Jop,(a1)(1 — 1) = op,(ay),

(1 —mn)opr(az)y) = opr(az)

by construction. Theorem 5.4.7, Theorem 5.4.4 and Proposition 5.4.6 (in case of
Volterra operators) imply

dopr(ar)(1 =n), (1 =n)op,(a2)i € Caqv) (X7, (7, (—o0,0)); E, F).
Summing up, we conclude
wA(l = @), (1 —@)Aw € Ca(v) (X", (7, (=00, 0]); E, F),
and the proof of Step 2 is finished.
Step 3: Carya(v) (X7, (7, (=N, 0]); B, F) C C8 (X7, (3, (=N, 0]); E, F):

Let A € Curavy(X™ (7, (=N,0)); E,F), and let w,& € Cg°(Ry) be arbi-
trary cut-off functions. Then we have wA® € Cprrgvy(X", (7, (=N,0]); E, F)
by definition of the smoothing (Volterra) Mellin and Green operators. Moreover,
wA(l = @), (1 —w)AD € Cgvy(X", (7,(=N,0]); E,F) by Lemma 6.2.15. Let
& € C°(Ry) be a cut-off function such that @ < w and @ < &. Note that
G:=(1-wA(l -a) € Cgvy(X", (7,(=N,0]); E, F) due to Lemma, 6.2.15, and
from the choice of @ we conclude G = (1 — ©)G(1 — @). Hence G = op,(g) with

¢ ST RLTE(XG R B, F))
T 5= (&, L™ (X H; B, F))

due to Proposition 6.1.5, and the proof of Step 3 is complete. O
6.3.4 Theorem. The following inclusions are valid:
Coarva(v) (X", (7, (=N, 0]); E, F) € CR&0 (X7, (v, (=N, 0)); E, F),
ClE (X7, (7, (=N, 0); B, F) C CHEG 1y (X°, (1, (=N, 0)); B, F).

Let A € Ciy%) (XM, (v, (=N, 0]); E, F), and let

A =wopl; * (Wws + (1 —wi)opr(a)(l —ws) + Anryc

be any representation of A according to (6.3.vii). Then the conormal symbols of
A are given as

73 (A)(2) = (OW0,2) + o3 (A1) ()

fork=0,...,N —1.
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Proof. The inclusion
CM+G(7V) (XAa (77 (_N7 O]) E F) C C(N‘}Q(vd))( (77 (_Na 0])) E: F)
is subject to Theorem 6.3.3.

Assume that A € C(“ Q(e))(X/\,( ,(=N,0]); E, F) is given as

A= wlopX/;% (h)ws + (1 —wy)opr(a)(l —ws) + Ayta

in the sense of (6.3.vii). For short, we set hy := (8%h)(0,z) for k=0,... ,N — 1.
Then Taylor’s formula implies

(Z wirtopy, ; hk)w2+AM+G)+(weropX/;%(ﬁ)wz+(1—w1)0p,«(a)(1—UJ3))

with a function & € O3 Ry, M{i') ) (X; E, F)). Due to Theorem 5.4.7, Theorem
5.4.4 and Proposition 5.4.6 (in case of Volterra operators) we have
(1= wr)op (@)(1 - ws) € CLEE (X7, (3, (=00, 0); B, F).
Moreover, we conclude from Theorem 5.3.6
worrNopT E (g - L XX, B)g — KETROTEREX, F)o
SFY(XAaE) — SFH_N(XA:F):
and by Theorem 5.3.3 and Proposition 2.6.4 we have
(weropXJE (ﬁ)wz)* = w_eropX;fE (T,Nﬁ*)w_l,
and consequently
(wirNopy, % (h)ws)" : K07, By — KU 0 (XA, F oo
M S™N(XN, E) — STVHN(XM F).

Using Proposition 5.3.5 (in case of Volterra operators) we thus obtain

wirVopyy ® (R)ws € CHEL (XM, (7, (=N, 0); B, F).
This shows that

N-1

A= Z wlrkopXJ_E(hk)wg +Aypic
k=0

modulo C”’Q’ (X/\ (v,(=N,0]); E, F), and from Theorem 6.2.21 we obtain

AGCMi_’G (c[))(XAJ(77(_N70]);E7F)7
ot (A) = hi + o3/ (Amta)

for k=0,...,N — 1 as asserted. O
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6.3.5 Corollary. Let A € C*%¢( X", (v,(—=N,0]); E, F). Then A extends by con-
tinuity to an operator

A KEDTEXA By — KEmOY XA F)s_,

for all s,t,6 € R.

Moreover, for every asymptotic type P € As((vy,(—N,0]),C*(X,E)) there ex-
ists an asymptotic type @ € As((v, (=N,0]),C*>(X, F)) such that A restricts to
continuous operators

_ Kgf’t)mf(X/\,E)g . IC s—p,t), 73l (XN, F)s_,
SHXMNE) — S8} (X/\,F)

for all s,t,6 € R.

Let A € C“}’Q;K(XA,(V,(—N, 0]); E,F). Then A restricts for every ro € Ry to

continuous operators

4. 4 Tr=3.0((0,70), C(X, E)) — T—1.0((0,m0), €= (X, F))
S HE (0,7 X X, EB) —s HETDE((0, 0] x X, F)

for all s,t € R.

Proof. This follows from Theorem 6.3.4 and Theorem 6.2.12. O

6.3.6 Corollary. For vector bundles E, F,H € Vect(X) the composition as op-
erators on 87 (X", E) is well-defined in the spaces
C(“\}Q);K(XAa (77 (_N7 0]); F; H)XCG(,V) (X/\7 (77 (_N7 0]); E: F)
— CG(,V)(XAJ (’77 (_Na 0]): E, H):
Catv) (X", (3, (=N, 0); F, H)xCHS (XM, (v, (=N, 0)); E, F)
— CG'(,V)(X/\a (77 (_N7 0])5 E, H):
as well as
C(“\;Q);e(X/\: (77 (_Na 0])) F: H)XCM+G'(,V) (XAa (77 (_N7 0])5 E: F)
— CM+G( )(XA (v, (=N,0]); E, H),
Curra(v) (X7, (7, (=N, 0]); F, H)xCRE (XM, (7, (=N, 0)); E, F)
— Carra(v) (X7, (v, (=N, 0)); E, H).

Proof. This follows from Theorem 6.3.4 and Theorem 6.2.21. O
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The symbolic structure

6.3.7 Theorem. Let A € C”’Q’ (X/\ (7,(=N,0]); E,F), and let 0 < To < T} <
00. There exist

h e CF Ry, M o) (X3 E, F)),

{SQ(]R LS (X R, B, F))

(cl)
SR, L) (X5 H B, F))

with the following properties:

For all cut-off functions w,& € C{°(R,) near r = 0 such that X[0,T5] < w,w <
X[o,1,] We have

n

wAD —wopy, * (h)o € Cuya (7, (=N, 0]); E, F),

(et omits 55 & Gy om0 5, ),
(6.3.viii)
In particular, if
X[0,Tz] < W3 < w1 < w2 < X[o,1y] (6.3.ix)
are cut-off functions, we have
A=wiopy; * (hws + (1 —wi)opr(a)(1 —ws) + Aursa (6.3.%)

with AM+G € CM+G(,V)(XA7 (77 (_N7 0]);E7F)

Proof. Let @, € C§°(Ry) be cut-off functions such that xpo1,) < @ and & <
X[0,13]- According to (6.3.i) and (6.3.iv), respectively, we have

@Aa&:op}(/[_%( h) + A,
h € CF Ry, MY o) (X B, F)),

A € CM+G(7V)(X ; ( e (_Na 0])) EaF)
Moreover, according to (6.3.ii) and (6.3.v), respectively, we have

(1-w)A(l - @) = opr(a),
{SQ( LS (X R B, F))
(

Se(R, L fcl)(X;H;E,F)).
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Hence we conclude

i. e., the tuple (h,a) fulfills (6.3.viii).

