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Abstract

We consider general parabolic systems of equations on the infinite time in-
terval in case of the underlying spatial configuration is a closed manifold.
The solvability of equations is studied both with respect to time and spatial
variables in exponentially weighted anisotropic Sobolev spaces, and existence
and maximal regularity statements for parabolic equations are proved. More-
over, we analyze the long-time behaviour of solutions in terms of complete
asymptotic expansions.

These results are deduced from a pseudodifferential calculus that we con-
struct explicitly. This algebra of operators is specifically designed to contain
both the classical systems of parabolic equations of general form and their
inverses, parabolicity being reflected purely on symbolic level. To this end,
we assign ¢ = oo the meaning of an anisotropic conical point, and prove that
this interpretation is consistent with the natural setting in the analysis of
parabolic PDE. Hence, major parts of this work consist of the construction
of an appropriate anisotropic cone calculus of so-called Volterra operators.

In particular, which is the most important aspect, we obtain the com-
plete characterization of the microlocal and the global kernel structure of the
inverse of parabolic systems in an infinite space—time cylinder. Moreover, we
obtain perturbation results for parabolic equations from the investigation of
the ideal structure of the calculus.
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Chapter 3

Parameter-dependent
Volterra calculus on a closed
manifold

3.1 Anisotropic parameter-dependent operators

3.1.1 Notation. Let X be a closed manifold of dimension dimX = n, and E and
F' be complex vector bundles over X of dimensions N_ and N, respectively. A
local chart will be denoted as a tuple (k,Q,U) (or simply k), where Q2 C X and
U C R™ are open subsets and « : 2 — U is a diffeomorphism. We will throughout
assume that the bundles are trivial over 2. The transition matrices of the fibres
(local trivializations of the bundles) are suppressed from the notation.

On X we fix the following data:

e A finite open covering {ﬁ;, j=1,...,N} of X, where (/2\] - Q;] € Q; with
suitable coordinate neighbourhoods {(x;,Q;,U;); j = 1,..., N} such that
E and F are trivial over ;.

—

e A subordinated C*°-partition of unity {¢;};=1,... ~, 1. €. ¢; € C§°(£;) with
N
0<¢j<land ) ¢; =1
j=1

e Suitable functions v¢; € CgO(ST]) and 0; € C§°(Q;) with ¢»; = 1 in a neigh-
bourhood of supp(y;) and §; =1 on S/); forj=1,...,N.
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e A Riemannian metric on X.

e Hermitean inner products on E and F'.

The Riemannian metric and the Hermitean inner products on the bundles are fixed
in order to avoid inconveniences what the measure on X and the Hilbert space
structure of L?(X, E) are concerned. Alternatively, we could also fix a positive
section in the density bundle over X replacing the Riemannian metric, or consider
sections in the %—density bundle instead of working with functions.

Pull-backs and push-forwards of distributions and operators with respect to a
chart « will be denoted by k* and k., respectively. Note once more that local
trivializations of the bundles are suppressed from the notation.

3.1.2 Definition. a) We define L~*°(X;R%; E, F) = S(R?,L-*°(X;E,F)),
where L=°(X; E, F) denotes the space of smoothing pseudodifferential op-
erators on X acting from C*°(X, E) to C*°(X, F'). This space carries a natural
Fréchet topology, and it is characterized as

L ®(X;R%E,F) = SR, () L(H*(X,E), H(X,F)))
s,teR
= () S(RY,L(H*(X,E),H'(X, F)))
s,teR
_ — 0o q.: 1; s R F t
=S (R ,deeElglmH (X,E),pr(peElglmH (X, F)).

In other words, the elements A(A) € L™°(X;R?; E,F) are precisely those
operators having integral kernels k(z,y,\) € S(R],C>®(X,xX,, F K E*)).
b) The space Lfbc;f)(X;]Rq;E,F) consists of all families of operators A(\)
C>*(X,E) = C>(X, F) with the following properties:
i) For all functions ¢, € C*°(X) that are supported in the same coor-
dinate neighbourhood (x, 2, U) the push-forward r.(pA(\)y) belongs to
12 _
Lgomp(cl)(U;]Rq;CN ,CN+).
Note that pA(X)y acts as an operator from C§°(Q, E) to C§°(2, F), and
consequently k.(pA(N)Y) : C5°(U,CN-) — C§°(U,CN+). The condition
is, that this operator should belong to Lé‘gfnp (Cl)(U;Rq;CN—,CN+) —
L(C5°(U,CN-), Cg° (U, CM+)).
ii) For all p,9 € C>(X) with disjoint support the operator ¢ A(A)y belongs
to L=°(X;R?; E, F).

We endow the space Lé‘;f) (X;R?; E, F) with the projective topology with respect
to the mappings A(\) —

{m*(npA()\)i/)) e Lt (U;Re;CN-,CN+)  for ¢, supported in (&, 2, U)

comp (cl)

YAMNY € L=°(X;RY; EF) for suppy N suppy = 0.
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3.1.3 Theorem. a) Let (k,Q,U) be a chart. Then the puH back k*(A(X)) of ev-
ery compactly supported operator family A(\) € L (U;Re;CN-,CN+)
belongs to Lf‘c;f) (X;Re; E, F). Moreover, this induces a continuous linear map-
ping

l
Lgomp (el) (

comp (cl)

U; R CN=,CV+) 5 A(N) — 6*(A(N)) € Lgcf)
Note: A()\) acts as a continuous operator C§°(U,CN-) — C§°(U,CN+), and
there exists a function ¢ € C§°(U) with ¢ A(N)¢ = A(X). Therefore, the
pull-back k*(A(N\)) = k*(p)k*(A(N))&*(p) is defined as a continuous opera-
tor C§°(Q, E) — C3(, F), which extends by means of the latter identity
to an operator C®(X,E) —» C>®(X,F). The assertion now is, that £*(A(\))
belongs to L?’ )(X RY; E, F) in this sense.

(X;RY; B, F).

b) Let (k,Q,U) be a chart, o, € C§°(Q), and A(\) € Lo (R"; RY;CN-, C+).

Then the operator pr*(A(\))y belongs to L( )(X RY; E, F), and the mapping
LY (R RYCV=,CV) 3 A(N) — or™(A(\)Y € LY (X;R% B, F)

is continuous. Note that for short we write k*(A(\)) for n*(A()\)|Ogo(U’CN, )).

¢) Let A(\) € L (X;RY; E, F). We may write

N N N
N =D e AN + (Z ;A1 - %/Jj)) =D 0i(0;AN8); + K(N).
j=1 j=1 j=1

v

"

=:K(\) €L~ (X;R%E,F)
The mapping
Lé‘c;f) (X;RYGEF) 2 AN\ — (k1,«(01AN)01), ... kN «(OnANEN); K(N))
€x ijofﬂp \(Uj; RECN=,CY) x L°(X;RY; B, F)
(3.1.1)

is continuous. Conversely, the mapping

N
Lf‘ )(]R{” RZ;CN-  CN+) x L™°(X; R E, F) 3 (A (M), ..., AN(A); K(N)

'—>Z‘PJ )i+ K(X) € Lélcle)(X R B, F)

(3.1.ii)

is continuous, and (3.1.i) is right-inverse to (3.1.ii).
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d) Lfbc;f) (X;R?; E,F) is a Fréchet space, and the embedding Lé‘;f)

C>(RY, L*(X; E, F)) is continuous.

For § € N} the operator 83 : L%} (X;R%; E, F) — Lycj)“ﬁ'?f(X;Rq;E,F) is
continuous.

(X;RG,EF) —

Proof. a) follows from Theorem 2.2.15 and Remark 2.2.5. Note that the transition
between different trivializations of the vector bundles results in “conjugation” with
the transition matrices in the local representations for the operator. To prove
b), choose a function § € C§°(Q) with 6y = ¢ and 6¢p = ¢. Then we have
r*(AN))Y = pr* (k8 A(N)K.0)1. For the mapping
L5 (R RGCN-,CV ) 3 A(N) = K BA(N)k.0 € L

(cl) comp

(cl)(UE ]Rq#CN* ;CN+)

is continuous, we obtain b) from a). c) follows immediately from a) and b), while
d) is a consequence of c). O

3.1.4 Remark. The mapping (3.1.ii) gives rise to a continuous mapping op,
N wil rmn n N_ N. — 00
><S(cyl)(]R x R X]Rq;(c 7(C +)XL (X;]Rq;EJF)B(a'la"'7a'N;K(A))

Jj=1

N
— Y i (opa(a) Ay + K(A) € L (X5 RY B, F),
i=1
(3.1.ii)

the so called operator convention for parameter-dependent pseudodifferential op-
erators, while (3.1.i) induces a continuous mapping

L (XGRS B, F) 3 AQ) — ((a1,- .-, an); K(X))
€ ,gs@‘f)(ﬂ@” x R" x R?; CN-,CN+) x L™°°(X;R%; E, F),
" (3.1iv)
which is right-inverse to (3.1.ii).
We call a tuple (aq,... ,an) € jgls(”c;f) (R* xR" x R?; CN-, CN+ ) a complete symbol

for the operator A(\) € Lﬁff) (X;R?; E| F), if the following conditions are fulfilled:

o For any ¢, € C5°(Q;) it holds k. (PANY) = (kj.9)0ps(a;)(N) (k). ¥)
modulo L~ (R?; R?; CN-,CN+).

e For any choice of the partition of unity {¢;}; and functions {¢/;}; in Notation

N A
3.1.1 we have A(\) — >° ;K7 (0pz(a;)(N\)Y; € L™(X;RY; E, F).
j=1
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The tuple (ai,...,ayn) obtained from (3.1.iv) yields a complete symbol for the
operator A(X). We will refer to the mapping A(X) — (a1,...,an) also as the
symbol mapping.

In the classical case, equation (2.2.x) in Theorem 2.2.15 shows, that with A(X) €
Lgl;e(X; R?; E, F) we can associate uniquely the principal symbol

o4 (4) € C®((T"X x R?) \ 0, Hom(n* B, 7* F)) (3.1.v)

which is anisotropic homogeneous of degree p in the fibres of (7*X xR?)\0. Here 7*

denotes the pull-back with respect to the projection 7 : (T*X x R?)\ 0 — X. The

mapping A(\) — UZ;K(A) is continuous. The following sequence is topologically
exact and splits:

Gu;l

0 — LY VY(X;RGE F) — LYY(X;RG B F) -5

SWO(T*X x R?) \ 0, Hom(7*E, 7*F)) — 0,

(3.1.vi)

where S50 ((T*X x R?) \ 0, Hom(7*E,7*F)) denotes the space of anisotropic
homogeneous functions of degree p as a closed subspace of C*®((T*X x R?) \
0, Hom(n*E,7*F)).

3.1.5 Theorem. Let A(\) € L*Y(X;R?; E, F). Then A()\) extends by continuity
to a family of continuous operators A()\) : H*(X,E) — H* (X, F) for every
s,v € R with v > u. The following estimates for the norms are valid:

Con( NV T v>0
.

Cs.u(A) . v<O0,

A cems (x,B), 15 (x,F)) < {

where Cs, > 0 are suitable constants depending on s,v and A()), which may be
chosen uniformly for A(\) in bounded subsets of L"*(X;R?; E, F). More precisely,
this induces a continuous embedding

SR H (X, E),H*"(X,F))  v>0

LHYXRGEF) {7 L0,
SU7 (RY; H (X, E), H*™ (X, F)) v <0

into the space of operator-valued symbols in the Sobolev spaces.

Proof. This follows by means of Theorem 3.1.3 from Theorem 2.2.13. d

3.1.6 Theorem. a) Let G be another vector bundle over X. Then the composi-
tion of operators on C*° (X, E) gives rise to a continuous bilinear mapping

(X;R; G, F) x LUH(X; RS E,G) — LIS (X; R B, F)

wil
L (cl) (cl)

(el)
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for p, ' € R. If (ay, ... ,ay) is a complete symbol for A()) € Lfbc;f) (X;R?; G, F),

and (bi,...,bn) a complete symbol for B(\) € Lé”;l;)l(X;]Rq;E,G), then
(a1#b1, ... ,an##bn) is a complete symbol for the composition A(A\)B(\) €

LI (X RY; E, F).

In particular, the operators of order —oo remain invariant with respect to com-
positions from the left and from the right, i. e., they share the properties of a
two-sided ideal in the pseudodifferential operators.

If A(A\) and B()\) are classical, then the following relation holds for the principal
symbol of the composition:

ol AB) = okt (A) - o (B).

b) Let A(\) € Léf) (X;R%;,E,F). Then the formal adjoint operator belongs to

L8 (X;RY; F, E). Moreover, this induces a continuous antilinear mapping
(cl)

LI (XSRS B, F) 3 AQN) = AN € LSS (X3RS FE).

In the classical case, we have the following relation for the homogeneous prin-
cipal symbol: UZ;Z(A(*)) = UZ;K(A)*.

Proof. In the proof we suppress the vector bundles from the notation for better
readability.

To prove a), note that by Theorem 3.1.5 and the closed graph theorem we just
have to show that the spaces of (classical) parameter-dependent pseudodifferential
operators remain invariant under composition, and secondly that the formulae for
the symbols are valid.

According to Definition 3.1.2 and Theorem 3.1.5 the space L~°°(X;R?) clearly
remains invariant with respect to compositions from the left and from the right
with operators in L*¢(X;R?), i. e.,

LPYX;RY) x L™°(X;RY) — L™°(X;RY)
L™°(X;R?) x LMY X;RY) — L™°(X;RY).
Let ¢, € C*°(X) such that supp(¢)Nsupp(¢)) = 0. Choose a function n € C°(X)

with supp(n) Nsupp(¢) = 0, and n = 1 in a neighbourhood of supp()). Hence we
obtain

PANBWNY = (pAN)n) B + AN (1 -n)BN)y) € L™>(X;R7)
—_——— — —m——
€L—>(X;R9) €L—>(X;R9)

as desired.
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Now let p,¢p € C§°(2) be supported in the same coordinate neighbourhood
(k,Q,U). Choose a function 8§ € C§°(f) such that § = 1 in a neighbourhood
of the support of ¢ and . Then we see

PAN) BN = pA(NG* BNy + 9 AN (1 - 6%)B(\))
€L->(X;R9)

= (pANB)(OB(N)Y) + R(A)
with R(\) € L™*°(X;R?). For

4 )
k= (AN OBNY)) = ke (pAN)) - £ (BB(N)Y) € Lig/ *(R"; RY)
according to Definition 3.1.2 and Theorem 2.2.4, we finally obtain the desired
assertion about the composition. Moreover, the latter identity also implies the
corresponding results about the complete symbol and the homogeneous principal
symbol.

To show b) note first that the assertion is immediately clear for operators belonging
to L™°(X;R?). Consequently, we may restrict ourselves to operators that are
supported in a coordinate neighbourhood (k,$2,U), such that the bundles are
trivial over 2. But in this case we may apply locally Theorem 2.2.4 from which
we deduce the desired result. |

3.1.7 Lemma. There exists a family of operators {Hyp; 6 € Ry} on the space

U LWYX;RI; E,F) of parameter-dependent pseudodifferential operators with
HER
the following properties:

Hy : ij) (X;R%; E, F) —» Lf;f)(X; R%; E, F),

I—Hy: ij) (X;RY; E,F) — L~ °(X;RY; E, F)

are continuous for each p € R. Moreover, given a sequence (u;) C R such
that pg > pg+1 k—) —oo and countable systems of bounded sets (Ag;)jen C
—00
LMt (X;RY; E, F), we may find a sequence (¢;) C Ry with ¢; < cipq k—) 00
—00
having the property, that for each k € Ny

o0
> sup p(Hgya) < oo
i=k ©€4i;

for all continuous seminorms p on LM*(X;R?; E,F) and every j € N, for all
sequences (d;) C Ry with d; > ¢;. If the sequence (i) ken, is given as up := p—k
and the subsets are bounded in the classical operators, the same assertion holds
for all continuous seminorms p on L‘C‘l’“;[(X; RY; E, F).
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Proof. In view of the operator convention and the symbol mappings it suffices to
construct the operators Hy on the symbol spaces and on L=°(X;R?; E, F') with
the corresponding properties there (cf. Remark 3.1.4). Let x; € C*°(R" xR?) and
X2 € C®(R?) be 0-excision functions. Define for § € R, the operators Hy on
SHE(R? x R® x RY; CN-,CN+) and on L=°(X;R?; E, F), respectively, via

(Hya)(, &, 2) = Xl(%: %) “a(w,€,\) fora € SR x R* x R CV-,CVY),
(HyA)(N) = Xz(%) AN for A(\) € L°(X;RY; E, F).
Then we obtain the assertion from Lemma 2.1.7 (see also Remark 2.1.10). O

3.1.8 Definition. Let (u;) C R be a sequence of reals such that gy T T
— 00

and 7 := AX [ Moreover, let Ay (\) € L*¢(X;R?; E, F). An operator A()\) €
€

LFA(X;RI; E,F) is called the asymptotic expansion of the Ay()), if for every
R € R there is a ky € N such that for k > ko

k
AN =D A;(\) € LBYXGRG B, F).

j=1
The operator A(\) is uniquely determined up to L~°(X;R?; E, F).

In analogous manner as we proved Theorem 2.1.8 using Lemma 2.1.7, we now
obtain from Lemma 3.1.7 corresponding existence results of operators (or operator
families) having a prescribed asymptotic expansion.

Ellipticity and parametrices

3.1.9 Definition. Let A(\) € Lf‘c;f) (X;R?; E, F). Then A()) is called parameter-

dependent elliptic, if the following condition is fulfilled:

For every compact set K € (k,{,U) contained in a coordinate neighbourhood
(with the vector bundles being trivial over ), and every ¢, 1 € C§°(f2) such that
¢, = 1 on K, the push-forward &.(pA(N)y) € Lg;fnp(cl)(U;]Rq;CN*,CNﬂ is
parameter-dependent elliptic on x(K) € U in the sense of Definition 2.2.8.

