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Abstract

We consider general parabolic systems of equations on the infinite time in-
terval in case of the underlying spatial configuration is a closed manifold.
The solvability of equations is studied both with respect to time and spatial
variables in exponentially weighted anisotropic Sobolev spaces, and existence
and maximal regularity statements for parabolic equations are proved. More-
over, we analyze the long-time behaviour of solutions in terms of complete
asymptotic expansions.

These results are deduced from a pseudodifferential calculus that we con-
struct explicitly. This algebra of operators is specifically designed to contain
both the classical systems of parabolic equations of general form and their
inverses, parabolicity being reflected purely on symbolic level. To this end,
we assign ¢ = oo the meaning of an anisotropic conical point, and prove that
this interpretation is consistent with the natural setting in the analysis of
parabolic PDE. Hence, major parts of this work consist of the construction
of an appropriate anisotropic cone calculus of so-called Volterra operators.

In particular, which is the most important aspect, we obtain the com-
plete characterization of the microlocal and the global kernel structure of the
inverse of parabolic systems in an infinite space—time cylinder. Moreover, we
obtain perturbation results for parabolic equations from the investigation of
the ideal structure of the calculus.
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Introduction

Parabolic partial differential equations arise in the modelling of time-dependent
phenomena, e. g., in the description of diffusion processes, such as heat diffusion,
as well as in probability, where we often find probability densities of stochastic
processes as solutions of associated parabolic equations or systems, as it is the
case for (certain) Markov chains. Moreover, there are deep connections between
the analysis of the heat equation associated with geometric operators and (spec-
tral) geometry.

In general, external influences, such as exterior sources, and interactions with the
geometry of the underlying spatial configuration, lead to non-autonomous equa-
tions or systems, i. e., the coefficients may depend on time, and we have to solve
them with inhomogeneous data. To give an example, consider the heat diffusion
flow in a body, represented by a closed manifold X. Then, as the diffusion u in-
teracts with the geometry of X, perturbed by an exterior source f, we find it as
a solution of the heat equation (8t - Ay (t))u = f, where gx(t) is a family of
Riemannian metrics, depending on time.

The analysis of parabolic partial differential equations is concerned, in particular,
with the following questions:

e Existence and uniqueness of solutions in appropriate function spaces.

e Local properties of solutions, such as regularity and local bounds for the
derivatives, on a finite time interval.

e Global properties, e. g., global bounds and/or integrability conditions, as well
as stabilization of the solution and its derivatives, especially asymptotics, on
the infinite time interval.

In this work, we consider general parabolic systems of equations on the infinite time
interval in case of the underlying spatial configuration is a closed manifold. The
solvability of equations is studied both with respect to time and spatial variables
in exponentially weighted anisotropic Sobolev-Slobodeckij spaces (which will be
called just Sobolev spaces in the sequel). In particular, this leads to fine analysis
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of regularity, which results into existence and maximal regularity statements for
parabolic equations. Moreover, we analyze the long-time behaviour of solutions in
terms of complete asymptotic expansions.

These results are deduced from the concept of regularity of a pseudodifferential
calculus that we construct explicitly. This algebra of operators is specifically de-
signed to contain both the classical systems of parabolic equations of general form
and their inverses, parabolicity being reflected purely on symbolic level. To this
end, we assign ¢ = oo the meaning of an anisotropic conical point, and prove that
this interpretation is consistent with the natural setting in the analysis of parabolic
PDE (see [34]). Hence, major parts of this work consist of the construction of an
appropriate anisotropic cone calculus of so-called Volterra operators.

In particular, which is the most important aspect of this work, we obtain the
complete characterization of the microlocal and the global kernel structure of the
inverse of parabolic systems on the infinite time interval. Moreover, we obtain
perturbation results for parabolic equations from the investigation of the ideal
structure of the calculus.

Let us enter this subject in more detail with some historical and methodical re-
marks first.

Elements of the classical theory

In parabolic partial differential equations there is a canonical splitting of vari-
ables into the (preferred) time and the spatial variables, and the analysis requires
the anisotropic treatment of these. The most direct approach is based upon the
anisotropic treatment of space and time on side of the covariables. Parabolicity
in this framework is regarded as some “strong” anisotropic ellipticity with the
time covariable polynomially rescaled in order to compensate the different orders
between spatial and time derivatives. This point of view goes back essentially to
the classical works of Petrovskij [48]. A deep connection between parabolicity and
anisotropic parameter-dependent ellipticity is given via regarding the time covari-
able as a parameter for the operators acting in space. This was observed and
systematically exploited by Agranovich and Vishik [2] in their work about bound-
ary value problems for parabolic partial differential equations of general form.
The solvability of equations is established both with respect to time and spatial
variables in anisotropic Sobolev spaces. This framework is particularly well-suited
for the analysis of regularity of distribution solutions.

As general references in this context we want to mention the works of Ejdel’man
[14], Ejdel’'man and Zhitarashu [15], Friedman [16], Ladyzhenskaya, Solonnikov,
and Uraltseva [38], Lions and Magenes [40], and Solonnikov [66], [67], [68].

The concept of anisotropic parameter-dependent ellipticity also plays an important
role in spectral theory and the analysis of resolvents (see, e. g., Shubin [65]).
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This can be regarded as a link between the microlocal approach, i. e., anisotropic
treatment of space and time on side of the covariables as just discussed, and the
semigroup-theoretical approach to parabolic equations, which is, roughly speaking,
based upon anisotropic treatment on side of the variables (see, e. g., Amann [3],
Lunardi [41], Pazy [47], and Tanabe [69]). The solution there is given in terms
of an evolution operator, and can be seen in the context of singular (Volterra)
integral operators, where the fundamental solution plays the role of an operator-
valued convolution kernel. Hence, starting from a partial differential equation, the
solution operator is rather implicit due to the emphasis of the kernel level, and the
microlocal character is not reflected. We shall not pursue this discussion further.

The global long-time behaviour of solutions is an important feature in the study
of equations posed on the infinite time interval. The analysis is essentially de-
voted to establish bounds at infinity, and it is most natural to ask for solutions
satisfying exponential estimates (see, e. g., Agranovich and Vishik [2]); of course,
such can be expected only under suitable assumptions on the coefficients of the
equation as well as on the inhomogeneous data. More refined control of the global
behaviour of solutions is reflected by asymptotic stabilization, or even asymptotic
expansions. Asymptotic analysis of partial differential equations is for itself a field
of independent interest in mathematics with a long tradition. Concerning long-
time behaviour and exponentially stable solutions we just want to mention the
works of Agmon and Nirenberg [1], Maz'ya and Plamenevskij [42], and Pazy [46],
[47]. However, a sufficiently complete analysis including perturbation theory of the
long-time asymptotical behaviour for solutions to parabolic equations seems not
to be available in the literature yet, even under rather strong assumptions on the
coefficients of the equations and the inhomogeneous data.

Pseudodifferential analysis of parabolic equations

The basic idea in pseudodifferential analysis in general is to embed differential
operators, which are “typical” for a certain problem setting, into an algebra of op-
erators with symbolic structure, and to study, e. g., the solvability and regularity
of equations therein. The symbolic structure plays the dominating role in all inves-
tigations, and conditions and manipulations on the microlocal side are reflected on
the operator level — the quantized objects — usually up to a small ideal of residual
elements that qualitatively can be neglected in the considerations in question.

This concept is particularly well-established in the theory of elliptic equations,
where ellipticity is determined by the invertibility of the symbolic components,
and the existence of parametrices within the calculus is proved. In particular,
Fredholm solvability for elliptic equations is achieved in natural scales of Sobolev
spaces, with the parametrix being a Fredholm inverse. The analysis of the op-
erators in the algebra, applied to the parametrix and the remainders, provides
detailed elliptic regularity results, including the asymptotic behaviour of solutions
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near the singular sets in the theory of degenerate elliptic equations. Moreover, this
naturally implies perturbation results for elliptic equations.

See, e. g., Boutet de Monvel [5], Grubb [25], Rempel and Schulze [53] for bound-
ary value problems with the transmission property, and Schulze [59], [60], [61] for
the more general case of pseudodifferential theory of degenerate elliptic opera-
tors, where the degeneracy reflects the presence of geometric singularities on the
underlying manifold in a typical way.

In contrast to elliptic theory, we classically expect unique solvability for parabolic
equations. However, it is still mostly desirable to have the achievements of elliptic
theory at hand also in the framework of parabolicity, i. e., to take advantage in
the study of equations from a specifically designed calculus of pseudodifferential
operators. Hence, the program to be carried out is the following;:

e Completion of the most natural systems of non-autonomous parabolic equa-
tions of general form to an enveloping algebra of pseudodifferential operators.

e Characterization of parabolicity purely on symbolic level by means of the
invertibility of the symbolic components.

e Proof of the equivalence of symbolic and operational invertibility, i. e.,
parabolic operators are invertible, and the inverses belong to the calculus.

e Representation of the algebra as bounded operators acting in the natural
scale of anisotropic Sobolev spaces (with an exponential weight at infinity).

e Extension of the concept of regularity for the calculus in the sense, that the
analysis of both smoothness (via the smoothness-parameters of the Sobolev
spaces) and asymptotics (via subspaces that carry the asymptotic informa-
tion) of solutions is a consequence of the general mapping properties of the
operators in these spaces.

As a consequence, the microlocal character of the solution operator and its global
kernel structure are clarified, and an extensive study of regularity and global be-
haviour of solutions, as well as perturbation theory, is available purely in algebraic
terms on side of the algebras of symbols and operators, as well as their ideal
structure.

A first step towards this program was done in the works of Piriou [49], [50]; how-
ever, his approach was not really widely applied. Let us shortly summarize the
important contents:

He introduced the class of anisotropic scalar pseudodifferential operators with the
Volterra property in order to investigate parabolic pseudodifferential equations
on a finite time interval, where the underlying spatial configuration is a closed
manifold. The significant feature of these operators is that they are built upon
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anisotropic symbols, the anisotropy referring to time and space, that extend holo-
morphically in the time covariable to the lower complex half-plane, including the
symbol estimates. It is proved that this class remains preserved under composi-
tions. Parabolicity is defined by the invertibility of the anisotropic homogeneous
principal symbol, extended to the half-plane, and a parametrix construction is
carried out within the algebra of operators with the Volterra property. Due to the
Paley-Wiener theorem, the Schwartz kernel of a Volterra pseudodifferential opera-
tor is supported below the diagonal with respect to the time variable; in fact, this
is the justification for this notion. As a consequence, the operators are “one-sided
local” with respect to time, i. e., the support of a distribution is preserved by the
action of the operator from the positive side. Hence, a Neumann series argument is
applicable to the kernels of the remainders of the parametrix construction, which
insures the invertibility of parabolic operators within the calculus, as they are
considered on the finite time interval only.

Stimulated by Piriou’s results, Rempel and Schulze [53] initiated similar investi-
gations for parabolic boundary value problems, and subsequently first steps were
done by Buchholz [6], and Buchholz and Schulze [7], [8], to approach the case
of the underlying spatial manifold having geometric singularities. However, these
studies were restricted to problems on the finite time interval, while in the present
work we fully carry out the above program in case of operators on the infinite
time interval, and thus the analysis of the relevant effects near t = oo is included
(see also [34]). As turns out, the non-compactness with respect to time is respon-
sible for the presence of an additional operator-valued symbol in the regulation of
parabolicity, and the before-mentioned concepts for the calculus on a finite time
interval have to be extended considerably.

A basic observation to achieve the desired results is, that it is possible to inter-
pret t = oo as a conical point of the infinite space-time configuration, and this
interpretation is consistent with the natural setting in parabolic problems. Let us
illustrate this a bit more for differential operators:

Consider an anisotropic differential operator on Rx X

n/t

A=Y "a;(1)0],
=0

a; € C*(R,Diff * ¥ (X; E, F))

(1)

of general form, where p € (N, is the anisotropic order of A, and Diff*~% (X; E, F)
denotes the space of differential operators of order p—¢j acting in (smooth) sections
of the vector bundles E and F on X. The anisotropy £ € N refers to the different
treatment of space and time for the operator A; for the heat operator, e. g., we
have { =2 and p = 2.
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Writing A in the coordinates r = e~* leads to

w/t

Z a;(r)(—ro) @

a;(r) = aj(— log(r)),
and the effects near ¢ = 0o are now located at r = 0. We assume that the coeflicients
a@;(r) extend as smooth functions up to the origin r = 0 —in the original coordinates
this corresponds to exponential stabilization as ¢ — oo — hence, the operator A can
be regarded as an anisotropic totally characteristic operator. Notice that operators
A with coefficients not depending on time for ¢ > 0 sufficiently large belong to
our setting (see also Agranovich and Vishik [2]).

In singular analysis, operators of the form (2) are widely investigated in the frame-
work of elliptic theory, for this is precisely the form of the typical differential op-
erators near a conical singularity. The natural function spaces are Mellin Sobolev
spaces, and the anisotropic variants of these are exactly the exponentially weighted
Sobolev spaces on the cylinder Rx X, written in the new coordinates on Ry xX.

Hence, for the study of parabolicity of the operator (1), we consider it from the
very beginning as given in the form (2). Our construction of the enveloping pseu-
dodifferential algebra then relies on techniques which originate from elements of
the cone calculus introduced by Schulze (in an anisotropic setting, see [13], [59],
[60], or [61]), and, which is the crucial step, on establishing the analogue of Piriou’s
operators with the Volterra property in this framework.

The Volterra cone calculus is given in Chapter 6: Section 6.3 deals with the alge-
braic properties, and in Section 6.4 we discuss parabolicity and the invertibility
of the operators within the algebra. As a by-product, we furthermore obtain a
calculus for anisotropic elliptic totally characteristic operators, and a Fredholm
theory for these in anisotropic weighted Sobolev spaces.

The concept of regularity of this calculus covers the control of conormal asymp-
totics, i. e., asymptotic expansions for functions @ of the form

Z Z i log ryr P r—0, (3)

j k=0

where the p; € C are complex numbers, only finitely many located in every strip
parallel to the imaginary axis over a compact real interval, and the c; ; are smooth
sections in a vector bundle over X. Equivalently, in the original space-time coor-
dinates, these take the form

Z Zc] k(z)thePit t = oo, 4)

j k=0

of exponential long-time asymptotics as desired.
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Organization of the text and further comments

In Chapter 1 we give an account on the notations, and shortly summarize some
preliminary material, e. g., about the Mellin transform, that we freely use through-
out this work.

Due to the role played by meromorphic operator functions in the symbolic calcu-
lus of the final algebra as to control the asymptotic behaviour of solutions (see, in
particular, Sections 5.1, 5.2, and 6.2), we decided to supply Section 1.2, where we
recall the classical theorem on the inversion of finitely meromorphic Fredholm fam-
ilies (see Gohberg and Sigal [19], Gramsch [20], and Gramsch and Kaballo [22]).
This theorem is used in the construction of parametrices of parabolic operators,
more precisely in symbolic inversion.

Moreover, we recall in Section 1.3 in some detail elements of the theory of Volterra
integral operators with operator-valued L2-kernel functions. Provided that the
kernel is continuous and fulfills suitable weighted estimates we give a proof that
the associated operator is quasinilpotent, i. e., its spectrum consists of zero only.
This observation is crucial for the analysis of remainders of the parametrix con-
struction to parabolic pseudodifferential operators, and leads to the invertibility
of these within the calculus.

We conclude the chapter with some notes on abstract kernels. The mapping prop-
erties of an operator within a scale of suitable function spaces is closely related
to the behaviour of its Schwartz kernel; in applications, the residual elements of a
pseudodifferential calculus are usually characterized by such mapping properties.
In order to be able to apply the inversion result for Volterra integral operators
to these operators, we have to conclude that the Schwartz kernels satisfy certain
weighted estimates. From the abstract point of view, the relationship between
mapping properties and kernels is given by means of tensor product representa-
tions.

Chapter 2 is devoted to recall some basic elements of pseudodifferential calculus
with operator-valued symbols. In general, a global calculus of pseudodifferential
operators is built upon underlying structures of operator-valued symbols, e. g.,
passing to local coordinates in the interior of a manifold gives rise to matrix-valued
symbols. Moreover, in parameter-dependent calculi we often find residual elements
characterized as operator-valued symbols within a suitable scale of Sobolev spaces,
while the parameter-dependent calculus itself embeds into a space of operator-
valued symbols. Consequently, we find operator-valued symbols both as a sub-
and superstructure, which enables us to trace back many global constructions to
the abstract calculus of pseudodifferential operators with operator-valued symbols.
Though some technical properties of our Volterra cone calculus could be deduced
in a more direct way, we prefer to make as much use of the abstract setting given
in Chapter 2 as possible. On the one hand, this shows that the more complicated
constructions later are in fact based upon some few analytic principles that we
formulate explicitly, and on the other hand, it demonstrates that our methods
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should be extendable to apply to more complicated situations, e. g., parabolic
equations with geometric singularities on the spatial configuration.

Intuitively, the abstract calculus considered in Sections 2.1 — 2.4 should be thought
of as operators acting in spatial direction with the time covariable unaffected as
a parameter, while in the remaining sections of Chapter 2 we have the converse
situation, i. e., operators acting in time with the spatial covariables unaffected. For
our purposes, the calculi of Volterra symbols and operators are of course crucial,
and many of the basic general constructions in pseudodifferential calculus have to
be considerably modified to apply to this framework.

A rigorous treatment of the abstract general calculus of Volterra pseudodifferential
operators with “twisted” operator-valued symbols is given in Krainer [32], [33]; see
also Buchholz and Schulze [8]. In [32] and [33] the reader will also find those details
of proofs that were skipped in the present exposition. Material on the general
calculus of pseudodifferential operators with “twisted” operator-valued symbols
as introduced by Schulze can be found, e. g., in [59], [60], [61].

In Chapter 3 we recall the calculus of anisotropic parameter-dependent pseudodif-
ferential operators acting in sections of vector bundles on a closed manifold. The
interpretation is that the parameter should be regarded as the time covariable.
Moreover, we study the subcalculus of parameter-dependent Volterra operators,
where the parameter-space is a complex half-plane, and the operator families de-
pend holomorphically on the parameter. We define the corresponding notions of
parameter-dependent ellipticity and parabolicity for such operators, and carry out
the parametrix construction within the (Volterra) calculus.

The definitions and arguments are traced back to the considerations from Sections
2.1 — 2.4; in a local chart, we find operators that are built upon matrix-valued
(Volterra) symbols, while the global smoothing remainders are precisely the reg-
ularizing operator-valued (Volterra) symbols in the standard Sobolev spaces of
distributional sections in the bundles. Using elementary norm estimates of the op-
erators in terms of the parameter, we conclude that the calculus itself embeds into
a suitable space of operator-valued (Volterra) symbols in the Sobolev spaces. This
observation, in particular, enables us to add some necessary supplements, such as
kernel cut-off, simply via restriction from the abstract setting.