Next let wy,ws,ws € C5°(R4) be cut-off functions that satisfy (6.3.ix). We may
write

A= wlAwg + (]. — wl)A(l — LU3) + (wlA(l — LUQ) + (]. — wl)ALU3),
where
(Wi A1l = ws) + (1 = wi)Aws) € Cov) (X7, (7, (=N, 0]); B, F)

according to (6.3.iii) and (6.3.vi), respectively. Consequently, A is of the form
(6.3.x). This finishes the proof of the theorem. O

6.3.8 Notation. We refer to any system of cut-off functions {w1,ws,ws} satisfy-
ing (6.3.ix) as subordinated to the covering {[0,T}), (T3, 00)} of Ry.

6.3.9 Definition. Let A € C(“‘}‘?fl))(XA, (7, (=N,0]); E, F). We associate with A

the following triple of symbols:

e Complete interior symbol:

Let 0 < Ty <11 < 00. Any tuple

- (ct) (cl)

O Ry, MU (X B, F))xSe(R, L¥¢ (X H E, F))

(h,a) € {C%O@MMSJ (X;E,F))xS(R, LI (X; R B, F))
(ct)

V,0(cl)

that satisfies (6.3.viii) in Theorem 6.3.7 is called a complete interior symbol
of the operator A, subordinated to the covering {[0,T}), (T%,00)} of Ry. For
short, we write

"%t (A) = (h,a).

Y,c

Note that the relation A — 01’;”‘;;[(14) is non-canonical.

e Conormal symbol:
According to Theorem 6.3.4 and Theorem 6.2.21 we associate with A the
tuple

o (A) = (08, (A), ..oy V() € THE ) (X (3, (=N, 0)); B, F)

of conormal symbols.
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e Exit symbol:
Let T > 0. According to Theorem 6.3.7 there exists a symbol

{S@(R, L (X5 R B, F))

Se(R, L, (X; B E, F))

such that
(1-w)A(l = @) = (1 =w)op,(a)(1 = @) € Ca(,v)(X", (v, (=N,0]); E, F)

for all cut-off functions w,& € C§°(R,) with X[o,7] < w,w. Any symbol a
that satisfies these conditions is called an exit symbol of the operator A. The
exit symbol is regarded as an operator family

ot (A7) = alr,7) s HY (X, B) — H (X, F)
for 7 € R, respectively 7 € H, and r > rg sufficiently large.

Note that the relation A — #¢¢(A) is non-canonical.

Let A € Cé“}‘;fl(X/\, (7, (=N, 0]); E, F) be a classical (Volterra) cone operator.

e Homogeneous principal symbol:

The (anisotropic) homogeneous principal symbol of A is well-defined as a
function

(1) € {COO(&,SENfZ((T*XxR) \ 0, Hom(r* E, 7 F)))
C>(Ry, SV ((T*X xH) \ 0, Hom(w* E, 7* F))),

and it has the following properties:

C®°(Ry,SWO(T*X xR) \ 0, Hom(7*E, 7*F)))

C®(Ry, SP) ((T*X xH) \ 0, Hom(7* E, 7* F))),

Se(R, SO ((T* X xR) \ 0, Hom(7*E, n*F)))

Se(R, 59 ((T* X xH) \ 0, Hom(x* E, 7* F)))

ol (A)(r &) € {

(1-w)oli(4) € {

for every cut-off function w € C§°(R,). More precisely, let

A= wlopx/f_% (h)WQ + (]. - wl)op,,(a)(l - UJ3) + Arya
be any representation of A according to (6.3.vii). Then
. . 1
(A1, &a, ) = (N ) e, AT — oy~ i(r7)
+ (1 —wi(r)ol (@) (r, &, 7)

for r € Ry and (&,7) € (T*X xR) \ 0, respectively (&,7) € (X xH) \ 0.
This relation follows from the results concerning the (inverse) Mellin quanti-
zation in Theorem 5.2.10 and Theorem 2.6.18; note in particular the asymp-
totic expansion formula (2.6.ix) in Theorem 2.6.16.

(6.3.xi)
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Compositions and adjoints

6.3.10 Theorem. Let H be another vector bundle over X, and let

A€ Chsy (XM, (v, (=N,0); F, H),

B € Clyti (X, (v,(=N,0)); E, F).
Then we have

AB € O/l (X", (7, (=N, 0]); B, H)

for the composition as operators on S7(X", E).

Let 0 < Th < Th1 < o0, and let UZ’Q’Z(A) = (h,a1) and oy, e ’Z(B) =
(ha,a2) be complete interior symbols of A and B subordinated to the covering
{[0,Ty), (Ty, )} of Ry. Then

UZTC/,L’,QJrQ';l(AB) = (h1#h2,a1#a2)

is a complete interior symbol of the composition AB, subordinated to the covering
{[0,T1), (T2,00)} of R4. The involved Leibniz-products are according to Theorem
5.3.3 and Theorem 5.4.4, respectively.

The following relations hold for the exit symbol and the conormal symbols:
gttt (AB) = ol (A) kol ¢ (B),
q

> T yo,f (Ao, (B)

pt+q=k

for k = 0,...,N — 1. The Leibniz-product of the exit symbols is according to
Theorem 5.4.4.

If A and B are classical (Volterra) cone operators, then the (anisotropic) homoge-
neous principal symbol of the composition is given as

f;ﬂ‘ Y(AB) = agf(A)af; “(B).

Proof. Let w,& € C§°(R,) be cut-off functions near r = 0.

Step 1: Consider the operator wAB®:

Choose cut-off functions @, w € C§°(R,) such that w,© < & < ©. We may write
wAB® = (wA®X) (0B@) + wA(1l — &)Ba.

Now wA(1-w) € Cg(,vy (X", (v, (=N,0]); F, H) according to Definition 6.3.2, and
from Corollary 6.3.6 we conclude

wAB® = (wA®) (wB)  mod Cg(vy (X", (v,(=N,0)); E, H).
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We have

wAD = wop}(}f (hi)w  mod Cura(,v) (X", (v,(=N,0]); F, H),

h € CF Ry, M{Y) () (X3 F, H)),

wBw = U:)OpM 2 (hg)w mod CM+G(7V) (X/\, (’}/, (—N, 0]), E, F),
hy € CF Ry, M) oty (X B, F)).

To see this choose a cut-off function w' € C§°(Ry) such that @ < w'. From (6.3.1),
(6.3.iv) we obtain

wAw' = op;yw_%(hl) + A4,
(XAa (77 (_Na 0])) F: H):

Ww'Bw' = op;yw_%(hz) + B,
Be CM+G’(,V)(XA7 (77 (_Na 0]))E7F)7

and hence multiplying from the left and from the right with the involved cut-off
functions w,® and w, o, respectively, yields (1). Theorem 6.3.3 and Corollary 6.3.6
imply

(wAR) (wB&) = woply 2 (hy)@oply % (he)d
modulo Cyyq(v) (X", (7,(=N,0]); E, H). From Theorem 5.3.3 and Proposition
5.3.4 we conclude

wopX/;% (hl)d)opx/;% (ho)@ :wop}(/;% (hy #hz)w—wop;(/;% (h1)(1 — d})op;(/;% (ha)w,
wop}(/f_% (h1)(1 — d))opx/f_% (ho)o = wop}(/[_% (h)@,
i" € C%O(EJH (V)O(X E H))

Carrying out a Taylor expansion we may write
~ n ]_ o~ _n o~
wopM h)o = Z wriop,, * (Gﬂh)(O,z))UJ +wrNop,, * (hn)@,

]'(8 h)( )GM(V)O(X;E,H),jZO,...,N—].,

BN € CJ%O(]R-F: (V)o(X E H))
and from Theorem 5.3.6, Theorem 5.3.3, Proposition 2.6.4 and Proposition 5.3.5

(in case of Volterra operators) we obtain

wl:

wr op ( N)(:)6Cg(7v)(X/\,(’)/,(—N,O]);E,H),i €

wop (il)w € CM+G(,V)(XA7(77(_N70]);E7H)'
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Summing up, we have shown
wAB® = woply 2 (hn#he)d

modulo Cpriavy (X", (v, (=N,0]); E, H), and by Theorem 5.3.2 wAB® is of the
form (6.3.1) or (6.3.iv), respectively.