In the classical case, the condition of parameter-dependent ellipticity simplifies to
the invertibility of Uw;Z(A)(I, &) for (z,& ) € (T*X xR?) \ 0, see Remark 2.2.9.

Note that for the existence of parameter-dependent elliptic elements it is necessary
that the dimensions of the vector bundles coincide, i. e. N_ = N,.

3.1.10 Theorem. Let A(\) € L*‘(X;R?%;E,F). The following assertions are
equivalent:
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a) A()) is parameter-dependent elliptic.

b) The components of the complete symbol (ai,... ,an) of A(\) are parameter-
dependent elliptic on k;(suppy;) for j =1,...,N.

¢) There exists an operator P(\) € L~*¢(X;R?; F, E) such that A\)P(\) — I €
L=5¢(X;Re; F, F) and P(NA(N) — I € L=5Y(X;RY; B, E) for some € > 0.

)
d) There exists an operator P(\) € L™*¢(X;R?; F, E) such that A(A)P(\) — I €
L=(X;RY; F, F) and POVAQ) — I € L-°(X; RY; E, E).

Moreover, if A(\) € Lgl;l(X; RY; E, F) is parameter-dependent elliptic, then every
operator P()) satisfying d) belongs to L&“;K(X; RY; F, E). Every P()\) satisfying
d) is called a (parameter-dependent) parametrix of A(\).

Proof. a) implies b) follows from the definition of parameter-dependent ellip-
ticity. Now assume that b) holds. From Corollary 2.2.11 we obtain the exis-

tence of by,...,bn € S_”;e(]R{” x R? x R?;CN+,CN-) and suitable functions

(ch)
$j,0; € C§°(R™) such that 1/)]4,03 = ¢; and <p] =1 on k;(suppy;) € R with the
property that ¢;(op.(a;)(A)op (b;)(A) —1)t; belongs to L~ (R™; RZ; CN+ , CN+).
Now define P()) := opm((bl,.. ,bn);0) with the operator convention (3.1.iii),

which yields an operator P(\) € L(;)l(X R?; F, E). Now it is straightforward to

check that A(A)P(A) — I belongs to L(_C}) (X;R?; F, F'). Analogously, we obtain a
parametrix from the left. But both the left- and the right-parametrix differ only
by a term of order —1 which gives c). ¢) implies d) follows by means of a for-
mal Neumann series argument as, e. g., in the proof of Theorem 2.2.10, where
now Theorem 3.1.6 and Definition 3.1.8 enter the argument. This also yields the
existence of a classical parametrix if we started with an elliptic classical parameter-
dependent operator A(A). d) implies a) is part of Corollary 2.2.11 when passing
to local coordinates. |

3.1.11 Theorem. Let A be a compact C*°-manifold (not necessarily with empty
boundary), and A 3 § — A%(\) € Lé‘;f) (X;R?; E, F) be a smooth family that is
Iocally uniformly parameter-dependent elliptic. Then the set

K:={(6,\) € AxRY; (A°(\) "' € L(H* (X, F), H*(X, E)) does not exist}

is compact in A x R? and independent of s € R. Moreover, for any given neigh-
bourhood U(K) C A x R? of K, there exists a C®-family A > § — P°()\) €

L(;)‘(X RY; F, E) such that A‘5()\) 9(\)—1I and P%(\)A%(\) — I depend smoothly

on 0 € A with values in the operators of order —oo, and P°(\) = (A%(\))~! for
(6,)) € (A xR?) \U(K).
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Proof. In the proof we omit the vector bundles for better readability. From elliptic
regularity we obtain that the set K is indeed independent of s € R. Consequently,
we may fix s € R in the sequel. Let B%()\) € L(;);Z(X;]Rq) be C* such that
AS(N)B°(A\) — I =: R%(X\) and B°(A\)A°(\) — I =: RS (\) depend smoothly on
0 € A with values in L=*°(X;R?) (cf. Theorem 3.1.10). From Theorem 3.1.5 (or
the defining characterization of L=°°(X;R?) in Definition 3.1.2) we see, that for
|A| sufficiently large and all § € A the operators I + R%()) and I + RS ()\) are
invertible in L(H®* #(X)) and L(H?®(X)), respectively. Thus it remains to show
the closedness of the set K C (A x R?). For the set of invertible operators in
L(H®*(X),H*""(X)) is open, and since A°()\) may be viewed as a continuous
function of (4, A) € A x R? with values in this space, we obtain the closedness and
consequently the asserted compactness of K C A x R?.

Now let U(K) C A x R? be any given neighbourhood of K. Let x € C*°(A x R?)
such that x =0 on K and x =1 on (A x R?) \ U(K). Define

PL(A) = B°(A) = RL,(A)B° (V) + Ry, (V)X (8, \)(A° (X))~ 1RR( ),
PR(X) = B°(A) = BY (MR (N) + RL ()X (8, A)(A° ()T RR(V).

From Theorem 3.1.5 we obtain that RS (A\)x(6, A)(A° (X)) "L R% ()) is a C>-function
of § € A taking values in L~>°(X;R?), and thus P{ (\) and P‘5 2 (A) depend smoothly
ond € A with values in L ;‘)Z(X R?). Moreover, we have PJ( JA°(A) = I as well
as A°(N)P§(\) = I for (6,)) € (AxR?)\U(K). Now define P°()) either as P{(\)
or as P§()), which concludes the proof. a

3.1.12 Theorem. There exist parameter-dependent reductions of orders, i. e.,
there exist operators R*(\) € L**(X;R?; E, E) such that R*(A\)R™*()\) = I for
every i € R.

Proof. For ;= 0 choose the identity. Now let ;4 > 0. With the given Riemannian
metric on X we define the anisotropic homogeneous function of degree p on 7* X x
R?*L \ 0 with values in Hom(7* E) via

a(H)(fz:(A:Aq-t-l)) = ((gx:fz> + |(>‘ >‘q+1)| )% idﬂ'*E(fm.(A.A

The associated operator in L*¢(X;R?t!; B, E) therefore is parameter-dependent
elliptic. From Theorem 3.1.11 we now obtain, that if we fix A\jy1 with |Ag41]
sufficiently large, we obtain invertible operators R*(\) € L*Y(X;R?; E, E) with
inverses R™#()\) in L™#¢(X;R?; E, E). This proves the theorem. O

g+1)) "

3.1.13 Remark. In analogous manner, we also have the calculus of anisotropic
parameter-dependent pseudodifferential operators on closed manifolds X, where
the parameter-space R? is substituted by a conical set A C R? that is assumed to
be the closure of its interior. This will be employed, in particular, with half-planes
in C = R2.
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3.2 Parameter-dependent Volterra operators

3.2.1 Remark. Throughout this section we employ again the notations from No-
tation 3.1.1 with the same data fixed on X and the vector bundles £ and F.

3.2.2 Definition. a) Define

Ly (X;H; B, F) == L™°(X;H E, F) N A(H, L™°(X; E, F)),

which is a closed subspace of L=°°(X; H; E, F'). It is characterized as

S, L(H*(X, E), H'(X, F))) N A(H, () L(H*(X,E),H'(X, F)))

s,teER s,teR
= ﬂ S(H,L‘(HS(X,E),Ht(X,F)))ﬁA(]IfH,,C(HS(X,E),Ht(X,F)))
s,teR

_ g—o0 i AT s T t
= Sy, (H; 1nsd€H1{1mH (X, E),pr(gjeElglmH (X, F)).
b) For u € R define

Lyt (X B, F) = L) (X B, F) 0 A(H, L*(X; E, F)),
with the space of pseudodifferential operators L*(X; E, F) on X acting in sec-

tions of the vector bundles E and F. Thus L/* (X;H; E, F) becomes a closed

V(el)
w(XSH B, F).

subspace of L(c;l)

3.2.3 Remark. From the considerations about the calculus of Volterra pseudo-
differential operators in Section 2.4 on the one hand as well as Definition 3.1.2
on the other hand we conclude, that the space L*‘L}(lcl) (X;H; E, F) consists of all
families of operators A(A) : C*°(X, E) = C>(X, F) with the following properties:

i) For all functions ¢, € C*(X) that are supported in the same coor-
dinate neighbourhood (x,€Q,U) the push-forward s.(pA(A)Y) belongs to

H LT _
Lgompv(d)(U,H,CN ,CN+).

ii) For all ¢,v € C*°(X) having disjoint support the operator pA(A)¢ is an
element of Ly, (X;H; E, F').

The projective topology on the space L"‘,;(ch) (X;H; E, F) with respect to the map-

pings A(\) —

K (PAN)Y) € ngfnp viey U H CN-,CN+)  for ¢, supported in (k,Q,U)
YAMNY € L, (X;ILE,F) for suppy Nsuppy =0
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is exactly the given one from Definition 3.2.2.
Theorem 3.1.3 holds within parameter-dependent Volterra pseudodifferential op-

erators:

a) Let (r,2,U) be a chart and A(\) € Ly (U H;CN-,CN+). Then the

pull-back x*(A(\)) belongs to L“‘/’fd) (X;H; E, F) and provides a continuous

linear mapping

LA vy UsHECN = CV) 3 A(N) +— 6 (A(V) € L, (X H; B, F).

comp V

b) Let (k,Q,U) be a chart and ¢,y € C§°(2).
Moreover, let A(A) € Lv(cl) (R™; H; CN-, CN+). Then the operator pr*(A(N))y
belongs to Lv(d) (X;H; E, F), and the mapping

L,"L/Y(cl)

(R";H; N, CV+) 3 A(N) — or" (AN € LY, (X; H; B, F)
is continuous.

¢) The restriction of the mapping (3.1.i)

L (X W B, F) — x LV

(cl)( ; Al £, 2 Compv(cl)(Uj;H;(CN*,(CNJr)XL‘_,OO(X;H;E,F)

(3.2.0)

o Volterra pseudodifferential operators is well-defined and continuous, and so
is the restriction of the mapping (3.1.ii)

(X;H EF).
(3.2.i)

V(cl) V(cl)

N .
X Lt (R H, CN-, CN+) x Ly (X H B, F) — LM
j=1

d) For 8 € Ny the complex derivative acts continuously in the spaces 65 :

- 0Bl .
Ly, (G H B, F) — Ly 7 (X H B, F).

The restriction of the parameter to the real line induces a continuous embedding
it - TH- it

Ll{/(cz) (X;H; E F) — Lf‘cl)

This follows from Proposition 2.3.2, Remark 2.4.4.

(X;R,E,F).

3.2.4 Remark. From (3.2.ii) and (3.2.i) we see that the restriction of the operator
convention op, from (3.1.iii)

><S
j=

(R* x R* x H; CN-,CN+) x Ly (X; H; E, F) — L4

Ve l)(X)HaEaF)a

(3.2.iii)

V( 1)
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as well as the restriction of the mapping (3.1.iv)

0 . N N n n .CN- N - -H-
L“’/(d)(X,H,E,F) —>j>:<15(j(d)(]R xR* xH,C"-,C"*) x Ly,y(X; L E, F)

(3.2.iv)

to Volterra symbols respectively operators are well-defined and continuous.

The symbol mapping induced from (3.2.iv) now associates to a given operator

AN € L“ffcl) (X;H; E, F) a complete symbol (ay, ... ,an) consisting of (classical)

Volterra symbols.

In the classical case, the parameter-dependent anisotropic homogeneous principal

symbol Uw;l(A) € C*°((T*X x H) \ 0,Hom(x*E,n*F)) of an operator A(\) €

L"‘,;il(X;]HI;E,F) is analytic in the interior of H. This follows from Proposition
2.3.2.

3.2.5 Theorem. Let G be another vector bundle over X. Then the composition
of operators (cf. Theorem 3.1.6) restricts to a continuous bilinear mapping

i€ - 34 - Sy
Loy (X5 B G, F) X LY () (X5 B B, G) — Lyl (X5 B B, F)

for p, ' € R. In particular, the Volterra operators of order —oo remain invariant
with respect to compositions from the left and from the right, i. e. they share the
properties of a two-sided ideal in the Volterra pseudodifferential operators.

Proof. By Theorem 3.1.6 the bilinear mappings

A(H, L (X G, F)) x A(H, L* (X; E,G)) — A(H, L' (X; B, F)),

LS (X5 G, F) x LU (X5 1 B, G) — L (X B B, F)

are well-defined and continuous. This implies the assertion in view of Definition
3.2.2. O

3.2.6 Theorem. Let A(\) € L‘(}[(X;]HI;E,F). Then A(X) extends by continuity
to a family of continuous operators A()\) : H*(X,E) — H* (X, F) for every
s,v € R with v > pu. Moreover, this induces a continuous embedding

SE(H; H* (X, E), H*"(X,F)) v>0

LYYX,H B, F) —
SVZ (H;HS(XJE)7H87V(X7F)) VSO

into the space of operator-valued Volterra symbols in the Sobolev spaces.

Proof. This follows from Theorem 3.1.5 and Definition 3.2.2. O
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Kernel cut-off behaviour and asymptotic expansion

3.2.7 Definition. Let (ur) C R be a sequence of reals such that py Pt
—00
and @ := Max (. Moreover, let Ai(\) € L“‘/’“;K(X;]HI;E,F). An operator A()) €
L?}Z(X; H; E, F) is called the asymptotic expansion of the Ay ()), if for every R € R
there is a kg € N such that for k > kg
k
A =D 450N € Ly (X B B, F).

j=1
The operator A()) is uniquely determined up to L,°°(X;H; E, F'). For short, we
write A(A) ~ > A;(A).

14 j=1

Note that the distinction between the notion of asymptotic expansion from Def-
inition 3.1.8 is that we require the remainders to have the Volterra property (cf.
Definition 2.3.3). In order to obtain existence results of Volterra operators hav-
ing a prescribed asymptotic expansion we need to carry over the considerations
concerning the kernel cut-off operator (cf. Definition 2.3.5, Theorem 2.3.6, and
Corollary 2.3.7) and deduce an analogue of Proposition 2.3.8.

3.2.8 Remark. Let p € R and p4 := max{0, x}. From Theorem 3.1.5 and The-
orem 3.2.6 we see that for every s € R we have continuous embeddings

LYX;®; B, F) = S*(R; H* (X, E), H* "+ (X, F)),
LY (X3 B, F) < S (8 H* (X, B), H* "+ (X, F)),

By Theorem 2.3.6 the kernel cut-off operator H (see Definition 2.3.5) acts as a
bilinear and continuous map in the spaces

Ci°(R)x ST(R; H (X, E), H* ™"+ (X,F)) — ST (R, H* (X, E), H="+ (X, F)),
Cp*(R)x S¢ (H; HE (X, E), H™M+ (X, F)) — S{ (H; H* (X, E), H*™"+ (X, F)).

3.2.9 Theorem. The kernel cut-off operator H (cf. Remark 3.2.8) restricts to
continuous bilinear mappings

(cl)(XQ]RQE:F)

CRo(R)x Ly (X3 B B, F) — Ly, (X;H E, F).

Moreover, the following asymptotic expansion (in the sense of Definitions 3.1.8,
3.2.7) holds for (H(p)A)()) in terms of ¢ and A(\):

il . TR- il
. {CgO(R)ng‘d)(X,R,E,F) — L"

V(el)

H@DM ~ S (EL k) - (8ta) )
v (V)Z( Rt¥ ) A

k=0
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where 0, denotes the complex derivative with respect to A € H in case of Volterra
operators.

Proof. For the proof of the first assertion we simply have to check that H maps
the corresponding spaces into each other as asserted. The (separate) continuity
then follows from the closed graph theorem.

Employing (3.1.iv) and (3.2.iv) we obtain continuous linear mappings

N .
(X;R B, F) — x SH(RY x R x R;CN-,CN+) x L™°(X;R; E, F),

wil
L S

(el)

it N H4 n n 2 _ - . THT-
Ly (X5 H B, F) —>j>:<15(;(cl) (R x R* x H; CN-,CN+) x Ly (X; B, E, F).
From Theorem 2.3.6 we conclude that the kernel cut-off operator acts bilinear and
continuous in each of the factors on the right-hand sides, i. e.,
Ci(R)x (o) (R* x R* x R;CN-,CN*) — S (R x R* x R;CN-,CV+)
O (R)x Sty (R* x R x H; CN=,CN*) — SPC (R x R™ x H;CN-,CY+),

as well as

CP(R)x L™°(X;R; E, F) — L™°(X; R, E, F)
Ci°(R)x Ly, (X;H, E,F) — L, (X;H, E, F),

keeping in mind the characterizations of L=°°(X;R; E,F) and L, (X E, F)
as operator-valued symbols from Definition 3.1.2 and Definition 3.2.2. More-

over, the asymptotic expansion (2.3.ii) holds in the factors corresponding to the
L(CN-,CN+)-valued symbols.

Now we see that we find the kernel cut-off operator (restricted to parameter-
dependent pseudodifferential operators as in the assertion of the theorem) as com-
position of the mappings (3.1.iv) resp. (3.2.iv), the “local” kernel cut-off opera-
tors in the factors as discussed above, and the operator convention (3.1.iii) resp.
(3.2.iii). Moreover, the “local” expansions give also the second assertion of the
theorem concerning the asymptotic expansion. (I

3.2.10 Corollary. Let ¢ € C§°(R) such that ¢ = 1 neart = 0. Then the operator
I — H(yp) acts continuous in the spaces

LMY X; R E,F) — L=°(X;R; E, F)

I-H : .
(#) {L“‘,’K(X;IHI;E,F) — L7 (X B B, F).
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3.2.11 Proposition. Let (ui) C R such that py > pgt1 it Furthermore,
— 00

for each k € N let (A;)jen C L*‘”/’“;Z(X; H; E, F') be a countable system of bounded

sets. Let ¢ € C§°(R), and for ¢ € [1,00) let . € C§°(R) be defined as ¢.(t) :=

o(ct). Then there is a sequence (¢;) C [1,00) with ¢; < ¢;41 — oo such that for
11— 00

each k € N

oo

> sup p((H(pa)AN) < 00

i—=k A()\)EA,‘].

for all continuous seminorms p on L“‘,’“;K(X; H; E,F) and every j € N, and for all
sequences (d;) C Ry with d; > ¢;.