Chapter 4 is devoted to state the basic definitions and properties of the weighted
anisotropic Sobolev spaces on the transformed space-time configuration in that
form as they are needed in this exposition — the formulation in global terms via
parameter-dependent reductions of orders admits, e. g., to deal in Chapter 5 in an
efficient way with the continuity of pseudodifferential operators that are built upon
symbols which themselves are parameter-dependent operators on the manifold.
The elementary analysis of anisotropic Sobolev spaces is widely available in the
literature, cf. Agranovich and Vishik [2], Grubb and Solonnikov [27], Lions and
Magenes [40]). Material about (isotropic) Mellin Sobolev spaces can be found
in the monographs of Schulze, concerning Mellin Sobolev spaces with discrete
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conormal asymptotics we refer, in particular, to [59]. Finally, we want to point
out that though we employ the notion of “cone Sobolev spaces” due to superficial
similarities with the corresponding spaces in the analysis on manifolds with conical
singularities, the spaces in our framework are essentially different from these, see
Section 4.3.

In Section 5.1 and 5.2 we introduce certain spaces of meromorphic functions taking
values in the pseudodifferential operators on the manifold, which will later serve as
meromorphic operator-valued (Volterra) Mellin symbols in the final algebra near
the origin r = 0. We define the notions of ellipticity and parabolicity and prove
inversion results under these conditions. In this context, we decided to supply Sec-
tion 1.2.

Section 5.3 and 5.4 are concerned with pseudodifferential calculi where the symbols
are built upon parameter-dependent (Volterra) operators on the manifold — these
operators now act in function spaces on the full (transformed) space-time config-
uration. The pseudodifferential properties, such as composition, are consequences
of the results in the general abstract setting. We define the notion of parabolicity
for Volterra operators and establish the existence of Volterra parametrices. In fact,
the arguments rely on the results for the parameter-dependent calculus of Chapter
3. In addition, we handle ellipticity for general anisotropic symbols.

The (holomorphic) Mellin calculus from Section 5.3 is of major importance, for
these operators contribute to the final algebra near the origin r» = 0, which cor-
responds to ¢ — oo in the original coordinates; the calculus of Section 5.4 will
be employed away from r = 0, i. e., near ¢ = —oo. Isotropic meromorphic Mellin
symbols and Mellin pseudodifferential calculus play an important role in the ellip-
tic theory on manifolds with singularities, see [13], [59], [60], [61]; via specializing
in Section 5.1 to £ = 1, e. g., we find the symbol spaces which are considered in
the cone calculus. For the treatment of parabolicity, however, we have to impose
additional structures, and a much more refined analysis is required. In isotropic
elliptic theory, a global Fourier calculus and an ellipticity criterion for operators
considered in Section 5.4 were obtained by Seiler [64].

In Chapter 6 we establish the Volterra cone calculus. The definition of the calculus
and its symbolic structure, as well as the analysis of the algebraic properties, is
given in Section 6.3. Near the origin r = 0 we employ Volterra Mellin operators
with meromorphic symbols, and away from r = 0 we find the operators from
Section 5.4. In addition, there arise Volterra Green operators (Section 6.1) as
residual elements. Section 6.4 is devoted to study parabolicity, and to establish the
invertibility of parabolic operators within the calculus. In Section 6.2 we introduce
an auxiliary algebra which allows us to present the analysis of regularity with
asymptotics (the conormal effects) in a transparent form.

Parabolicity is determined by three symbols: The interior symbol (in the classical
case this is just the anisotropic homogeneous principal symbol), the conormal
symbol that controls the effects at » = 0, and the exit symbol which reflects the
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behaviour as r — oo — all symbols extend in a canonical way holomorphically in
the (transformed) time covariable to a half-plane. Provided that all symbols are
invertible, the invertibility of the operator within the algebra follows; in particular,
the operator is invertible in the Sobolev spaces on Ry x.X.

In parabolic partial differential equations there is usually an initial time ¢y € R,
and the problem is posed on the time interval [to, c0), which corresponds in our
setting to an interval (0,7o] with rp € Ry — there are no effects as r — co. Indeed,
if we are just interested in the invertibility of an operator on an interval of this
form, we can drop the parabolicity assumption for the exit symbol and still find the
inverse operator in the calculus, but now restricted to subspaces of the Sobolev
spaces which consist of all distributions with support in (0,79]xX (see Section
6.4).

We conclude the chapter with a proof of the existence of parabolic reductions of
orders in our calculus; in particular, there are parabolic operators for any given
order. This result, e. g., simplifies the analysis of parabolic boundary value prob-
lems, for they then are reduced to the case of the interior parabolic operator as
well as all boundary conditions having the same unified pseudodifferential order
(see [34]).

Finally, in Chapter 7, we give some more remarks about how the classical theory
of parabolic partial differential equations fits into the framework of our Volterra
cone calculus. To this end, we discuss the classical notion of parabolicity, as well
as the results about solvability and regularity, for a generalized heat operator, and
draw the connection to the functional analytic structure of our calculus for this
example. In particular, the chapter may be thought of as an additional guide to
the previous chapters along the lines of a particularly simple example.

Concluding remarks and future prospects

The achievements of pseudodifferential theory affected the analysis of parabolic
equations in various other directions, in particular, what the study of equations of
pseudodifferential character is concerned; see, e. g., Grubb [23], [24], Grubb and
Solonnikov [27], Iwasaki [28], and Purmonen [52].

The present work, however, aims at another direction. Though the equations under
consideration were modelled over a closed manifold, we have proved that, due to
the additional non-compactness in time, we ended up with a theory for degenerate
operators. In fact, this instance should be thought of as a general rule (see also [34]).
Thus, in view of the insights from singular analysis that are nowadays available,
our results should also be regarded as a step towards singular (or degenerate)
parabolic problems, and the more advanced analysis of higher singularities in the
future will rely upon them.
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Indeed, many interesting and challenging problems from theory and applications
belong to the singular problems:

e The non-compatible case of parabolic initial-boundary value problems is of
high relevance and natural in models of applications. This is to a large extent
not yet treated in the literature in a sufficiently general form.

e Parabolic mixed boundary problems, e. g., of Dirichl?t/Neumann type (i- e.,
like in Zaremba’s problem), see, for instance, Chan Zui Cho and Eskin [9].

e Parabolicity for degenerate cases, e. g., for boundary conditions of type of
the oblique derivative problem; see Paneah [44], Popivanov and Palagachev
[51].

e Parabolicity for geometric singularities of the spatial configuration, e. g.,
stratified spaces, where the singularities induce a hierarchy of (operator-
valued) symbolic levels, see Schulze [62]. Necessary results in this direction
can be found in Krainer [32], [33].

e Long-time asymptotics for singular spatial configurations, characterization
of adequate asymptotic terms; see, e. g., Krainer and Schulze [35].



16

T. Krainer and B.-W. Schulze



Chapter 1

Preliminary material

1.1 Basic notation and general conventions

Sets of real and complex numbers

e We denote: C the complex numbers,
R the reals,
Ry,R_  the positive (negative) reals,

R;+,R_  the non-negative (non-positive) reals,

Z the integers,
N the positive integers,
No the non-negative integers.

e Let CV and RV denote the complex N-space, respectively the Euclidean N-
space, in the variables (z1,...,zx) € CN or (z1,...,znx) € RV respectively.
In general, we allow N to be zero, and in this case these spaces degenerate
to the set containing a single point only.

e The upper half-plane in C will be denoted as
H:= {z € C; Im(z) > 0}.
Moreover, for § € R let
Iz :={z € C; Re(z) = G},
Hs := {z € C;, Re(z) > 5}

We refer to I'g also as a weight line. With the splitting z = § + i1 into real
and imaginary part we shall identify I'g with Rvial'g 2 2z = +iTt &< 7 € R
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Analogously, we have an identification of Hg with the right half-plane Hy
viaHg 2 2=+ + (€ Hy, i e Hs originates from Hy via translation,
and we shall also employ the identification of Hg with the upper half-plane
H via H 3> ¢ <+ 8 —i¢ € Hg.

e The Euclidean norm of z = (zy,...,zy) € RY is denoted as || =
N 1 B
(Z CU?) * . Moreover, let (z) = (1+|z|*)* be the standard regularized dis-
j=1
N
tance in RV . The inner product in RY is denoted as (z,&) =z = Y x;¢;.
i=1

Multi-index notation

We employ the standard multi-index notation.

For multi-indices a = (ay,... ,an),3 = (B1,.-.,8n) € Ny we denote

()=(G) () w=Ior =L

We write a < § if the inequality holds componentwise. Moreover, (normalized)
partial derivatives with respect to the variables z = (z1,... ,znx) € RV are written

as
o _ 6‘04 o _ || g
L 02N
In case a function f(x,\) depends on the group of complex variables A € CM we
also use the notations

BRIl )
0= P ot D3f = (=0)7163,
O
BIE]
8 _ Bye _ (_1\IBlos
aX _afl 8£Mf DXf_( Z) aXf
T Am
For z = (21,..-,28) € CY and a = (a1,...,any) € NY we write 2¢ =
z7t Eva

Functional analysis and basic function spaces

Unless stated explicitly otherwise, the spaces in this work are always assumed
to be complex. For topological vector spaces E and F we denote the space of
continuous linear operators E — F as L(E, F'). Moreover, the topological dual
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of E is denoted as E'. We write EQF for the algebraical tensor product of E and
F'. The projective and injective topology on E®F is indicated by the subscripts
E®.F and E®.F, respectively, while EQ,F and E®.F denote the corresponding
completions. We employ the notation (-, )g r, or just (-,-), when we deal with a
duality ExF — C. The inner product in a Hilbert space E is also denoted as
(-,-YE, or simply as (-,-).

Moreover, we have the following spaces of E-valued functions on M (where M and
E are appropriate):

LP(M,E) measurable functions v with [ [ju(z)||% dz < oo
M

(with respect to Lebesgue measure, 1 < p < 00),
C(M,E) continuous functions,
A(M,E) analytic functions,
Ck(M,E) k-times continuously differentiable functions,
C>*(M, E) smooth functions,
Ce (M, E) smooth functions with compact support,
Cy° (M, E) smooth functions with bounded derivatives,
S(M,E) rapidly decreasing functions,

D'(M,E) = L(C§° (M), E) distributions,
E'(M,E) = L(C>®(M),E) distributions with compact support,
S'(M,E)=L(S(M),E) tempered distributions.

If E = C we drop it from the notation.

The following spaces of smooth, bounded functions naturally occur in Mellin pseu-
dodifferential calculus:

Let FE be a Fréchet space. Define

CF (R)", B) = {u € C¥((R)", B); ((=rd:)*u) (Ry)") C E
is bounded for all k € N{ },
endowed with the Fréchet topology of uniform convergence of (—rd,)*u on (R )?
k

for every k € NJ. Here we use the notation (—rd,)* := (=r10,,)** ... (=ry0y, )k
forr = (r,...,ry) € (Ry)? and k = (ky,... ,ky) € N§.

Moreover, let C§ ((R4)7, E) := CF ((Ry)?, E)NCP((Ry)?, E) be the subspace of

all functions that extend smoothly to (R4 )?.

Hilbert triples and (formal) adjoint operators

A triple {Ey, E, E, } of Hilbert spaces Ey, E, E; is called a Hilbert triple, if the
following conditions are fulfilled:

a) There exists a Hausdorff topological vector space X such that Ey, E and E;
are embedded in X.
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b) Ex N ENE; is dense in Ey, E and E;.

¢) The inner product on E induces a non-degenerate sesquilinear pairing (-,-) :
Ey x E; — C, that provides antilinear isomorphisms Ej = E; and E] = Ej.

Let {Eo, E, E,} and {Fy, E, E; } be Hilbert triples. Then, for each A € L(Ep, Ey),
there is a unique operator A* € L(E, E;) such that (Aep,€é;); = (eo, A*€1)p for
all eg € Ep and €; € E;. A* is called the (formal) adjoint operator of A.

The mapping A — A* provides an antilinear isomorphism £(Ey, Ey) — L(Ey, E1).

Tempered distributions and the Fourier transform

Let E be a Hilbert space. Partial derivatives of a distribution v € S'(R"*, E) are
defined as (0%u, ) = (—1)1*(u, 8%¢), while multiplication with a function 1 of
tempered growth is given as (Yu, ) = (u, ). A distribution v € S'(R*, E) is
called regular, if u is a Bochner measurable function, and there exists V € Ny with

[ (z)"N||u(z)||p dz < oo. Note that we identify regular distributions with their
R"
densities. In this sense we in particular have LP(R", E) — S'(R", E).

We employ the normalized Fourier transform F : S(R”) — S(R™), i. e.
F© = 20 ¢ [e ) de,
Rn

[ etute) ae

R™

n

(Flu)(z) = (2m) "%

for u € S(R™). For Fréchet spaces E the Fourier transform extends to an iso-
morphism S(R*,E) — S(R",E) via F = F®,idg, noting that S(R*, E) =
S(R")&,E. If E is a Hilbert space we have F : S'(R*,E) — S'(R",E) via
(Fu, ) = (u, Fp).

Elementary symbol spaces

For a Fréchet space E we denote the space of symbols of order p € R with values
in E as S¥(R", E), i. e. a function a € C>°(R", E) belongs to S*(R", E) if and
only if 8¢a(§) = O((€)*~1°1) as [¢] — oo, for all & € Ny

Similarly, the space S*¢(R" xR", E) of symbols of order (u, o) is the space of all
a € C®(R"xR", E) such that 0207 a(x,€) = O((x)e~1*l(¢)»~17]) as |z,¢| — o0,
for all o, 5 € Nj.

These spaces are Fréchet spaces in a canonical way. If any one of the orders equals

—oo in the notations involved, we mean the corresponding intersection over all
spaces with finite orders.
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Preliminaries on function spaces and the Mellin transform
Let E be a Fréchet space.

e For y € R let

T,(Ry, B) := {u € C®(Ry, E); (r>~"(log(r))™ (=10,)"u) (R ) C E
is bounded for all k,m € Ny }.

This space is endowed with the Fréchet topology of uniform convergence of
1
r277(log(r))™(=rd,)*u on Ry for every k,m € Ny.

Note that for every § € R the operator of multiplication with the function
r® induces a topological isomorphism r : T, (R, E) — T,45(R:, E).

e For v € R define the operator
S, s u(r) — e Dty(e?) (1.1.0)
and its inverse
S;l cu(t) — r”‘éu(—logr). (1.1.i)
The operator (1.1.i) is well-defined as a topological isomorphism
S, i D'(Ry) = D'(R)

and restricts to topological isomorphisms on various subspaces, e. g.

o . [or®) — crm)
TR R — S,

This shows, in particular, that 7,(Ry) is a nuclear Fréchet space with
C§°(Ry) as a dense subspace, and we have a canonical isomorphism

T, (Ry, E) = T,(Ry )@ E.
e The (weighted) Mellin transform (defined on C§°(Ry))

for z € Fé—’v with its inverse
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extends via M, = Mn,@)ﬁidE to a topological isomorphism

E).

—

M, T,(Rs, E) — S(T'
For u € T,(Ry, E) we have

My ((=rdr)u)(z) = 2M,(u)(2), 7 ((logr)u)(2) = Dy M, (u)(2),

M
Mos(ru)(z) = My (u) (= + ).
(1.1.iii)

e For u € C§°(Ry, E) the Mellin transform Mu extends to an entire function
such that Mu|p, L= M u, and the mapping
1o

Roym» MuedSTy_,, E)

—y?

is a C*°-function taking values in the rapidly decreasing functions.

A Paley—Wiener type theorem
Let E be a Fréchet space.

e For ity € R let

So((to, ), E) := {u € S(R, E); supp(u)
So((—00,t0), E) := {u € S(R, E); supp(u)
as well as
A(H(_) ,Eitg) :={f eC>™ (H(_) ,E)N A(]ﬁl(_), E);
[Hi—) 32+ eit‘)zf(z) € Ele S(H_,E)}

with either the upper half-plane H or the lower half-plane H_ := {z €
C; Im(z) < 0} in C involved; these spaces are Fréchet with the projective
topology with respect to the mappings

A(H(,),E;to) S5 fr+— eit‘)zf(z) € S(H(,) s E)

Then the Fourier transform F : S(R, E) — S(R, E) restricts to topological
isomorphisms

_ {80((—oo,t0) ,E) = A(H, E;to)
" | Sol(to, 00), B) — A(HL, E; to)

for every to € R.
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e Forrp € Ry and v € R let

7;,0((077‘0)7E) = {u € 7;’(]R+7E)5 Supp(u) g (07T0]}7
and let
A(Hy ., E;ro) = {f €C™(Hy _,, B) N A(H, _,, E);
[Hy o 3zm1r,"f(2) € E]e S(Hy ,,E)}.

The latter is a Fréchet space with the projective topology with respect to
the mapping
A(H.

F—v

E;ro) 3 fr—=ry " f(2) € S(Hy_,, E).

**77

Then the weighted Mellin transform M, : T, (Ry, E) =8 (F1 E) re-
stricts to a topological isomorphism

M., : T, 0((0,70), B) = A(H:

377’

E;ro)

for every ro € Ry and every v € R.

The Mellin transform in distributions
Let FE be a Hilbert space.

e For v € R the space 7J(Ry, E) consists of all continuous linear functionals
T-+(Ry) — E. Consequently, we have TJ(Ry,E) C D'(R;, E) in view of
the density of C§°(Ry) in 7_,(R;).

e A distribution u € T}(Ry, E) is called regular if

o0
we) = [aerdr, €T (Re),
0
for some Bochner measurable function @ such that r—(2+7 (logr) Na(r) €
L'(Ry, E) for some N € Ny. In particular, we have 7, (R, E) C T)(Ry, E),

and more generally even L%7(Ry,E) := T’VL2(]R+,E) - ’(]R+,E) as regu—
lar distributions.

e For every § € R the product with functions ¢y € C*(Ry) such that
r=9(=rd,)"9(r) is majorized by some power of (logr), uniformly on Ry for
every v € Ny, provides an operator T/(R;, E) — T/, ;(Ry, E). Recall that
(hu, p) = (u, ) for ¢ € T_(145)(Ry).
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e The totally characteristic derivative (—r0,) : D'(R, E) — D'(Ry, E) re-

stricts to 7 (R4, E), i. e. (=19, )(T,(Ry, E)) C T/ (R4, E).

The isomorphism S, : D'(Ry,E) — D'(R4, E) from (1.1.i) restricts to
an isomorphism S, : TJ/(Ry,E) — S'(R,E). Note that we may write

(Syu, ) = (u, S"Jp) for p € S(R).
The weighted Mellin transform M., extends to 77(R;, E) by means of the
identity

(Myu) (3 =7 +i7) = (VIRFS,u) (), (L.Liv)

which provides an isomorphism M., : T/(R;,E) — S’(F%ﬂ,E). It re-
stricts to an isomorphism

My LRy, BE) — L2 (T3, B), (1.1.v)
and we have Parseval’s identity
1 .
(u,v) L2y (R, E) = %(M’YU:M’YU>L2(FL_77E)- (1.1.vi)
2

The relations in (1.1.iii) hold in the distributional sense.

Global analysis

o In this work, we consider C°°-manifolds X. T'X denotes the tangent bun-

dle over X, while T*X is the cotangent bundle. Let Vect(X) be the set of
complex vector bundles over X. The pull-back of a bundle F' with respect
to a smooth mapping g is denoted as g*F'. This is mainly employed with
the projection 7 : T*X \ 0 — X, where 0 is the zero section in T*X.
Let Hom(E, F') be the bundle of homomorphisms acting in the fibres of the
bundles E and F. E* denotes the dual bundle to E, and for vector bundles
E € Vect(X) and F € Vect(Y) the external tensor product is denoted as
EXF € Vect(X xY).