If0<Ty <Ty < oo and w,@ € CP(Ry) are cut-off functions with xp7,) <
w,w < Xo,1;] We choose the cut-off functions @, at the beginning of the proof
of Step 1 with w,& < & < & < X[o,1;]- Hence we see that in (1) we may choose
the holomorphic Mellin symbols h1, ho as the Mellin components of the complete
interior symbols of A and B subordinated to the covering {[0,71), (T2,00)} of
R,. Consequently, the Leibniz-product h;#hs serves as the Mellin component of
a complete interior symbol of the composition AB, subordinated to the covering
{[0,T1), (T2,00)} of Ry.

Step 2: Consider (1 —w)AB(1 — @):
Let @, € C5°(R4) be cut-off functions with & < @ < w,&. We may write
(1-w)AB(1— &) = (1 - w)A(l - 2)) (1 - @)B1 - @) + (1 - w)ADB(1 — @),

where (1 —w)Ad € Cg(v)(X", (7, (=N, 0]); F, H) by Definition 6.3.2, and conse-
quently

(1-w)AB(1 - @) =((1 - w)A(l —@)) (1 — ©) B - @))
mod CG(7V) (XAa (77 (_N7 0])a E, H)

due to Corollary 6.3.6. We have

(1-w)A(l-—w) =1 —w)opr(a1)(1 — k) \
mod C’G(V (X/\ (’77(_ 70]);F7H)7

L {SQ(]R LY (X5 R, F H)

Se(RR; L*(,fd) (X;H; F,H),
(1-w)B(l-o) =(1-wopr(a)(l —@)

mod CG( V) (X/\a (77 (_N7 0])5E7F)7

1l .
aze{ (L(l)(X]REF)
Se

"(R; L“(Z)(X H; E, F).

/

Consequently, we obtain from Theorem 6.3.3, Corollary 6.3.6 and Theorem 5.4.4

(1 -w)AB(1 - @) = (1 - w)opr(ar#az)(1 — &) + (1 — w)opr (a1 )wopr(az)(1 — @)
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modulo Cg(,v)(X", (7, (=N,0]); E,H), and by Theorem 5.4.3 and Proposition
5.4.5

(1 = w)op(ar)wop,(az)(1 — @) = (1 —w)op,(¢)(1 — @),
ST®(R, L™ (X;R, E,H)
c
ST(R; Ly,™ (X5 H; B, H).
Theorem 5.4.7, Theorem 5.4.4 and Proposition 5.4.6 (in case of Volterra operators)

imply
(1 - UJ)Opr(C)(l - (D) € CG(7V) (XAa (77 (_OO’ 0])5 E, H)

Summing up, we have shown

(1-w)AB(1 —®) = (1 —w)op,(a1#az2)(l — @)
modulo Cg(,v)(X",(v,(=N,0]); E,H), and by Proposition 6.1.5 and Theorem
5.4.3 (1 — w)AB(1 — @) is of the form (6.3.ii) or (6.3.v), respectively.

Let 0 < Ty < T1 < o0, and let w,& € C5°(Ry4) be cut-off functions with xo 7, <
w,@ < X[o,r,]- At the beginning of the proof of Step 2 choose suitable cut-off
functions @, such that xjo,1,) < @ < @ < w,@. Hence in (2) we may choose
the symbols a;,as as the Fourier components of the complete interior symbols
of A and B, subordinated to the covering {[0,7}), (T, 00)} of R,. Consequently,
the Leibniz-product a;#as is a possible choice of the Fourier component of a
complete interior symbol of the composition AB, subordinated to the covering
{[0,T1), (T»,0)} of Ry. Moreover, we see from the proof that the Leibniz-product
of the exit symbols of A and B is an exit symbol of the composition AB.

Step 3: Assume w < @, and consider the operators wAB(1 — @) and (1 —©)ABw:

Let & € C5°(R4) be a cut-off function near r = 0 such that w < & < ©. We may
write

wAB(1 — @) = (wA(1 = @))B(1 — &) + wA(0B(1 — @),

(1-@)ABw = ((1 - ©)A®)Bw + (1 — @) A((1 — @) Bw).
Due to (6.3.iii) and (6.3.vi), respectively, we have

wA(l =), (1 -@)Aw € Cav)(X", (7, (=N,0]); F, H),

WB(1-), (1-&)Bw € Cgv)(X", (7, (=N,0]); E, F),
and from Corollary 6.3.6 we obtain

WAB(]- - ‘:})7 (1 - Q)ABW € CG(,V)(XAa (77 (_N7 0])’E7H)

Conclusion: From Step 1 — 3 we see that the composition AB belongs to

C(*‘J(ﬁc‘gi)w'?‘(xm (7,(=N,0)); E, H) in view of Definition 6.3.2. Moreover, the for-

mula for the complete interior symbol of AB subordinated to a given covering
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{[0,Ty), (T, 0)} of Ry, as well as the relationship for the exit symbol, are proved
in Step 1 and Step 2. The identities for the conormal symbols of AB are subject
to Theorem 6.2.21, see also Theorem 6.3.4.

For classical operators the homogeneous principal symbol of the composition is
given as the product of the homogeneous principal symbols. This follows from the
relationship for the complete interior symbol of AB and equation (6.3.xi), keeping
in mind the asymptotic expansion formulae for the Leibniz-products. d

6.3.11 Theorem. Let A € C(“c’l‘;;[(X/\, (7, (=N,0]); E, F). Then the formal ad-

joint A* with respect to the r~% L?-inner product is a cone pseudodifferential
operator in C{58* (X", (=7, (=N, 0)); F, E).

Let 0 < Ty < Ty < 00, and let ngg;l(A) = (h,a) be a complete interior symbol of
A subordinated to the covering {[0,T}), (T2, 00)} of Ry. Then

LA = (0,0l F)

is a complete interior symbol of A* subordinated to the covering {[0,T1), (12,00)}
of Ry. The adjoint symbols are according to Theorem 5.3.3 and Theorem 5.4.4,
respectively.

The following relations hold for the exit symbol and the conormal symbols:
ot Bl(A*) = gheit(A) ) E
o3 (A)(2) = (037 (A (n + 1~k =2)
for k = 0,...,N — 1, where *) denotes the formal adjoint with respect to the

L?%-inner product on the manifold X in the formula for the conormal symbols, and
the adjoint exit symbol is according to Theorem 5.4.4.

If A is a classical cone operator, then the (anisotropic) homogeneous principal
symbol of A* is given as
138
EAT) = ol (A)".

Proof. Let w,& € C§°(Ry) be cut-off functions near 7 = 0. According to (6.3.i)
we may write

GAw = Goply 2 (W)@ + Amsa,
AM+G’ S CMJrG(XA (77(_N7 0])aE7F)7

he CF Ry, MA, (X5 B, F)).