Proof. Employing (3.2.iv) and the operator convention (3.2.iii) as well as Theorem

3.2.9 reduces the proof to the case of Volterra symbol spaces S"j’“;e(]R” x R® x
H; CN=,CN+) and L;*°(X;H; E, F). But for these the assertion follows at once
from Proposition 2.3.8. |

3.2.12 Theorem. Let (ug) C R such that uy o T and i := ?é%if“’“' More-
over, let Ay(\) € L¥Y(X;H; E, F). Then there exists A(\) € LI (X;H E, F)
such that A()\) > kijo Ak (N\). The asymptotic sum A(N) is uniquely determined
modulo Ly, (X;H; E, F).

If the sequence (ug)ren, is given as ur, = @ — k and Ag(\) € L‘ﬁ/_j;e(X;H; E F),
then also A(\) € LI (X H; E, F).

Proof. This follows analogously to the proof of Theorem 2.3.9, but now Proposi-
tion 3.2.11 enters the argument replacing Proposition 2.3.8 which was used there.
O

The translation operator in Volterra pseudodifferential oper-
ators

3.2.13 Remark. Let ¢ € R and p4 := max{0,u}. According to Proposition
2.3.11 the translation operator T;, for 7 > 0 (cf. Definition 2.3.10) acts as a linear
continuous operator in the spaces

Tir ¢ Sy (H HP (X, E), H 7'+ (X, F)) — S{_ (B H® (X, E), H~#+ (X, F))

for every s € R.
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3.2.14 Proposition. For every T > 0 the translation operator T;; (cf. Remarks
3.2.13, 3.2.8) restricts to a linear and continuous operator in the spaces

. i LT il LT
T : L“‘,(Cl)(X,]HI,E,F) — L"‘,(Cl)(X,]HI,E,F).

Moreover, (TiTA) (M) has the following asymptotic expansion in terms of T and
A(X) (in the sense of Definition 3.2.7):

= (ir)k
T = S T .

k=0

In particular, the operator I — T, is continuous in the spaces

it - TH- =4y T
I-T; : L"‘,(Cl) (X;HE F) — L“j(cl) (X;H, E, F).
Proof. This follows from Proposition 2.3.11 when passing via (3.2.iv) to “local”
symbols and remainders in L, (X;I E, F'). O

3.2.15 Notation. For every pu € R let S‘(,”;Z)((T*X x H)\ 0, Hom(7*E, 7*F)) de-
note the space of anisotropic homogeneous functions of degree p that are analytic in
the interior of H. This is a closed subspace of C*° ((T*X x H) \ 0, Hom (7* E, n* F)).

3.2.16 Theorem. The restriction of the principal symbol sequence to Volterra
operators is topologically exact and splits:

il

0 — LE-HXG B B, F) — LS (XGH B, F) 2
SO (T*X x H) \ 0, Hom(x* E, 7 F)) — 0.

Proof. Every element in S%}”l) ((T*X xH)\ 0, Hom (7* E, 7* F')) can be represented
by a vector of local representatives corresponding to the given covering of X by
coordinate neighbourhoods from Notation 3.1.1 (i. e. they satisfy the transition
conditions of the bundles involved over the intersections). For every j =1,..., N,
the representative over §1; may be viewed as a C'*°-function on ; taking values
in the space SU“Y ((R* x H) \ {0}; CN-,CN+) (cf. Notation 2.3.12). Thus, if we
multiply this function by 6; and pass from Q; to U; via k; forevery j =1,... , N,
we get an N-tuple of compactly supported smooth functions on R" taking values
in S%,‘“l) ((R™ x H) \ {0}; CN-,CN+). To each of these we now apply the translation
operator T;, for some 7 > 0. By Theorem 2.3.13 we so obtained an N-tuple of
classical £L(CN-, CN+)-valued Volterra symbols of order . Now we associate to this
tuple an operator in L*‘L}l;l (X;H; E, F) via (3.2.ii). Summing up, we constructed
a continuous linear right-inverse to the principal symbol mapping

ot LW (X B, F) — SY°9(T* X x H) \ 0, Hom(n* B, 7 F))

which shows the assertion of the theorem. O
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Parabolicity for Volterra operators on manifolds

3.2.17 Definition. Let A(\) € L“‘jfcl) (X;H, E, F). Then A(A) is called parabolic,

if A(\) is parameter-dependent elliptic as an element of Lé‘c;f) (X;H; E, F).

3.2.18 Theorem. Let A()\) € L*‘L,;Z(X;]HI;E,F). The following assertions are
equivalent:

a) A()) is parabolic.

b) The components of the complete symbol (a1, ... ,an) of A(\) are parabolic on
kj(suppy;) for j=1,... ,N.

c¢) There exists an operator P(\) € L;“;K(X; H; F, E) such that AN)P(\) — I €
Ly, Y (X;H, F, F) and P(\)A(\) — I € L5 (X;H; E, E) for some & > 0.

d) There exists an operator P()\) € L‘_,“;K(X; H; F, E) such that AAN)P(\) — I €
Ly>®(X;H, F,F) and PO\)A(A) — I € Ly™(X; H; B, E).

Moreover, if A(\) € L*‘L}l;l(X;]HI;E,F) is parabolic, then every P()\) satisfying
d) belongs to L;‘éf(X H; F, E). Every P()) satisfying d) is called a (parameter-
dependent) Volterra parametrix of A(A).

Proof. From Theorem 3.1.10 and (3.2.iv) and the definition of parabolicity as
parameter-dependent ellipticity we conclude that we only have to prove that b)
implies ¢), and c) implies d).

Now assume that b) holds. From Corollary 2.4.14 we obtain the existence of

bi,...,bxy € S;é‘cf;(]R{” x R* x H; CN+,CN-) and suitable functions @;,¢; €

C§°(R™) such that @/Ajj@j = ¢; and ¢; = 1 on k;(suppy;) € R* with the prop-
erty that @;(opg(a;)(A)opg (b;)(A) — 1)1, belongs to Ly, (R™; H; CN+,CN+). Now
define P(\) := op;((b1,-..,bn);0) with the operator convention (3.2.iii), which

yields an operator P(\) € L;t@f) (X;H; F, E). Now we see that A(A\)P(X) — I be-

longs to L;};‘;) (X;H; F, F). Analogously, we obtain a (rough) Volterra parametrix
from the left. But both the left- and the right-parametrix differ only by a term of
order —1 which gives c).

c¢) implies d) follows analogously to the proof of Theorem 2.2.10 by means of a
formal Neumann series argument, where Theorem 3.2.5 and Theorem 3.2.12 enter
the argument for carrying out the compositions and asymptotic expansions. O
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3.2.19 Theorem. Let A()) € L*‘L}(lcl) (X;H, E, F) be parabolic. Then the set

K:={\eH (AN) ' € L(H* ™(X,F),H*(X,E)) does not exist}
is compact in H and independent of s € R. Moreover, let T > 0 such that sup |\| <
AeK
7. Then the operator (T;;A)(\) € L' (X;H;E,F) is invertible with inverse

V(cl)
1 .
(T AN) ™ € Lty (X H; F, E).

Proof. The first assertion follows from Theorem 3.1.11. In view of Proposition

3.2.14 this also implies that the operator (T;;A)(A\) € L“‘jfcl) (X;H E,F) is in-

vertible with inverse ((TiTA)(/\))f1 € L(_;);K(X;H; F,E). In particular, the op-
erator family (Ti, A)(\) € A(H, L*(X; E, F)) is invertible with ((Ti, A)(\)) ™" €
C*(H, L~*(X; F, E)). From the resolvent identity we conclude that for A\g, \; € H

((T,-TA)()\O)) T ((TiTA)(Al)) B
Ao—A1

with A\g # Ay the difference quotient is given as

(Tir A)(No) — (T A) (A1)
Ao — A1

(T )00) ™ )+ (@A)

which implies the analyticity of ((Ti;A4)())) ! in the interior of H. O



102 T. Krainer and B.-W. Schulze



Chapter 4

Weighted Sobolev spaces

4.1 Anisotropic Sobolev spaces on the infinite
cylinder

4.1.1 Remark. In this chapter we again employ the notations from Notation
3.1.1 with the corresponding data fixed on X and the vector bundle E.

The material in this section is standard in the isotropic case,i.e. f =1 and t =0
(in the notation of Definition 4.1.2 below). There are many variants of anisotropic
Sobolev spaces discussed in the literature, e. g. [2], [27], [49]. Therefore, we restrict
ourselves to give the basic definitions and results in that form as they are needed
in this work.

4.1.2 Definition. For s,¢ € R define the Sobolev space H*!)¥(R x X, E) as the
space of all u € |J S'(R,H?® (X, FE)) such that Fu is a regular distribution and
s'eR

1

2

lulliereny = ( | B F )@ dr)” <oo. (1)
R

Here R*(7) € L5(X;R; E, E) is a parameter-dependent reduction of orders from
Theorem 3.1.12.

4.1.3 Remark. a) The space H*!)¥(Rx X, E) is well-defined, i. e. other choices
of the reduction of orders give rise to equivalent norms (see Theorem 3.1.5, and
Theorem 3.1.6).

b) For s =t = 0 we have HOY*(R x X, E) = L*(R x X, E) = L*(R, L* (X, E)),
see also Proposition 4.1.7.
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¢) The local space H(*O:¢(R*+1 CN-) consists of all u € S'(R*™!,CN-) such
that Fu is a regular distribution and

fulleoeamincsy = ([ [ €02 1F0EDIES. dar)* <o

R R™

Using the covering of X by coordinate neighbourhoods as well as the sub-
ordinated partition of unity from Notation 3.1.1 we see that the space
H(S’O)?Z(R x X, E) consists precisely of those distributions that locally belong
to H&O¢(RrF CN-).

4.1.4 Definition. For s,t,6 € R define
HEYR x X, E)s == (r) THEDYR x X, E) (4.1.ii)
with the induced norm.

4.1.5 Theorem. a) H®D(R x X, E), is a Hilbert space with respect to the
scalar product

(u,v)y = /(RS(T) (]—"T%T(r)‘su(r)) (1), R*(7) (]—’T%T(r)‘sv(r)) (7)) me (x,E) dT.

R

b) The embedding S(R x X, E) = S(R,C®(X,E)) — H&Y{R x X, E); is con-
tinuous and dense.

¢) The operator of multiplication with a function ¢ € Cp°(R) induces a continuous
operator in L(H®D¥(R x X, E);), and the mapping C°(R) 3 ¢ — M, €
L(HEDYR x X, E);) is continuous.

d) For s' —s < min{0,t — '} and § > &' the embedding H**(R x X, E)s —
H(s'vt’);e(]R{ x X, E) is well-defined and continuous. Moreover, it is compact if
s'—s <min{0,t—t'} and § > &'; Hilbert-Schmidt if s' — s + 2t < min{0,¢—¢'}
and § — &' > 1.

e) For k € Ny let CM(]R x X, E) denote the Banach space of all sections u :
R x X — E such that for |a|g < k there exists 0, ,yu as a bounded continuous
function with respect to any choice of local coordmates and trivializations of
the vector bundle, endowed with the topology of uniform convergence of all
derivatives up to (anisotropic) order k.

Sobolev embedding theorem: Let k € Ny. Then for s > k + ”TH the embedding
HEDUR x X, E); < (t) 7CF (R x X, E) is well-defined and continuous.

In particular, we have S(R x X,E) = (| H®9¢(R x X, E)s, which holds
s,0€ER
topologically with the projective limit topology on the right-hand side.
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f) For every 0y € R the (ry=%L*(R x X, E)-inner product extends to a non-
degenerate sesquilinear pairing

(Yoo : HEVE(R x X, E)s,05 x H5DR x X, E)5,_s — C
which induces an identification of the dual

HEDYR x X, E)5 5 2 HEDHR x X, E)s,_s.

In particular, this provides a topological (antilinear) isomorphism S(R X

X,E) = |J HGOYR x X,E); with the inductive limit topology on the
s,0€R
right-hand side.

4.1.6 Remark. Let Y be a Hausdorff-topological vector space. Moreover, let F’
and G be Fréchet spaces which are continuously embedded in Y. Then the non-
direct sum of the spaces F' and G is defined as

F+G:={y=f+geY; feF geG},

endowed with the following topology: For every continuous seminorm || - ||z on F'
and every continuous seminorm || -||¢ on G define the seminorm || - ||p+q on F+G

as |yllp+e = nf{[|fllr + llglle; ¥y = f + g}
Consider the addition + : F & G — F + G which provides a linear surjection.
The kernel is given as A = {(f,—f); f € FNG C Y}, and is a closed subspace

of F & G. The induced mapping on the quotient space (F ® G)/A =2 F + G is a
topological isomorphism.

In particular, F' + G is a Fréchet space, and for Hilbert spaces F' and G also
F + G is a Hilbert space (more precisely a hilbertizable space), and we have
F+G=2ALCFaQaG.

4.1.7 Proposition. For s;t,0 € R the following identities hold algebraically and
topologically:

(Y L*(R, H*™ (X, E)))N((r) "H* (R, H' (X, E)))
for s > 0,
((r=°L*(R, H*T'(X, E))) + ((r)°H*(R, H (X, E)))
for s < 0.
(4.1.iii)

HEDYR x X, E)s =

Proof. Without loss of generality assume 0 = 0. First we consider the case s > 0.
Let u € H&DE(Rx X, F) and R*(7) € L*(X;R; E, E) be a parameter-dependent
reduction of orders from Theorem 3.1.12. From Theorem 3.1.5 we conclude that

R™*(t) € S(R; H' (X, E), H**Y(X,E)) N S™#(R; H' (X, E), H'(X, E)).
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Thus we have

IF (@) ()l mee x5y = IR7* (1) (R (1) F (@)(7)) [l 1o+ x, )
< CR* () F () ()l ae (x,2),
17 @) (Ol x,m) = IR (1) (R* () F (u)(1)) | 1 x.)

<O(n)t

R (1) F(u) (M)l e (x, ) »
and consequently
HEYYR x X, E) — L*(R, H*"' (X, E))NH# (R, H! (X, E)).

Let us show that the embedding is onto. First recall the following elementary
inequality for «, 8 € C and p > 0:

o = BIP < max{1, 2} (jal? +|I7). 1)

Let v € L*(R, H*(X,E))NH?(R,L?(X,E)). Passing to local coordinates on X
and E we conclude that

(f [uox+ P IFEDE ) v dedr)’ < .

R R™

From (1) we see that
(€7)y" <O +(n)?*F)

for (£,7) € R” x R with a suitable constant C' > 0, i. e. locally u belongs to the
space H(#:0s¢(R+1 CN-). This finishes the proof in the case s > 0 and ¢t = 0.
Now let u € L2(R, H*" (X, E))NH (R, Ht (X, E)), and let A! € L!(X; E, E) be
a reduction of orders. Then op(AY)u € L*(R, H®(X,E))NH (R, L*(X,E)), i. e
op(AHu € H(R x X, E). Following Seeley’s construction we can arrange that
the reductions of orders R*(7) and A’ are commuting, e. g. choose A = (C'— A)?

and R*(1) = (C + (—A)Z + 72) ¥ with a suitable connection Laplacean A and a

sufficiently large constant C' > 0. Then we obtain that u € H®D(Rx X, E) from
Definition 4.1.2.

The case s < 0 follows by duality:

Due to Theorem 4.1.5 the space H(s’t)?f(]R x X, FE) equals the dual space
of H(*s”t)?f(]R x X, E) with respect to the sesquilinear pairing induced by
the L?(R,L*(X, E))-inner product. Moreover, we have L*(R, H*''(X,E)) =
L>(R,H™*7t(X,E))" and H?(R, H'(X,E)) = H~#(R, H t(X,E))’, while the
space S(Rx X, E) is dense both in L?(R, H=*"t(X, E)) and H~# (R, H!(X, E)).
Thus we obtain the assertion from the already proven result for the space
HE 4R x X, E). O

4.1.8 Definition. Let ) # U C R be an open set.
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a)

b)

Let H(s Dit (U x X, E)s be the subspace of all u € H®*¢(Rx X, E)s such that
suppu C U.

Let Hl(;(;t);e(U x X, E) denote the space of all u € |J D'(U,H* (X, E)) such
s'eR

that for all o € C§°(U) the distribution pu belongs to H®D¥(R x X, E),

endowed with the projective topology with respect to the mappings u — pu €

HEDER x X, E) for all p € C3°(U).

Let Hég;fl)p;e(U x X, E) denote the space of all u € H®*"*(R x X, E) such that
suppu € U is compact. We equip this space with the inductive topology with
respect to the mappings

HEDHK x X, E) — HEGNU x X, E)

for every compact set K € U, where H(SJ);Z(K x X, E) is the closed subspace
of all u in H&Y¥(R x X, E) with suppu C K. Hence Héé;fl{i‘(U x X,E) is a
strict (countable) inductive limit.

4.1.9 Theorem. Let ) # U C R be an open set.

a)

b)

The closure of C$°(U,C*(X,E)) in H&Y¥R x X,E); is contained in
HVH(U x X, E);.

If U is an interval then the closure coincides with the space.

HI(DSCt (Ux X, E) is a Fréchet space. If V C R is another open set and x : U —»

V' is a diffeomorphism, then the distributional pull-back x* induces topological
isomorphisms

. Hég,ﬁ};f(v x X, E) — HSDU x X, E),
XOVHEY WV x X, B) — HEVNU x X, E).