For a vector bundle E let C*(X, E) denote the space of smooth sections
in E, and C§°(X, E) is the space of smooth sections with compact support.
Let D'(X, E) denote the distributional sections in the bundle E. With the
density bundle I'* this space is globally given as D' (X, E) = C§°(X,[''®E)'.
Any choice of a smooth positive section in the density bundle provides an
isomorphism I'! = X xC, and consequently D'(X, E) = C5°(X, E)'. Note
that a Riemannian metric gives rise to a canonical positive section.
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e We will be concerned mainly with closed manifolds X, i. e. X is compact
and 0X = ). Then we have invariantly the space L?(X, E) of measurable
absolutely square integrable sections. Any choice of a Riemannian metric
and a Hermitean inner product on E induces a canonical scalar product on
L*(X,E).

More generally, the Sobolev spaces H®*(X,E) of distributional sections
of smoothness s € R are well-defined, where in particular H°(X,E) =
L?(X, E). These are hilbertizable spaces, but the choice of an inner product
is non-canonical. H*(X, F) and H*(X, E) are dual to each other via the
sesquilinear pairing induced by the L?(X, E)-inner product. By the Sobolev
embedding theorem we have C*°(X, E) = proj-lims_,.. H*(X, E), and hence
we also have an identification D' (X, E) = ind-lim,_, . H*(X, E).

e Let X beclosed, and let A : C°(X, E) — D'(X, F) be continuous. Then the
Schwartz kernel of A belongs to C*°(X xX, FXE*) if and only if A extends
to a continuous operator A : H*(X, E) — H'(X,F) for all s,t € R.

1.2 Finitely meromorphic Fredholm families in ¥-
algebras

1.2.1 Remark. ¥- and ¥*-algebras were introduced by Gramsch [21]. These are
certain topological Fréchet-algebras which share many important properties of
Banach- and C*-algebras. We include in this section some results about the in-
version of meromorphic Fredholm families taking values in W-algebras which are
needed in this exposition (see also Gohberg and Sigal [19], Gramsch [20], and
Gramsch and Kaballo [22]).

1.2.2 Definition. Let ¥ be a subalgebra of the unital Banach-algebra B. Then
¥ is called a ¥-algebra in B if

i) ¥ is a locally convex Fréchet space with respect to the topology 7(¥) which
is finer than the induced topology of B.

i) 1y = 15.

iii) ¥ is “spectrally invariant” in B, i. e., for the groups of invertible elements we
have B '1NT¥ =¥ 1,

If B is a C*-algebra and ¥ a symmetric ¥-algebra in B, then ¥ is called a ¥*-
algebra in B.
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1.2.3 Remark. By the left-regular representation of B in £(B) we may assume
B = L£(X) with a Banach space X. In the case of U*-algebras we may assume
B = L(H) with a Hilbert space H due to the Gelfand-Neumark-Segal theorem.

The multiplication in a P-algebra is jointly continuous with respect to 7(¥) which
follows from the closed graph theorem. Note that ¥ ! is open and consequently the
inversion - ! : ¥~ — ¥ is continuous, since (¥, 7(¥)) is Fréchet. Moreover, also
the x-operation is continuous in a ¥*-algebra by the closed graph theorem. Note
furthermore that a ¥-algebra ¥ is invariant with respect to the (one-dimensional)
holomorphic functional calculus.

1.2.4 Definition. Let X be a Banach space and ¥ a W-algebra in £(X). Let
2 C C be an open set and D C  a discrete subset. A function T € A(Q2\ D, 7)
is called a finitely meromorphic Fredholm family in € if

i) T takes values in the Fredholm operators ®(X).

ii) For p € D there exists a neighbourhood U(p) C € such that 7" can be written

T()= Y Fe-pf +To(), 2 U\ (b},
k=—N

with finite-dimensional operators F;, € F(X) and a holomorphic function
Ty € A(U(p), £(X)) such that To(U(p)) C ®(X).

1.2.5 Remark. Note that we allow D = (), i. e., the case of holomorphic Fred-
holm families is contained in this definition. By Cauchy’s integral formulas for the
Laurent coefficients we have

Fo= / %dg fork=—N,. .. —1.
oUs (p)

It follows Fj, € ¥, and consequently Tp € A(U(p) \ {p}, ¥). But from Cauchy’s
integral formula

T
) =5 [ de ze Ui,
oUs(p)

we obtain Ty € A(U(p), ¥).

Finally, we want to point out that Ty (p) is required to be Fredholm which is neces-
sary for the validity of the theorem about the inversion of meromorphic Fredholm
families.
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1.2.6 Theorem. Let ¥ be a ¥-algebra in £(X) with a Banach space X. Let
0 C C be a connected domain and T € A(Q\ D,¥) a finitely meromorphic
Fredholm family in Q. Let z* € Q\ D such that T'(z*) is invertible in L£(X).

Then there exists a discrete set DCQ, DCD, such that T'(z) is invertible in
L(X) for z € Q\ D. Moreover, we have T~ € A(Q\ D, ¥) and T~! extends to a
finitely meromorphic Fredholmn family in the sense of Definition 1.2.4.

For the proof of this theorem we need some preparations. First recall the following
theorem on inversion of holomorphic Fredholm families.

1.2.7 Theorem. Let 2 C C be a connected domain and T € A(Q, £(X)) taking
values in ®(X). Let z* € Q such that T'(z*) is invertible in L£(X).

Then there exists a discrete set D C ) such that T'(z) is invertible in L(X) for
z € Q\ D. Moreover, we have T~ € A(\ D, £(X)) and for p € D we can write
in a neighbourhood U (p):
-1
T(z)"' = Y Flz-p"+To(2), z€U(p)\{p}
k=—N

with finite-dimensional operators Fy, € F(X) and Ty € A(U(p), L(X)), To(U(p)) C
P(X).

Proof. Let zp € Q such that T'(zo) is not invertible in £(X). Since Q is con-
nected and T'(z*) € L£(X)™! we conclude T'(2) C ®¢(X) where ®¢(X) denotes
the Fredholm operators of index zero. Recall that the index is locally constant
on ®(X). Thus we have 0 < dimN(T'(z)) = codimR(T'(zp)). By Kato’s lemma
the range of Fredholm operators is closed and thus we can find a direct decom-
position X = N(T(20)) ®top X1 = X2 Btop R(T'(20)). By choosing an isomor-
phism N (T'(z9)) = X2 we find a finite-dimensional operator F' € F(X) such that
T(z0) — F € L(X)™! and consequently T'(z) — F € L(X)™! for |z — 20| < €
with ¢ > 0 sufficiently small. With the projections P = P? : X — X,
N(P) = R(T(#0)), and @ = I — P we may write for |z — zp| < e:

T(z) =+ PF(2))(T(z)—F) with
F(z):= F(T(z) — F)"' and thus
T(z) =+ PF(2)(T(z) - F)
={I+PF(2)Q)I+PF(2)P)(T(z) - F).
—_——— G
=:C(z) =: B(2)
Note that B(z) as well as C(z) are invertible for |z — zp| < &; we can write as a

triangular matrix

_ Q 0 o . . »
C(z) = (PF(Z)Q P with “invertible diagonal”.
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Note also that B(z), C(z) and F(z) are holomorphic for |z — 29| < €. Thus we
have for |z — 2| < ¢

Q 0
T(z) =C)- (0 P(I+F(z))P) -B(2).

This implies: T'(2) is invertible for |Z — 29| < € if and only if P(I + F(2))P is
invertible in £(X5). Then we have with the inverse M (Z) = [P(I + F(2))P]™! €
£(X2):

T(Z)'=BE)"". <cg PM(EZ)P> -C(5)7 (1)

In the case dimX < oo the assertion of the theorem is obvious due to Cramer’s rule
for the inversion of a matrix and due to the scalar analysis of meromorphic func-
tions in connected domains (applied to the determinant of component-functions
of a matrix-valued function).

Thus it remains to prove the existence of Z € , |2 — 29| < ¢, such that T'(Z)
is invertible in £(X). Employing the finite-dimensional result with the function
P(I 4+ F(z))P and inverse M (z) we then see that T'(z) is invertible for 0 < |z —
20| < & < e and by (1) we have that 7~! is meromorphic in zo and the Laurent-
coefficients of the principal part are finite-dimensional operators. Let D := {z €

Q; T'(z) is not invertible}. D is a closed subset in . We will show D =, i. e.,
D = 0D. Assume that there exists a point z; € D. Since () is connected, we may
choose a path v : [0,1] = ©, v(0) = 21, v(1) = z*. Let

s :=sup{t > 0; T'(y(r)) is not invertible in £(X) for 7 € [0,¢)}.

By assumption we have 0 < s < 1 and v(s) € 0D ¢ Q. The first part of the
proof implies the existence of 0 < ¢ such that T'(z) in invertible in £(X) for
0 < |z —y(s)] < 6. This leads to a contradiction. Thus we have D = 9D and
by the first part of the proof D is consequently discrete in 2. This proves that
T'e AQ\ D,L(X)), and for p € D we have in a neighbourhood U(p):

T = Y Fuz—p* +To(), 2 €U\ o),
k=—N

with finite-dimensional operators Fy, € F(X) and Ty € A(U(p), L(X)), To(U(p) \
{p}) C ®(X). It remains to prove Tp(p) € ®(X). We can write for z € U(p) \ {p}:

-1

I=TETE) " =T(@) [ 3 Fulz—p)*] +TE)T()
k=—N

=T(2)"'T(z) = [ i Fy(z —p)’“] ‘T'(2) + To(2)T(2).
k=—N
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Since the functions Tp(2)T'(2) and T'(2)To(z) extend holomorphically into p the
—1 —1
functions T'(z) - | >, Fr(z — p)’“] and [ > Fp(z — p)’“] - T'(z) necessarily ex-
k=—N k=—N

tend also holomorphically into p. But the latter functions take values in the
finite-dimensional operators on U(p) \ {p}, and thus their values in p are com-
pact operators. Hence T'(p) inverts Ty(p) modulo compact operators which shows
To(p) € ®(X). (I

1.2.8 Lemma. Let X be a vector space and FE,...,En C X be subspaces of
finite codimension. Then E1 N...N Exy C X is of finite codimension in X.

N
Proof. Consider the mapping J : X — € X/E; given by the canonical quotient
=1

N
mappings. J is linear, and we have N(J) = [ E;. Consequently
=1

Jj=

N N
X/ () E; = R(J) C P X/E;,
j=1

Jj=1

N N
where dim @ X/E; < oo by assumption. This implies dimX/ [ E; < oo which
j=1 =1

N
shows codim (] E; < oo. O
j=1

1.2.9 Lemma. Let X be a Banach space and () C C be a connected open neigh-
bourhood of 0 € C. Let A_y,... ,A_Nn € F(X) be finite-dimensional operators.
Let H € A(Q2, L(X)) such that H(z)u =0, z € Q, foru € Ko C X, where Ky is a
closed subspace of X of finite codimension. Consider the function

F(z):=I+H(z)+ i ApzF, 2 e\ {0}
k=—N

Assume that there exists a z* € Q\ {0} such that F(z*) is invertible in £(X).
Then there exists a § > 0 such that F(z) is invertible for 0 < |z| < 0. Moreover,
we can write for 0 < |z| < ¢

F(z)™' = i Fp.2* + Fy(2)
k=—M

with finite-dimensional operators Fy, € F(X) and Fy € A(Us(0), £(X)). Further-
more we have (I + H)(Q2) C ®(X) and Fy(Us(0)) C ®(X).
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Proof. We will first prove that (I+H)(Q) C ®¢(X), more precisely H(z) € F(X)
for z € Q. Since Ko C N(H(z)) we have that the canonical mapping X/K, —
X/N(H(z) is onto. But since lelX/Ko < oo we conclude dimX/N(H(z)) < oo,

i.e, H(z) € F(X). Let K; := ﬂ N(Ap) and K := Ko N K;. Then K is a

closed subspace of X and by Lemma 1.2.8 we have codimK < oo. Let L C X
be a finite-dimensional subspace such that X = K @, L and P = P? € L(X),
R(P) =L, N(P) = K. Consequently we may write for z € Q\ {0}, Q =1 — P:

k= (§ 300 - (8 ortor) (8 ©5).

Since C(z) := <Cg QF](;’)P) is invertible for all z € Q \ {0} we see that F(Z)

is invertible in £(X) if and only if PF(Z)P is invertible in £(L) for Z € Q \ {0}
where dimL < oco. With the inverse M (Z) = (PF(2)P)~ ! € L(L) we then may

write
F@&™ =0@)7 (%2 PM?Z)P) = (%2 _Ql;(g)P> ' <%2 PM%%)P) - ()

For z € Q\ {0} we have C(z)™! =1 - QH(z)P — Z QALPz* i e, C(z) !

is meromorphic in 0 and the Laurent coefficients of the pr1n01pa1 part are finite-
dimensional operators. Since dimL < oo the function PF(z)P can be regarded as
a holomorphic matrix-valued function on z € Q \ {0} which is meromorphic in 0.
The determinant of the component functions is consequently a holomorphic scalar
function which is meromorphic in 0. Since F'(z*) is invertible in £(X), we have that
PF(z*)P is invertible in £(L), i. e., the determinant of the component functions is
a meromorphic scalar function in Q which is not identically zero. From Cramer’s
rule for the inversion of a matrix we now get that the function M (z) = (PF(z)P) !
is a meromorphic £(L)-valued function. Note that €2 is assumed to be connected
and thus the scalar meromorphic functions in €2 form a field. In particular, we
Q 0

(0 PF(z)P)
0 < |z| < 0 (and consequently also F'(z)), and we may write for 0 < |z| < §

(%2 PF(()Z)P> - (%2 PM(zz)P> = %) +,§:M 2t

with finite-dimensional operators Z;, € F(X) and Zy € A(Us(0), £(X)). From the
identity (1) we now get that F'(2)~!, z € Us(0)\ {0}, is a product of two meromor-
phic functions (meromorphic in 0), whose Laurent coefficients of the principal parts
are finite-dimensional operators. This proves that for 0 < |z| < § we may write

see that there exists a § > 0 such that is invertible in £(X) for
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-1

F(z)™' = Y Fpz* + Fy(z) with finite-dimensional operators Fy € F(X) and
k=—M

Fy € A(Us(0), L(X)), Fo(Us(0) \ {0}) C &(X). It remains to prove Fp(0) € ®(X).

Let []: £(X) — L(X)/K(X) be the canonical quotient mapping, where C(X)

denotes the ideal of compact operators. For 0 < |z| < 0 we have

] = [F()F(2)7'] = [F)[F(2) ] = I + H(2)][Fo(2)]
=[F(2)7'F(2)] = [F(2)T'][F(2)] = [Fo(2)]l] + H(2)),

and consequently [I] = [I + H(0)][Fo(0)] = [Fo(0)][I + H(0)], since the functions
I+ H and Fy are holomorphic in 0. This shows that I+ H(0) inverts F5(0) modulo
compact operators, i. e., Fy(0) € ®(X). O

Proof of Theorem 1.2.6.

We will first prove the assertion in the case ¥ = L(X).

Since D is discrete in © we have that 2\ D is a connected domain. Hence we may
apply Theorem 1.2.7 on the inversion of holomorphic Fredholm families to the
function T' € A\ D, £(X)). It follows the existence of a discrete set D' C (Q2\ D)
such that T'(z) is invertible in £(X) for z € (2 \ D) \ D’ and the inverse 7! is a
meromorphic Fredholm family in (©2\ D) \ D' in the sense of Definition 1.2.4. It
remains to prove that no point p € D is an accumulation point of D’ and that 77!
extends meromorphically into p € D, i. e., there exists a neighbourhood U (p) of p

—1 - ~
such that we can write for z € U(p) \ {p}: T"(2) = 3. Fi(z—p)* + Fy(2) with
k=—M
Fi, € F(X)and Fy € A(U(p), L(X)), Fo(U(p)) C ®(X). Let p € D. By assumption
-1
we find & > 0 such that for 0 < |z—p| <e wehave T'(2) = > Fi(z—p)*+To(2)
k=—N

with Fj, € F(X) and Ty € A(U:(p), £(X)), To(U:(p)) C ®(X). Since D' is discrete
in Q\ D there exists a £ € U:(p) \ {p} such that T'(2) is invertible in L£(X).
Consequently To(Ue(p)) C ®o(X) where ®¢(X) denotes the subset of all Fredholm
operators with index equal to zero. Recall that the index is locally constant on
®(X) and that U.(p) is connected. Let Fy € F(X) be a finite-dimensional operator
such that To(p) — Fp is invertible in £(X). Thus To(z) — Fp is invertible in £(X)
for all z in a small neighbourhood of p. Without loss of generality we may assume
that Ty(z) — Fp is invertible for z € U (p). For 0 < |z — p| < & we can write

—1

(To(2) — Fo) 'T(2) = (To(2) = Fo) [ Y Fi(z = p)*] + (To(2) — Fo) 'To(2)
k=—N

0
=1+ (To(2) - Fo) '[ Y Fi(z—p)¥] = F(2).
k=—N
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-1
We have (Ty(z) — Fo)~ [ Z Fr(z —p)*] = H(z) + > Ax(z — p)* with
k=—N
ﬁmte dimensional operators Ak € F(X) and H € A(U:(p),L(X)). Set Ky :=
-1
( ﬂ N(Fk)) ( N N(Ak)). Then K is a closed subspace of X and by Lemma
k=—N

1. 2 8 we have codimKy < oo. This implies H(z)u = 0 for u € Ky, z € U.(p) \ {p},
but from Cauchy’s integral formula
dC
/ -

8U€ (p

we also obtain H(p)u = 0 for u € Ky. Thus we may apply Lemma 1.2.9 to the
function F'(z) in U.(p) \ {p} which shows the existence of 0 < § < ¢, such that
F(z2) = (To(z) — Fo)~'T'(2) is invertible for 0 < |z — p| < §. Consequently 7'(z) is
invertible in £(X) for 0 < |z—p| < § which implies that p is no accumulation point
of D',i.e., D := DUD' is discrete in Q. Moreover, we can write for 0 < |z —p| < d:

F(2)7' =T(2)7 - (To(z Z Ap(z —p)* + Ap(2)

with finite-dimensional operators Ay, € F(X) and Ay € A(Us(p), £(X)), and hence

T()"! [Z Ju(z = )] (@) = Fo) ™ + o) - (To(2) — Fo)

= Z Fu(z —p)* + Fy(2)

with F, € F(X) and ~F0 € A(Us(p), £L(X)). Since Fy(Us(p) \ {p}) € ®(X) it
remains to prove that Fy(p) € ®(X).