Hence n
wA*@ = wop,, 2 (W)@ + A}y,
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with the adjoint symbol A* from Theorem 5.3.3. Note that due to Theorem 6.2.21
we have A}, o € Cyra(X7, (=7, (=N,0]); F, E). Consequently, wA*@ is of the
form (6.3.i) by Theorem 5.3.2.

In view of (6.3.ii) we have

(1-0)A(1 —w) = (1 —@)op,(a)(1 =) + G,
G e CG(X/\a (77 (_N70]);E7F)7

a € S°(R, L{iy (X; R, E, F)),

and thus
1-wA"1-0)=(1- w)opr(a(*)’%)(l —w)+G",

where G* € Cg(X", (=7, (=N,0]); F,E), and a*)% is the adjoint symbol to a
from Theorem 5.4.4. Proposition 6.1.5 and Theorem 5.4.3 imply that (1—w)A*(1—
@) is of the form (6.3.ii).

Next assume that w < @. Then also @ < @, and thus
(1-@)AD, BA(1 — @) € Ca (X", (v, (=N, 0]); E, F)
by (6.3.iii). Consequently,
wA*(1 - @), 1 —0)A*w € Cq(X", (=7, (=N,0]); F,E).

From Definition 6.3.2 we obtain that A* € Cof“(X", (=7, (=N, 0)); F, E) as de-
sired. Moreover, the formulae for the complete interior symbol of A* subordinated
to a covering {[0,71), (T%,00)} of Ry, as well as for the exit symbol, follow im-
mediately from the proof. In the classical case, the identity UZ;Z(A*) = O'Z;K(A)*
for the homogeneous principal symbol is a consequence of (6.3.xi), the relation for
the complete interior symbol, and the asymptotic expansions of h* in terms of A,
and of a*)'% in terms of a, from Theorem 5.3.3 and Theorem 5.4.4, respectively.
The assertion concerning the conormal symbols follows from Theorem 6.3.4 and
Theorem 6.2.21. d

6.4 Ellipticity and Parabolicity
6.4.1 Definition. Let A € C*%¢(X", (v, (=N,0)); E, F).
a) Interior ellipticity:

A is called elliptic in the interior, respectively interior elliptic, if for each T' > 0
the following conditions are fulfilled:
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e For all cut-off functions w,® € C§°(Ry) such that X[o,7] < w,w, and all
representations

wAD = opy; 2 (h) + Awrse
AM+G € CM+G(XA7 (77 (—N,O]),E,F),
heC¥ Ry, ME (X;E, F))

according to (6.3.1), we require that h is elliptic on the interval [0,7] in
the sense of Definition 5.3.8.

e For all cut-off functions w,® € C§°(R4) such that w, < x[o,7] write
(1 -w)A(l — @) = op,(a),
a € SR, L*Y(X; R E, F))

according to (6.3.ii). We require that a is interior elliptic on the interval
[T, 00) in the sense of Definition 5.4.9.

b) Conormal ellipticity:

A is called conormal elliptic if there exists sg € R such that the conormal
symbol

0% (A)(2) : H(X,E) — H* "(X, F)
is an isomorphism for all z € FW.T-I—I_,Y.

c) Exit ellipticity:

A is called exit elliptic if the following is fulfilled: For all cut-off functions
w,® € C§°(R4) near r = 0 write

(1 —w)A(1l — @) = op,(a),
a€ SR, LM(X;R; E, F))

according to (6.3.i1)). We require that there exists s € R and 79 € Ry, such
that for r > rg and all 7 € R

a(r,7): H*(X,E) — H* (X, F)
is an isomorphism, and we have for some M € R

lla(r, 7) "Ml zgreo-n, 20 (1) (r)¢ = O(1),

uniformly for 7 € R and r» — oo.

A is called elliptic if A is interior elliptic, conormal elliptic, and exit elliptic.

6.4.2 Definition. Let A € C&’Q;Z(X/\, (v,(=N,0)); E, F).
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a) Interior parabolicity:

A is called parabolic in the interior, respectively interior parabolic, if for each
T > 0 the following is fulfilled:

e For all cut-off functions w,® € C§°(Ry) such that X[o,7] < w,w, and all
representations
wAG = op}; 2 (h) + Amsa,
AM+G € CM—}-G,V(X/\: (77 (_N7 0])5 E: F):
he Cp Ry, Mo (X B, F))

according to (6.3.iv), we require that h is parabolic on the interval [0, 7
in the sense of Definition 5.3.8.

e For all cut-off functions w, € C§°(Ry) such that w,d < X[o,T] Write
(1-w)A(l — @) = opr(a),
a € S°(R, L{i* (X; H; B, F))

according to (6.3.v). We require that a is interior parabolic on the interval
[T, 00) in the sense of Definition 5.4.9.

b) Conormal parabolicity:

A is called conormal parabolic if there exists sg € R such that the conormal
symbol

o3 (A)(2) : H*(X,E) — H* *(X,F)
is an isomorphism for all z € H"%fv'
c) Exit parabolicity:

A is called exit parabolic if the following is fulfilled: For all cut-off functions
w,® € C§°(R4) near r = 0 write

(1 —w)A(l — @) = op,(a),
a € S¢(R, LY (X; H; E, F))

according to (6.3.v). We require that there exists sg € R and ro € Ry, such
that for r > r¢ and all z € H

a(r,z): H*(X,E) — H* "(X, F)
is an isomorphism, and we have for some M € R
lla(r,2) " legso-—n ao0) ()M ()2 = O(D),

uniformly for z € H and r — oo.
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A is called parabolic if A is interior parabolic, conormal parabolic, and exit
parabolic.

6.4.3 Notation. For g € R we denote

Coy (XN, (7, (=N,0)); B, F) := () CHE(X™, (7, (=N, 0)); E, F).

nER

Consequently, A € C; ’Q(X/\ (v, (=N, 0)); E, F) if and only if the following holds:

e For all cut-off functions w,o € C§°(Ry) we have

wA® € CM+G’(,V)(XA7 (77 (_N7 0])5 E: F):
(1 - w)A(1 - &) = op, (a),
Se(R, L= (X:R; E, F)
S¢(R, Ly™ (X H; B, F).

e For all cut-off functions w < @
WA(]- - (:)), (1 - ‘:})Aw € CG(,V) (X/\7 (77 (_N7 0]); EJF)

Moreover, let C(V) (X", (v, (=N,0]); E, F)o denote the subspace of all those op-
erators A with 03(A) =0 for k=0,... ,N — 1.

6.4.4 Theorem. Let A € C“’Q( ))(X/\ (v,(=N,0]); E,F), and let 0 < To < T} <

%
K05 e( ) = (h,a) be a complete interior symbol of A, subordi-
(

Tz, )} Ofﬁ_i_.

0. Moreover, let oy,
nated to the covermg {[0,Ty),

The following are equivalent:

a) A is interior elliptic (parabolic).

b) There exist Ty < T, < Ty < T\ < oo such that h is elliptic (parabolic) on
the interval [0,71] in the sense of Definition 5.3.8, and a is interior elliptic
(parabolic) on the interval [T»,00) in the sense of Definition 5.4.9.

¢) There exists P € C(\/(; Q’ (X", (v, (=N,0]); F, E) such that

AP —1€ O (XM, (7, (=N, 0]); F),
PA—-1€ C7 (XM, (7, (=N, 0]); ).
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Moreover, if A € C(”",‘;;ﬁl(XA,('y,(—N,O]);E,F), then A is interior elliptic

(parabolic) if and only if the homogeneous principal symbol UZ;Z(A) satisfies the
following:

UZ;Z(A)(’I", &.,7717) is invertible in Hom(n*E,7*F) for allr € Ry and 0 # (£,,7) €
T*X xR (respectively 0 # (&;,7) € T*X xH), and for the inverse we have

o (A) (r, &, )T I} = O(1),

uniformly for (|& |2+ |7|*) =1 and r — .