Ioc

4.2 Anisotropic Mellin Sobolev spaces

4.2.1 Remark. Material on isotropic Mellin Sobolev spaces can be found, e. g.,
in [13], [59], [60], [61].

4.2.2 Notation. For any set Y we denote Y := R} x Y.

4.2.3 Definition. For s,t,7 € R the Mellin Sobolev space H(*1):7¢(X" E) is
defined as the space of all u € | 7]_»(Ry,H* (X, E)) such that M, _zu €

s'eR
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U SI(F"T“—’Y’ H* (X, E)) is a regular distribution and
s'eR
1 s 5 3
lallscenvexn,my = (5 1 ()Mo g 0) (e x5 d2) < 0.

r
"TJrl,.,

(4.2.)

Here R*(z) € L¥Y(X; [ops
from Theorem 3.1.12.

i E E) is a parameter-dependent reduction of orders

4.2.4 Remark. The space H(*t)75¢(X", E) is well-defined. From relation (1.1.iv)
we see that the transformation S, » from (1.1.i) induces a topological isomor-
phism

Sy—n : HEDTHXN E) — HEDER x X, E). (4.2.i)

Using (4.2.ii) we consequently obtain many properties of the Mellin Sobolev spaces
H DX E) from Theorem 4.1.5.

4.2.5 Proposition. a) The relation rOH (¢ XN E) = HEDHE(XA B is
valid, and we have

HOO0E(XN ) = p=F [2(XN E) = 1~ L2(R, , L3(X, E)).
More precisely, the following identity holds algebraically and topologically:

L2775 (Ry, H*PH(X, E)OYHEY 3 (Ry, HY (X, B))
for s >0,
L¥7% Ry, H*HH(X, E)) + HE7 2 (Ry  HY(X, B))
for s < 0.
(4.2.ii1)

H(s,t)/‘y;f (X/\, E) _

b) The embeddings Hiiy (XN, E) < HED(XA E) — HEDEHXA E) are
well-defined and continuous.

Proof. Assertion a) follows from (4.2.ii), Proposition 4.1.7 and Definition 2.5.10.
b) is a consequence of (4.2.i1) and Theorem 4.1.9. O

4.2.6 Theorem. a) H*!)3¢(X" E) is a Hilbert space with respect to the scalar
product
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b) The embedding T,—z (X", E) = T,—2 (R, C®(X, E)) < HED XN E) is
continuous and dense.

c¢) The operator of multiplication with a function ¢ € C% (R} ) induces a contin-
uous operator in L(H®V7¢(X" E)), and the mapping C¥(R.) 3 ¢ = M, €
LHED (XA E)) is continuous.

d) Fors'—s < min{0,t—t'} the embedding H*1) (XN E) — HE ) XA | E)
is well-defined and continuous.

e) For k € Ny et CE;Z(IRQ x X, E) denote the Banach space of all sections
u: Ry x X — E such that for j€ + |a| < k there exists (—r9,)/0%u as a
bounded continuous function with respect to any choice of local coordinates
and trivializations of the vector bundle, endowed with the topology of uniform
convergence of all derivatives (—rd,)?0%u up to (anisotropic) order k.

Sobolev embedding theorem: Let k € Ny. Then for s > k + nTH the embedding

n+1

HEODT XA E) s 7= (2 -1 COBYR, x X, E) is well-defined and continuous.

f) For every 7o € R the r°~%L*(R, x X, E)-inner product extends to a non-
degenerate sesquilinear pairing

() Yo : HED T (XA R) x H=5=Dm 10l (XA B — C
which induces an (antilinear) identification of the dual
H(Syt)rrJr”ro;f(XA; E) = H(*Sﬁt)ﬁ“ﬂr“ro;f(X/\; E).

4.2.7 Definition. A function w € C§°(R;) such that w = 1 near r = 0 is called
a cut-off function (near r = 0).

4.2.8 Notation. Let Y be a locally convex space and A € £(Y'). Then we denote
the closure of A(Y) in YV by [A]Y.
This notation will be employed frequently in case of function spaces Y and multi-

plication operators A.

4.2.9 Theorem. Let w € C§°(Ry) be a cut-off function near r = 0. Then the
embeddings
[WHEOTX, B) < [N, B),
[1— w]HED XA E) s [1 — w]HE XA B,
are well-defined and continuous for s — s < min{0,¢ — '} and v > ~'. Moreover,

they are compact if s' —s < min{0,t — t'} and v > +'; Hilbert-Schmidt if s' — s +
2t < min{0,¢ — '} and v > 7.
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4.2.10 Corollary. Let v,7' € R with v < «'. Then for every s,t € R we have
H(s,t),’y;((X/\7E) N H(sﬂg),fY’;Z(X/\;E) _ ﬂ H(s,t),J;E(X/\,E)‘

Y <8<

The intersection is taken in H(s’t);e(X/\, E).

Ioc

4.2.11 Definition. Let § # U C R, be an open set. Define #,*""(U x X, E)
to be the subspace of all u € H(*1):7¢( X" E) such that suppu C U.

Note that the closure of U is taken with respect to the topology of R, .

4.2.12 Proposition. The closure of C$°(U,C®(X,E)) in H®D (XN E) is
contained in ’Hés’t)ml(v x X, E) for every open set ) # U C R,. If U is an
interval then the closure coincides with the space.

Mellin Sobolev spaces with asymptotics

4.2.13 Definition. a) Let —oo < § < 0 and © := (#,0]. For v € R the tuple
(7,0) is called a weight datum.

The strip F(nTH77+07nTH7,Y) C C is called the weight strip associated with the
weight datum (v, ©).

b) An asymptotic type associated with the weight datum (v, ©) is a finite or count-
ably infinite set

P ={(pj,m;,L;); j € L} (4.2.iv)

where the m; € Ny are integers, the L; are finite-dimensional subspaces of
C*(X, E) and the p; € C are complex numbers such that with the “projection”
mcP :={pj; j € Z} of P to C the following properties are fulfilled:

* TP Clinp g npt o)

o mcPNT is finite for every subinterval I C (2 —~+6, 2L — ) of finite
length.

The collection of all asymptotic types associated with the weight datum (v, ©)
is denoted by As((y,0),C>(X, E)).

c) Let (v,0) be a weight datum such that § > —oo. For an asymptotic type P
associated with (v, ®) and an arbitrary but fixed cut-off function w € C§°(Ry)
near r = 0 we define

Ep(XME):={w(r) > Y cpurPlog"(r); ey € L}. (4.2.v)

(p,m,L)EP k=0
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This is a finite-dimensional subspace of C*° (X", E), and we endow this space
with the norm topology.

4.2.14 Definition. Let (v, ) be a weight datum and P € As((v,0),C>®(X, E)).

a) Define
HEDTHXN E) = () HEOT 05X, B), (4.2.vi)
0€O
Tr—z.0(X"E) = (| Th—z_s(X", E), (4.2.vii)
0€O

endowed with the projective topology with respect to the mappings

HEDTHXN B) 3 u s uw € HEDT5(XN B),
ﬂ_%Ve(XA,E) SuruE Ty_%_(s(X/\,E),

for § € ©.

Actually, these spaces are Fréchet spaces. In (4.2.vi) and (4.2.vii) we only need

to take the intersection over the elements of a sequence {J,; v € Ny} C O such

that o = 0 and lim §, = € to obtain them algebraically and topologically, see
vV—00

also Corollary 4.2.10.
b) Let § > —oo. Define
HEDTHXN E) = 1S TH(XN B) + Ep(XN, B), (4.2.viii)
P(XA,E) = 7;,%7@(X/\,E)+EP(X/\,E). (421)()

These spaces are well-defined, i. e. independent of the choice of the particular
cut-off function involved in (4.2.v). We equip these spaces with the topology of
the direct sum which turns them into Fréchet spaces.

c) In case of # = —oo we define
HE (XN B) = () HED (XN, B), (4.2.x)
veN
To5.p(XNE)i= (| Toog.p, (X", E), (4.2.x1)
veN

where the asymptotic type P, associated with the weight datum (v, (—»,0])

contains those elements (p,m,L) € P with p € F(”TH_FY_anT-H_FY)'

These spaces are Fréchet spaces with the projective limit topology induced by
the right-hand sides of (4.2.x), (4.2.xi).
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4.2.15 Theorem. Lety,v' € R with vy < ' and s,t € R. Then for every v < 0 <
~" the weighted Mellin transform

M(if% : 7:5’—7(]R+7Hs+t(X7 E)) — SI(F"T‘H_(VHSH(XJ E))

n
2

restricts to a topological isomorphism from the intersection H(®t-V¢ (X" E) N
HEDY5E( XN E) onto the following space of analytic functions in the strip

Dinga oy npa_ oy

Let R*(t) € L%Y(X;R; E, E) be a parameter-dependent reduction of orders from
Theorem 3.1.12. Then a € Ms_y (HEDW(XN, E) N HED (XA E)) if and
only if

® (€ A(F("TH77IynTH*7)’HS+t(X7 E)),

1

« 2
o |la| ‘:Vfﬁﬁy(ﬁp I ||RS(Im(z))a(z)||§{t(X’E)dz) < oo

4.2.16 Theorem. Let (7, 0) be a weight datum and P € As((v,0),C>®(X, E)).

a) For every v < § < v — 6 the weighted Mellin transform Mgs_= restricts to a

2

topological isomorphism from 7—[8 DX A E) onto the space of all

L] GEA(F(HT_H_’Y“FevnTH Hs+t(X7E))7

-v)?
€ Moy (HEDTHXA, E) NHEDA=( XA E)) for

endowed with the topology of the projective limit.

b) The weighted Mellin transform M., —z restricts to a topological isomorphism
from Ty -z p(X A, E) onto the following space of meromorphic functions:

a€ My »(Ty = p(X", E)) if and only if:
® q€ A(F(nTJrli,y+07nT+li,y) \ mcP,C*® (X, E)).

e For every (p,m, L) € P we may write in a neighbourhood U (p) \ {p}

a(z) = Z vi(z —p)~ D Lag(2)
k=0
with v, € L, k = 0,...,m, and ay holomorphic in p taking values in

C®(X, E).
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e For every mcP-excision function x € C*°(C) we have (x-a)lr, €
S(T's,C>(X, E)), uniformly for § in subintervals I C (2 —y+6, 2+ —~)
of the form I = [¢', 2L — ).

This space carries a canonical Fréchet topology, namely the convergence of
(x-a)|r; € S(Ts,C>®(X, E)) for every mcP-excision function x € C*°(C), uni-
formly for ¢ in subintervals I as above.

c¢) The following identities hold algebraically and topologically with the topology
of the non-direct sum of Fréchet spaces on the right-hand sides:

,ng,t)mé(X/\,E) _ Hg,t)mé(X/\,E) + Ty_%,P(X/\,E),
Mooy (HEDTHXN, B)) = Mooy (G 7(XP, B))
+ M’Y—" (ﬂ—%,P(X/\aE))a

2

the latter within meromorphic H*T¢(X, E)-valued functions.

Proof. a) follows immediately from Theorem 4.2.15. Let us prove b). Note first
that for 7' € R we have u € T,/ _» (X", E) if and only if the function (log(r))%u(r)
belongs to ’H(S’O)”’I?l(XA, E) for every s, p € R. To see this observe that the trans-
formation S,/_z provides a topological isomorphism

Sy_n : (log(r))"¢HED (XN B) — HEDYR x X, E),,

r_n
2

and we have [ HEO¥(R x X, E), = S(R x X, E) by Theorem 4.1.5. Employ-
s,0€R

ing relation (1.1.iii) and again Theorem 4.1.5 we obtain assertion b) from a) in

case of the empty asymptotic type, i. e. P = ©. Let us consider general asymp-

totic types P. Note that it suffices to prove the assertion for the finite weight

interval, i. e. 8 > —oo. Let w € C§°(R4) be a cut-off function near r = 0, and

o(r) :==w(r) S Y eparPlogh(r) € Ep(XN, E) with ¢, € L. Then, by the
(p,m,L)€EP k=0

properties of the Mellin transform, we have

M@= Y Sen(L) (Z=Mervwe-n) 0

z—
(p,m,L)EP k=0 p

for z € C, and consequently the asserted characterizations hold for the functions in
Ep(XM, E). Summing up, we have proved that the Mellin transform of a function
in 7,_= p(X", E) is meromorphic in the weight strip with the desired properties.
Conversely, let @ be a meromorphic function in the weight strip with the properties
listed in b). Then we see from (1) that there is a function v € Ep(X”, E) such
that a(z) — (M, =v)(2) is holomorphic and satisfies the conditions in b) for the
empty asymptotic type, i. e. there is a function u € T_%,@(X/\,E) such that
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(My—zu)(2) = a(z) — (My_zv)(2). Thus we have a = M,_=(u + v) which
finishes the proof of b).

Clearly, the assertions in c) are equivalent by Mellin transform. For the finite
weight interval we have nothing to prove, so let us consider the infinite interval
© = (—o0,0]. For H (X" E) D HE D (XA, E)+ T, -z p(X", E) is obvious
we only have to check the opposite inclusion. Let a € M, = (Hg’t)”y;e(X/\,E))
be arbitrary, and let w € C§°(Ry) be a cut-off function near r = 0. Let
{g;; 7 € No} C mcP be the pole pattern of the meromorphic function a. For
every pole ¢; € C with (g;,mj,L;) € P choose functions c,; x € Lj such that

a(z) = My _a (w(r) 2]: Cq; kT4 logk(r)) (2) is holomorphic in g;. For ¢ > 0 define
k=0

Ve, (2) := My_2 (W(CT) Z Cqs kT Y lng(T)) (2).

k=0

Then also a(z) — 1.4, (2) is holomorphic in g; by (1). Note that for ¢ > 0 we
have M(—ro,w(cr))(z) = ¢ *M(—rd,w)(z), and consequently M (—rd,w(cr))
converges to 0 in S(I'z) as ¢ — o0, locally uniformly for § in Ry. A Borel ar-
gument now shows that there is a sequence (¢;) C Ry with Jli)ngo ¢; = oo such that

the series

b(z) = Z 1/161‘711]‘ (z)
j=0

converges and defines an element b € M., = (ﬂ,%,p(X/\, E)) in view of b). More-

over, a — b belongs to M,_x (Hgi?.j%;]l(XA, E)) by a) which finishes the proof of

the theorem. O

4.3 Cone Sobolev spaces

4.3.1 Remark. In this section we introduce anisotropic Sobolev spaces on X”
which coincide near » = 0 with the Mellin Sobolev spaces from Section 4.2, and
near r = oo with the Sobolev spaces from Section 4.1. The construction is analo-
gous to that of the cone Sobolev spaces considered in the analysis on spaces with
conical singularities, cf. [13], [59], [60], [61], which motivates the name and the
notations involved. Nevertheless, even in the isotropic case, i.e. £ =1 and ¢t = 0,
the spaces differ from each other near r = co: While the “classical” cone Sobolev
spaces reflect the conical structure near infinity in polar coordinates, the spaces
from this section impose the structure of a cylindrical end.

Our main interest in this part is the analysis of parabolic pseudodifferential op-
erators and the behaviour of solutions on the closed compact manifold X. The
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space—time configuration for these problems is [tg, 00) x X for some ty € R, where
t = oo is treated as a cylindrical end with an exponential weight. In our approach,
this configuration is transformed via (1.1.i) to (0,79] x X with 7o € Ry, and the
corresponding function spaces are the (weighted) Mellin Sobolev spaces from Sec-
tion 4.2. Consequently, for the applications we have in mind, the particular choice
of the function space on X" near r = oo is irrelevant as far as it is compatible
with the Mellin Sobolev space away from infinity.

The analysis of the operators within the cone Sobolev spaces from this section
turns out to be quite natural in view of the examples involved in the applications,
which motivates the definitions and constructions given below.

4.3.2 Definition. Let w € C5°(Ry) be a cut-off function near r = 0.

a) For v € R define

SV (XN E) = [w] T2 (XN, E) + [1 — w|S(R x X, E). (4.3.0)

b) For s,t,7,0 € R define the cone Sobolev space K1) X" E)s as
KEOTE XA E)s = [WHED V(XN E) + [1 — w] HODYR x X, E)s.
(4.3.ii)

The non-direct sums are carried out in Hl(;(;t);e(X A E), and the resulting spaces

do not depend on the particular choice of the cut-off function.

4.3.3 Notation. For 7,6 € R let k,; € C®(R}) be an everywhere positive

function with
r’~% nearr =0
kys = {

7“7‘5 near r = oQ.

4.3.4 Theorem. Let w € C§°(R,) be a cut-off function.

a) S7(X", E) is a nuclear Fréchet space.
b) Kt):3t(XN E)s is a Hilbert space (more precisely a hilbertizable space).

¢) We have ki y 5 KEOWE(XA, By = KEO7 (XN By algebraically and
topologically. Moreover, we have K¢ X" E)s = k,sL*(X",E) and in
particular K(®O-0¢(X" E)n =r ¥ L*(X", E) (see also i) below).

d) The embedding SY(X", E) — K(&1:7¢( X" E)s is continuous and dense.
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e) The operator of multiplication with a function ¢ € [W|CF (R} )+ [1 —w]|C;°(R)
induces a continuous operator in L(IC(51)7¢(X " E);), and the mapping

[WICE (Ry) + [1 —w]CP(R) 3 ¢ = M, € LIKEDTEXN E)y)
is continuous.

f) Fors'—s < min{0,t—t'},v > " and § > ¢’ the embedding K50 ¢ (X" E)s —
K& E)5E (XA B s is well-defined and continuous. Moreover, it is compact if
s’ —s < min{0,t — '}, v > 7" and § > &'; Hilbert-Schmidt if s' — s + £ <
min{0,¢t —t'}, vy >+ and § — §' > 3.

g) Sobolev embedding theorem: Let k € Ny. Then for s > k + "TH the embedding
KEOBUXA, B)s s w5 VOB Ry x X, B) +[1—w](r) °CH! (Rx X, E)
is well-defined and continuous.

h) For every 6p,7% € R the k., 5, L?(X", E)-inner product extends to a non-
degenerate sesquilinear pairing

() V0.5 :IC(s’t)’VJWO;e(X/\,E)(;OH x IC(_S’_t)’_’”’Yo;e(X/\,E)(;O_(; -5 C
which induces an identification of the dual
KON, By, g 2 K850 X, By,

The r~% L*(X", E)-inner product (-,-) serves as the reference inner product in

the scale (KC(#:0-73¢( XA, E)s),, v,6€R’

i) For s,t,7v,0 € R the following identities hold algebraically and topologically:

ks L (R, H*TH (X, E)NKT 72 (Ry , HY(X, E))s
for s >0,
kysL*(R,H*"'(X,E)) + K7~ 2(Ry, H{(X,E))s
for s <0,
(4.3.ii1)

’C(s,t),fy;é(X/\, E)(S —

where

KT8 Ry, H' (X, B))s =[w]HTT 5 Ry H'(X, E)) +
[1—-w)(r)"HE(R,H' (X, E)).