Let [] : £(X) — L£(X)/K(X) be the canonical quotient mapping, where K(X)
denotes the ideal of compact operators. For 0 < |z — p| < § we have

] =[T(z) - T(2) 1] = [T (2) '] = [To(2)][Fo(2)]
=[T(2)™" - T(2)] = [T(2) [T (2)] = [Fo(2)][To(2)]

and consequently [I] = [To(p)][Fo(p)] = ~[F0 (p)][To(p)] since the functions Fy and
Ty are holomorphic in p. This shows Fy(p) € ®(X) and finishes the proof of
Theorem 1.2.6 in the case ¥ = £(X).

In the general case we may first apply the result for £(X). It remains to show that
T(z)"' € ¥ for z € Q\ D and that T~ € A(Q\ D, ¥). But by Definition 1.2.2
of W-algebras we have T'(z)"! € ¥, and since the inversion ~! : ¥~1 — ¢!
continuous we obtain the holomorphy of Tt in Q\ D from the holomorphy of T
(as ¥ - valued functions). This completes the proof of Theorem 1.2.6.
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1.2.10 Example. We conclude this section with an example where the validity of
Theorem 1.2.6 is violated due to the holomorphic part of a meromorphic function
evaluated at a pole not being a Fredholm operator.

Let X be a Banach space and P = P? € £(X) be a non-trivial finite-dimensional
projection. Assume dimX = oo. Consider the function T' € A(C\ {0}, £(X)) given
by T(2) := zI — LP. We have T'(C\ {0}) C ®((X), and T'(z) is invertible in £(X)
for |z| > ||P||z. For |2 large we may write

1 1 ., 1 &1
T(z) "' =-(I-5P) 1:;.]€Z:%2:T,cp’c
00 1 1 z
SR RE LR E
k=1

Since T'(z) is invertible for z € C\ {0, —1,+1} we conclude from uniqueness of
analytic continuation that

1
T(z)™ = (I ~P)_ + zf_ -P for z € C\{0,—1,+1}.

Hence T! is meromorphic in 0 but the residue is (I — P) ¢ F(X).

1.3 Volterra integral operators

1.3.1 Remark. In this section we discuss integral operators with operator-valued
kernel functions that are supported on one side of the diagonal. The theory of op-
erators of such kind is classical, and they arise, e. g., in the study of (Volterra)
integral equations. From our point of view the main property of these operators
is, that under some natural assumptions they turn out to be quasinilpotent, i. e.
their spectrum consists of zero only. This observation will be employed later in the
analysis of remainders of the parametrix construction to parabolic pseudodifferen-
tial operators, and it is crucial for the proof of the invertibility of these operators
within the calculus.

1.3.2 Remark. Let E, E and E be Hilbert spaces, and let I C R be an interval.

a) With a kernel function k € L2(IxI,L(E, E)) we associate an operator Ty €
L(L*(I,E),L*(1, E)) via

(Tu) (t) == /k(t,t')u(t')dt'

I
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for u € L?(1, E). The mapping
T:L*(IxI,L(E,E)) 3 k+— Ty € L(L*(I,E),L*(I,E))

is one-to-one and bounded with norm ||T'|| = 1.

In particular, T is an isomorphism of L?(IxI,L(E,E)) onto its range in
L(L?(I, E),L*(I, E)), and via T we transfer the kernel topology to the opera-
tor space. Thus we obtain a Banach subspace of L(L?(I, E), L*(I, E)) endowed
with a finer topology.

b) Let ky € L2(IxI,L(E,E)) and ky € L*(IxI,L(E, E)). Then the composition
Ty, 0Tk, € L(L*(I,E),L*(I, E)) equals T, ok, with the function

(kioks)(t /k1 t,s)ky(s,t') ds € L*(IxI,L(E, E)).
I

The mapping
o: L*(IxI,L(E,E)XL*(IxI,L(E,E)) — L*(IxI,L(E,E))
is bilinear and continuous; more precisely we have ||kyoka||rz < ||k1l|z2||k2]|z2-
1.3.3 Definition. Let k € L?>(IxI,L(E, E)). The operator T}, is called a Volterra

integral operator provided that one of the following equivalent conditions is ful-
filled:

i) For every to € I we have (Tyu)(t) = 0 for ¢t > to for all u € L*(I, E) such
that u(t) =0 for t > to.

ii) For every u € L*(I, E) and every v € L*(I, E) such that supp(u) < supp(v)
we have (Tyu,v)2(f f) = 0.

iii) k(t,t')=0fort >t
A kernel k satisfying iii) is called Volterra integral kernel.

1.3.4 Proposition. a) The space of Volterra integral kernels is a closed subspace
of L*(IxI,L(E,E)).

b) Let ki € L*(IxI,L(E,E)) and ky € L*(IxI,L(E,E)) be Volterra integral
kernels. Then also kioky € L2(IXI, L(E, E)) is a Volterra integral kernel. If k;
and ks are continuous then kjoks is continuous.

On the level of operators this means that the space of Volterra integral operators
is a closed subspace of all integral operators with L?-kernel functions, and it is
closed with respect to taking compositions.
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Proof. These assertions are obvious. For the continuity of kjok, in b) let us note
the following;:

To every point (tg,t,) € I xI there exists a neighbourhood U (to,t,) C IxI and a
compact subinterval J C I such that

(roks) (t,t) = [ byt 9)ka(s ) ds

J
for (¢,t") € U(to, ty). Thus the continuity follows from the continuity of k; and ks
and Lebesgue’s dominated convergence theorem. d

1.3.5 Lemma. Let k € L*(IxI,L(E)) be a continuous Volterra integral kernel.
Moreover, let g,h € C(I) be everywhere positive functions, and assume that

C = sup{g(OA(E) [k (t, )| eey; (4t € IxT} < oc.
For short we write
k(ny :=ko...ok € L*(IxI,L(E))
N
for N € N. Then k() is a continuous Volterra integral kernel, and for t' > t we
have the pointwise estimate
o

! ! ]‘ ]‘ N
9ORE) k) () ey < O =y / i %)

-1

Proof. k() is a continuous Volterra integral kernel by Proposition 1.3.4. Tt re-
mains to prove the pointwise estimate. Let F' € C'(I) such that F' = th' We
proceed by induction: For N = 1 the estimate is true by assumption. Now assume
it holds for some N € N. Then we have for ¢’ >

9O Ik(n-41) (& ) cm) = 9O (kok(n)) (t, 1)l ()

= g(t)h(t") |/k(t73)k(N) (s, 1) dSHL(E)

=| / S (MR, ) (G 5,1) |

L(E)

t

< cNHﬁ / F(s)(F(¢) - F(s) V" ds
= oN+1 % (F(t) - F(t)™.

This finishes the proof of the lemma. (|
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1.3.6 Theorem. Let g,h € C(I) be everywhere positive functions with

1 1
I I

Moreover, let k € C(Ix1I,L(E)) such that k(t,t") =0 for t > t', and

sup{g()h(E)Ik(t, t)lc(m); (8t) € IxI} < oo

Then k € L*>(Ix1,L(E)) is a continuous Volterra integral kernel, and the Volterra
integral operator Ty, € L(L?(I, L(E))) is quasinilpotent. For 0 # A\ € C we have

(\d—Ty) ™' = %m — Ty

with a Volterra integral operator T} .

Proof. Clearly, k € L?(Ix1I,L(E)) is a continuous Volterra integral kernel. Let
C = sup{g(t)h(t")||k(t,t' )|l c(m); (t,t') € IxI}.

Then we have for ¢’ > ¢ in the notation from Lemma 1.3.5:

t

I I 1 1 N-1
gORE) k) (8 )| cemy < C (N — 1) (/ g(s)h(s) ds)

= CN(Nil) H ‘LZ I)Hh‘LZ
and consequently
N
ollt 1
Nkllzzrxr,cm)) < ( H ‘ L(;S)_H IJ'LZ(I)) .

This shows that

< |k — 0,

||TI£V||§(L2(I,£(E))) )||§2(I><I,£(E)) Neoo

i. e. T is quasinilpotent. Moreover, for A # 0 the series
— 1 ‘
=Y sk € L(IXT,L(E))
N=1
converges and defines a Volterra integral kernel, and we have

(Md—T) ' = %m — Ty
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Some notes on abstract kernels

1.3.7 Remark. In many situations the residual elements of a pseudodifferential
calculus are characterized by their mapping properties in a scale of suitable func-
tion spaces. In algebras consisting of Volterra operators we are interested to invert
the remainders of the parametrix construction of parabolic elements within the cal-
culus, where Theorem 1.3.6 serves as the key for the proof. In order to be able to
apply this result we are in need to obtain information about the Schwartz kernels
of the residual elements from their mapping properties.

To this end recall the following facts (cf. e. g. [29]):

a) Let E and F be (Hausdorff) locally convex spaces. Then E®F' is realized within
EeF := L (E., F) via

ie@@f,- — (e' — i(e',e)Er,E f@)
i=1 i1

Here the subscript ¢ denotes the topology of uniform convergence on precom-
pact subsets in E, while the subscript e denotes the topology of uniform con-
vergence on equicontinuous subsets in E’. The induced topology of EeF on
E®F is the e-topology, i. e. we obtain the injective tensor product E®.F of
the spaces E and F.

b) EeF is complete if and only if F' is complete.

c) If E and F are complete then EeF and FeFE are topologically isomorphic via
transposition, i. e.
EeF > G+ G' € FeE.

Passing to completions shows that this isomorphism induces in any case a
topological isomorphism E®.F = F® . E.

d) If F has the approximation property, which in particular holds for hilbertizable
and consequently for nuclear spaces F', then EQF' is dense in EeF.

e) From b) and d) we conclude that E®.F = FcF if F is complete and has the
approximation property.

f) If E or F is nuclear we have E®,F = E®.F. In particular, if F' is complete
and has the approximation property, we have EQ,F = EQ.F = EeF.

g) Let E and F be Fréchet spaces and assume that E is nuclear. Then we have
Ls(Ep, F) 2 E®-F in the canonical way. Here the subscript 8 indicates that
the spaces are endowed with the strong topology.
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1.3.8 Remark. Let {Ey, E, E; } be a Hilbert triple. Then the inner product in E
induces a canonical (antilinear) isomorphism E; = Ej) via

Ei1>e > (-, e1)E € Ej.

Let E be another Hilbert space. Via this isomorphism we may identify the nuclear
operators £y — FE as

él(Eo,E) = E(’)@WE = Eléﬂ'EJ

(' (Ey, E) if and only if there exist sequences ()\;) € ¢* and (z;) C Ei,
tending to zero such that

G=3 N(zj)pe

j=1

i.e.G €
CE

(e )

The tensor product representations in Proposition 1.3.9 below are to be understood
in this sense.

1.3.9 Proposition. Let {Ey, E,E,} and {Ey, E,E\} be Hilbert triples, and let
F and F be nuclear Fréchet spaces such that F' — FE, and Fes Eo Moreover, let
G € L(Ey, Ey) be given.

a) We have G(E,) C F if and only if

Ge E1®ﬂﬁ — gl(Eo,Eo).

b) G(Ey) C F and G*(E,) C F if and only if
G e (El(éﬂﬁ) n (F@WE()) — fl(Eo,Eo).
c) Let {EO,E El} be another Hilbert triple, and assume that G = AB* with
A€ L(Ey, Eo) and B € L(FE,, Ey) such that A(E) C F and B(E,) C F. Then

we have

G € F&,F < (*(Ey, Ey).

Proof. For the proof of a) note first that G(Ey) C F if and only if G € L(Ey, F)
by the closed graph theorem. Clearly, every element in By ®, F = E0®7TF induces
an operator in £(Ep, F'). Now assume that G € L£(Fp, F) is given. Then we have
by the nuclearity of F' that

G' € L((F")s,Ep) = L((F")., E}) = FeEy,
and thus by Remark 1.3.7 (and 1.3.8)

G = (G)' € EyeF = Eyo, F = B, &, F.
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Assume that G fulfills the mapplng propertles in b). From a) we obtain that
G e E1®WF and G* € Ey®,F = E;®,F. Since G = (G*)* we conclude that
G € F®,Fy, i. e. } }

G € (E180,:F) N (F®,Ey)

as desired. The converse assertion in b) is immediate.

For the proof of ¢) note first that byAa) we have A € E\®,F. Consequently, there
are sequences (\;) € ¢* and (z;) C E, (f;) C F tending to zero such that

A@) =Y M)k
Jj=1
for é € Ey. Thus we may write for ¢ € Ey:

oo

A(B*e) =Y Xj(B'e,z;)p fj = Z/\eB:U] B fj.

Jj=1

Since B € L(E), F) we conclude that the sequence (B(z;)) C F converges to zero,
i.e. G = AB* € F®,F as asserted. a
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Chapter 2

Abstract Volterra
pseudodifferential calculus

2.1 Anisotropic parameter-dependent symbols

2.1.1 Definition. Let £ € N be a given anistropy.
a) For (£,\) € R* x R? define
€ Al s= (€ + NP =,
(€A = (L+ [P + AP =,
where | - | denotes the Euclidean norm.
b) For a multi-index 8 = (a, ') € Ny let

1Ble :=lal + £+ o],

where |-| denotes the usual length of a multi-index as the sum of its components.

2.1.2 Lemma. There exists a constant ¢ > 0 such that for all s € R and &,& €

R™, A1, A2 € RY the following inequality is fulfilled (Peetre’s inequality):

(1 + &, A1 + Aa)p < clf! <£1;/\1>LS‘ (€2, \2)y - (2.1.)

Morover, we can compare the regularized “anisotropic distance” (-,-), with the

“isotropic distance”, i. e. there exist constants cy,cy > 0 such that

e (€N, S (EN) < e (€M) (2.Lii)
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2.1.3 Definition. Let E and E be Hilbert spaces. For 1 € R we define
SHER™ x RY; E,E) :={a € C®(R" x R?, L(E, E));
pe(a) = sup 10 a(& NIN(E A, TP < oo for all k€ N}
(€, ) ER"xR?
|Ble<k
This is a Fréchet space with the topology induced by the seminorm-system {py; k €
No }. Define
ST®(R" x R E, E) := (] $“‘(R" x RY; E, E).
neR

By (2.1.ii) this space does not depend on £ € N, and we have S~ (R" xR?; E, )
S(R" x R?, L(E, E)). Moreover, for 1 € R the spaces of z- (resp. 2'-) and (z,z
dependent symbols are defined as
SHER™ x R* x RY; B, E) = C° (R, SHYR" x RY; E, E)),
SHER™ x R x R* x RY; B, E) := C° (R x R*, S“Y(R" x RY; E, E)).

)

Analogously, we obtain the spaces of order —co. If E = E = C we suppress the
Hilbert spaces from the notation.

Let {E;};jen and {E;}jen be scales of Hilbert spaces such that E; < Ejy; and
Eji1 < Ej for j € N. Define

SHUR™ x RY;ind-lim Bj, proj-lim Ey) := ] S*“‘(R* x RY; Ej, Ey)
JEN keEN .
j.keN

with the natural Fréchet topologies induced. The spaces of order —oo are defined in
an analogous manner, as well as the symbol spaces with dependence on x,z’ € R™.

With this notion the case of single Hilbert spaces £ and E corresponds to the
constant scales.

2.1.4 Definition. Let £ and E be Hilbert spaces. A function f : (R” x R?)\
{0} = L(E, E) is called (anisotropic) homogeneous of degree p € R, if for (¢, \) €
(R* x R?) \ {0} and 0 >0

F(0€,0°N) = &" f(£,N). (2.1.iii)

A function f : R* x R — L(E, E) is called (anisotropic) homogeneous of degree
p € R for large (€, A), if for (&,A) € R* x R? with |(¢, A)| sufficiently large and
021

F(0€,0°X) = &* (&, V). (2.1.iv)

In this work, homogeneity always is meant in this anisotropic sense.

2.1.5 Remark. Let a € C®°(R" x ]Rq,L’(E,NE’)) be homogeneous of degree 1 € R
for large (¢,A). Then a € SH¢(R® x RY; E, E).
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Asymptotic expansion

2.1.6 Definition. Let {E;} and {E;} be scales of Hilbert spaces in the sense of
Definition 2.1.3. For short, we set

£:=ind-limE; and & := proj-lim E;.
mjeNlm j an pI‘(}]ENIm g
Let (ur) € R be a sequence of reals such that pyg k—> —oo and 71 := MaX [l
—00 €
Moreover, let aj, € S {(R? x R* xR?; €, £). A symbol a € SR xR xR?; £, )
is called the asymptotic expansion of the ay, if for every R € R there is a kg € N
such that for k > kg
k ~
a—Y a; € SHR® x R" x R;€,E).
j=1
The symbol a is uniquely determined modulo S™*(R" x R* x R?; &, & )-

o)
For short we write a ~ )" a;.
i=1

2.1.7 Lemma. Let {E;} and {E;} be scales of Hilbert spaces, and £ and £ as in
Definition 2.1.6. Let (u) C R such that pg > pig+1 oo Furthermore, for
—00

each k € N et (Ag,)jen C SH4(R™ x R; €, &) be a countable system of bounded
sets. Let x € C™®(R™ x R?) be a 0-excision function. Then there is a sequence
(c;) C Ry with ¢; < ¢i41 — oo such that for each k € N

1— 00

Z sup ]D(X(g A)a(f,)\)) < o0 (2.1.v)

R
ik @€Ai; di d;

for all continuous seminorms p on S**¢(R" x ]Rq;g,g) and every j € N, and for
all sequences (d;) C Ry with d; > ¢;.

Proof. The proof of this lemma is a variant of the standard Borel-argument. O

2.1.8 Theorem. Let {E;} and {E;} be scales of Hilbert spaces, and £ and € as in

Definition 2.1.6. Let (u,) C R such that uy, 2 o0 and i := Iax i Moreover,
—00 €

let a;, € SM5¢(R™ x R* x R?; €, &). Then there exists a € SP(R* x R* x R%; £, &)

such that a ~ ) aj, and a is uniquely determined modulo S™>°(R™ x R" x
i=1

RY; E,E).
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Proof. Without loss of generality we may assume that pg > fig+1 k—> —oo. For
— 00

k,j € Nlet
Ap, = {0%ar(z); z € R", |a| < j}.

Then Ay, C SH3¢(R" xR?; €, &) is bounded. Let x € C(R™ x R?) be a 0-excision
function. Now apply Lemma 2.1.7. With a suitable sequence (¢;) C Ry formula
(2.1.v) becomes

Zsup{p (£.5)@2ai@)En): s € B, Jal <7} < o0

for all continuous seminorms p on S#**(R* x R?; €, £ ), which shows that for every

k € N the sum .
EER

is unconditionally convergent in S#*¢(R™ x R” x R?;E,&). The assertion of the
theorem follows with

a::ix(c— 7)(1 € SHEL R x R x RY; &, E).

Classical symbols

2.1.9 Definition. Let E and E be Hilbert spaces. For 1 € R define

SEYRY x R B, E) = {a € SHURY x R E, E); a ~ Zxa(u,k)},
k=0
where xy € C®°(R* x R?) is a 0-excision function, and a(,_x) € C*((R* x R?) \
{0}, L(E, E)) are (anisotropic) homogeneous functions of degree y—k, the so called
homogeneous components of a.