Proof. ¢) = a): Let (h1,a1) and (ha,a2) be any choices of complete interior
symbols of the operators A and P, respectively, subordinated to the same covering
{[0,T7), (T3,0)} of Ry.. Then for every choice of cut-off functions w < & < x[o,1/]
we have

VB
VB

(hl) - 1)(:) € CM-i—G(,V)(XAJ (’77 (_Na 0]):F)7

w(opX/I_
" (hl) _1)(:) € CM-i—G(,V)(XAJ(77(_N70]);E)'

(hl)op}yu_
(h2)op7u_

3
VB

W(OpM

From Lemma 6.2.15, Proposition 6.1.5 and Theorem 5.3.11 (respectively Theorem
5.3.10) we conclude that hy is elliptic (parabolic) on every interval (0,T] such that
T < Ty, where h; is regarded as an element of C};"(M,Lf‘;le) (X;FnTH_W;E,F)),

respectively C%o(&,L*‘?(lcl)(X;Hn#_v;E,F)). Moreover, Theorem 6.3.10 im-
plies that the conormal symbol o39,(A) is elliptic (parabolic) as a meromorphic
(Volterra) Mellin symbol in the sense of Definition 5.1.12 or Definition 5.2.7, re-
spectively. Since hy (0, 2) = 09, (A) modulo meromorphic (Volterra) Mellin symbols
of order —oo we finally obtain that h; is elliptic (parabolic) on the interval [0, 7]
as an element of C'% (KJF,M(“%)O(C[) (X;E,F)). Similarly, we conclude that a; is
interior elliptic (parabolic) on the interval [T, 00), for every Ty < T'. Hence, us-
ing Theorem 5.3.2 and Theorem 5.4.3, the interior ellipticity (parabolicity) of the
operator A follows.

a) = b): Choose arbitrary Ty < Ty < T} < Ty < oco. Let w, € C§°(R,) such
that X[o,7] < W = @ < X[o,1,]- We may write

wA® = wop}(/[_% (M@ + At
AM+G’ € CM-i—G(,V)(XAJ (’77 (_Na 0]): E; F)
Let h' € CF¥ (@+,M(‘“;,So(d)(X;E,F)) be the left-symbol that is associated with
the double-symbol w(r)h(r,z)w(r') according to Theorem 5.3.2. Then we have
wAD = opy, >(h') + Apig, and by Definition 6.4.1, respectively Definition
6.4.2, the symbol A’ is elliptic (parabolic) on the interval [0,77]. For h' — wh €
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Cx(Ry, M\ Y (X E, F)), we conclude that h is elliptic (parabolic) on the in-

~(V)O(el) _
terval [0, T1]. Next let w,© € Cg°(Ry) such that x[o,1,) <@ <w < X[o,7s]- Then

(1-wA(l -&)=(1-w)op,(a)(l —&) + G,
Ge CG(,V)(XAJ (’77 (—N,O]),E,F)

Let a' be the left-symbol associated with the double-symbol (1 — w(r))a(r,7)(1 —
@(r")), see Theorem 5.4.3. Due to Proposition 6.1.5 write G = op,-(g), and thus

(1-w)A(l =) =op,(a' +9),
it - TR-
al_'_ c {SQ(R,LE}?(X,]R,E,F)),
SQ(RLV’(CZ)(XQHQE:F))-
By Definition 6.4.1, respectively Definition 6.4.2, a' + g is interior elliptic
(parabolic) on the interval [T5, c0). For
_ —1;¢
SeHR, Ly (X R B, F)),

SeL(R, LYy (X3 H; B, F)),

(a’+g)—(1—w)a€{

we obtain that a is interior elliptic (parabolic) on [T%, 00).

b) = ¢): Due to Theorem 5.3.11 (respectively Theorem 5.3.10) and Theorem 5.4.11
there exist

7 00 (T —uil .
h € CB (]R+7M(Vlf)o(cl)(XaFaE))7

SR L (X R FL E)),
TSR Ly (XS FE)),

such that for all cut-off functions w,& < x 7, and xo 7,] < @, we have

w CV]W%—G(,V)(‘X/\J(’)/7(_*]\[70]);1?)7W
CM+G'(,V) (XAa (77 (_N7 0])5 E):

(1 — &) (opr(@)op, (@) — 1)(1 = @) = (1 - @)op, (rp)(1 — &),

€
w e

SO(]R{,L_OO(X;R;F,F)),
TR 01 oo (1)
S (]R7LV (XzH;FJF))J
(1 = @) (opr(@)op,(a) = 1)(1 —w) = (1 = @)op,(rr)(1 — w),
¢ JS' R L7 (X R B, B)),
r
"SR Ly¢ (X B BE).
Notice that for all ¢, € C§°(T2,11) we have wopyg(h)w = pop,(a)y mod-
ulo Cg(vy(X", (7, (=N,0]); E,F). Now we conclude that also gZ)opX/[_E(fL)I/NJ =
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Qopr(d)@/; modulo Cg(VV)(XA,('y,(—N, 0); F, E), for all 95,1/; € CSO(TZ,Tl). Let
{w1, w2, w3} be cut-off functions subordinated to the covering {[0, 1), (T3, 00)} of
Ry, and define

P .= wlop;(/[_g (R)ws + (1 — wi)op,(a)(1 — ws).

According to Theorem 6.3.3 we have P € Cy/i Y(XN, (7, (=N, 0)); F, E). More-

over, o’ o et (P) = (h, @) is a complete interior symbol of P subordinated to the
covering {[0,71), (T»,0)} of R,. Theorem 6.3.10 and (1) imply

w1 (AP — 1wy = wy (opM (h#th) —1)w, =0 )

)
mod CM+0 (X" (y, (= NO]) F),
w1 (PA — 1wy = wy (opM h#h 1)w2
mod Cpryav) (X7, (7, (=N, O]) E),
(1 —wi)(AP —1)(1 — w3) = (1 —wy) (opr(a#ta) — 1) (1 — ws) 2)
= (1 —wy)op,r(rr)(1 —ws)
mod Cg(v) (X", (7, (=N,0]); F),
(1 —wi)(PA—1)(1—ws) = (1 —wi)(opr(@#a) — 1)(1 — ws)
= (1 — w1 )op () (1 — ws)
mod Cg( vy (X", (v,(=N,00); E), )

i. e., P fulfills the conditions in c).

Interior ellipticity (parabolicity) for classical operators: According to (6.3.xi) we
have

o), e, i~y — i) = o (AN 1) o [0,

Ud; (a)(ra fac: T) = U@[;’ (A)(’I”, fac; T) on [T‘Z; OO),

for (&,,7) € (T*X xR) \ 0, respectively (&;,7) € (I X xH) \ 0. Consequently, the
asserted equivalence for classical (cone) operators follows from b) and Definition
5.3.8, as well as Definition 5.4.9. O

6.4.5 Theorem. Let A € C”"}E’cl))(X/\ (7, (=N,0]); E, F). The following are
equivalent:

a) A is interior and exit elliptic (parabolic).

b) A is interior elliptic (parabolic), and for some (every) exit symbol o*+¢(A) we
have:
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There exists sg € R such that for r > ry sufficiently large and all 7 € R
(respectively T € H)

oA, 7) < HP (X, B) — H (X, F)
is an isomorphism, and we have for some M € R

104 (A) (ry ) Ml pgaaso=n a0y (1) M ()¢ = O(1),
uniformly for T € R (respectively T € H), and r — oc.