Proof. a) and b) are consequences of Remark 4.1.6 and the permanence properties
of nuclear spaces. ¢)-e), g) and h) follow from Theorem 4.1.5, Theorem 4.2.6 and
Proposition 4.2.5. f) is a consequence of Theorem 4.1.5 and Theorem 4.2.9. i)
follows from Proposition 4.1.7 and Proposition 4.2.5. d
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4.3.5 Remark. Let
A KEDVY XA By — KEmOY XA F)s_,

be continuous for all s,t,d € R. Then the formal adjoint operator A* with respect
to the r~% L2-inner product (-,-) is defined by means of the identity (Au,v) =
(u, A*v). By Theorem 4.3.4 the operator A* is well-defined as a continuous operator

A KOO XA F)y — KB XA )5,

for all s,t,0 € R. In the remaining part we will take formal adjoints of operators
on X" in this sense.

4.3.6 Definition. Let ) # U C R; be an open set. Define K(()s’t)’ie(v x X, E)s
to be the subspace of all u € K(&0)7¢(X " E)s such that suppu C U.

The closure of U is taken with respect to the topology of R, .

4.3.7 Proposition. The closure of C3°(U, C*® (X, E)) in K504 X" E); is con-
tained in IC(()S7t)’w(U x X, E)s for every open set ) # U C R, . If U is an interval

then the closure coincides with the space. Moreover, the following identities are
valid:

K51 ((0,m0] x X, B)s = HE D TH((0,70) X X, E),
ICés’t)’””f([ro,oo) x X,E); = Hés’t);l([ro,oo) x X,E);

for every ro € Ry .

Proof. These assertions follow from Theorem 4.1.9 and Proposition 4.2.12. (|

4.3.8 Definition. Let (7,0) be a weight datum and P € As((v,0),C>*(X, E)).
For an arbitrary but fixed cut-off function w € C§°(R;) near r = 0 define

SHXN,B) = []T, 5 p(X", E) + [1 - w]S(R x X, E),
KO XA, B)s o= WIHE D (XN E) + L - W HEDR x X, E);,

for s,t,0 € R. These spaces are independent of the particular choice of the cut-off
function w € C§°(R4), and we endow them with the (Fréchet) topology of the
non-direct sum.

4.3.9 Proposition. a) The embeddings
SHXN E) < SY(XN, E) — KDY XN E);,
SHXN B) s K& THXN, B)y e KEDT(XN, B)g

are well-defined and continuous for every s,t,0 € R.
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b) If § > —oo we have direct decompositions

SHXN, E) = SH(XN, E) + Ep(X1, E),
KT 8XN, B)s = KX, B)s + Ep(XN, E).

c) We have
S;(X/\,E) — ﬂ ’ngp)ﬂ’?l(X/\,E)é,
s,0€ER

and S},(X", E) is a nuclear Fréchet space.

Proof. a) and b) are obvious. We have to prove the representation of S|, (X", E) in

c) as the intersection over the IC}S’O)MZ(XA, E)s—spaces in case of the finite weight
interval only. From b) we conclude that it suffices to consider the empty asymp-
totic type. But then the desired identity holds in view of the Sobolev embedding
theorem in Theorem 4.3.4. Let us prove the nuclearity of the space S)(X", E).
By the permanence properties of nuclear spaces we just have to consider the finite
weight interval and the empty asymptotic type. By the closed graph theorem the
representation in c) holds topologically with the projective limit topology on the
right-hand side. Employing the embedding properties from Theorem 4.3.4 f) we
get the asserted nuclearity. |



Chapter 5

Calculi built upon
parameter-dependent
operators

5.1 Anisotropic meromorphic Mellin symbols

5.1.1 Remark. In this chapter we shall again employ the notations from Notation
3.1.1 with the corresponding data fixed on X and the vector bundles E and F'.

5.1.2 Lemma. Let ) # I C R be an open interval and u € R. Let
(5 AL = {a € ATy, LM(X; B, F)); alr, € LIS (X;T; B, F)
locally uniformly for § € I}

- . . iy,
COOA?CZ) T {a € A(F[, L“(X) E7 F))a a € 000(1/37 L?C[) (X) Fﬂa E: F))}
endowed with their natural Fréchet topologies.

Then the embedding ¢ : COOA?C;ZZ) — L2
between these spaces. The complex derivative acts linear and continuous in the
spaces 0, : £$° A?c:f) — 42 Aégf“q.

loc Ioc

Af‘c;f) is onto and provides an isomorphism

Moreover, given a € K}’;’CAé‘;f), we have the following asymptotic expansion for a|r 50

in terms of a|r, for every Po, 8 € I which depends smoothly on (8o, 3) € IxI:

o0

Y
alr, ~ > P k),

k=0
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Proof. Passing via (3.1.iv) to local symbols and global remainders on X reveals
that the assertions follow from Proposition 2.6.3. |

5.1.3 Notation. For p € Cand k € Ny let ¢, 1, € A(C\ {p}) be an analytic func-
tion which is meromorphic in p with a pole of multiplicity &+ 1 such that for every
p-excision function x € C*°(C) the function x - ¢, 1 belongs to C*°(Rg,S(I'3)).

In view of the properties of the Mellin transform the function

Upale) = Myl log (e = (1) (52 - M-r0)(z - ).

where w € C§°(Ry) is a cut-off function near r = 0 and v < 1 — Re(p), fulfills
these conditions.

5.1.4 Definition. A Mellin asymptotic type is a finite or countably infinite set
P = {(pj7mj7Lj); JE€ Z} (511)

where the m; € Ny are integers, the L; are finite-dimensional subspaces of
L~>°(X; E, F) consisting of finite-dimensional operators, and the p; € C are com-
plex numbers such that with the “projection” ncP := {p;; j € Z} of P to C we
have that the set w¢P N I’y is finite for every compact interval I C R. For the
empty asymptotic type we use the notation O.

The collection of all Mellin asymptotic types is denoted by As(L=>°(X; E,F)).

5.1.5 Definition. For u € R and P € As(L™>°(X;E,F)) we define the space
Mf;;(ecl)(X;E,F) of (anisotropic) meromorphic Mellin symbols of order u with
asymptotic type P to consist of all functions a € A(C \ ncP, L*(X; E, F)) with
the following properties:

e For every (p,m, L) € P we may write in a neighbourhood U(p) \ {p}
m
a(z) = > w(z —p) " +ao(2)
k=0

with v, € L, k = 0,...,m, and ag holomorphic in p taking values in
LHM(X;E,F).
e For every compact interval I C R we have
. : i ..
a(f +it) — > > Tintnk € Ly (X Tgs B, F) - (5.1.00)
{(pj m;,L;); Re(p;)€L} k=0

uniformly for 8 € I with suitable o;, € L;.
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Analogously, we define the space M5 (X; E, F') of meromorphic Mellin symbols
of order —oo with asymptotic type P.

If P = O is the empty asymptotic type the spaces are called holomorphic Mellin

symbols.

5.1.6 Remark. The topology on the space Ml’f(ecl) (X; E, F) is determined by the
following ingredients:
e The topology of A(C\ ncP, L*(X; E, F)).

e Convergence of the Laurent coeflicients vy in the corresponding coefficient
spaces L; C L™ °(X; E, F).

e Uniform convergence of (5.1.ii) for 8 € I for every compact interval I C R.

With this topology Ml’f(ecl) (X;E,F) is a Fréchet space. Note that the topology

does not depend on the particular choice of the functions ¢, » from Notation
5.1.3 involved in (5.1.ii) and the coefficients o, determined by them in view of
the closed graph theorem.

In order —oo we have an equivalent characterization of M (X; E, F) as the space
of all analytic functions a € A(C\ n¢cP, L~°°(X; E, F')) such that

e ¢ is meromorphic in p for every (p,m,L) € P, and in a neighbourhood
U(p) \ {p} we have

a(z) =Y w(z—p) " +ag(2)
k=0
with v, € L, k = 0,...,m, and ap holomorphic in p taking values in
L=>(X;E,F).
e We have x-a € C®(Rg, L=°(X;I's; E, F)) for every mcP-excision function

X € C>(C).

If we choose a countable collection of m¢P-excision functions {xx}x C C*(C)
which shrink to mc P we find that the Fréchet space structure on M, (X; E, F)
is determined by the projective topology with respect to the mappings

Mp®(X;E,F)3a— xp-a € C(Rg,L™°(X;Is; E, F)).
Note that Lemma 5.1.2 enters these considerations.

Material on (scalar) isotropic meromorphic Mellin symbols, i. e. £ = 1, can be
found, e. g., in [13], [59], [60], [61].
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5.1.7 Proposition. Let pu,u’ € R, y' < p. Moreover, let P € AS(L’OO(X; E,F))
and f € R with g NacP = 0. The following identities hold algebraically and
topologically:

a) MUY (X;E,F)N LM X;Ts; E, F) = MY (X E, F).
b) MEY(X;E, F)N LSY(X; s E, F) = MY (X E, F).
For holomorphic Mellin symbols we have:

i) MBS, (X5 B, F) = A(C,L* (X; E, F)) N O (Rg, LI (X3 Ds; B, F)).

ii) The complex derivative acts continuous in the spaces

il . 4l .
0, : Mg(cl)(X,E,F) — Mg(cl) (X,E,F).

iii) For a € Mg;(fd) (X; E, F) the following asymptotic expansion holds for alr,
in terms of alr, which depends smoothly on (B, ) € R x R:

o0

Y
alr, ~ > P k),

k=0

In the classical case we consequently obtain for arbitrary By, 8 € R the follow-
ing relationship for the parameter-dependent homogeneous principal symbol:

H4 H4
oy (alrs,) = 03" (alr,).
iv) For s,v € R with v > pu we have a continuous embedding
SE(C,H(X,E),H (X, F)) v>0
Sot (CH*(X,E), H**(X,F)) v<0.

= Qnlx

MEYX;E F) < {

Proof. The assertions i) —iii) are subject to Lemma 5.1.2, while iv) follows from
i) and Theorem 3.1.5.

To prove a) let a € Ml‘;;l(X;E,F) N L¥#(X;Tg; E, F). Consider for N € N such
that N > || the open interval I := (=N, N) C R. According to Definition 5.1.5 of
meromorphic Mellin symbols we conclude from Lemma 5.1.2 that the expression
(5.1.ii) belongs to the space £° A*¢ over the interval I. From the asymptotic

loc

expansion result in Lemma 5.1.2 and the assumption that a is of order x’ on the

weight line I's we even conclude that (5.1.ii) belongs to the space £ A" over 1.

But since N € N with N > || was arbitrary we see that a € Ml’i’;e(X;E,F) as
asserted. This shows that the identity in a) holds algebraically, but then it holds
also topologically in view of the closed graph theorem. The same reasoning as in
the proof of a) also yields assertion b). O
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5.1.8 Theorem. a) Let P,Q € As(L~>°(X; E, F)). Then (pointwise) addition as
L*(X; E, F)-valued operator functions on C \ (ch U ch) induces a bilinear
and continuous mapping

. il . H . il .
+: Mlﬁ(cl)(X,E,F) X Mg(cl)(X,E,F) — Mg(cl)(X,E,F),

where R € As(L=>°(X; E, F)) consists (in general) of elements (g, m, L) of the
form

(q,max{ml,mg},Ll + L2) if(q,ml,Ll) € P and (q,mz,Lz) €qQ
(¢,m,L) ifq € mcPAmcQ and (g,m,L) € PUQ.

b) Let G be another vector bundle over X and a € MI‘;;(‘EZ)(X;G,F), b €

M 5’(;2) (X; E,G). Then the pointwise composition (multiplication) as functions
on C\ (mcP UmcQ) gives rise to an element ab € Mgzrcé‘)’;e(X;E,F) with a
resulting asymptotic type R € As(L=°°(X; E, F)) which consists (in general)
of elements (q,m, L) of the form

(¢,my +mz +1,L) if(q,my,L1) € P and (q,m2, Lz) € Q
(¢m,L) ifq € ncPAncQ and (¢,m,L) € PUQ.

¢) For holomorphic Mellin symbols the multiplication as functions on C gives rise
to a continuous bilinear mapping

- M (X5GLF) x MY (X5 E,G) — MG (XS B, F).

Proof. These assertions follow from the Definition 5.1.5 of meromorphic Mellin
symbols and the properties of anisotropic parameter-dependent pseudodifferential
operators on closed compact manifolds as discussed in the Section 3.1 (for the
composition note in particular Theorem 3.1.6). O

5.1.9 Remark. Let g € R and p4 := max{0, u}. Then the Mellin kernel cut-off
operator with respect to the weight v € R is bilinear and continuous in the spaces

H,:CF(Ry)xSe(Ty_;H* (X, E), H* "+ (X, F))
— ST(Ly_; HY (X, E), H"+ (X, F))

by Theorem 2.6.13. Analogously to Theorem 3.2.9 and Corollary 3.2.10 we obtain
the following theorem for the Mellin kernel cut-off operator from Theorem 2.6.13.
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5.1.10 Theorem. The Mellin kernel cut-off operator with respect to the weight
v € R restricts to continuous bilinear mappings in the spaces

¢ ¢
o [OFROXLEN (G B F) — L (XiTy B, F)
T G Ry )X L (X5 Ty B F) — Mgfcl)(X,E,F).
Given ¢ € C¥(Ry) and a € LH*(X;; F%Jr; E, F) we have the following asymptotic
expansion of Hy(y)a in terms of ¢ and a in the sense of Definition 3.1.8:

=1
J(@)a ~ S0 (10, p(r) s - Db
k=0

For ¢ € C3°(Ry) such that ¢ = 1 near r = 1 the operator I — H.,(v) is continuous
in the spaces
I—H,(¥): "X, Iy

(B, F) — L™®(X;Ty_;E,F).

— —y

5.1.11 Corollary. For P € AS(L_OO(X;E,F)) we have

Mu;l

P(cl)(X§E7F) Mg( l)(X;E,F)-I—MEOO(X;E,F)

algebraically and topologically with the topology of the non-direct sum of Fréchet
spaces on the right hand sides.

Proof. Let ¢ € C§°(R;) such that ¢ = 1 near r = 1. Let v € R such that

Fl—’v NacP = (). In view of Theorem 5.1.10 and Theorem 5.1.8 we may write for

4
M;( l)(X§E;F)

a=H,($)a+ (I - Hy($))a,

where H,(¢)a € Mg;él) (X;E,F), and (I — H,(4))a belongs to the space
L7o(X50 5 E,F)ﬁM}'f(ld) (X;E,F) = My>(X; E, F) due to Proposition 5.1.7
and Theorem 5.1.8. This provides a topological isomorphism as asserted. |
5.1.12 Definition. Let P € As (L’OO(X;E,F)). A meromorphic Mellin symbol

Ml‘_f;(il) (X;E,F) is called elliptic, if the restriction alr, € L?’ (XD B, F)
to some weight line I'g is parameter-dependent elliptic in the sense of Definition
3.1.9, where # € R is such that I'g NwcP = 0.

According to Corollary 5.1.11 and Proposition 5.1.7 this is well-defined in the
sense that for every 8 € R such that I'g N mcP = (0 the restriction a|pﬁ €
Lé‘cf) (X;Tg; E, F) is parameter-dependent elliptic if and only if it is the case for
some (8 € R.
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5.1.13 Proposition. Let c € My (X;E,E). Then there exists an element d €
MG>(X; E, E) such that (1+ c)_1 = 1 + d as meromorphic operator functions.

Proof. First observe that the function 14+c¢ € A(C\mc P, L°(X; E, E)) is a finitely
meromorphic Fredholm family taking values in L°(X;E,E) — L(L*(X,E)).
Let 8 € R such that I's N 7cP = 0. Then (1 + c)|rﬁ € L%(X;Ts;E,E) is
parameter-dependent elliptic. Thus, by virtue of Theorem 3.1.11, there exists
(1+ c(z:))_1 € L°%X;E,E) for |Im(z)| sufficiently large on I's. Consequently,
we may apply Theorem 1.2.6 on the inversion of finitely meromorphic Fredholm
families to 1 + ¢, i. e., 1 4+ ¢ is invertible as a finitely meromorphic Fredholm
family (taking values in L°(X;E, E)). The Laurent-coefficients of the principal
part of (1 + c)_1 at a pole p € C are finite-dimensional pseudodifferential op-
erators, and thus they necessarily belong to L~°(X; E, E). Moreover, we have
(1+ c)_1 =1-c+c(l+ c)_lc, which shows that d := —c+ ¢(1 + c)_lc is a
meromorphic function on C taking values in L~=*°(X; E, E).

Let us study the inverse (1 + c)_1 in more detail. Let R > 0 be arbitrary such
that (g UTg) NmcP = 0. Let x € C*(C) such that x = 0 near mcP N
['_g,r) and x = 1 outside some small neighbourhood U of mcP N I'[_g g)- Then
in view of Definition 5.1.5 and Remark 5.1.6 the function x-c depends smoothly
on € [—R, R] taking values in L=*°(X;I's; E, E). Now apply Theorem 3.1.11 to
1 + x-c. This shows at first that for |Im(z)| sufficiently large in I'_g g} we have
that 14 x(z)c(z) is invertible. Moreover, we have (1+ X(z)c(z:))_1 =(1+ c(z))_1
outside U. But since the neighbourhood U (i. e. the excision function x) may be
chosen arbitrarily small we conclude that only finitely many poles of (1 + c¢) ~are
located in the strip I'[_g g). Consequently, the pattern of poles together with the
data of the Laurent expansions of (1 + c) ~! determines a Mellin asymptotic type
Q € As(L™°(X;E, E)).