2.1.10 Remark. By 2.1.5 the space S“*(R" x R?; E, E) is well-defined.

The homogeneous components of a € S fl;l(]R” x R?; E, E) are uniquely determined
by a. They can iteratively be recovered from the relation

k—1

1
Q“_k (a’(gfa QZA) - Z A(p—j) (967 QlA)) gjo A(p—k) (67 /\) (21V1)

Jj=0
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with convergence in £(E, E), which holds locally uniformly for 0 # (£, )) € R* x
RY.

Note that SZ;Z(R" x R?; E, E) is a Fréchet space with respect to the projective
topology of the mappings
k=1 .

SHYRM x RY; E,E) 5 a — ‘T JEO Xau-y) € SMTHUR X R B E)

agu-ry € CP((R* x R?)\ {0}, L(E, E))
for k € Np.
The spaces of z- (resp. 2'-) and (z, z')-dependent classical symbols are defined as

SHERY x R* x R:; E, E) := C°(R”, S (R* x RY; B, E)),
SEER x R* x R" x RY; B, E) := C°(R" x R, S%“(R" x RY; E, E)).

Clearly, the spaces of classical symbols are closed with respect to taking asymptotic
expansions if the sequence (ug)ren, of orders is given as py := p—k for some p € R.

2.1.11 Remark. The notions of parameter-dependent symbols are analogous if
the parameter-space R? is replaced by a conical subset } # A C R?, which is
the closure of its interior. There only arise notational modifications. In this work,
we will mainly make use of parameter-dependent symbols and operators with the
parameter running over R or over a half-plane H C C = R2.

2.2 Anisotropic parameter-dependent operators

2.2.1 Definition. Let E and E be Hilbert spaces, and let u € R With a double-
symbol a € S#¢(R" xR* xR* xR?; E, E) we associate a family of pseudodifferential
operators op,(a)(\) € L(S(R*, E),S(R", E)) for A € R? by means of the following
oscillatory integral:

(0pe (@) (V) (&) : = / / e (2! €, Nyula) do’ dE

RR™
= // ef"””lga(a:, z+ 2, & Nu(z + ') de’ d¢
R7R™
where as usually d¢ := (27)"d¢.
The space of these operators is denoted by

LY (R R B, E) = {ops(a)(); @ € S5 (R* x R* x R" x RY; E, E)}.

In the case of E = E = C the Hilbert spaces are suppressed from the notation.
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Elements of the calculus

2.2.2 Theorem. Let a € S¥!(R* x R* x R* x R?; E, E). Then there exist unique
left- and right-symbols ar(z,&, ), ag(z',&,2) € SHER® x R* x RY; E, E) such
that op;(a)(A\) = opg(ar)(N\) = op;(ar)(\) as operators on S(R", E).

These symbols are given by means of the following oscillatory integrals:
au@, 6N = [[eMatey + a6 0.0 dy i,
an(@ &0 = [ [ Mala’ 4 y.a' €~ n X dy

The mappings a — ay, and a — apr are continuous. Moreover, we have the asymp-
totic expansions

1
aL(xaga/\) ~ Z J ?D?’a(wawlafa/\”w’:m
aeNg

1
aR(lJ:g:)‘) ~ Z J(_l)la‘anga(xaxlafa>\)|z:x’-

aeNy

If a is classical, so are a; and ag, and the mappings a — ar and a — ag are
continuous with respect to the (stronger) topology of classical symbols.

2.2.3 Remark. By Theorem 2.2.2 the mapping op, provides an isomorphism
between the space of z-dependent symbols (“left-symbols”) and pseudodifferential
operators:

SN;Z

(i) (R x R x RY; B, E) °—:‘> Lé‘c;f)(]R”;Rq;E,E).

Via op, we transfer the topology, which makes Lfbc;f) (R*;RY; E, E) a Fréchet space.

Moreover, we have the space of parameter-dependent operators of order —oo which
is independent of £ € N:

L™®(R";R%; E,E) = (| L"‘(R*;R%; E, E) = S(RY, L™ °(R"; E, E}))
neER
= {ops(a)(\); a € S™®(R" x R* x R’; E, E)}.

2.2.4 Theorem. a) Let E, E and E be Hilbert spaces. Let A(\) = opg(a)(\) €

LI (R R B, B) and B(\) = op,(b)(\) € Liti(R*;RY; B, E) with a €
Sélc,f) (]Rn x R x RQ,E,E') and b € S(Hcll,)((]Rn x R™ x ]Rq,E,E) Then the com-

position as operators on S(R", E) belongs to L?CJ{)“’;Z(R”;R‘J .E,E).
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More precisely, we have A(A)B(A) = C(A) = opg(a#b)(N\) with the symbol
a#tb € Sé‘j)” “(R™ x R* x RY; E, E) given by the oscillatory integral formula

a#b(a &) = [ Male g Nba +y & Ndydn. (2:24)
Moreover, the following asymptotic expansion holds for a#tb:
1 [e]3 [e]3 ..
a#tb ~ g —(02a)(Dg0). (2.2.ii)
a&Ng

The mapping (a,b) — a#b is bilinear and continuous. The symbol a#tb is called
the Leibniz-product of a and b.

b) Let {Eo, E,E;} and {FEy, E, E,} be Hilbert triples, and A(\) = op,(a)(\) €
L) (R RY; Eo, Eo) with the symbol a € St (R" x R" x RY; Eq, Eo). Then the
formal adjoint operators belong to Lé‘;f) (R*;R?; Ey, Ey), i. e., foru € S(R™, Ep)
and v € S(R*,E,) we have (AN, v) 2 ) = (U,A(A)(*)U>L2(Rn7E) with
AN® = op,(a™)(N), where a'*) € S(”c;ll)(]R” x R* x RY; Ey, Ey) is given by
means of the oscillatory integral

(L(*) (37, 67 A) = //e—iyﬂa* (CU + Y, £ + 1, /\) dy dﬂ; (22111)
and the following asymptotic expansion is valid:

* 1 a yo .
a) ~ Z aag DZa*. (2.2.iv)

aeNg

The mapping a — a'*) is antilinear and continuous. The symbol a'*) is called
the adjoint symbol to a.

Proof. To prove a), we associate to the operators B(A) the right-symbol
br(z',&,\) according to Theorem 2.2.2. Then the composition A(A)B(A) has

the double-symbol c(x,z',6,A) = a(z, & N)br(a’,E,0) € Sé‘j)“l;e(]l&” x R* x

R® x RY; E, E) Employing again 2.2.2, we obtain a#b as the corresponding left-
symbol associated to ¢. This also implies the continuity of the bilinear mapping
(a,b) — a#b.

Assertion b) follows directly from Theorem 2.2.2, noting that (a(z',&,)))" is the
right-symbol for A(X)™), O

2.2.5 Remark. As an immediate consequence of Theorem 2.2.2 we obtain the
pseudolocality property of the operators:
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Let A(\) € LHY(R";RY; E, E) be given by A(\) = op.(a)(A) with a double-symbol

a(z,z',6,)) € SHYR® x R* x R* x RY; E, E), such that a(z,z',6,\) = 0 for

|z — z'| < e for a sufficiently small € > 0. Then A(A) € L= (R";R?; E, E).

In particular, if A(\) € LMYR*;R;E,E), and ¢,¢p € CP°(R*) such that
dist(suppy, suppyy) > 0, then p A(A\) € L™°(R";R?; E, E).

2.2.6 Definition. Let A(\) = op:(a)(\) € Lgl;e(]R”;]Rq;E,E), where a €
Sfl;l(]R” x R* x R?; E, E). By Theorem 2.2.2 the symbol a is uniquely determined

by A(A), and so are the homogeneous components of a by (2.1.vi). We define
o (A)(z, €, N) = ag(w,&,A) as the homogeneous component of highest order
and call 0%*(A) the parameter-dependent homogeneous principal symbol of A())

or simply principal symbol. The mapping A(\) — UK;Z (A) is continuous.
In case of E = CV- and E = CV+ we write as usual aw;e(A) instead of ok (A).
2.2.7 Remark. With the notations of Theorem 2.2.4 we obtain for classical oper-

ators the following relations for the principal symbols of compositions and adjoints:
ah T AB) = ol (A)ak (B) and o (AM) = okt (A)*.

This follows from the asymptotic expansions for the Leibniz-product and the ad-
joint symbol in Theorem 2.2.4.

Ellipticity and parametrices

2.2.8 Definition. A symbol a € SH¢(R? x R* x ]Rq;E,E‘) is called parameter-
dependent elliptic, if there is a symbol b € S™#¢(R* x R” x R?; E, E) such that
ab—1€ S=YR" x R* x R"; E, E),
ba—1¢e SR x R" x R:; E, E)
for some ¢ > 0.

Let K € R* be compact. A symbol a € S*(R* x R* x R%; E,E) is called
parameter-dependent elliptic on K, if there is a symbol b € S™H¢(R" x R* x
RY: E, E) such that ab — 1 and ba — 1 coincide with symbols of order —e for some
e > 0 in a neighbourhood U (K) of K.

In particular we see, that the condition of parameter-dependent ellipticity is not
affected by perturbations of lower-order terms.

An operator A(\) = op,(a)(\) € L#Y(R*;RY; E, E) is called parameter-dependent
elliptic (on K ), if a is parameter-dependent elliptic (on K).

2.2.9 Remark. The following characterizations of parameter-dependent elliptic-
ity are valid:
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a) Let a € SHYR® x R* x RY; E, E). Then a is parameter-dependent elliptic
if and only if for some R > 0 there exists (a(z,&,A))"! € L(E,E) for all
z e RY, (€,)) € R* x RY with |€, A > R, and

sup{||(a(z, & X)) 71 (€, N} s € R, [€, Al > R} < 0.

Ifae Sfl;l(]R” x R* x RY; E, E), then a is parameter-dependent elliptic if and
only if the homogeneous component a(,)(z,&,A) € L(E, E) of highest order is
invertible for all z € R” and 0 # (£, A) € R* x R? and

sup{l(agu) (2,6 X)) 7' z € R, [€ Al =1} < oo

b) Let a € SMR* x R* x RY;E,E) and K € R* be compact. Then a is
parameter-dependent elliptic on K if and only if for some R > 0 there ex-
ists (a(z,&,\)"t € L(E,E) for all z € K, (§,\) € R* x R? with |{,\|; > R,
and

sup{[|(a(z,&,X) "I (E,N)] 5 = € K, [§,A\le > R} < 0.

Iface SZ;Z(R" x R" x R?; E, E), then a is parameter-dependent elliptic on K
if and only if a(,) (=, &, \) € L(E, E) is invertible for all 2 € K and 0 # (£, ) €
R™ x R?.

c) Let a € Sé‘l;e(]R{” x R" x R?; E, E). Then a is parameter-dependent elliptic if
and only if there exists b € Sc_l“;e(]R{” x R" x RY; E, E) such that ab—1 €
SR x R* x RY; B, E) and ba — 1 € S,,"*(R"* x R x RY; E, E).

a is parameter-dependent elliptic on a compact set K € R" if and only if there
exists b € S;l”;l(]R" x R* x R?; E, E) such that ab— 1 and ba — 1 coincide with
classical symbols of order —1 in a neighbourhood U(K) of K.

Proof. Note first that in view of Definition 2.2.8 the conditions in a) and b) are
clearly necessary for parameter-dependent ellipticity. To prove the sufficiency of
the conditions in a) let x € C*®°(R™ x R?) such that xy =0 for |{, Al < R+ 1 and
x = 1for [, A\|lg > R+ 2. For (z,£,A) € R* x R* x R? define

b(iU f )\) [ X(£7 )‘) (a(xafa )\))_1 iIl the general case
AR (3 M (agy(z,&A))""  in the classical case.

Thus we see that b € S(;l‘;;l(]R” xR"* xR?; E, E), and moreover ab—1 € S(;ll);l(]R” X

R* x R?; E,E) and ba — 1 € S(;};‘(Rn x R* x R?; E, E). This proves a) and the
first assertion in c).

Now assume that the conditions in b) hold. Note that they not only hold for
z € K, but also in a neighbourhood V(K) of K. Let ¢ € C*(V(K)) with p =1
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in a neighbourhood U (K). Let x € C*°(R™ xR?) such that x = 0 for |§, |, < R+1
and x =1 for |{,A|¢ > R+ 2. For (z,£,A) € R" x R* x R? define
bz, £, ) x(&N@(z)(alz, &)L in the general case
z, & N) 1= . .
X(&N)@(x)(a (z,& X))~ in the classical case.

We thus see that b € S 1(R" x R* x RY; E, E) with ab— @I € S ;i (R* x R" x
RY; E, E) and ba— @I € S(_Cll);e(]R{” x R" x R?; E, E) which shows b) and completes
the proof of c). O

2.2.10 Theorem. Let A(\) € L*¢(R"; R?; E, E). Then the following are equiva-
lent:

a) A(N) is parameter-dependent elliptic.

b) There exists an operator P(\) € L™*(R"; R; E,E), such that A\)P(\)—1 €
L=5¢(R";RY; B, E) and P(\)A(\) — 1 € L=5¢(R"*; RY; E, E) for some ¢ > 0.

A
¢) There exists an operator P()\) € LR, RY; E, E), such that A\)P(\)—1 €
L~=(R";R?; E, E) and P(\)A(\) — 1 € L-(R"; RY; E, E).

Ifeven A()) € Lé‘;e(]R";]Rq;E, E) is parameter-dependent elliptic then every P())
satisfying c) belongs to L&‘“[(]R”;]Rq .E,E).

Every P()\) € L(_C;‘);Z(]R{” :R?; E, E) satisfying c) is called a (parameter-dependent)

parametrix of A(\).

Proof. Assume that a) holds. Let A(\) = op.(a)()\) with a € SH¢(R* x R* x
R?; E, E). Let b € S~#!(R* x R* x R?; E, E) satisfying the condition of Definition
2.2.8. Now the asymptotic expansion of the Leibniz-product in Theorem 2.2.4
(2.2.i1) gives that b#a — 1 € S—5¢(R* x R* x R¢; E, E) and a#tb— 1 € S—¢(R" x
R" x RY; E, E) for some ¢ > 0 which implies b). If a € SZ;Z(R” xR* xR?; E, E) we
choose b € S;“;K(R" x R* x R?; E, E) satisfying condition c¢) of Remark 2.2.9. We
then even obtain b#a — 1 € S;;"*(R" x R* x R?; E, E) and a#b—1 € S_Y*(R* x
R* x RY; E, E).

Now assume that b) is fulfilled. Let P(A) = op.(b)(\) and A(N)P(A) = 1 —
op.(r)(\) with r € S™5(R" x R* x RY; E, E). From Theorem 2.1.8 and The-
orem 2.2.4 we see that there is a symbol ¢ € S™S¢(R" x R* x R?; E, E) such
that ¢ ~ Y #Yr. Now define Pg)(A) := opy(b#(1 + ¢))(A). Then we have

JEN

ANPR(AN) -1 € L=°(R";R%; E,E) as desired. Analogously, we obtain a
parametrix Pz)(A) from the left. But both the left- and the right-parametrix differ
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only by a term in L~°(R"; R?; E, E) which we see from considering the product
Pry(MA(N) Pry(A). This implies c). Note that if we had started with the case
e =1 and P(\) as well as the remainder being classical, we would have obtained
also a classical parametrix which proves the second assertion of the theorem (cf.
Remark 2.1.10).

c) implies a) follows at once from Theorem 2.2.4. O
2.2.11 Corollary. Let A(\) € Lé‘c;f)(]R{”;]Rq;E,EN) and K € R? be compact.
Then A(X) is parameter-dependent elliptic on K if and only if there are ¢, @ €
C§°(R™) such that pip = ¢, ¢ = 1 on K, and P()\) € L(*;);Z(R”;]RQ;E,E)
such that (AN)P(A) — 1)y € L™°(R"%; R E,E) and o(P(A)AN) — Dy €
L=(R*; RY; E, E).

Sobolev spaces and continuity

2.2.12 Definition. Let E be a Hilbert space. For s € R the Sobolev space
H?*(R", E) is defined to consist of all u € S'(R", E) such that Fu is a regular
distribution, and

[l

H:(R",E) = (/(€>2s||fu(£)||% df)% < oo.

R™

In case of E = C the space is suppressed from the notation.

2.2.13 Theorem. Let E and E be Hilbert spaces. Let a € SH(R* x R* x
R?; E,E) and s,v € R where v > p. Then op;(a)(\) extends for X € R? by

continuity to an operator op.(a)(\) € L(H*(R",E), H*~"(R", E)), and we have
the following estimate for the norm:

v(A)E >
CowNr v 20 (2.2.v)
Cs,(N T v<0,

llope (@) Ml £+ @, ), 1o (R B)) < {

where Cs, > 0 is a constant depending on s,v and a.

More precisely, this induces a continuous embedding

T(RY; H¥(R*, E), H~V(R", E >
S ( ) ( ) )7 ( ) )) v —_ 0 (2.2.Vi)

LMYRY;RY; E,E) — <" .., ’
ST (R H(R", E), H*7"(R", E)) v <0

into the space of operator-valued symbols in the Sobolev spaces.
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Coordinate invariance

2.2.14 Definition. Let U C R™ be an open set. Then A()\) € L¥¢(R*;R?; E, E)
is said to be compactly supported in U, if for some ¢, € C§°(U), and some
B()\) € LMYR";RY; E, E), we have A(\) = oB(\)).

In other words: A(\) is compactly supported in U if and only if there is a compact
set K C UxU such that

suppK 4(n) € K for all A € R?, (2.2.vii)

where K 4(5) € S'(R" xR*, L(E, E)) denotes the operator-valued Schwartz kernel
of the operator A(A).

For each compact set K C UxU the space of compactly supported oper-
ators A(\) € Lé‘;f)(]R”;]Rq;E,E) satisfying (2.2.vii) is a closed subspace of
LYy (R"; RS E, E).

Let Lé‘é‘fnp (cl)(U; R?; E, E) denote the space of all (classical) parameter-dependent
pseudodifferential operators that are compactly supported in U. We endow this
space with the inductive limit topology of the subspaces of operators with Schwartz
kernels satisfying (2.2.vii) (taken over all compact sets K C UxU). Thus it be-

comes a strict countable inductive limit of Fréchet spaces.

Note that A(X) = op.(a)(A) € LEE (U;RY; E, E) acts as a family of continuous

operators A(\) : C°(U,E) — C$°(U,E), and its symbol a(z,&,\) is uniquely
determined by this action.

2.2.15 Theorem. Let U, V C R™ be open subsets and x : U — V a diffeomor-
phism. Then the operator pull-back x*A()) defined as

(" A = X" (AN (xat) (2.2.vii)
for uw € C§°(U,E) and A(N\) € L‘C‘(;f;lp(V;Rq;E,E), with the pull-back x*

and push-forward x, for C§°-functions, defines a topological isomorphism x* :

it . . n H4 A X ~
L?"mp(d) (V;RG B, E) - L?omp (cl) (U;RY; E, E).
Moreover, given A(\) = op;(a)(\) € Lii, (ViR E,E), then x"A(\) =

opz(b)(\) with a symbol b € Sé‘cf) (R* x R* x RY; E, E}) having the following asymp-

totic expansion in terms of a and x:
bz, &) ~ Y (ga)(x(x), [Dx(x) 1€ Npal(z,€) (2.2.x)
aeNg
with polynomials ¢, (z,&) in £ of degree less or equal to % and ¢y = 1, that are
given completely in terms of the diffeomorphism x.