¢) There exists P € C(_V“(’C;)‘;;K(XA, (7, (=N,0)); F, E) such that
AP —1¢ OMJ,-G(,V)(XA: ('77 (—N, 0])5F)7
PA—-1€¢ CM+G(7V)(X/\; (7: (_Na 0])a E)

Moreover, the following are equivalent:

i) A is interior and conormal elliptic (parabolic).

ii) There exists P € C(V*L(’c;)g;l(XA, (7, (=N,0)); F, E) such that

AP =1 € O (XN, (7, (=N, 0]); F)o,
PA—1¢€ CY (X7, (7, (=N, 0]); E)o.

Proof. We first prove the equivalence a) — c): Note that if e; and e» are exit
symbols for the operator A, then there exist cut-off functions w < @ such that
(1 -a)er(l —w) = (1 — @)e2(l — w) modulo terms of order —oo, both in u and
0. Hence the condition in b) does not depend on the choice of the exit symbol.
In particular, we may consider the Fourier component a of any complete interior
symbol (h,a) as an exit symbol that satisfies b).

Let 0 < Th < T} < o0, and let (h,a) be a complete interior symbol of A, subordi-
nated to the covering {[0,T}), (T»,0)} of R. From Theorem 6.4.4 we obtain that
a) and b) are equivalent to the following: There exist Tp < T <T) <T <o
such that h is elliptic (parabolic) on the interval [0,T}] in the sense of Definition
5.3.8, and a is elliptic (parabolic) on the interval [Tz, o0) in the sense of Definition
5.4.9.

Starting from this condition we construct the operator P in c) analogously to the
proof of b) = ¢) in Theorem 6.4.4. Note that in (1) we now obtain

SR L (GREF)) SR L (R B, B))
T T
557 (R, Ly™ (X; B F, F)), S\ SR, L™ (X; B B, E)),
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and consequently in (2)

(1 —wi)(AP = 1)(1 = w3) € Cgv) (X", (7, (=N,
(1 —w)(PA=1)(1 = ws) € Co(v) (X7, (v, (=N

This shows that P satisfies the conditions in c).
¢) = a) is obvious due to Theorem 6.4.4.

Let us now prove the equivalence i) < ii): ii) = i) follows from Theo-

rem 6.4.4 and Theorem 6.3.10. Now assume that i) holds. Choose P' €
C(_V“(’C;)‘;;Z(XA, (7, (=N, 0]); F, E) that satisfies ¢) in Theorem 6.4.4. Hence we obtain
from the conormal ellipticity (parabolicity), using Theorem 5.1.14 and Theorem

5.2.8:
— Mioo(XaFaE)a WCQHFLH, :@,
gm0 () — o () € { Mo (i E), mel@ilap
My (X Hops_ i F, E).

With a cut-off function w € C§°(R,.) define

P:=P'+wopy, * (9)w € Cfiaf (X", (7, (=N, 0)); F, E).

Then we have AP =1+ C1, and PA=1+ Cs, where the remainders

01 € C(_VO)QO(X/\; (77 (_N7 0]):F)7

Cy € O (XM, (7, (=N, 0]); E)
are such that ¢9,(C1) = 0, as well as 69,(Cs) = 0. Consider the operator C;: We
may write

C, = él + él,

él € CM+G'(,V) (X/\a (77 (_N7 0])5 F):

C1 e O (XM, (7, (=N, 0)); F)o.
From Theorem 6.2.27 we conclude that there exists a smoothing (Volterra) Mellin
and Green operator D1 € Cprpa(,v) (X", (7, (=N, 0]); F) such that

(1 + CN'I)(]' +D1) -1le CG'(,V)(X/\a (77 (_N7O]);F)'

Note that C(V())O’O (X7, (v, (=N,0]); F)o is a two-sided ideal in the (Volterra) cone
algebra. Hence we obtain APp — 1 € C(_VO)(”O(XA,(%(—N, 0]); F)o with Pg :=

P(1 4 D). Analogously, we construct P, € C(V*L(’C;)g;l(XA, (7, (=N,0)); F, E) with
PLA-1¢€ C(V%O’O(XA, (v, (=N, 0]); E)o. But both Pr and Pg differ only by an
element in C(_VO)(”O(X/\, (7, (=N,0)); F, E)o, and thus condition ii) is fulfilled with
either P := P, or P := Pg. This finishes the proof of the theorem. O
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6.4.6 Theorem. Let A € C{C’l‘;;l (X", (v, (=N,0]); E, F). The following are equiv-
alent:

a) A is elliptic.

b) There exists P € C(;;;’fg;l(X/\,('y,(—N,O]);F,E) such that AP = 1+ G,
and PA = 1+ Gy with Green operators G; € Cq(X", (v, (=N,0]); F) and
G2 € CG'(XAa (77 (_N7 O])aE)

Moreover, for A € C“j’("c;f) (XM, (v, (=N,0]); E, F) the following are equivalent:

i) A is parabolic.

ii) There exists P € C‘;fc’l;‘”l(XA, (v, (=N,0)); F, E) such that AP = 1+ G; and
PA =1+ G, with Volterra Green operators Gy € Cq,v (X", (v, (=N, 0]); F)
and G2 € CG,V(XAa (77 (_Na 0])) E)

iii) There exists P € C;é‘c’l;Q;Z(X/\,(%(—N, 0]); F, E) such that AP = 1 and

PA =1, i. e, A is invertible in the Volterra cone algebra with A~! = P,

Proof. We simultaneously prove the equivalences a) < b) and i) < ii).

Clearly, the conditions in ii) and b) are sufficient for i) and a) by Theorem
6.4.4 and Theorem 6.4.5. Now assume that A is elliptic (parabolic). Using
the interior and exit ellipticity (parabolicity), we conclude from Theorem 6.4.5
that there exists P’ € C(_V“(’C;)‘;;K(XA,(%(—N, 0]); F, E) such that AP' — 1 €
C’1\/1-1-Cr'(,V) (XAJ (’77 (_Na 0]): F) and PPA-1¢€ C’M-i-G(,V) (XAJ (’77 (_Na 0]): E) Us-
ing the conormal ellipticity (parabolicity) of A we see that

_ M_Oo(XaFaE)a WCQHFLH, :@7
g:za?\/l(A) 1_09\4(P’)€{MQ00 X H -FE =
V7Q( ) 7%77, ) )

With a cut-off function w € C§°(R,) define

P:= P' +wopy, * (9)w € CHL 8 (XN, (7, (=N, 0)); F, E).

Then
A]s — ]. € CM+G(7V)(X/\; (77 (_Na 0]))F)7
PA —1e€ CM+G(7V)(XA; (77 (_N7 0]); E)

Moreover, we have 09,(AP) = 1, as well as 09,(PA) = 1, in view of Theorem
6.3.10. From Theorem 6.2.27 we obtain the existence of

D, e CM+G’(,V)(XA7 (77 (_N7 0]))E)7 D, € CM+G(7V)(X/\7 (77 (_Na 0]))F)
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such that ((1+D1)P)A—1 € Cq(v)(X", (7,(=N,0]); E) and A(P(1+D,))—1 €
Cav) (X", (7, (=N,0]); F), and thus either P : ]5(1 + Dy) or P := (14 Dy)P
fulfills the conditions in ii) and b).

It remains to prove that iii) is equivalent to ii), but this follows from Theorem
6.1.6. 0

6.4.7 Definition. Let A € C”’Q’ (X2, (7, (=N, 0]); E, F) be elliptic, respec-
tively parabolic. Then any operator P e C(V“(’C;)‘;K(X/\ (7, (=N,0]); F, E) that
satisfies b) or ii) in Theorem 6.4.6 is called a (Volterra) parametriz of the op-
erator A.