Now let R > 0 be arbitrary such that (F,R U I‘R) N (ch U WcQ) = (. We have
that 1+ ¢(2) is invertible for z € T'j_g g} \ (7cP U mcQ). Let V be some small
neighbourhood of (m¢P U mcQ) N (g g. Choose x € C>°(C) such that x =0
near (mcP Umc@Q) NT_g g and x = 1 outside V. For z € I_g g \ V we may
write using Theorem 3.1.11

14+d(z) = (1+¢2) 7 = (1+x(2)e(2)) T =1+ &z)

where ¢ € C°([-R, R|, L~ >°(X;'s; E, E)). This shows that d € M5>(X; E, E)
which finishes the proof of the proposition.
5.1.14 Theorem. An element a € Ml‘_fﬁ(‘il) (X; E, F) is elliptic if and only if there

exists b € Mc;(ﬂczl; (X; F, E) such that a-b =1 and b-a = 1, i. e., a is invertible as a

meromorphic operator function with a™ =b € Mé(“c;'; (X;F,E).
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Proof. Let a € Ml*;;(lcl) (X; E, F) be elliptic and v € R such that I'y_ NP = 0.

According to Theorem 3.1.10 there exists p € L(;);Z(X;F%JV;F, E) such that
(alr, )p-1¢€ L_OO(X;F%_V;F,F) and p-(alp, )-1€ L_OO(X;F%_V;E,E).
27 37

Let ¢ € C3°(Ry ) with ¢ = 1 near r = 1 and define b := H.,(¢)p. Using Theorem

: — it - oo -
5.1.10 we get b € Mo(il)(X;F, E) and (p— b)|r%77 €L (X;F%_V;F, E). This

shows that blr, is a parameter-dependent parametrix of a|r, . Moreover, from
il il

Theorem 5.1.8 and Proposition 5.1.7 we obtain that ab=1+ rgr and ba=1+ TL
with meromorphic Mellin symbols 7;, and rg of order —oo. Now apply Proposition
5.1.13 to 1 +rz and 1 + rg. Then we conclude from Theorem 5.1.8 that

ot =b=(1+r,) " b=b(1+rr)" € My (X;F,E)

as asserted. If conversely a is invertible as a meromorphic Mellin symbol with
inverse b € Mé(ill; (X; F,E) we see that b|r, is a parameter-dependent parametrix
of a|p, for every 8 € R such that I'sN (W(CpUWCQ) = (). Consequently, a is elliptic
in the sense of Definition 5.1.12 due to Theorem 3.1.10. |

5.1.15 Theorem. Let I C R be a compact interval. Then there exists for
every u € R an elliptic element h € MS;Z(X;E,E) such that its inverse
h=t e MCS“;K(X;E,E) (cf. Theorem 5.1.14) has no poles in the strip Iy, i. e.,
I'inme@ = 0.

Proof. According to Theorem 3.1.12 there exist for 4 € R operators a* €
LMY X;ToxRy; E,E) such that a*a™ = 1. Now let u € R be given. Let
¢ € C§° (R4 ) such that ¢ = 1 near r = 1. Define for (z,A) € ToxR

a(z,A) == (H% (p)a)(z, \).

From Theorem 5.1.10 and Theorem 2.6.13 we conclude that a(z, \) gives rise to a
parameter-dependent family in MS;Z(X ; E, E) depending on the parameter A € R.
More precisely, we have for 8 € R

a(-, Nlr, = (Hy(0)a")|r, (V) = (Hy (rPp)a’) [y (M)

For the family {r®p(r); B € I} C C§°(Ry) is bounded we conclude from Theorem
5.1.10 and Theorem 3.1.11 that if we fix A\g € R with |Ag| sufficiently large we can
arrange the invertibility of a(z, Ao) : H*(X,E) - H* #(X, E) for all z € T';. Thus
the symbol h := a(z, ) € Mg;l(X;E,E) has the desired properties in view of
Theorem 5.1.14. O
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5.2 Meromorphic Volterra Mellin symbols

5.2.1 Definition. Let Hg be a right half-plane in C. For p € R and a Mellin
asymptotic type P € As (L’OO(X;E,F)) such that m¢P N Hz = () we define the
space of meromorphic Volterra Mellin symbols of order u with asymptotic type P
as
it . . — iy it . .
M"j’P(Cl)(X,Hg,E,F) = Mp, (X,E,F)HL"‘,(C”(X,HB,E,F)

with the induced Fréchet topology.

Analogously, we define the space My, 5 (X;Hgs; E, F) of meromorphic Mellin sym-
bols of order —oo with asymptotic type P. If P = O is the empty asymptotic type
the spaces are called holomorphic Volterra Mellin symbols.

5.2.2 Remark. Recall that the embedding

il . . H
Ll‘L/(cl) (X,]HIB,E,F) — Lfbcl)

is well-defined and continuous in view of Proposition 2.3.2 and the considerations
in Section 3.2. Using Proposition 5.1.7 we conclude that also the embedding

(XT3 E,F)

4 . . HA4 .
M"j’P(cl) (X;Hg; E, F) — MI‘;(CZ) (X;E,F)
is well-defined and continuous.

Moreover, the spaces of meromorphic Volterra Mellin symbols are independent
of the right half-plane Hg as far as Hz N 7cP = §. This follows from (2.1.i)
together with the considerations about the translation operator in parameter-
dependent Volterra pseudodifferential operators from Sections 2.3 and 3.2 (see
also Proposition 2.6.3).

In particular, holomorphic Volterra Mellin symbols are parameter-dependent
Volterra pseudodifferential operators with respect to any right half-plane Hg C C.
Therefore, we suppress the half-plane from the notation when we deal with holo-
morphic Volterra Mellin symbols.

5.2.3 Proposition. Let p,u' € R, p' < p. Moreover, let P € AS(L’OO(X; E,F))
and f € R with Hg N wcP = 0. The following identity holds algebraically and
topologically:

MEYX; B, F)n LY4(X Hy; B, F) = ME 4(X; Hy; B, F).
For holomorphic Volterra Mellin symbols we have:

a) The complex derivative acts continuous in the spaces

il . —L4; .
0. : M‘l;,o(cl)(X’E7F) — M\l;,o(cl)(X’E7F)'
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b) For a € M{,”é(cl) (X; B, F) the following asymptotic expansion holds for alu,,
in terms of a|y, which depends smoothly on (5, ) € R x R:

e k

ali, D W(afa)lﬂa-

k=0

In the classical case we thus obtain for arbitrary (g, 3 € R the following rela-
tionship for the parameter-dependent homogeneous principal symbol:

H4
v (

H4
U¢' a|Hﬁo) :UZ' (G|Hﬁ).

¢) For s,v € R with v > p we have a continuous embedding

- Sk (C;H (X, E), H* (X, F >0
MES(X; B, F) — \L_OV( (X, E) (X,F) v2>

| Sy (CH* (X, E), H* (X, F)) v <0,
Proof. These assertions follow from Proposition 5.1.7 and Remark 5.2.2. The

asymptotic expansion in b) follows as in the proof of Lemma 5.1.2 from Proposition
2.6.3. For c) see also Theorem 3.2.6. O

5.2.4 Theorem. a) Let P,Q € AS(L*OO(X;E,F)) such that (ch U ch) N
Hs = @. Then pointwise addition as L*(X; E, F')-valued operator functions on
C\ (mcP UmcQ) induces a bilinear and continuous mapping

H4 H4 H4
+ 1 My p) (X5 Ha; B, F) x Mo ) (X5 g B, F) — My ) (X5 Hs; B, F),
where R € As(L™°°(X; E, F)) is (in general) determined from P and Q as in
Theorem 5.1.8.

b) Let G € Vect(X) be another vector bundle, and let a € M{ﬁfg(cl) (X;Hs; G, F),
as well as b € M‘ﬁ:g(cl)(X;HB;E,G). Then the pointwise composition (mul-
tiplication) as operator functions on C\ (mcP U mc@Q) gives rise to an el-

ement ab € M{}E‘E;}g(X;HB;E,F) with a resulting asymptotic type R €

AS(L*OO(X; E, F)) which is determined from P and @) as in Theorem 5.1.8.

¢) For holomorphic Volterra Mellin symbols the multiplication as functions on C
gives rise to a continuous bilinear mapping

. 14 . "5t . +u'5 yr.
C Moy (X5 G F) ) My 8 (X5 B,G) — MyH (X B, F).

Proof. These assertions follow from Theorem 5.1.8 and Section 3.2, see in partic-
ular Theorem 3.2.5 what the composition is concerned. O
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5.2.5 Theorem. The Mellin kernel cut-off operator (cf. Remark 5.1.9, Theorem
5.1.10) with respect to the weight v € R restricts to continuous bilinear mappings
in the spaces

o C3 (R )X LY (o (X Hy B, F) — L4 (X5 Hy_ s B, F)
T O (Ry ) x LM y(XiHy_ i B, F) — MU, (X E, F).

3= V,0(cl)
Givenyp € CF¥(Ry) anda € L’(}Z(X; Hy _; E, F) we have the following asymptotic
(

expansion of Hy(y)a in terms of ¢ and a in the sense of Definition 3.2.7:

|rlaa

??‘||_A

g Lt

If ¢y € Cg°(Ry) such that ¢ = 1 near r = 1 then the operator I — H,(¢) is
continuous in the spaces

I—Hy(y): IY(X;Hy B, F) — Ly™(X;Hy_; E, F).

—? -

Proof. This follows as Remark 5.1.9, Theorem 5.1.10 analogously to Theorem
3.2.9 and Corollary 3.2.10 from Theorem 2.6.13. d

5.2.6 Corollary. For P € AS(L’OO(X; E,F)) such that mcP N Hg = () we have

H4 H4
MYt (X3 Has B, F) = MY

V,P O(cz)(X;E’F)+M‘Z?(X§H6§EaF)

algebraically and topologically with the topology of the non-direct sum of Fréchet
spaces on the right hand sides.

Proof. Let ¢ € C§°(Ry) such that ¢ = 1 near r = 1. In view of Theorem 5.2.5
and Theorem 5.2.4 we may write for a € M"j;é(cl) (X;Hs; E, F) analogously to
Corollary 5.1.11

a=Hi g()a+ (I - H%—B(w))a:

where H1_3(¢)a M“jé(cl)(X; E,F),and (I - H%_B(z/)))a is an element of

L;,OO(X;HB;E,F)ﬂM{}’P(cl)(X;Hg;E,F) :M‘Z?(X;HB;E,F)

due to Proposition 5.2.3 and Theorem 5.2.4. This provides a topological isomor-
phism as asserted. |

5.2.7 Definition. Let P € As(L=>°(X;E, F)) such that Hz N 7cP = (. An
element a € M"j;é(cl) (X;Hg; E, F) is called parabolic, if a|u, € L“;(Kd) (X;Hg; E, F)
is parabolic in the sense of Definition 3.2.17.
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According to Corollary 5.2.6 we may write a = ag +r with ag € MVO(CZ) (X;E,F)

and r € MV7P (X;Hg; E, F). Thus we see that a is parabolic if and only if ag is
parabolic, i. e., a|g, is parabolic in the sense of Definition 3.2.17. But the latter
condition is independent of the particular choice of the half-plane Hj according to
Proposition 5.2.3. In this sense we may speak about parabolicity for meromorphic
Volterra Mellin symbols without referring to the particular half-plane involved.

5.2.8 Theorem. An element a € M™%,  (X; Hs; E, F') is parabolic if and only

V,P( cl
if there exists some ' > 8 and b € MVQ(CZ) (X;Hg ; F,E) such that a- b =1 and
b-a = 1, i. e., a is invertible as a meromorphic operator function with a=* = b €

My (X Hy: F,E). If a(z) : H*(X,E) — H*="(X,F) is invertible for some

seR for all z € Hg we may choose ' = .

Proof. Let a € MVP(cl)(X;HB;E7F) be parabolic. Then a is elliptic as an el-

ement, of Mgél)(X,E,F). Consequently we may apply Theorem 5.1.14 which
shows that @ is invertible as a meromorphic operator function with a=! =
b e MQ(“;; (X;F,E). For aly, € L*(;fd) (X;Hgs; E, F) is parabolic we may ap-
ply Theorem 3.2.19 to alg, . This shows that b necessarily belongs to the space
Mvg ) (X;Hg ; F, E) with some ' > 3, where we may choose 8’ = 3 if a(z) is
p01ntw1se invertible in the Sobolev spaces for z € Hjg. This proves the theorem,
for the converse is immediate. |

Mellin quantization

5.2.9 Remark. For later purposes let us note, that the Mellin quantization oper-
ator @ and its inverse @, see Definition 2.6.15, are well-behaved within parameter-
dependent Volterra operators. The proof is analogous to that of Theorem 3.2.9,
and it is based on Theorem 2.6.16 in the abstract framework. Hence we restrict
ourselves to state the result.

5.2.10 Theorem. a) The operator () from (2.6.vi) restricts to continuous bilinear

mappings

0 C5° (R )X L) (X3 R B, F) — MES ) (X3 B, F)
: ¢ £
C3o (R )X LYy (X3 5 B, F) — MU (X3 B, F).
Moreover, the asymptotic expansion result (2.6.viii) of Q(p,a)|r, ,» Tespec-
1o
tively Q(p,a)|u, ,» in terms of a is valid in the sense of the Definitions 3.1.8
1o

and 3.2.7:

Q(%a)(% —7+iT) > el ) + chm @, ) (=) (85 a) (—7)

k=1 j=0
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for T € R, respectively T € H_.

b) The operator Qn, from (2.6.vii) restricts to continuous bilinear mappings

3. {CgO(JRJr)xL;‘f)(X Ty ;B F) — M;‘O"Ecl)(X;E,F)

O (Ry)x LY fc)(X,Hl (B, F) — M, (X, F).

The spaces in the image are the multiples by the imaginary unit in the param-
eter of the ordinary spaces of meromorphic Mellin symbols.

The asymptotic expansion (2.6.ix) of QV(’I/J,(I”R, respectively Qw(w,a)m, in
terms of a is valid in the sense of the Definitions 3.1.8 and 3.2.7:

~ ) 1 ]

Qy(,a)(r ) ~ 111( Ja( ——v—w +szm (0, 7)( )](35“0)(5—7—17)
k=1 j=0

for 7 € R, respectively T € H.

c) For ¢,7p € C§°(R}) such that ¢ =1 and ¢ = 1 near r = 1 we have

- L™*°(X; Fl - E,F)
Q(Q4(a)) —ac {L (X HLfﬂr;EaF)v
R “®(X;REF)
Q,(Q(a)) —a € { Ly®(X;H; E, F).

5.3 Elements of the Mellin calculus

5.3.1 Remark. In this section we introduce subcalculi of the Mellin pseudodif-
ferential calculi with operator-valued symbols from Sections 2.5 and 2.6, where the
symbols are built upon parameter-dependent pseudodifferential operators on the
manifold X. To this end recall from Theorem 3.1.5, Theorem 3.2.6, Proposition
5.1.7 and Proposition 5.2.3 the following embeddings:

LMY X;Ts; E, F) < ST(Ts; H (X, E), H* "+ (X, F)),

LI(X; Hy; B, F) < S\ (Hy; H*(X, E), H™F+ (X, F)),
MEYX;E,F) < S5 (C; H* (X, E), H "+ (X, F)),
MUES(X;E,F) < S¢ o(C; H* (X, E), H#+ (X, F)).

for s, € R, where py := max{0, p}.
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In particular, for every s € R we have

CF (R, LHYX;Ty s B, F)) <=
M SZ(( )4 xT'y_ L HY (X, E), H? F (X, F)),

OB ((Ry)* LM(X Hy_;E,F)) <
(( )q x H r- ;HS(X,E),HS_“+(X,F)),

for ¢ = 1,2, see Definition 2.5.1. This shows that for every double-symbol
a € CF(Ry x M,L“;K(X;F%_V;E,F)) the associated Mellin pseudodifferential
operator acts continuously in the spaces

opy(a) : Ty(X", E) — T,(X", F),

and left- or right-symbols a are uniquely determined by this action in view of The-
orem 2.5.4 and the density of 7, (X", E) in T, (Ry, H (X, E)) for every t € R. As
turns out, the classes of Mellin pseudodifferential operators based on such symbols
remain preserved by the manipulations in the (holomorphic) Mellin calculus from
Section 2.5 and Section 2.6.

5.3.2 Theorem. Consider a double-symbol a belonging to one of the following
spaces:

i) OF Ry x Ry, L¥ (XT3 B, F)),
i) CF (R x Ry, Ly, (X; Hy s B, F)),
iii) CF Ry x Ry, MAe, (X; E, F)),

iV) C%O(K+ X K+, M"L/Lfo(d)

(X; B, F)).

Then the corresponding left- and right-symbols ay, and ar obtained from Theorem
2.5.4 in the cases i) and ii), respectively from Theorem 2.6.7 in the cases iii) and
iv), belong to the spaces

i) OF (R, Ly (X; Ty s E, F)),

-
ii) C%"(M,L"ffcl)(X;H%_W;E,F)),

iv) CF (R, MGy ) (X B, F)).
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Moreover, the asymptotic expansions of a;, and ag in terms of a from Theorem
2.5.4 and 2.6.7 are valid within these smaller classes (see also the Definitions 3.1.8
and 3.2.7).