On the inverse of parabolic PDE in infinite space-time 53

Note that the symbol a vanishes identically outside a compact set in V' which gives
a meaning to this asymptotic expansion.

In particular, we obtain b(z,&,\) — a(x(z), [Dx(x)7']'¢,A) € SH=HER™ x R™ x
R?; E, E). This yields in the classical case to the following relation for the principal
symbols:

RO A) (w6, 0) = ok (A) (x(w), [Dx(@) 76, N). (22:x)

This also shows, that x*A(\) is parameter-dependent elliptic on a compact set
K CU if and only if A(\) is parameter-dependent elliptic on x(K) C V.

2.3 Parameter-dependent Volterra symbols

Let

H:={2€C Im(2) >0} CC=R?
be the upper half-plane in C. The significant property of Volterra operators, resp.
symbols with the Volterra property is, that in addition to the symbol estimates
we employ the analyticity in the interior of H.

2.3.1 Definition. Let E and E be Hilbert spaces. For 1 € R we define

guit (R* x H; E, E) N A(H, C*(R", £(E, E))),

Vien (R % H, E,E) := St

(ch)
which is a closed subspace of Sé‘cf) (R* x H; E, E). Analogously, we define
Sy e (R" x H; B, E) == (] SF(R" x H; E, ),

neR

as well as the spaces of z- (resp. z'-) and (z,z')-dependent symbols

sg{cl) (R* x R* x I E, E) := 0;0(11«”,55?{01) (R* x H; E, E)),

HA n n n 3 7\ . 100 (TN n H4 n 2 )
S“j(cl)(]R{ xR"xR"xH;E,E) = Cy°(R" xR ,S“j(cl)(]R x H; E, E)).
These symbols are called symbols with the Volterra property or simply Volterra
symbols which is indicated by the subscript V.

Of course, this notion also applies to the case of scales of Hilbert spaces involved
instead of the single spaces only, and we shall employ the same conventions as in
the case without the extra analyticity condition, see Definition 2.1.3.

2.3.2 Proposition. a) The restriction of the parameter to the real line induces
a continuous embedding S“j;(ecl) (R* x H; E,E) < Sé‘cf) (R* x R, E, E).
b) The homogeneous components of a symbol a € S"j;il(]R” x H; E, E) are analytic

o
in H.



54 T. Krainer and B.—W. Schulze
Kernel cut-off and asymptotic expansion of Volterra symbols

2.3.3 Definition. Let {F;} and {£;} be scales of Hilbert spaces. For short, we
set R ~
€ :=ind-lim E; d & :=projlimE;.
lnj ENlm j arn pr(}]EN m vy

Let (ur) € R be a sequence of reals such that py — —oo and @ := max py.
k—o00 keN

Moreover, let a;, € S“j’“;f(]R” xR xH; &, ). A symbol a € S‘E/Z(R” xR xH; &, E)
is called the asymptotic expansion of the ay, if for every R € R there is a ky € N
such that for k > kg

k
a—> a; € SP(R" x R x HE,£).

j=1

The symbol a is uniquely determined modulo S;,*(R® x R* x H; &, £).

o)

For short we write a ~ >~ a;.
v =
Jj=1

2.3.4 Remark. Note that the notion of asymptotic expansion for Volterra sym-
bols from Definition 2.3.3 is more refined than that of Definition 2.1.6. What makes
things more complicated is the extra analyticity condition. In particular, the stan-
dard excision function arguments in the proof of the existence of symbols having a
prescribed asymptotic expansion, see also Lemma 2.1.7, cannot be applied to ob-
tain corresponding existence results in the Volterra case. The substitute for these
are kernel cut-off techniques, see also Proposition 2.3.8.

2.3.5 Definition. Let £ and E be Hilbert spaces, and let ¢ € C{°(R). On
SHt(R™ x R; E, E) define the kernel cut-off operator H(p) by means of the follow-
ing oscillatory integral:

(H(p)a)(&,N) = // e~ Tot)a(é, N — ) dtdr (2.3.i)
R R

for a € SH'(R* x R, E, E).

2.3.6 Theorem. Let {F;} and {E;} be scales of Hilbert spaces. We again use

the abbreviations £ for the inductive limit of the spaces E;, as well as £ for the
projective limit of the spaces E;. Then the mapping

. Co(R)x Slip (R x R, E,E)  — S (R x R;€,E),

: [5S) ; n 5 H n 5

Cro(R)x Sty (R x HLE,E)  — Sy (R X H;€,€)
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is bilinear and continuous.

The following asymptotic expansion holds for H(p)a in terms of ¢ and a:

o0
(=" x K .
H(p)a o ,;)( X Dy <p(0)) -Oya (2.3.ii)
where 9, denotes the complex derivative with respect to A € H in case of Volterra
symbols.

2.3.7 Corollary. Let ¢ € C§°(R) with ¢ = 1 near t = 0. Then the operator
I — H(yp) is coninuous in the spaces

SHYRY x R;E,E) = S™O(R® x R;E,E),
SEYRY x H; £,€) = S;°°(R™ x HLE, E).

2.3.8 Proposition. Let (u) C R such that pg > pgs1 k—) —o0. Furthermore,
—00

for each k € N let (Ag,;)jen C S"j’“;l(]R” x H;E£,€) be a countable system of
bounded sets. Let ¢ € C§°(R), and for ¢ € [1,00) let p. € C§°(R) be defined as

pe(t) == g(ct).

Then there is a sequence (¢;) C [1,00) with ¢; < ¢;+1 — oo such that for each
11— 00

keN

> sup p(H(pa,)a) < oo (2.3.iii)

for all continuous seminorms p on S{}’“;Z(R" x H; €, c‘f) and every j € N, and for all
sequences (d;) C Ry with d; > ¢;.

2.3.9 Theorem. Let {E;} and {E;} be scales of Hilbert spaces, and £ and &

as before. Let (u) C R such that py k—> —o0 and [t := Max . Moreover, let
—00 €

ay € S“}’“;K(R” X R* x H; £,€). Then there exists a € S‘ﬁ,;e(]R{” xR x H; £, ) such

o0

that a > Y. a;j. The asymptotic sum a is uniquely determined modulo Sy, (R" x
j=1

R* x H; E,€E).

If the sequence (ug)ken, is given as p, = g—k and ay, € S‘H,;lk;[(]R” xR*xH, £, €),
then also a € S‘H,;il(]R" x R* x H; &, €).

Proof. For the proof we may without loss of generality assume that p, >
41 k—) —o0. For k,j7 € N let
—00

Ap, = {0%ar(z); x € R", |a| < j}.
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Then Ay, C SEHY(R* x HE,€) is bounded. Let ¢ € C5°(R) such that ¢
near t = 0. Now apply Proposition 2.3.8. With a suitable sequence (¢;) C [1
formula (2.3.iii) becomes

=1
, 00)
> sup{p(H(pe,) (05 ai(x))); z € R", |a| < j} < oo

i=k

for all continuous seminorms p on S“}’“;Z(]R{n x H; E,€).

o0

This shows that 3 H(p.,)a; is unconditionally convergent in S¥***(R" x R™ x
i—k

H; £,€) for every k € N. Now define

a:=>» H(pe)ai € Sy (R" x R x H;E,E).

i=1
We thus see
k o) k
a=Y a;i= Y H(pe)ai—y (I -Hpe))a;
i=1 i=k+1 i=1
where .
> (I —H(pe))ai € Sy=(R" x R x H;€,€)
i=1

in view of Corollary 2.3.7. This yields the desired result, since the uniqueness
assertion is clear. O

The translation operator in Volterra symbols
2.3.10 Definition. For z = i7 € iR C C, 7 > 0, define the translation operator
Ti; on SEYRY x HLE,E) via
(Tira) (&, N) == a(& A +iT).

2.3.11 Proposition. For every 7 > 0 the translation operator T;, acts linear and
continuous in the spaces

Tir : Sty (R* x H;E,€) — SPL (R X H; €, E).
Moreover, T;;a has the following asymptotic expansion in terms of T and a:

— (i7)"
Tira > Z - 8’)fa.

k=0

In particular, the operator I — T;; is continuous in the spaces

I =Ty : SP (R X H;E,E) — Sy (R x HE,E).
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2.3.12 Notation. For € R let S0 (R x H) \ {0};E,E) denote the closed
subspace of C>((R" x H) \ {0}, L(E, E)) consisting of all anisotropic homogeneous
functions of degree . Moreover, let

SUO (R x H) \ {0}; B, E) := S®O ((R* x H) \ {0}; E, E)
NAH, C= (&, £(B, E))),
which is a closed subspace of SU9 ((R" x H) \ {0}; E, E)

2.3.13 Theorem. For every T > 0 the mapping T;; : a(§,\) — a(&,\ + iT) is
continuous in the spaces

Ty : SUY (R x H) \ {0}; E, E) — SE(R* x H E, E).

Moreover, for every 0-excision function y € C*°(R" x H), the following asymptotic
expansion holds for T; a:

This shows, in particular, that for the homogeneous component of order . we have
the identity (T;-a) )

In other words, the restriction of the “principal symbol sequence” (on symbolic
level) to Volterra symbols is topologically exact and splits:

= a.

0 —Sk PR x H; E, E) — S8 (R x i, E,E) —
SUO (R x H) \ {0}; E, E) — 0.

The operator T;, provides a splitting of this sequence. Analogous assertions hold
in case of scales of Hilbert spaces involved.

2.4 Parameter-dependent Volterra operators

2.4.1 Remark. In this section we first recall the basic elements of pseudodiffer-
ential calculus on R" built upon parameter-dependent Volterra symbols, which is
rather straightforward in view of Sections 2.2 and 2.3.

Secondly, we study parabolicity of such Volterra operators which is defined by
requiring the parameter-dependent ellipticity of the symbols. The main point here
is that we are in need to construct a parametrix which itself has again the Volterra
property. The latter cannot be obtained from Theorem 2.2.10 (or its proof) because
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there are arguments with excision functions involved, which destroy the analyticity
in the interior of the half-plane (see also Remark 2.2.9). However, the possibility to
carry out asymptotic expansions, see Theorem 2.3.9, which relies on kernel cut-off
techniques, and the translation operator in Volterra symbol spaces provide the
tools to handle these difficulties.

2.4.2 Definition. Let F and E be Hilbert spaces. For i € R the space of Volterra
pseudodifferential operators respectively operators with the Volterra property is
defined as

Lyl (R H; B, E) := {opz(a)(\); a € Sy, (R" x R x R* x H, E, E)}

(cl)
C L (R H B, E).

In case of E = FE = C the spaces are suppressed from the notation as usual.

Elements of the calculus

2.4.3 Theorem. Let a € S“j;(ecl) (R* x R* x R* x H; E,E). Then the unique left-
and right-symbol from Theorem 2.2.2 associated to the operator op,(a)(\) €

L"‘}fd) (R"; H; E, E) are Volterra symbols, i. e. ar, (x, €, \), ar(z', &, \) € S“j;(ed) (R™ x

R* x H; E, E).

Moreover, the asymptotic expansions for a;, and ag in terms of a are valid in the
Volterra sense:

1
aL(I,f,A) "\; Z J&?D?rd(l‘,l",f,)\”xr:x,
aeNg ’

1
aR(lJ:g:)‘) "\; Z J(_l)la‘anga(xaxlafa>\)|z:x’-

aeNy

2.4.4 Remark. By Theorem 2.4.3 the mapping op, restricts to an isomorphism
between the space of Volterra left-symbols and Volterra pseudodifferential opera-
tors:

it . 5 it STH- 5
Sy (R" x R x H; B, B) =% L, (R H; B, E).

)

Consequently, L*‘L,;(lcl) (R*;H; E, E) is a closed subspace of Lé‘;f)

The space of parameter-dependent Volterra operators of order —oo is denoted by

(R, L E,E).

Ly™ (R H; B, E) = (] Ly (R*; H; E, E)
neER
= {op.(a)(\); a € Sy, (R" x R" x H, E, E)}.
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In view of Proposition 2.3.2 the restriction of the parameter to the real line induces
a continuous embedding

LY (R® X B, E, E) < L% (R* x R; E, E).
2.4.5 Theorem. Let E, E and E be Hilbert spaces, and A(X) = opy(a)()) €
LYl (R H B, E) as well as B(\) = op,(b)(\) € Ly.&0) (R H E, E) with a €
Sty (R x R* x H; B, E) and b € Sy} (R x R* x H; E, E).
Then the composition as operators on S(R™, E) belongs to L*&JEC‘;;;[(R”;H; E,E),
i. e., the Leibniz-product a#tb of the symbols a and b (cf. Theorem 2.2.4) belongs
to ST (R* x R x H; E, E).

Moreover, for a#tb the following asymptotic expansion holds:

a#b~ Y i(@?a)(Dg‘b). (2.4.)

2.4.6 Remark. From Theorem 2.4.3 we conclude the pseudolocality property of
the parameter-dependent Volterra calculus (see also Remark 2.2.5):

Let A(N\) € L*‘L}l(]R”;]HI; E,E) be given by A(\) = op,(a)(\) with a double-symbol
a(x,z',E,\) € S"j;e(]Rn x R" x R* x H; E, E), such that a(z,2',&,\) = 0 for
|z — a'| < e for a sufficiently small € > 0. Then A(\) € L;;*(R"; [, E, E).

In particular, if ¢, ¢ € Cp°(R™) such that dist(suppy,suppt) > 0, then ¢ A(A\)Y €
Ly®(R";H; E,E). The mapping L““(R";H; E,E) 3 A(\) — @A\ €
Ly (R H; E, E) is continuous.

2.4.7 Theorem. For every u € R the principal symbol sequence in Volterra pseu-
dodifferential operators is topologically exact and splits:

HA

0 — L& SR H B, B) —5 LA (RY B, B) 25
C° (R*, SP59 (R x H) \ {0}; E, E)) — 0.

The translation operator Ty, for T > 0 gives rise to a splitting of this sequence.
Analogous assertions hold in case of scales of Hilbert spaces involved.

Continuity and coordinate invariance

2.4.8 Theorem. Let E and E be Hilbert spaces, and let a € Sﬁ;l(]R” x R x
H; E, E), as well as s,v € R with v > u. Then op,(a)(\) extends for A\ € H by
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continuity to an operator op,(a)()\) € L(H*(R*, E), H*~*(R", E)), which induces
a continuous embedding

b .
. 8 S¢ (H; H* (R", E), H* " (R", E >0

LY*(R";H; E, E) < ‘é \ ) ( ))N = (2.4.ii)
S, (H; H*(R", E), H*""(R*,E)) v <0

into the space of operator-valued Volterra symbols in the Sobolev spaces.

2.4.9 Remark. Let U C R" be an open set. Recall from Section 2.2 that an
operator A(\) € LMYR"*;H; E,E) is compactly supported in U if and only if
there is a compact set K C U xU such that

suppK 4(y) € K for all A € H (2.4.ii1)

where K 4(») € S'(R* xR*, L(E, E)) denotes the operator-valued Schwartz kernel
of the operator A(A).

For each compact set K C UxU the space of compactly supported Volterra

operators A(A) E~ L“ﬁfcl) (]R;;H;E,E) satisfying (2.4.iii) is a closed subspace of
L (RHEE).

(el)

Let Lé‘gfnpv(cl) (U;H; E, E) denote the space of all (classical) parameter-dependent
Volterra pseudodifferential operators that are compactly supported in U. This
space is endowed with the inductive limit topology of the subspaces of operators
with Schwartz kernels satisfying (2.4.iii) (taken over all compact sets K C UxU),

and thus it is a closed subspace of Lg;ﬂlp(cl)(U; H; E, E).

2.4.10 Theorem. Let U, V C R™ be open subsets and x : U — V a diffeomor-
phism. In view of Theorem 2.2.15 the operator pull-back x* (cf. (2.2.viii)) induces
a topological isomorphism

X LMt (Vi E,E) — LM

comp (cl) comp

(Cl)(UQHQE:E)-

Its restriction to the spaces of compactly supported Volterra pseudodifferential
operators acts as a topological isomorphism

XL ey (Vi B E) = L (U B E).
Moreover, given A(X) = op;(a)(\) € ngfnpv(cl)(V;H;E,E), then x*A(\) =

op:(b)(A) with a symbol b € S"ffd) (R* x R* x H; E, E) having the following asymp-
totic expansion in the Volterra sense in terms of a and x:

b(z,6,A) & Y (9 a)(x(@), [Dx(2) '€, Npa(2,6) (24.iv)

aeNy
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with the universal polynomials ¢, (x,€) in £ of degree less or equal to % and
po = 1 depending only on the diffeomorphism x from the asymptotic expansion
(2.2.ix) in Theorem 2.2.15.

In particular, we obtain b(x, €, ) — a(x(z), [Dx(z)]t,\) € SEHY(R® x R x
H; E, E).

Parabolicity for Volterra pseudodifferential operators

2.4.11 Definition. A symbol a € S{?l(]R” x R* x H; E, E) is called parabolic, if
a is parameter-dependent elliptic as an element in S*¢(R? x R* x H; E, E).

Let K € R" be compact. A symbol a € S“};e(]R{” X R* x H; E, E) is called parabolic
on K, if a is parameter-dependent elliptic on K as an element in SHER™ x R x
H; E, E).

An operator A(\) = op;(a)(N) € L“L}Z(Rn;H; E,E) is called parabolic (on K), if a
is parabolic (on K).
2.4.12 Proposition. Let a € S“;;(ecl) (R* x R* x H; E, E).
a) a is parabolic if and only if there exists an element b € S;fcll; (R* xR* xH; E, E)
such that
ab—1€S,( (R xR" xH, E, E),
ba—1€S, (R xR x H; E, E).
b) a is parabolic on a compact set K € R" if and only if there exists an element
b e S;“;e (R* x R* x H; E, E) such that a-b — 1 and b-a — 1 coincide with

(ch)
(classical) Volterra symbols of order —1 in a neighbourhood U(K) of K.

Proof. We only have to prove the necessity of the conditions in a) and b),
for the sufficiency follows immediately from the definition of parabolicity as
parameter-dependent ellipticity (see Definition 2.2.8 and Remark 2.2.9). Assume

that a € S"ffd) (R* x R* x H; E, E) is parabolic. According to Remark 2.2.9,

for some sufficiently large R > 0 there exists (a(z,&,)))"' € L(E,E) for all
z € R, (£,)) € R* x H with |€, A|¢ > R, and

sup{[|(a(z, &) THI(E N s = € R, € Ale > R} < oo

Consequently, if we choose 7 € Ry sufficiently large, we conclude that for all
¢ € R" and all (£,)) € R* x H there exists ((Tira)(z,£,)) " € L(E, E) with

sup{||((T,-Ta)(:v,f,)\))_lﬂ (€&, N)f; zeR, (N eR* x H} < 0
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for the symbol T} a € S{?él) (R* x R* x H; E, E) (cf. Proposition 2.3.11). Recall

that a — Tjra € S{jffl;)l(]R” x R* x H; E, E). Consequently we see, using Theorem

2.3.13, that the function

((Tira)(z, €, /\))71 in the general case

T;r (a(ﬂ))fl(w, &, A\) in the classical case

b(z,&,\) = {

belongs to S;Eﬁé (R* x R* x H; E, E) and satisfies the asserted condition in a).