6.4.8 Corollary. Let A € C*%¢( X" (v,(=N,0)); E, F) be elliptic. Then
A KEOBYXN By — ;C(s—u,t)m(f(X/\,F)é_Q

is a Fredholm operator for all s,t,6 € R.

Proof. This follows from Theorem 6.4.6, and from the fact that Green operators
induce nuclear, in particular compact, operators in the cone Sobolev spaces by
Proposition 6.1.4. ]

6.4.9 Corollary. a) Let A € C“}’Q;K(X/\, (v,(=N,0)); E, F) be parabolic. Then
A ]C(syt)rr;l(X/\,E)a N ]C(sfuyt)ml(XA,F)éiQ
is bijective for all s,t,6 € R, i. e., the equation Au = f with f €
K=mt) (XA F)s_, is uniquely solvable with solution u € K574 XN E);.

Moreover, if f has asymptotics of “length” N, i.e., if f € K(Qs_”’t)me(X/\, F)s—o
with some asymptotic type @ € As((v,(—N,0]),C®(X,F)), then the so-
Iution u belongs to the space Kg’t)’””l(X/\,E) with some asymptotic type
Q € As((7, (=N, 0]),C=(X, E)).

b) IfAe Cy; ize (XM, (v, (=N, 0]); E, F) is just interior and conormal parabolic we

still have the following:
For every ry € Ry the operator

A HEDTE(0,m0] x X, B) — HETHTE((0, 0] X, F)

is bijective for all s,t € R.

More precisely, there exists P € Cvé‘c’l) %4(XN, (v, (=N,0]); F, E) such that

—1
(A|Hgs>“mf((o,ro]xX7E)) :P|Hg““>“mf((o,ro]xX7F)
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for all s,t € R.

In particular, the equation Au = f with f € H(()Sfu’t)m[((o,ro]xX, F) is
uniquely solvable with solution u € H(()S7t)’w((0, ro]x X, E). Moreover, if f has
asymptotics of “length” N, then so does u (in the sense of a)).

Proof. a) follows immediately from Theorem 6.4.6. Let us prove b). Choose
P € C‘;fbc’lgg;l(X/\, (7, (—N,0]); F, E) satisfying condition ii) in Theorem 6.4.5.
Moreover, let w,@ € C§°(R,) be cut-off functions such that X[0,r] < w < @. Then
we have WAP'® = w+ G1 and wP'AO = w + G2 with Volterra Green operators
Gy € Ca,v (X", (7, (=N,0]); F) and Gy € Cq,v (X", (v,(=N,0]); E). By Theorem
6.1.6 we have (1+G1)™' =1+ Gy and (14 G2)~' =1+ G with Volterra Green
operators Gy, G2. Hence we see

wA(P'G(1+G1)) =1—(1—-w)(1+Gy),

(14 G2)wP)AD =1 - (1+ Go2)(1 — w).

Restricting to the ’H(()s’t)’w;e((o,ro]xX, -)-spaces reveals that the so-obtained op-

erator A|H(()s,t),7;e((07r0]xx7E) is indeed invertible from the left and from the right

with operators in C;é‘c’l;Q;Z(XA, (7, (=N,0)]); F, E), and consequently any left- or
right-inverse gives rise to an operator P which satisfies the assertion in b). d

Parabolic reductions of orders

6.4.10 Theorem. Let ¢ € 2N. For s,0 € R there exist
R € O3 (X7, (3, (=N, 0]); E)

such that R*°R~*~° = 1, i. e., there exist parabolic reductions of orders within
the algebra of classical Volterra cone operators.

Proof. For s = § = 0 define R%? := 1. Now assume that s > 0. Since ¢ € 2N is
even, the function

(6 Q) = (Il + Q)7 vidrep, ) € SEO(T* X xHy) \ 0, Hom(" E))
is well-defined, and (€, |4 + ¢) ¥ # 0 for (&,,¢) € (T*X xHy) \ 0.
According to Theorem 3.2.16 there exists
ho € Ly, (X; Hy; E),
o5 (ho) (6> €) = (1&lt + Q)T +idee i, .-
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Let ¢ € C§°(Ry) such that ¢ = 1 near r = 1. With the Mellin kernel cut-off
operator define hy := Hy(¢)ho € M‘s,ilo «(X; E). Due to Theorem 5.2.5 we have

hi —ho € Ly, (X; Hp; E), and thus h, is parabolic as an element of M‘s,é (X E)
in the sense of Definition 5.2.7. Using Theorem 5.2.8 we obtain that for some 5 € R
the holomorphic Volterra Mellin symbol h := Tgh; € M‘S}f) «(X; E) is parabolic,
and additionally h(z) : H®(X,E) — H®~%(X,E) is an isomorphism for all
zZ € Hw%_,y and all sg € R.

From Theorem 3.2.16 and Theorem 3.2.19 we see that there exists
it LT
be L3 (X;H; E),
74 _ L NT .
oy 0)( 1) = (I&lz —i7)* -ideepe, .,
and b is invertible with inverse b~ € L;,%/(X; H; E).
Let w3 < w; < wy be cut-off functions near r = 0. Moreover, let ¢ € C*®(R,) be
an everywhere positive function with ws < ¢, and r¢(r) = 1 for r > ry sufficiently
large. Define
R*0 .= wlop;yw_%(h)wz + (1 — wi)opr(a)(1 — ws),

where a(r,7) := (1 — w3 (r)b(re(r)r) € SO(R, Lf}ecl(X;]HI; E)). By Theorem 6.3.3
we have R*0 € Cf;g;le(X/\, (7,(=N,0)); E), and from the construction we see

€alz = ire(nT) * - idee b, ),

Hence R*? is parabolic, and by Theorem 6.4.6 there exists
Ris’o = (Rs’o)il S C‘;SC}OJ(XAa (77 (_N7 0]); E)

This completes the proof in the case 6 = 0.
With a cut-off function w € C§°(R;) we define for all s € R and 6 > 0

R i= (w(r) + (1L —w(r)(r)°) R € CHYH (X7, (v, (=N, 0); E).
Consequently, R*9 is parabolic, and by Theorem 6.4.6 there exists
R0 = (R™) ' € Oy (XN, (7, (=N, 0)); B).

This finishes the proof of the theorem. (|
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Chapter 7

Remarks on the classical
theory of parabolic PDE

We want to conclude the present exposition with some remarks about the clas-
sical theory of parabolic partial differential equations; more precisely, we want
to give an idea of how it fits into the framework of our Volterra cone calculus.
In particular, the intention of this chapter is to offer the reader some guide to
the functional analytic structures of the previous chapters. To this end, we shall
discuss parabolicity, solvability, and regularity for a generalized heat operator.

A generalization of the scalar heat equation

Consider the following equation:
(1)

e A; is a smooth family of scalar differential operators on the closed manifold
X of order /.

e We impose the following condition on the stabilization of coefficients for
t — 001 A_1og(r) is assumed to be C>° up to r = 0. In particular, 4; extends
continuously up to t = oo, and we find a differential operator A, of order ¢
there.
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Notice that the most natural classical equations fulfill the stabilization condition
imposed on the coefficients. Among these, in particular, there are the autonomous
equations, i. e., the coefficients do not depend on time at all, and, moreover,
equations that do not depend on time for ¢ > ty sufficiently large.

On the classical notion of parabolicity

Classically, the notion of parabolicity (more precisely: one notion of parabolicity)
for equation (1) is strong ellipticity of the family of differential operators A, i. e.,

Re Uﬁ,(At) <0onT*X \ 0, for all t € [to, 0] (2)
Writing the operator 9; — A; from (1) in local coordinates as

4

o — Z aq(t,z) Dy, (3)

|a|=0
the parabolicity condition (2) reads

Re( Z aa(t,x)ﬁa) <0 (4)

|a|=¢
for all  and £ # 0, and all ¢ € [to, o).