Proof. From the correspondence (3.1.iv) and (3.1.ili) we conclude that the proof
of the theorem reduces to consider local symbols and global remainders of order
—00, since we have explicit oscillatory integral formulas for the left- and right-
symbol at hand. Keeping in mind the characterization of the remainders on the
manifold as operator-valued symbols (cf. Definition 3.1.2 and 3.2.2) we see that the
cases i) and ii) follow from Theorem 2.5.4, while iii) and iv) follow from Theorem
2.6.7. Note that the global asymptotic expansions on the manifold follow from
the corresponding asymptotic expansions on the level of local symbols, which are
subject to the theorems in the abstract framework. d

5.3.3 Theorem. a) Let a and b be given, where

: 0 pil
i) a€Cg Ry, Loy
i) a € CF (R, L, (X;Hy i F,G)), be CF(Ry, LY (X3 Hy 5 B, F)),

(R F.G)), be C?(&,Lé‘clf(X Ly ;E,F)),
(
(R
(

(XTI,

3—7°

iii) a € CF Ry, MEL, (X3 F,G)), be O Ry, M4, (X; B, F)),

iv) a € CF Ry, MG, ) (X; F,G)), be C?(@+,MV’O(C”(X;E,F)).

Then the Leibniz-product a#tb (cf. Theorem 2.5.6 and Theorem 2.6.9) belongs
to

i) O L“+“ YX;TL_ E,Q)),

1>

LAl (X Hy_; E,G)),

i) O3 e

iii) O M,MW X E,G)),

(R
(R
(
. ¢

iv) Ogp (B, MU (X5 B, @),

and the asymptotic expansions (2.5.iii), (2.5.iv) and (2.6.i) hold within the
smaller classes. The formulas for the conormal symbols of the composition in
the cases iii) and iv) are inherited from the abstract framework; see Definition
2.6.10, in particular the defining relation (2.6.iii) and (2.6.iv). In the classical
case we conclude that the homogeneous principal symbol of the Leibniz-product
is given as the product of the homogeneous principal symbols of a and b.

b) Let
i) a€CF Ry, L (X;Tup s E,F)),

ii) a € CEO(RJF,M(FSY(CD(X;E:F));



134 T. Krainer and B.-W. Schulze

and A = opX/;%(a). Then the formal adjoint with respect to the r—% L?-inner

product is given as A* = op,, > (a*) with the symbol

a*(r,z) = (a(r',n+1-2)") .
Here (*) denotes the formal adjoint with respect to the L?-inner product on the
manifold. This shows that

F,E)),

i) a* € OF Ry, L (X5 Tagr

i) a* € OF Ry, ME(, (X5 F, E)).

Moreover, the following asymptotic expansion of a* in terms of a is valid:

o0

e, Pt , L nkpk_g k(. PHL -\ (%)
a*(r, 5 + 7y +iT) kzz:ok!( 1) D¥(=ro,)*a(r, 5 y+ir) .

In the classical case we thus obtain the following formula for the (anisotropic)
homogeneous principal symbol:
T HA *
oy (A7) = 0" (A)".

In case of ii) we have the following relations for the conormal symbols:
o (A)(z) = of (A)(n+1—k — z7)®
for k € Ny.
5.3.4 Proposition. Let a belong to one of the following spaces
) O (R X Be L (X5Ty i B, F)),
i) CF Ry x Ry, LY (X;Hy_; B, F)),
iii) O (Ry x Ry, M5 (X E, F)),
iv) Cp Ry x Re, MG (XS B, F)),

and assume that a(r,r') = 0 for |5 — 1| < ¢ for a sufficiently small ¢ > 0. Then
opys(a) = op},(c) with a symbol ¢ in

i) CF (R4, L=®°(X;T1_; B, F)),

iii) CF (R4, Mp™(X; E, F)),
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iv) O Ry, My (X E, F)),

5.3.5 Proposition. Let a € C%O(RF,L’(,;Z(X;H
stricts for every ro € Ry to a continuous operator

E,F)). Then op),(a) re-

oppr(a) : Tr,0((0,70), C*(X, E)) — T5,0((0,70), C* (X, F)).

Proof. This follows from Theorem 2.5.8. O

5.3.6 Theorem. Let a € C?(M,L”?Z(X;F%H_,Y;E,F)). Then op;yw_%(a) ex-
tends for every s,t € R to a continuous operator

Op;(/;% (a) :H(s,t)ml(X/\, E) — 'H(S_“’t)”ﬁe(X/\, F).

Ifae CF Ry, L“‘}[(X; Hopr 5 E, F)), then Op}(;% (a) restricts for every ro € Ry
to a continuous operator

opyy % (@) : HED (0, 7o) X X, B) — HET (0,70 x X, F).

Proof. Let
R*S(z) S Lis;f(X; FnT_H—’Y; E7 E)J
Rs_“(z) c LS_’“Z(X;FnTHJ,;Fa F),

be parameter-dependent reductions of orders according to Theorem 3.1.12. In view
of Definition 4.2.3 the asserted boundedness is equivalent to the continuity of

Op;(/;% (Rsfu#a#RfS) . H(OJ)N;Z(X/\,E) — H(O,t)py;l(X/\7 F).

Recall that HO)7 (XN E) = L>7 % (R, ,H (X, E)), and that R* *#a#R°
belongs to

CF Ry, L™ (X35 T s 5 B, F)) = My_g S*(Ry xDuga_ s HY(X, B), H'(X, F)).

.

Consequently, we obtain the desired boundedness from Theorem 2.5.11. The second
assertion follows from Proposition 5.3.5 and Proposition 4.2.12. ]

Ellipticity and Parabolicity

5.3.7 Remark. Let

00 H . -
ac CVB (RF:Lébcll)(X:F%f'y:EaF))

—y
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According to Remark 3.1.4, 3.2.4 we associate to a a complete symbol (ay, ... ,an)
subordinate to the given covering of X from Notation 3.1.1. Thus we have

N .
C?(&,jélsé‘c’f)(]}gn x R? x F%ﬂ;CN_,(CNJr))

(a1,-..,an) € N
CF(Ry, x Sy, (R x R* x Hy _;CN=,CN+)).
j=1 3

V(cl)

5.3.8 Definition. a) Let a € CF(Ry, L{{) (X;T'y_; E, F)). Let either [ = Ry

or I = (0,ro] with ro € Ry.. We call a elliptic (on I), if for the complete symbol
(a1,...,an) we have:

Forevery j =1,..., N there exists R > 0 and a neighbourhood U (k;(supp#;))
such that for ({,7) € R® x R with [(¢,7)] > R and all r € I and
@ € U(k;j(suppy;)) there exists a;(r,z,&, 3 — v +ir) ! with

las(r, € 3 = + i) "l = O((6,7)7")

as |(&,7)|¢ = oo, uniformly for r € I and = € U(k;(suppy;)).
In the classical case this condition is equivalent to require that the homogeneous
principal symbol

oli(a) € OF (Ry, SO ((T*X x Ty _,) \ 0,Hom(x" E, 7 F)))

is invertible (on I), and for the inverse we have

. L
sup{||o?(a) (r, &, ) 7 Is v € 1, (&2 + 7)) =1} < o

Note that we identified I'y _, with R via 7 = Im(z).

b) Let a € CF(Ry, M4, (X;E,F)). Let either I = Ry or I = [0,7] with
ro € Ry. We call a elliptic (on I), if there exists v € R such that the conditions
in a) hold with the interval I.

c) Leta € C’%o(RHL“‘jfd) (X;Hy . B, F)). Let either I = Ry or I = (0,ro] with
ro € Ry. We call a parabolic (on I) if the following condition is fulfilled:

Forevery j =1,..., N there exists R > 0 and a neighbourhood U (k;(supp#;))
such that for (¢£,{) € R* x Hy with [(§,{)]¢ > R and all r € I and = €
U(kj(suppt;)) there exists a;(r, ,§, % — v+ ()71 with

1 - _
laj (r,2, 6,5 =7 +¢) "= 0((€:¢); ")

as |(§, ¢)|¢ = oo, uniformly for r € I and x € U(k;(suppy;)).
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In the classical case this condition is equivalent to require that the homogeneous
principal symbol

o' (a) € CF (R, S (1" X x Hy_.) \ 0, Hom(7* E, 7" F)))

is invertible (on I), and for the inverse we have

sup{Jlot(a)(r, &, ) ls r € 1, (163 + CP)* =1} < oo

Here we identified ]HhE —y with Hy via translation.

d) Let a € OF Ry, M{5 ) (X5 E, F)). Let either I = Ry or I = [0,ro] with

ro € Ry. We call a parabolic (on I), if there exists v € R such that the
conditions in c¢) hold with the interval I.

If I =R, in a), c) or I = R, in b), d) we say that a is elliptic, respectively
parabolic, without refering to the interval.

5.3.9 Lemma. a) Let a € C°°(]R+,L”’ (X501 3B, F)) and I = Ry or I =
(0,79] with ro € Ry. Then the fo]lowmg are equivalent:
e a is elliptic (on I).
e There exists b € C%"(M,L(C;‘)Z(X Ly F, E)) such that ab — 1 and
ba — 1 coincide in a neighbourhood of I with symbols belonging to
Cg(Ry, Ly (X;Ty s FLF)) and CF(Ry, L (X;Ty_; E, E)), re-

(el) 577
spectively.

b) Let a € C?(R+,Mg(el)(X;E,F)) and I = Ry or I = [0,1] with 1y € Ry.
Then the following are equivalent:
e a is elliptic (on I).
e There exists b € C¥F (R, M&“J; (X; F,E)) such that ab—1 and ba— 1 co-
incide in a neighbourhood of I with symbols in C5¢(Ry, M5HE (X; F, F))

O(cl)
and C¥ (]R{+,M_(1 e)(X E, E)), respectively.

¢) Let a € C}’;’(M,L“‘,f y(X5Hy_ B, F)) and I = Ry or I = (0,ro] with ro €
R, . Then the following are equivalent:
e a is parabolic (on I).

e There exists b € C?(M,vac’l)(X Hy_.; F,E)) such that ab — 1 and
ba — 1 coincide in a neighbourhood of I with symbols belonging to
CF Ry, Ly (X Hy_os F F)) and OF Ry, Ly iy (X3 Hy _ 3 B, E)), re-
spectively.
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d) Let a € C?(E+,M“j;é(cl)(X;E,F)) and I = Ry or I = [0,r] with rg € Ry.

Then the following are equivalent:

e a is parabolic (on I).

e There exists b € C5° (R, M‘;‘Sfcl) (X; F, E)) such that ab—1 and ba—1 co-

incide in a neighbourhood of I with symbols in C5° (R, M, 58 (X; F, F))

¢ V,0(cl)
and C% (R4, M‘;gfcl) (X; E,E)), respectively.

In particular, the notions of ellipticity and parabolicity on an interval I from
Definition 5.3.8 are well-defined, i. e. independent of the choice of the data on X
and the subordinated complete symbol, as well as independent of the choice of the
particular weight line or right half-plane for analytic symbols.

Proof. a) follows from Theorem 3.1.10 and c¢) follows from Theorem 3.2.18. For
the proof of b) and d) note first that the existence of symbols b with the asserted
properties is sufficient for the ellipticity or parabolicity of @ on the interval [ in view
of Theorem 3.1.10 and Theorem 3.2.18. Now let a € C?(@+,M{,‘fé(cl) (X;E,F))
be parabolic on the interval I. From Theorem 3.2.18 we obtain a symbol

b e C?(@JF,L;Q‘C;ZZ)(X;H%ﬂ;F, E)) such that ab — 1 and ba — 1 coincide in a

neighbourhood of I with symbols belonging to C?(E+,L;%éf) (X;]HI%_V;F, F))

and C%o(ﬁ+,L‘;}j)(X;Hlifw;E,E)), respectively, for some v € R. Let ¢ €

Cs°(Ry ) such that ¢ = 1 near r = 1, and define b := H,(p)b with the
Mellin kernel cut-off operator H,. Then we obtain from Theorem 5.2.5 that b €

CF Ry, My 45,y (X3 F, E)), and we have b—b € OF (R4, Ly (X3 Hy _; F, E)).

Consequently, ab — 1 and ba — 1 coincide in a neighbourhood of I with symbols in
oo (T —1;¢ . . : 0o (T —1;¢ . .

C% (]R_,_,Lv(cl) (X;Hy_.; F, F)) respectively Cg (]R{+,Lv(d) (X;Hy_.; B, E)), but

both ab—1 and ba—1 are analytic symbols. Thus we obtain from Proposition 5.2.3

the desired assertion which completes the proof of d). The proof of b) is analogous.

O

5.3.10 Theorem. a) Let a € CF (R, L (X;H.

V(el) LB, F)). The following are

equivalent:

e qa is parabolic.

e There exists a symbol b € C']%o(]RHL;WZ (X;H. _.;F,E)) such that

(cl) =7
opy;(a@)opy, (b) = 1+ opy, (rr),
opy; (b)opy(a) = 1+ opy, (L),
with remainders
TR € CEO(RF7L\700(XaH1§—77FJF))J

rp € C¥ (R, Ly™(X;Hy _; E, E)).

377
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Let I = (0, 7] for some o € Ry . Then the following are equivalent:

e a is parabolic on I.

e There exists a symbol b € Cg (R, Li,f! Z) (X; Hy_; F, E)) as well as cut-
off functions w,& € C§°(R,.) near r = 0 with w,& =1 on I, such that

(o} (a)opy, (b) — 1)@ = op},(rr),
w(op}y (b)opiy(a) — 1)@ = op}(re),

with remainders
"R € CEO(R*”L;/OO(XaH%frWF:F)):

rp € C?(M,L;M(X,H%_V,E,E))

b) Let a € CF(Ry, MV’O( ) (X; E,F)). The following are equivalent:

e qa is parabolic.
e There exists b € CF (R, Mvg’(d) (X; F,E)) such that

for some (every) v € R, where
TR € CB (]R-HMVO (X F: F)):
r, € Cg (]RJHMVO (XE,E))
Let I = [0,ro] for some 9 € Ry. Then the following are equivalent:

e q is parabolic on I.
e There exists_b € Cy (@+,Mvéfd)(X;F, E)) as well as cut-off functions
w,w € C§°(R4) near r =0 with w,@ =1 on I such that

(@)opy, (b) — 1)
w(opyy (b)opyy(a) — 1)

opy;(rR),
opy(rL),

&
||

&
||

for some (every) v € R, where

TR € CEO(RJ'_,

M
rL € C]%O(K+,M

vo (X
vo (X5, B)).
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Proof. In view of Theorem 5.3.2, Theorem 5.3.3 and Lemma 5.3.9 the above
conditions in a) and b) are clearly sufficient for the parabolicity of the symbols
(on the interval I'). Now assume that

a € C?(%—F7L,’\L/Y(cl)(X HL?,Y,E,F))

CI%O(R+7 MV’O(cl)(X7 E; F))

is parabolic. From Lemma 5.3.9 and Theorem 5.3.3 we conclude that there exists
. {C%"(&,Lvt”;l) (X;Hy _; F, E))

O (R, My 5 (X5 F,E)

such that a#b = 1 — ig and b#ta = 1 — 71, with

1;¢
hc [CF® LV_(cll)e(X JHy . F,F))
(]R+ Mvo(cl)(X FF)):
—1;¢
i e (@ LV_(Cll)g(X H. _V,E E))
(]R+ Mvo(cl)(X)E:E))'
Now choose 7g, 71, such that
o0 oe
CB (]R+7Mvo(cl)(X F F)) v =0
00 0;¢ oS
CB (]R‘f'aLv(cl)(OXl Hl__fw )) 5 T'AL -~ Z#(])f
OB (]RJrano(cl (X E E)) v =0

These asymptotic expansions are to be carried out within the corresponding sym-
bol classes. Recall that the terms in the asymptotic expansions are well-defined in
the corresponding symbol classes with decreasing orders by Theorem 5.3.3, and
that the classes themselves are closed with respect to taking asymptotic sums by
Theorem 2.6.14, Theorem 3.2.12, Theorem 5.2.5 and Proposition 5.2.3. Now we
see that

R Cp Ry, Ly™(X5Hy i F\ F))
a# (b#7R) — 1 € {CB o (M5 (X F, F))
- C¥ Ry, Ly™(X;H, ;E, E))
TL#b) #a — B2 v
(Fub)ta— 1€ {C,‘;"(R+,MVO(X E E))

and consequently the same relations hold with either b := l;#fR or b := fL#IN).
This completes the proof of the first assertions in a) and b).
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Now we consider the case of a finite interval I. Let a be parabolic on I. Choose
b satisfying the conditions in Lemma 5.3.9, and let 7, and 7 be (classical holo-
morphic) Volterra symbols of order —1, such that a#l; =147 and l;#a =147
in a neighbourhood of I. Observe that 1 + 7 and 1 + 7 are parabolic, and
consequently we obtain from the already proven part of the theorem that there
exist (classical holomorphic) Volterra symbols 7, and 7g of order —1, such that
(1—|—FL)#(1+77L) —1and (1—|—FR)#(1—|—FR) —1 are of order —oo. Now we see that
if we set either b := (1 + 7)#b or b := b# (1 + 7), and choose cut-off functions
w,w € Cg° (R, ) supported sufficiently close to the interval I, we obtain the second
assertions in a) and b). This finishes the proof of the theorem. O

5.3.11 Theorem. a) Let a € C¥ (]R+,L”’ (X502 E, F)). The following are
equivalent:

e q is elliptic.
e There exists a symbol b € CF (R+,L uit (X;F%JV;F,E)), and symbols

rR € CF Ry, L™°(X;T1_ ;s F,F)), 1L E C%O(M,L_OO(X;F%_V;E,E)),
such that

1y

opy;(a)opy, (b) = 14 opy,(rr),
opys(b)opy,(a) =1+ opy,(re).