Now assume that a € S"j;(ecl) (R* x R™ x H;E,E’) is parabolic on a compact set

K € R". Employing again Remark 2.2.9 we see, that there is a neighbourhood
V(K) of K and a sufficiently large R > 0, such that there exists (a(z,&,X))™" €
L(E,E) for all x € V(K), (£,\) € R* x H with |{, A]; > R, and

sup{[l(a(z, &, X)) I(€, N} 5 © € V(K), [€Ale > R} < oo

Passing as before to the symbol T;,a for sufficiently large 7 € Ry we see, that there
exists ((Tira)(x,&, X)) € L(E, E) for all z € V(K) and all (£,)) € R* x H, and

sup{[| (Tira) (2, &, X)) "1, N 5 z € V(K), (6,0) € R x H} < oo.
In the classical case we have
sup{[| T (aguy) ™ (2, & VIE N5 @ € V(E), (6,)) € R* x H} < oo,

Now choose a function ¢ € C§°(V(K)) such that ¢ = 1 in a neighbourhood U (K)
of K, and define

(2)((Tira)(z, & N)) ' inthe general case

¢
b(x, & N) = z
(&) {gﬁ(az)TiT (agu)) 1(:6,5,/\) in the classical case.

Then b belongs to S;Eﬁé (R* x R* x H; E, E) and fulfills the asserted condition in
b). 0

2.4.13 Theorem. Let A()\) € L“‘}[(R”;H;E,E). Then the following are equiva-
lent:

a) A()\) is parabolic.

b) There exists an operator P(\) € Ly***(R"; H; E, E), such that A\)P(\) -1 €
LySY(RY H; E, E) and P(\)A(N) — 1 € LS4 (RY; H; E, E) for some & > 0.

¢) There exists an operator P()\) € L;”;Z(R”;]HI; E,E), such that AN)P(\) —1 €
Ly (R H; E, E) and POA)A(M) — 1 € Ly (R*; H; E, E).
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If A(N) € L‘(}il(]}@;H;E,E) is parabolic, then every P(X) satisfying c) belongs
to Ly (R"; H; E, E). Every P(A) € L% (R"; H; E, E) satistying c) is called a
Volterra parametrix of A(A).

Proof. In view of Definition 2.4.11 of parabolicity for Volterra pseudodifferential
operators and Theorem 2.2.10 it suffices to show that a) implies b), and b) implies

c).

Assume that a) holds. Let A(\) = op,(a)(\) with a € SEY(R* x R* x H; E, E).
Let b € S;”;Z(R” x R* x H; E, E) satisfying the condition in a) of Proposition
2.4.12. Now the asymptotic expansion (2.4.i) in the Volterra sense of the Leibniz-
product in Theorem 2.4.5 gives that b#a — 1 € S;;"“(R* x R* x H; E, E) and
a#b—1e S, (R" x R" x H; E, E) which implies b).

Now assume that b) is fulfilled. Let P(A) = op.(b)(\) and A(N)P(A) = 1 —
opz(r)(A) with r € Sy¥(R* x R* x H; E, E). From Theorem 2.3.9 and The-
orem 2.4.5 we see that there is a symbol ¢ € S;E;Z(R” x R* x H; E,E) such
that ¢ > %#(j)r. Now define P(r)(A) := op.(b#(1 + ¢))(A). Then we have
j
AN Pgry(A)—1 € Ly (R*; H; E, E) as desired. Analogously, we obtain a Volterra
parametrix Pz)(A) from the left. But both the left- and the right-parametrix differ
only by a term in L{,*(R";H; E, E) which follows from considering the product
Pry(M)AN) Pry(A). This implies c). O

2.4.14 Corollary. Let A()\) € L"‘/;(ed)(]R{”;H;E,E) and K € R" be compact.
Then A(\) is parabolic on K if and only if there are ¢, € C§°(R™) such that
¢ = ¢, 9 =1 on K, and P(\) € Ly{5) (R E, E) such that ¢(A(\)P(A) —
1) € Ly (R H; E, E) and o(P(NA(\) — 1) € Ly (R*; H; E, E).

2.5 Volterra Mellin calculus

2.5.1 Definition. Let E and E be Hilbert spaces. For p € R the spaces of (r,r')-
resp. r-dependent (classical) parameter-dependent Mellin symbols with respect to
the weight v € R and parameter-space R are defined as

M, St (Ry) xR X Ty B, E) i= CF ((Ry )", {5 (R* x Ty

forg=1,2.

E,E))

i

The spaces of (classical) Volterra Mellin symbols of order u with respect to the
weight v € R are defined as

M, S (R X RY x Hy 3 B, B) := CF (Ry)*, $f, (R* x Hy _; B, B))

37!
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forg=1,2.

Analogously, we obtain the spaces of order —oo with respect to the weight v € R.
All these spaces carry Fréchet topologies in a canonical way.

With the same conventions as in Definition 2.1.3 we also have the (Volterra) Mellin
symbol spaces when we deal with scales of Hilbert spaces instead of single Hilbert
spaces only.

The operator of restriction of the half-plane Hlﬁ _~ to the weight line F%—v induces
continuous embeddings

Mvs\‘ﬁfcz)((&)q x R* x H%WQE,E) — Mwsfgll)((&)q xR"xT1 ;E, E)

for ¢ = 1,2, see also Proposition 2.3.2.

2.5.2 Theorem. Let {E;} and {E;} be scales of Hilbert spaces, and £ and € as in

Definition 2.1.6. Let (ur) C R such that u, — —oo and T1 := max py. Moreover,
k— o0 keNg

let a;, € M,S*¢(Ry x R* x F%_V;E,g'). Then there exists a € M,SF¢(R; x
~ o)
R™ x F%fwgvg) such that a ~ 3 aj. The asymptotic expansion a is uniquely

k=0
determined modulo M,S~>°(Ry x R" x F%,W;E,fj).

If ax € My SiH Ry x R x H%,W;E,E) are given, then we find a € M,SI'* (R, x
o0

R™ x HIE_,Y;(‘:,E) such that a > > ag, and a is uniquely determined modulo
k=0
M, Sy®(Ry x R x Hy_; &, ).

If the sequence (ur)ren, IS given as p, = I — k and the ay, are classical (Volterra)
Mellin symbols then also a is a classical (Volterra) Mellin symbol of order .

Proof. This follows in the non-Volterra case as in the proof of Theorem 2.1.8 from
Lemma 2.1.7. In the Volterra case we obtain the desired result analogous to the
proof of Theorem 2.3.9 from Proposition 2.3.8. |

2.5.3 Definition. Let E and E be Hilbert spaces, and g € R. With a Mellin
double-symbol a € M,S*{(Ry x Ry x R* x 1 ;E,E) we associate a family
2

of Mellin pseudodifferential operators op},(a)(€) € L(T,(Ry, E), T, (R, E)) for
& € R"* by means of the following Mellin oscillatory integral:

1 r\—? , o dr'
5 / /(r’) a(r,r", &, z)u(r') = dz
R4

r
1

—
(e}
=
gQ
—
s
=
—
8
~
<
=
—
<
~
I

1_oair 1 ) dr'
//7“'2 i a(r,rr' €, 3 v +ir)u(rr’) —7: dr.
r

RRy
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Taking into account the operator S, and its inverse from (1.1.i) and (1.1.ii) we see
that we may write

opa;(a) () = ST ope(as)(€)S, (2.5.1)

as operators on 7, (Ry, E), where the (Fourier) double-symbol a, € Cp°(R x
R, ¥ (R* x R; E, E)) is given as

/ 1
ay(t,t', & 1) = a(e_t,e_t L€, 3 —7+i7‘).

From (2.5.1) we thus see that the theory of Mellin pseudodifferential operators can
be carried over to some extent from the (standard) setting of operators based on
the Fourier transform.

2.5.4 Theorem. Leta € M S(cl) (Ry xRy xR" xI'y 5 E, E). Then there exist

unique Mellin left- and right-symbols ar,(r,&, z), ar(r',&,z) € M. S(d) (Ry x R™ x

I‘%_W;E,E) such that op},(a)(&) = opy,(ar)(§) = opy,(ar)(§) as operators on
TRy, E).

These symbols are given by the following Mellin oscillatory integrals:

z) = //si”a(r, s, &,z +1in) %d‘n,

RR,
in o . ds
z) = s a(sr,r,f,z—m)?d‘n.
RR,4

The mappings a — ay, and a — apr are continuous. Moreover, we have the asymp-
totic expansions

=1
’I" 67 ~ ZED ka(r7r’7£7z)|r’=r;
k=0
1
2) ~ Y (D DE=rd) alr ! 6, 2)
k=0

IfaeM Sv(d) (Rt x Ry x R™ x IHI%_,Y;E,E) then also ar,, ag € MVS"j;(ecl) (Ry x

R™ x H%_V,E,E), and the mappings a — ay and a — ag are continuous with
respect to the topology of the Volterra Mellin symbol spaces. In this case we have
the asymptotic expansions

NE
|

CLL(T,f,Z) "\; af(_rlar’)ka(ra TI7£72)|7":7‘7

=~
i
o

NE
|

aR(Tlafaz) "\; .(—l)kaf(—ra,,)ka(r, r17£72)|7‘:7"

=~
i
o
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in the Volterra sense.

2.5.5 Definition. For v € R define

M, L (R s RY B, B) = {op),(a)(€); @ € My SES (R x R x T'y_; B, E)},

M, L (R ;R B, B) i= {op}, (a)(€); a € M, Sy, (Ry xR x Hy_; E, E)}.

In view of Theorem 2.5.4 we conclude that op},(-)(§) provides an isomorphism
between these spaces and the corresponding (left-) symbol spaces. Via that iso-
morphism we carry over the topologies which turns the operator spaces into Fréchet
spaces.

2.5.6 Theorem. Let E, E and E be Hilbert spaces. Let a € M. S(”’l) (Ry x R™ x

Iy E ,E) and b € M, S” Z(]R+ X R" x I'1_ ;E,E). Then the composition as
operators on T,(Ry, E) may be written as

opyy (@)(€) © opy, (b) (&) = opy, (a#b)(€)

with the Leibniz-product a#b € M. S(”CJ[“ ‘(1& x R™ xF1 B, E) More precisely,

the Leibniz-product is given by the Mellin oscillatory 1ntegra1 formula

a#b(r,§, z) // z"a (r,&, z +in)b(rs, &, ) n, (2.5.ii)

RR,
and the following asymptotic expansion holds for a#tb:
— 1

a#b ~ ZE(D a)((—rd)*b). (2.5.ii)

k=0
The mapping (a,b) — a#b is bilinear and continuous.

IfaeMSV(l)(RerJRa"le EE)andbeMS (]R{+><]R xHy_.; B, E),

then also a#b € M, S”+“ Z(M x R x Hy_;

formula (2.5.ii) is valid for zeHy ,and the asymptotic expansion (2.5.iii) holds
in the Volterra sense, i. e.,

B E) and the oscillatory integral

o0

1 .
agtb ~ > E(@fa)((—r&,)kb). (2.5.iv)

k=0

In this case the mapping (a,b) — a#b is bilinear and continuous within the
Volterra Mellin symbol spaces.
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Proof. The assertion follows from Theorem 2.5.4. Note that a(r, &, 2)br(r',&, 2)
is a double-symbol for the composition, and the Leibniz-product is the associated
left-symbol. This also implies the continuity of (a,b) — a#b.

The oscillatory integral formula (2.5.ii) necessarily holds in the preceding situation,
for it holds in the non-Volterra case without parameters, and by uniqueness of
analytic continuation the formula is valid within the half-plane ]HhE o
The asymptotic expansions (2.5.iii) and (2.5.iv) follow from (2.5.ii) via Taylor
expansion. (I

2.5.7 Remark. The following pseudolocality property holds for Mellin operators:
Let a(r,r',&,2) € M, SRy x Ry x R* x Féfw;E,E‘), such that a(r,r',£,A) =0
for |4 — 1| < e for a sufficiently small > 0. Then op},(a)(&) = op},(c)(§) with a
symbol ¢ € M, S~®(R, x R* xT')__; E, E). If even a € M, S{*(Ry x Ry x R" x
Hi ;E, E), then also ¢ € M, S, (R, x R* x lew;E,E‘).

In particular, if a(r,&,z) € M,SH¢(Ry x R* x I‘%fv;E,EN') and ¢, € CF(Ry})
such that dist(suppy, suppyy) > 0, then @op),(a)(§) ¢ = opi;(ayv)(€) with a
symbol a, 4 € M, S™ (R x R* x I‘%fw;E,E), and the mapping a — a, .y is
continuous. If even a(r,&,z) € M,YS“};K(]RLL x R x H%_W;E,E‘), then also a, €
M, S, (Ry xR™ x HIE_,Y; E, E). In this case the mapping a —> a,,y is continuous
with respect to the Volterra Mellin symbol spaces.

2.5.8 Theorem. Let a € MWS“?[(]R_F x R™ x Hla ;E,E). Then opy(a)(§) re-

—i
stricts for every ro € Ry to a family of continuous operators

opy(@)(€) : Tr0((0,70), B) — T,,0((0,70), E).

Proof. Without loss of generality assume n = 0. We may write
(op3r(@)u) (r) = (ML, valr, 2) Moy oy cu) iy (1)

for v € T,(Ry,E). Now let u € 7,0((0,70),E) be given and r € Ry
fixed. In view of the Paley-Wiener characterizations (see Section 1.1) we have
Myu € A(H%_V,E;ro). For a is a Volterra symbol by assumption we see that
a(r, z) (Mu)(z) may be regarded as an element of A(Hy_,, E;rp),i.e.,aacts as a
“multiplier” in the spaces A(H% _»";70). Employing again the Paley—Wiener char-
acterizations we now conclude that M;}z_w,a(r,z)./\/l%rqzu € T,0((0,70), E),
where the subscript ' indicates that we consider the latter function space in the

variable r'. In particular, evaluation at 7' = r yields that (1) necessarily vanishes
for r > ry which finishes the proof of the theorem. O
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2.5.9 Remark. Theorem 2.5.8 provides the motivation for the name “Volterra”
symbols respectively operators:

If we regard the Mellin pseudodifferential operators as

opy(@)(€) : C5°(Ry.) — C=(Ry, L(E, E)),

then we obtain for every ro € R} as in Theorem 2.5.8 that (op},(a)(&)u)(r) =0
for r > 1o, if u € C§°(Ry) such that u = 0 for 7 > ro. In other words, the
operator-valued Schwartz kernel K,,» (a)(¢) € D'(Ry x Ry, L(E, E)) satisfies

supp Koy (a)(e) € (7 ryeRy xRy; r<r'}
for all £ € R™.

This gives the link to (classical) Volterra integral equations where the kernel is
supported on one side of the diagonal only.

Continuity in Mellin Sobolev spaces

2.5.10 Definition. Let E be a Hilbert space. For s, € R define the Mellin
Sobolev space H*7(Ry, E) to consist of all u € 7/(Ry, E) such that M. u is a

regular distribution in S’(F%ﬂ, E), and

1 . ‘ 3
o = (5 [ EPIM ) <.
I

llul
3
In case of E = C the space is suppressed from the notation.

The operator S, from (1.1.i) provides an isomorphism S, : H*"(R.,E) —
H*(R E).

For rp € Ry we define the space Hy" ((0,70], E) to consist of all u € H*"(Ry, E)
such that supp(u) C (0,70]. This is a closed subspace of H*"(R;, E) and equals
the closure of 75 0((0,79), E) in H*Y(Ry, E).

2.5.11 Theorem. Let E and E be Hilbert spaces. Let a € M, S (R, x R* x

I‘%_W;E,E‘) and s,v € R where v > 4. Then op),(a)(§) extends for § € R"

by continuity to an operator op},(a)(¢) € L(H*Y (Ry, E), H* (R, , E)), which
induces a continuous embedding

SE(RY; HY (Ry, E), H*~"7 (R, E)) v >0

ML LR R E, B) :
T ) {SN—%W;%M(&,E),%s—"ﬂ(&,E>> v <0
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into the space of operator-valued symbols in the Sobolev spaces.

Moreover, restriction of Volterra pseudodifferential operators to the Mg -spaces
provides continuous mappings

SH=V (R 1Y ((0,70), E), Hy ™7 ((0,70], E)) v <0

MWLF\L/;Z(]R—F;]R”;E;E) — {SN(]RTL;IHSN((Oaro]:E)vﬂg_uﬁ((oaro]aEN')) v>0

for each ro € Ry

2.5.12 Remark. Employing relation (2.5.0) there is analogously a parameter-
dependent pseudodifferential calculus with parameter-space R™ for operators based
on the Fourier transform, where the action in the covariable is carried out in the
“Volterra”-covariable, i. e., the covariable which extends holomorphically into an
upper or lower half-plane in C.

The analogue of Theorem 2.5.8 is valid within this calculus, which follows in the
same way from Paley—Wiener characterizations as in the proof of Theorem 2.5.8,
but now with the Fourier transform involved. We will not state the details for they
are straightforward in view of the properties of the operator S, as well as (2.5.i)
(see also Section 2.7).

2.6 Analytic Volterra Mellin calculus

2.6.1 Definition. Let E and E be Hilbert spaces. Moreover, let z = § + it € C
be the splitting of z € C in real and imaginary part. For u € R define the Fréchet
spaces
ity (B" x G B, E) == A(C,$" (R E, £)) N C®(Rs, S} (R x Ts; B, E)),
i€ n o H n n H n i
S\F;,O(cl)(]R xC E,FE) = Sg(cl)(]R xGE,E)N S‘Fj(cl)(]R x Hy; E, E)

with the induced topologies. Analogously, we define the corresponding symbol
spaces when we deal with scales of Hilbert spaces.

2.6.2 Notation. For an interval ) 2 I C R we shall use the notation
[;:={2€C Re(z) e I}

for the strip in the complex plane over I.

2.6.3 Proposition. Let ) # 1 C R be an open interval and p € R. Let

é;’;’CAé‘;f) (B,E) :={a€ AT, S*(R"; E,E)); alr, € Sgﬁf; (R* x T'3; E,E)

locally uniformly for § € I},

Cx AL (B, E) = {a € A1, S*(R"; E, E)); a € C®(Is, S (R" x I's; B, )}
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endowed with their natural Fréchet topologies. Observe that for I = R we recover

Sty (R xC; B, E) = C® A%} (E, E).

a) The embedding t : C‘X’Aé‘;f) (E,E) — e;chg‘;f) (E, E) is onto and provides an

isomorphism between these spaces.

b) The complex derivative is a linear and continuous operator in the spaces 0, :

U5 AL (B, E) = 635.A¢ 5B, B).

¢) Givena € e;chg‘;f) (E, E), we have the following asymptotic expansion for alrg,

in terms of a|r, for every By, 8 € I which depends smoothly on (8o, 3) € IxI:

oo

Y
alry, ~ 3 P k),

k=0

d) For arbitrary 3 € R we have S“fé(cl) (R*xC;E,E) — S“j{cl) (R*xHjs; E, E).