From the local representation (3) the anisotropic structure of the operator 9; — A;
is evident. More precisely, it is an operator of order ¢ with the same anisotropy
£, and this is precisely the “gap of orders” of the spatial derivatives and the time
derivative. Locally, the anisotropic leading component of the symbol is given as

4

o (0 Y anlt,0)D2) (24,60 = iC = 3 au(t,x)e”

lor|=0 |a|=¢t

according to (3), and we have the anisotropic homogeneity

J4 l
i (0= > aalt,n)D2) (w,t,06,0°0) = o0 (8= Y aalt,2)DE) (2,4, )
|o|=0 |o|=0
for o > 0.

Now it is easy to see that the local parabolicity condition (4) is equivalent to the
following:

4

o (0= Y an(t,0)D2) (,1,6,C) £ 0 )

la|=0
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for all z and ¢ € [tg, 0], and all 0 # (&,() € R* xH_. Hence we have a condition
on invertibility of the anisotropic principal symbol with the time covariable (
extended to the lower half-plane H. = {Im(¢) < 0} C C (“parabolicity in the
sense of Petrovskij”).

The anisotropic homogeneous principal symbol is invariant under changes of co-
ordinates, and so is the notion of parabolicity (5), i. e., we require

Uﬁje(at —A)(t,&,¢) #0
for all t € [to, 0], and (&,¢) € (T*X xH_) \ 0.

Change of variables and totally characteristic structure

As we already pointed out in the introduction, we shall consider equation (1) not
in its original form, but carry out the change of variables r = e~ to end up with
the equation

((=r0,) = B: )ulr,2) = £ )

u|r:ro =0,

(6)

where B, := A_|54(;), which is now considered on the transformed time interval
(0,79] with 79 := e~?. Notice, in particular, that the stabilization condition on
the coefficients now reads that B, is required to be smooth up to r = 0, and thus
equation (6) can be regarded as a totally characteristic equation.

Passing to local coordinates as before reveals that the anisotropic leading compo-
nent of the symbol of the operator (—rd,) — B, locally is given as

4
o ((=r0) = 3 balr,@)DE ) (@,7,6,0) = —irC — 3 bulr, 2"
|

|a|=0 al=¢
In particular, we find the typical degenerate structure, and the parabolicity con-
dition (5) is equivalent to

14

o (=190 = 3 balr2)D2) (@1, 6.r7C) £ 0 (™)

|a|=0

for all , and all 0 # (£,¢) € R*xH], and all » € Ry. In this condition the upper
half-plane H is involved instead of the lower half-plane H_, and the degeneracy
requires to consider the above “coupled” expression, which is extended up to the
origin r = 0. The global situation is analogous, i. e., we assume

o3 ((=r8y) = By)(r,&,77'¢) #0 8)
for all r € [0, 7], and (&,¢) € (T*X xH) \ 0.
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Fourier and Mellin representations

We may represent the operator (—rd,.) — B, in the following two ways as a pseu-
dodifferential operator with operator-valued symbol:

1) Fourier representation:
(<10,) = B, = F *(~ir¢ - B,)F

with the (degenerate) symbol a(r, () := —ir{ — B,.

2) Mellin representation:
(=rd,) — B, = M~ (g - BT)M
with the Mellin symbol h(r, () := ( — B,..

Notice, in particular, that both symbols a(r, () and h(r, {) can be regarded as fami-
lies parametrized by the “time variable” r taking values in (anisotropic) parameter-
dependent operators on the manifold X (with the anisotropic parameter (). The
parabolicity condition (8) in terms of the operator-valued symbols a and h is given
as follows:

1) The parameter-dependent homogeneous principal symbol of a(r, ) satisfies
o (a(r,r™ ) (&, Q) #0

for all (&,¢) € (T*X xH) \ 0, and all 7 € R

2) The parameter-dependent homogeneous principal symbol of h(r, () satisfies

0 (h(r,0))(€, ) # 0

for all (¢,¢) € (T*XxHp) \ 0, and all r € Ry, where Hy = {Re(¢) > 0} CC
is the right half-plane.

The Volterra cone calculus makes use of both representations of the operator
(—rdy) — B,-. More precisely, the Mellin representation is used close to r = 0, which
corresponds to ¢ — oo in the original coordinates, while the Fourier representation
is used away from r = 0.

Necessary basics of parameter-dependent operators are given in Chapter 3, and
the discussion of both the Mellin and Fourier calculus is performed separately in
Chapter 5. The comments given above for the operator (—rd,) — B, might be of
help to get to a better understanding of their particular structure.



On the inverse of parabolic PDE in infinite space-time 213

spec(Aw)

Figure 7.1: The spectrum of A

Solvability and regularity
The following result on solvability and regularity of equation (1) is valid under the
classical parabolicity condition:

There exists 79 € R such that for v > 7 we have: Given
f € e (L*([to, 00)x X)),
equation (1) has a unique solution
u € e"(L?([to, 00), H* (X)) N Hy ([to, 00), L*(X))).
More precisely, o is given as the spectral bound
Yo := sup{Re(A); A € spec(Aso)}
as is visualized in the figure.

Consequently, under the parabolicity assumption, the question whether equation
(1) is solvable for all right hand sides f in some L?-space with fixed exponential
weight v € R depends on whether v is larger than the spectral bound of the
operator A . In other words, it is possible if the resolvent (A — A,,)~! exists for
all Re(\) > .

Let us discuss this in more detail, where we freely interchange between both the
original equation (1) and its transformed representation (6):

In the Mellin representation of the operator (—rd,.) — B, above we met the Mellin
symbol h(r, () = ( — B,., and thus the so-called conormal symbol is given as

U?W((_Tar) = B)(A) = h(0,)) = A — A.
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As a consequence of the (classical) parabolicity assumption, the conormal symbol
is a parabolic meromorphic Volterra Mellin symbol as discussed in Section 5.2,
and consequently is invertible as such. In particular, the resolvent (A — Ao, )~}
exists for Re(\) sufficiently large, and it is a meromorphic Volterra Mellin symbol
of order —¢ (as a function of A € C). Notice also that this gives an explanation of
the figure.

Consequently, equation (1) has a unique solution u for all f € €7t (LZ([tO, 00) XX))
for some fixed v € R if and only if

e the parabolicity condition (8) is fulfilled, i. e., the anisotropic homogeneous
principal symbol is invertible up to ¢ = oo,

e the conormal symbol
0% ((=r9,) = B.)(\) = A — Ay : H(X) — H*~4(X)

is invertible for some so € R and all Re(A) > ~.

Under these conditions, we obtain additionally the above-mentioned maximal reg-
ularity assertion, i. e., for the solution u we gain one derivative in time (according
to the presence of one time derivative in equation (1)), and ¢ derivatives in space
(according to the order ¢ of the operators A;).

Thus we have seen that the (dominant) symbolic structure of the Volterra cone
calculus, i. e., the principal symbol and the conormal symbol, both occur in the
discussion of the simple equation (1), and the invertibility of both is required
to decide about the solvability and regularity in the natural anisotropic Sobolev
spaces with an exponential weight, as it is the case for general Volterra cone
operators, too.

We shall not pursue the discussion of the asymptotic behaviour of solutions of equa-
tion (1) here and refer to the main text, in particular, to Chapter 4 for Sobolev
spaces with asymptotics, and to Chapter 6 for the operator calculus, where equa-
tion (1) is a special case as we have seen.
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