Let I = (0, 7] for some o € Ry . Then the following are equivalent:

e ¢ is elliptic on I.

e There exists a symbol b e C°°(]R+,L “)K(X Fl_wF E)), and symbols

TR € CVB (]R—Fa (X Fé— s B F)) rL € CVB (]R—Fa (X:Fé—y;EaE)L

as well as cut-off functions w,» € C§°(Ry) near r = 0 with w,& = 1 on
I, such that

)(D = Op’]&(TR)a
)& = opy;(re).-

(a)opy, (b) —
(b)opy,(a) —

w(op},
w(opy,

b) Let a € CF(Ry, Mg;(fd) (X; E,F)). The following are equivalent:

e q is elliptic.
e There exists a symbol b € C% (R, MO(*Z’l) (X; F,E)) and remainders rp €
C2(Ry, M5®(X; F, F)), r, € C¥(Ry, M5(X; E, E)), such that

opyy(a)opy (b) = 1+ opy, (rr),
opy(b)opy,(a) = 1+ opy,(re),

for some (every) v € R.
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Let I = [0,ro] for some 9 € Ry. Then the following are equivalent:

e ¢ is elliptic on I.

e There exists a symbol b € C5° (R, MO(*Z’l) (X; F, E)) and remainders rr €
Cy¥ Ry, M5 (X;F,F)), rp € C¥(Ry, M5 (X; E, E)), as well as cut-
off functions w, & € C§°(Ry) near r =0 with w,& =1 on I, such that

w(opy;(a)opy, (b) — 1)@ = opy,(rr),
w(opy; (b)opy (a) — 1)@ = opy(rL),

for some (every) v € R.

Proof. The proof is analogous to that of Theorem 5.3.10. O

5.4 Elements of the Fourier calculus with global
weights

5.4.1 Remark. Analogously to Section 5.3 we are going to introduce subcalculi
of the pseudodifferential calculi with operator-valued symbols satisfying global
weight conditions from Section 2.7, where the symbols are built upon parameter-
dependent pseudodifferential operators on the manifold X.

Recall that for every s € R we have
Sevex(R? LMY X R B, F)) < ST (R? x R, H* (X, E), H* "+(X, F)),
SR, LMY (X; R, B, F)) < ST¢R x R; H* (X, E), H* "+ (X, F)),
Seve (R, LAY X HL B, F)) < S0 (R x H HE (X, E), H™"+ (X, F)),
Se(R, L“Z(X;]HI;E,F)) — S‘%}’Q(]R x H; H° (X, E), H> "+ (X, F)),
where py = max{0,u}, see Definition 2.7.2. Consequently, for every double-

symbol a € S9¢2(R? | L%¢(X;R; E, F')) the associated pseudodifferential operator
acts continuously in the spaces

opr(a) :S(Rx X, E) — S(R x X, F),

and left- or right-symbols a are uniquely determined by this action in view of
Theorem 2.7.4 and the density of S(R x X, E) in S(R, H! (X, E)) for every t € R.
The classes of pseudodifferential operators with global weight conditions based on
such symbols are invariant with respect to the manipulations in the calculus from
Section 2.7. The technique to see this is the same as before. Therefore, we will
only state the results what the basic elements of the calculus are concerned, and
skip the proofs.
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5.4.2 Remark. If explicitly stated, the asymptotic expansions in the sequel are

to be regarded as follows:

Let (ur),(or) C R be sequences such that ug,0p — —o0, and @ := max py, as
k— o0 keN

well as ¢ := max ;. Moreover, let
kEN

e 4SO (R LR B )
Sor (R, Li* (X3 1 B, F)),

o
°

c s (R, LFY(X;R; E, F))
a —,
S?(R, LY (X; 1 E, F)).

o0
We write a (r‘\;) > aj if for every R € R there is a kyp € N such that for k£ > kg
j=1

SR(R, L™ (X;R; E, F))
Za] SR(R, LI (X 1, E, F)).

5.4.3 Theorem. Consider a double-symbol

(Cl)(X;]R{;E,F))

Ser.02(R2 | L€
S .
“T s, L, (X B B, F)).

Then the corresponding left- and right-symbols ay, and ar obtained from Theorem
2.7.4 belong to the spaces

Sevte:(R, L) (X; R E, F))
ar,ar € c

sote: (R, Ly, (X; B B, F)),

and the mappings a — ar,,agr are continuous within

cl) (cb)
Seve2(R2, L)% %c \(X B B, F)) Sertex(R LM ffc (XS H B, F)).

Seve(R2 L (X; R B, F)) } {591+92(R L) (X; R B, F))
Vel

Moreover, the asymptotic expansions of a;, and ag in terms of a from Theorem
2.7.4 are valid in the sense of Remark 5.4.2.

5.4.4 Theorem. a) Let

. {SQ(]R L“;‘) (X;R; F,G)) 52 (R, Lf‘"f(X;]R;E,F))

and be€
SR, L () (X3 B F, G)) {S ¢ (R, LY i) (X; B B, F)).
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Then we have for the Leibniz-product (cf. Theorem 2.7.5)

(el)

Setd (R, LM (X; H, E, F)).

Sete (R, LI (X Ry B, @)
a#tb
(

)

Moreover, the asymptotic expansion

o0

1
b ~ —(0%a)(D¥b
a# (V)I;Ok!( ra)(Dyb)

holds in the sense of Remark 5.4.2.

b) Let [] : R — R} be a smoothed norm function, and § € R. Moreover, let a €

Se(R, Léf) (X;R; E, F)). Let a'*)% be the formal adjoint symbol with respect

to the []~° L2-inner product (see also Theorem 2.7.9). Then we have

a = ([ (a(r', 7)) ), € SR LS (X3 R F ),

and we have the asymptotic expansion

() ~ 3 Y L ([r) D2 (9 D alr, 7))

1!
k=0 pra=k DT

in the sense of Remark 5.4.2. Here (*) denotes the formal adjoint with respect
to the L?-inner product on the manifold.

5.4.5 Proposition. Let

o [sere (B (X R B )
a .
sove (R, Ly (X; 1 B, F))

such that a(r,r') = 0 for |r —1'| < e for a sufficiently small ¢ > 0. Then op,(a) =
op.(¢) with a symbol

c 5T RLT(XGR B, F))
C
SR, Ly>™ (X H E, F)).

5.4.6 Proposition. Let a € S%(R, L“”}l (X;H; E,F)). Then op.(a) restricts for
every o € Ry to a continuous operator

opr(a) : S((—o0,r0), CF (X, E)) — S((—00,r9), CF(X, F)).
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5.4.7 Theorem. Let a € S¢(R, L*!(X;R; E, F)).Then op,(a) extends for every
s,t,0 € R to a continuous operator

opr(a) : HEVH(R x X, E)s — HETHDER x X, F)s_,.

If a € S2(R, L“‘,;e (X;H; E, F)), then op,(a) restricts for every ro € Ry to a con-
tinuous operator

opr(a) : H" (=00, o] x X, E)s — H " (=00, 1] x X, F)5_,.

Ellipticity and Parabolicity
5.4.8 Remark. Let

(cl)

SR, L ) (X5 H; B, F)).

{SQ(R, L (X5 R B, F))
(

As in Remark 5.3.7 we associate to a a complete symbol (ai, ... ,an) subordinate
to the given covering of X from Notation 3.1.1. Then we have

N .
Se(R, X S(“C’f) (R x R" x R; CN-,CN+))
j=1

N .
SR, x Sy, (R™ x R x H, CN=,CN+)).
Jj=1

(ala"' 7aN) €

5.4.9 Definition. a) Let a € S¢(R, L{} (X;R; E, F)). Let either [ = R or I =
[ro,00), I = (—o0,r9] with 79 € R. We call a interior elliptic (on I), if for the
complete symbol (ay,...,ay) we have:

Forevery j =1,..., N there exists R > 0 and a neighbourhood U («;(supp#;))
such that for ({,7) € R* x R with [(¢,7)]¢ > R and all r € I and

z € U(k;j(suppy;)) there exists a;(r,z,&,7)~* with

sup{[la; (r, 2, &,7) €, ) (1% (€, 7)e 2 B, 7 € I, x € U(r;(supp;))}
< 0.

In the classical case this condition is equivalent to require that the homogeneous
principal symbol

oi(a) € SA(R, S¥ (T*X x R) \ 0, Hom(r* E, 7" F)))

is invertible (on I), and for the inverse we have

L
2

sup{[lo“ () (r, &, 7)TH I 7 € 1, (|62 + |77) =1} < oo.
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We call a elliptic (on I), if a is interior elliptic (on I), and there exists some
so € R such that

a(r,7) : H* (X, E) — H* "(X,F)
is invertible for all 7 € R and |r| sufficiently large (on I), and
sup{[|a(r, 7) "Ml g (0w ao0) (N TYM5 1| > R, 7 € R} < o0
for some R, M € R.

b) Let a € SQ(R,L“%C[)(X;H;E,F)). Let either I = R or I = [ry,00), (—00,7]

with 79 € R. We call a interior parabolic (on I), if the following condition is
fulfilled:

For every j =1,..., N there exists R > 0 and a neighbourhood U («;(supp#;))
such that for (£,¢) € R* x H with |({,{)]¢ > R and all r € I and = €
U(rj(suppt;)) there exists a;(r,z,&,¢)~" with

1
|

Sllp{”(l]’ (T,$,£,<)7 <§7<>7 <r>g; |(§7<)|l Z RJ S IJ TE U(H](Suppd)]))}

< 00.

In the classical case this condition is equivalent to require that the homogeneous
principal symbol

o (a) € S4(R, S (T X x H) \ 0, Hom(r* B, 7* F)))

is invertible (on I), and for the inverse we have

L
2

sup{[|o (a) (r, &, )T 1) % 7 € 1, (|2 +1¢17) 7 = 1} < 0.

We call a parabolic (on I), if a is interior parabolic (on I), and there exists
some sy € R such that

a(r,() : H*(X,E) — H**7#(X,F)
is invertible for all ¢ € H and |r| sufficiently large (on I), and
sup{[la(r, )l c(ao -, 0y (1) (M5 Il > R, ¢ € H} < 00

for some R, M € R.

If ] = R in a) or b) we say that a is (interior) elliptic, respectively (interior)
parabolic, without refering to the interval.

5.4.10 Lemma. a) Let a € S¢(R, Léﬁf) (X;R,E,F)). Let either I = R or I =

[ro,00), I = (—00,79] with 1o € R. Then the following are equivalent:
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e a is interior elliptic (on I).

e There exists b € S*Q(R,L(C%;Z(X;]R; F,E)) such that ab— 1 and ba — 1
coincide in a neighbourhood of I with symbols in S°(R, L(};l (X;R, F F))

el)
and SO(R, L(—C};‘ (X;R; E, E)), respectively.

Moreover, the following are equivalent:
e a is elliptic (on I).

e There exists b € ST¢(RR, L(_Cﬁ‘);e (X;R; F, E)) such that ab—1 and ba — 1 co-
incide in a neighbourhood of I with symbols in S™1(R, L(c})ﬂz (X;R, FF))
and ST!(R, L(j);l (X;R; E,E)), respectively.

b) Let a € SQ(]R,L"%C”(X;H;E,F)). Let either I = R or I = [rg,00), (—00,70]

with ro € R. Then the following are equivalent:

e q is interior parabolic (on I).

e There exists b € S7¢(R, L\_/L(ch) (X;H; F, E)) such that ab — 1 and ba — 1

coincide in a neighbourhood of I with symbols in S°(R, L‘_,M (X;H; F F))

(cl)
and S°(R, L;tﬁ) (X;H; E, E)), respectively.

Moreover, the following are equivalent:

e a is parabolic (on I).

e There exists b € ST¢(RR, L;‘(’ﬁ) (X;H; F, E)) such that ab—1 and ba—1 co-

incide in a neighbourhood of I with symbols in S™'(R, L;M) (X H; F, F))

(el
and S™(R, L;l(?c‘;) (X;H; E, E)), respectively.

Proof. The first equivalences in a) and b) follow from Theorem 3.1.10 and Theo-
rem 3.2.18. It suffices to prove the necessity of the existence of b with the asserted
properties for the ellipticity or parabolicity on the interval I. We will concentrate
on b) only, for the proof of a) is analogous.

Let a € SR, L*‘Ljfcl) (X;H; E, F)) be parabolic on I. From the parabolicity
in the interior we obtain together with Theorem 3.2.18 the existence of b e
SR, L‘;*(Lj) (X;H; F,E)) and rp, ~E SO(R, Ly~ (NX; H; E,E)) as well as rg €
SR, Ly, (X; I F, F')) such that ab = 1+rg and ba = 1+ 7, in a neighbourhood
of I. With a suitable excision function xy € C*°(R) we define

b :=b—rrb+rs (X(r)a(r, C)_l)rR,
b—brr+rp (X(r)a(r, ()_1)7"3.
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Note that
re(x(r)a(r,() ") rr € ST4(R, Ly, (X; H; F, E))

by Definition 3.2.2 and the parabolicity of a: the function is analytic and rapidly
decreasing in H taking values in the bounded operators acting in the scale of
Sobolev spaces on the manifold X; the corresponding estimates in the variable
r € R are straightforward.

Consequently, we have that abr — 1 and bpa — 1 coincide with symbols belong-
ing to ST(R, L, (X;H; F, F)) and S™>°(R, L, (X; H; E, E)), respectively, in
a neighbourhood of I. Now we may choose either b = by, or b = by to obtain the
desired properties. O

5.4.11 Theorem. a) Let a € S¢(R, L{) (X; R E, F)). Let either I = R or I =

[ro,00), I = (—o0,79] with 1o € R. Then the following are equivalent:
e ¢ is interior elliptic on I.
e There exists a symbol b € S‘Q(]R,L_’“e (X;R; F,E)), and elements rg €

(ct)
SUR,L~>°(X;R; F,F)), r, € S°(R,L~°(X;R; E, E)), as well as func-

tions x, X € C*°(R) with x,x =1 on I and x, x =0 outside a neighbour-
hood of I, such that

)
)

x (opr(a)op,(b) —

1
X(Opr(b)opr (a) -1

= >0
1
< S
<
=<
T

Moreover, the following are equivalent:

e q is elliptic on I.

e There exists a symbol b € S‘Q(]R,L(_C;‘);e (X;R; F,E)), and elements rg €
SR L™ (X;R,E F)), 1, € S™®(R L™ *°(X;R E,E)), as well as
functions x,x € C®(R) with x,x = 1 on I and x,x = 0 outside a
neighbourhood of I, such that

b) Let a € SQ(R,L“%C[)(X;H;E,F)). Let either I = R or I = [ry,00), (—00,7]

with ro € R. Then the following are equivalent:
e q is interior parabolic on I.
e There exists a symbol b € S‘Q(]R,L‘_,“éf) (X;H; F,E)), and elements

(
re € SR, Ly, (X;H F, F)), r, € SR, L, (X;H, E, E)), as well as
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functions x,x € C*(R) with x,X =1 on I and x, x = 0 outside a neigh-
bourhood of I, such that

OpT(rR)J
op(rr)-

X(Opr(a)opr(b) - ]-)f(
X(opr(b)op,,(a) - 1)5(

Moreover, the following are equivalent:

e @ is parabolic on I.

e There exists a symbol b € S*Q(R,L;‘(‘g) (X;H; F, E)), and elements T €

ST®(R, Ly, (X5 H; FLF)), r, € SR, Ly, (X;H; E,E)), as well as
functions x,x € C®(R) with x,x = 1 on I and x,x = 0 outside a
neighbourhood of I, such that

))NC = Opr(rR)a

X

) = opr(rr).

x (opr(a)op;(b)

-1
X(Opr (b)opr(a) — 1
Proof. In view of Theorem 5.4.3, Theorem 5.4.4 and Lemma 5.4.10 the above con-
ditions in a) and b) are clearly sufficient for the (interior) ellipticity or parabolicity
of the symbols (on the interval I). For the proof of the necessity we restrict our-
selves to consider b), and to the case I = R. Note first that the case of interior
parabolicity is analogous to Theorem 5.3.10, but now applied with similar argu-
ments to the setting of Fourier operators with global weight conditions.

Now assume that a € S¢(R, L"‘,;fcl) (X;H; E, F)) is parabolic. From Lemma 5.4.10

and Theorem 5.4.4 we conclude that there exists b € S~¢(R, L‘;*(Lc;f) (X;H; F, E))
such that a#b =1 — g and b#a = 1 — 7 with

Fr € STHR Ly (G F,F)),

L € STHR, Ly (4 (X H; E, E)).

Now choose 7, 7y, such that

STHR, Ly iy (XGE By F)) 27 ~ ) # i,
j=1

o0
- —1;¢ - TH- N i)
S 1(]R7LV(C[)(X5H)E7E)) S>7TL ~ Z#(])TL-
j=1
These asymptotic expansions are to be understood in the following sense:

N
Fr—y #Vip € STUNR Ly (X H FLF)),

j=1

N
PL— Y #F, € STUNR, L (X B E, E)).
j=1
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for N € Ny. Note that the existence of 7g,7; with the corresponding asymp-
totic expansions can be proved analogously to Section 2.1 by employing a Borel-
argument with a 0-excision function in the variable r € R involved. Now define
b:= b#(1+7g) or b := (1+71)#b. Then we see that a#b = 1—ig and b#ta = 1—ip,
with g € S™°°(R, Ly () (X3 F, F)) and 7, € S~°°(R, Ly, () (X; H; E, E)). Now
choose g, 1, such that

oo

—00 —1;¢ R 5 ()=
S (R7Lv(cl)(X;H7 F7 F)) > TR Vv Z# TR,

=1

-0 —1;¢ LT 3 (J) =
S (]R7 LV(cl)(X;HzEaE)) > rL Vv ]_Zl# L,

where the asymptotic expansions are to be carried out analogously to Theorem
3.2.12 (with rapidly decreasing behaviour of the extra-parameter r € R). Now we
see that if we define either b := b#(1 + 7g) or b := (1 + 71)#b we obtain the
desired assertion, i. e.

a#b—1¢€ SR, L, (X;H; F, F)),

b#a—1€ SR, L, (X;H; E, E)).

This finishes the proof of the theorem. O
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