Ifa € S"j;eo(cl) (R*xC; E, E), then we have alm, € S"j;(ecl) (R* xHgs; E, E) as a

smooth function of f € R, and the asymptotic expansion
— (Bo = B)* &
iy, v Z A (020) I,
k=0 ’
is valid, which depends smoothly on (8o, 3) € RxR.

e) For 8 € I and pu > ' the identity

(s A (B, E)NSLL (R x Tg; B, E) = G5, AL (E, E)

holds algebraically and topologically.
f) For B € R and p > u' the identity

HA n = 7 n -\ 7 n . 3
SUL(R xC; B, B)NSY 4 (R" x Hg; B, E) = S (R*xC E, E)

holds algebraically and topologically.

From the expansions in ¢) and d) we see, that in the classical cases the homogeneous
principal symbols of the restrictions do not depend on the particular weight line
or half-plane.

2.6.4 Proposition. a) Let ) #1 C R be an open interval. Moreover, let a €
C¥(Ry, 022 A% (E,E)) (cf. Proposition 2.6.3). Then for v,7' € R such that

Ioc

=73 —7" €1 we have op},(a)(§) = op;(;(a) (€) as operators on C{° (R, , E).
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b) Let v,6 € R and a € M,S*‘(Ry x R* x ['s_;E,E). Then we have
2
op), (@) (&)’ = r9op) T’ (T_sa)(€) as operators acting in T,_s(Ry,E) —»

T, (Ry, E), where T_sa € M.,_sS**(Ry x R* x F%_VH;E,E‘) is defined as
(dea) (T',f, % -7 + d + ZT) = a(nf: % -7 + ZT)

Proof. For the proof of a) note that we may write for u € C§°(Ry, E)

(0p}, (@)(©)u) (r) = — / r=Sa(r, £, ) (Mu) (¢) .

T 2mi

Ly,
By Cauchy’s theorem we may change the line of integration from F%—v to F%—v’
which shows a).
We have to prove the asserted identity in b) only as operators on C§°(Ry, E) in
view of the density. We may write for u € C§°(Ry, E)

(0p}(@)(€) (u)) (r) = / rSa(r,€,¢) (Mu) (¢ + 8) dC

21
B

L / r 60 (T_sa) (r, €, ) (Mu) (€) dC

211

F%—7+5

r (op3 * (T-sa) (€)u) (r).

O

2.6.5 Definition. Let E and E be Hilbert spaces. For p € R the spaces of (r,r')-
resp. r-dependent (classical) parameter-dependent holomorphic Mellin symbols
with parameter-space R are defined as

Msg;él)((R%»)q x R x (C,E7_E~') = C]ogo((ﬁ{»)‘%Sé{g[)(R” X (C,EyE))

forg=1,2.

The spaces of (classical) holomorphic Volterra Mellin symbols of order p with
parameter-space R are defined as

MSY6 . (Ry)! xR x G E,E) := CF (Ry)", Skt ) (R* x G E, E))

forg=1,2.

Analogously, we obtain the spaces of order —oo. All these spaces carry Fréchet
topologies in a canonical way.
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With the same conventions as in Definition 2.1.3 we also have the (Volterra) Mellin
symbol spaces when we deal with scales of Hilbert spaces instead of single Hilbert
spaces only.

For every v € R the embeddings
MSEL (Ry)T xR x G E, B) < M, S/ (R.)? x R* x T __;E, f),
MY (Re)? x R x G E,E) <= M, Sy, (Ry)! x R* x Hy__; E, E)

V(el)

are well-defined and continuous for ¢ = 1, 2.

2.6.6 Definition. Let (ur) C R be a sequence of reals such that p, — —oo,

k—o0

and 7 := max pg. Moreover, let ap € MS(”&;)ZO(@+ x R* x G, E,E). A symbol
_ keN . ’
a € MSHE (Ry x R* x G, E, E) is called the asymptotic expansion of the ay, if

(V)0
for every R € R there is a kg € N such that for k£ > ko

k
a—) aj€ MS(IE}";O(RF xR* x G E, E).
j=1

The symbol a is uniquely determined modulo MS(_V";’O(E+ xR* x G, E,E).

o ]
We shall again employ the notation a ~ > aj.
i=1

Elements of the calculus

2.6.7 Theorem. Lety € R anda € MS(”\%)O(CZ) (Ry xR,y xR xC; E,E). Then
the Mellin left- and right-symbols ay,(r, €, z), ar(r', &, z) associated to the operator
op}s(a)(§) from Theorem 2.5.4 belong to MS(“;,SO(CZ) (Ry x R* x C; E, E) and do
not depend on the particular weight v € R. The oscillatory integral formulas for
ar, and ag in terms of a from Theorem 2.5.4 hold for z € C, and the mappings

a+— ar, and a — agr are continuous.

Moreover, we have the asymptotic expansions in the sense of Definition 2.6.6:

65(_7‘167")]60’(7‘7 ,,_I) g: Z)|r’:r:

=~
Il
o

NE
==

ar, (Ta f: Z) ("\;

(=1)*0k (—rd, ) ka(r,r' &, 2)|pmp.

=~
Il
o

52
NE
==

aR(Tlafa Z) (
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2.6.8 Definition. Define

MoLtt (Ry s R'; B, B) = {op},(a)(€); a € MSEL, By x B x G B, E)},

it LR [y o— . it ™ . n
MV,OLI(JCZ)(]R-Fa]Rn)EaE) = {Op}yw(a)(f)) ac MS€7O(Cl)(]R+ x R" x (CaEaE)}
In view of Theorem 2.6.7 op},(-)(§) provides an isomorphism between the operator

spaces and the corresponding (left-) symbol spaces. Via that isomorphism we carry
over the topologies which turns the operator spaces into Fréchet spaces.

We do not refer to the particular weight v € R which is on the one hand justified
by Theorem 2.6.7, and on the other hand by Proposition 2.6.4.

2.6.9 Theorem. Let E, E and E be Hilbert spaces, and let a € MSEL‘ZZ)O(CD (R, x
R x C;E,E), as well as b € MS(“VfO(Cl) (Ry x R* x C; E, E). Then the Leibniz-

product a#tb from Theorem 2.5.6 belongs to MSE“;)”(;(ZCD(E+ xR" x C; E,E) and
is independent of the particular weight v € R. The oscillatory integral formula
(2.5.1i) for a#tb in terms of a and b holds for z € C, and the mapping (a,b) — a#b
is bilinear and continuous.

The following asymptotic expansion holds for a#b in the sense of Definition 2.6.6:

o0

b ~ Z%(@fa)((—r@r)kb). (2.6.)

V)=

Moreover, we have the following formula for the derivatives of the Leibniz-product:

k

o (a#h) =3 (’;) (T ;D) #(357b), (2.6.ii)

=0

where T' denotes the translation operator for functions in the complex plane.

2.6.10 Definition. Let op},(a)(€) € Mo LR, ;R*; E, E). For k € Ny we de-
fine the conormal symbol of order -k via

Uﬂ“ (op3;(@)(9) (&, 2) == %(Gfa) (0,¢,2). (2.6.1ii)

The conormal symbol of order 0 is also called conormal symbol simply.
Let op), (b)(€) € MoL**(R, ; R*; E, E). Then we obtain from (2.6.ii) the follow-
ing formula for the conormal symbols of the composition
or (0Pl (@) = 3 T_y037 (00} (@) (©) o (b} (D)), (26.iv)
p+g=k

where 7' denotes the translation operator for functions in the complex plane.
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2.6.11 Remark. By Theorem 2.6.7 the following pseudolocality property of the
calculus is valid:

Let a(r,r',&,2) € MSEL‘}Z)O(E+ x Ry x R* x C; E, E), such that a(r,r',£,\) = 0
for |Z — 1| < e for a sufficiently small € > 0. Then op},(a)(¢) = opj},(c)(§) with

a symbol ¢ € MS(VO)OO(K+ x R* x G, E, E).

In particular, if a(r, &, 2) € MS(‘{,SO(KJF xR x G B, E), and ¢, € C¥(Ry) such
that dist(suppe, suppy)) > 0, then pop),(a)(§) ¥ = op},(ap,)(§) with a symbol

Qpy € MS(VO)OO(KJF x R* x C; E, E). The mapping a — a,,yp is continuous.

The Mellin kernel cut-off operator and asymptotic expansion

2.6.12 Definition. Let E and E be Hilbert spaces. Define the Mellin kernel cut-
off operator with respect to the weight v € R by means of the Mellin oscillatory
integral

(H, (p)a)(&,2) = //r”go(r)a(g,z —ir) TTJT (2.6.v)
R0
for (§,2) €R* xI'y_ and p € CF(Ry), a € SHE(R™ x F%ﬂ;E,E).

Note that we may rewrite (2.6.v) as

(Hy(@)a) (6,5 — 7 +i7) = (H(Sy¢)as) (€,7)

with the Fourier kernel cut-off operator H as introduced in Definition 2.3.5, the
transformation Sy : 3 (Ry.) — Cp°(R) from (1.1.), and a4 (€, 7) = a(é, 5 —7+
iT).

Analogous notions apply in case of scales of Hilbert spaces involved.

2.6.13 Theorem. Let {E;} and {E;} be scales of Hilbert spaces as in Definition
2.1.3. We again use the abbreviations

& := ind-lim E; d & :=projimE;.
InjeNlm j an pr?_]ENIm j

The Mellin kernel cut-off operator with respect to the weight v € R acts as a
continuous bilinear mapping in the spaces

H, : OF (Ry ) xSE) (R x Ty _ 3 €,E) — SEN(R" xTy_;€,8).
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It restricts to continuous bilinear mappings in the spaces

O3 (Ry ) xSl (R X Hy_ 5 €,E) — S, (R" x Hy 3 €, )
H, : 4 O (Ry. ) x Spip (R™ x r%_,y,g,g) — St (R X C; 5 &) )
ch(&)xsgfd)(Rn xHy_;€,€) — s%( H (B X CE,E).

6,8 in

The following asymptotic expansion holds for H.,(¢)a € S*¢(R™ x Iy

terms of p € C%¥(Ry) and a € SHY(R™ x F%_V;E,g'):
— 1
Z 71 r0r) (1)l =1 - Dra.
=0
In case of Volterra symbols we obtain

Ifp € C°(Ry) and a € S“?‘(]R” xT1_;
asymptotic expansion of H,(p)alr, € SHER™ x 'y
1oom

|r18a

w||_\

&,€) we have for every § € R the following
15, &) in terms of ¢

and a:

o0 1 B
Hy(p)ale,  , ~ Z? )er=9(r)|r1 - DFa.

If ¢ € C§°(Ry) such that p = 1 near r = 1, then the operator I — H.(¢) is
continuous in the spaces

SR x Ty

I—H,(y): {S”’ (]R" % HL

—i
2.6.14 Theorem. Let (ur) C R such that —) —o0 and i := inaxuk. More-

over, let aj, € MS(“&’)O(]RQ x R* x G &,€). Then there exists a € MAS”(”V‘({)O(KJr x

R x C; &, &) such that a (r;) Z ay in the sense of Definition 2.6.6. The asymptotic
k=0
expansion a is uniquely determined modulo MS(VC’;’O (Ry x R* x G;&,€).

If the sequence (pr)ren, IS given as p, = @ — k and the ay, are classical (Volterra)
Mellin symbols then also a is a classical (Volterra) Mellin symbol of order fi.

Proof. According to Lemma 2.1.7 and Theorem 2.1.8, or Proposition 2.3.8 and
Theorem 2.3.9, respectively, we first obtain a symbol

ce CF (Ry, SEYR™ x To;E,E))
CF Ry, SPA(R™ x Hy; €,E))
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o0 o0

such that @ ~ 3 ag|r,, respectively @ > ak|r, - Now define a := Hy ()@ with
k=0 k=0

the Mellin kernel cut-off operator Hy, and a function 1 € C&°(Ry) such that

¥ = 1 near 7 = 1. From Theorem 2.6.13 we now obtain that a € MS(H‘;,SO(K+ X

R" x C;&,&), and moreover alp, ~ @ resp. alg, v a. From Proposition 2.6.3 we

o0

now conclude that indeed a N) > ay, in the sense of Definition 2.6.6 as asserted.
V) k=0

In the classical case we have @ and consequently also a as classical symbols. O

Degenerate symbols and Mellin quantization

2.6.15 Definition. Let £ and E be Hilbert spaces. For ¢ € C§°(Ry) and a €
SHt(R" x R; E, E) define

Q(p,a)(&,z) = //e_is”ei"s_ztp(s)a(f,n) ds dn (2.6.vi)
R R

for (§,2) e R* x C.
Moreover, for every v € R we define for v € Cg°(Ry) and a € SHER™ x
Ty ;B E)

1 4

Q4 (¥, a)(&,2) == =— //sﬁe“s*)w(s)a(f,c)%d( (2.6.vii)
0

for (¢,2) e R* x C.

If ¢ = 1 near r = 1 respectively ¢ = 1 near r = 1 we simply write Q(y,a) = Q(a)
and Q (¥, a) = Q(a), respectively. The mapping @ is called Mellin quantization,
Q) is called inverse Mellin quantization with respect to the weight v € R.

2.6.16 Theorem. Let {E;} and {E;} be scales of Hilbert spaces, and £ and &
as before.

a) The operator ) from (2.6.vi) provides continuous bilinear mappings

C5°(Ry ) xSty (R x B €,€) — Shit,) (R*XGE,€)

©: {Cg(&)xsg?{d)(w X H;E,E) — Stip (R XCE,E).

Moreover, there are universal coefficients (cg,j(,7)) depending neither on a
nor on the Hilbert spaces, but only on {(0%¢)(1); v € No} and v € R, such
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that the following asymptotic expansion holds for Q(p,a)|r, , respectively

%77
Q(cp,a)|H1 y in terms of a:
277

oo k

Q((pa a) (f: % -7 + ZT) (f;) (p(l)a(fa _T) + Z Z Ck,j ((par}/)(_T)j (a£+ja) (f: _T)
k=1 j=0

(2.6.viii)

for T € R, respectively T € H_.

b) The operator Qn, from (2.6.vii) provides continuous bilinear mappings

(cl)

C5°(Ry ) x Sy (R x Hy_ 5 €,E) — St (RMXCE,E).

- {Cg"(]Rq)xS“;e (R x Ty _;€,E) — Sk ) (R xC;E,E)
y
(cl)

The spaces in the image are given by means of the isomorphism
HA 5 . HA 5
Stvyioen R xXCE,E) 3 a(§, 2) — a(§, —iz) € S o) (R XC E,E).

Moreover, there are universal coefficients (dy,;(1,v)) depending neither on
a nor on the Hilbert spaces, but only on {(0%¢)(1); v € No} and v € R,
such that the following asymptotic expansion holds for QV(@ZJ, a)|r, respectively
QW(’I/J, a)|y, in terms of a:

Q)67 o B(Dal6 5~ - in)
oo k

N . 1 '
#3007 (—im) (5 a) (€ 5 — 7~ im)
k=1 j=0
(2.6.ix)
for T € R, respectively T € H.

c) For ¢,7p € C§°(R}) such that ¢ =1 and ¢ = 1 near r = 1 we have

) S—OO(]R{’LXF%,W;E,E)
Q(Qy(a)) —a € {SVOO(]R”'XH%V;E:,S):
. S*OO(]R”X]R;S,E)
@+(Q(a)) —a € {SVOO(]R”XH;E;E)

2.6.17 Remark. Let ¢, € C5°(Ry) such that ¢ = 1 and ¢ = 1 near r = 1.
By Theorem 2.6.16 the mappings @ : a — Q(a) and Q4 : a — Q(a) provide
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isomorphisms

' SEN (R X RE,E) /S (R x R;E,€)
— S (R XC;E,6) /S5 (R X T €, £)
Stil (R X BEE, €) /Sy (R x HLE, )
L _)S\ijﬁ)(cl)(RnXQ&E)/S\ZO(;(R"XC;E,E),
SER (R x Ty E,€) /S (R" x Ly 6,8 )
0. - — 81y (B G E,E)[S 5O (R G €,E)
vt gHit (R* x H12 E,€)/Sy° (R x Hlﬁ_,y;g,g)

V(cl) L~ & ]
y — Sy (R XC E,6) /8,55 (R X £, E).

On the level of quotient spaces, (Q and Qn, are independent of ¢ and v, respectively,
and we have (), = Q™! (according to part ¢) of Theorem 2.6.16).

2.6.18 Theorem. Let E and E be Hilbert spaces, and let @, € C;°(R.) be
fixed such that ¢ =1 and ¢ =1 near r = 1.

a) Let @ € C®°(Ry,SHY(R" x R; E, E)), and define a(r,¢,7) := a(r,&,r7). Then
we have for every v € R

!

0p.(a)(€) — 0P}, (Q(@)(©) = op: (1~ ¢) (>)a) ()

as operators in Cg°(Ry , B) — C®(R,, E).
b) Leta € C™(Ry, S (R* xTy_; B, E)), and define a(r, &,7) := Q. (a)(r, &, 7).
Then we have

,,_I

op3(@)(€) — opr(a)(€) = opy, (1 = ¥)(=)a)(¢)

r

as operators in C§°(Ry, E) — C®(Ry, E).

2.6.19 Remark. Theorem 2.6.18 gives the explanation for the name “Mellin
quantization” for the operator @, and “inverse Mellin quantization” for Q. To-
gether with Theorem 2.6.16 it follows, that modulo “smoothing” (Volterra) oper-
ators we obtain isomorphisms between Fourier pseudodifferential operators with
degenerate (Volterra) symbols on the half-axis and (Volterra) Mellin pseudodiffer-
ential operators.

Note in particular, that if in a) or b) the dependence of the symbol @ on r € Ry
is CF (R4, ), then so is also the dependence of Q(a) or Q)(a), respectively.
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2.7 Volterra Fourier operators with global weight
conditions

2.7.1 Remark. In this section we briefly recall the elements of a parameter-
dependent pseudodifferential calculus based on the Fourier transform, where the
action is carried out with respect to the Volterra covariable, and the symbols glob-
ally satisfy weighted estimates in the variable. In view of the considerations from
Section 2.5, note in particular relation (2.5.1), these are easily obtained together
with the general theory of such global operators, see, e. g., Cordes [10], Dorschfeldt,
Grieme, and Schulze [11], Parenti [45], Schrohe [55], or Seiler [64].

2.7.2 Definition. Let E and E be Hilbert spaces, and let again H be the upper
half-plane in C, and u, 01,02 € R The spaces of globally weighted (Volterra)
double- resp. left-/right- symbols with parameter-space R” are defined as

Sézc,lghez;e(]R « R x R™ x R;E,E) = S92 (R x R, S(“c;le) (R* x R;E,E’)),
Sé‘c’f;“e(ﬂﬁ x R* x R; E, E) := S (R, Sf‘gf) (R* x R; E, E)),

S R x R x RY x B B, E) := 599 (R x R, S}, (R x H; E, E)),
S“j’(illie(]l% x R" x H; E, E) := S%' (R, S%l) (R" x H; B, E)).

With a symbol a € S*¢1:¢2{(R x R x R* x R; E, E) we associate a family of
pseudodifferential operators acting as continuous operators

op,(a)(€) : S(R, B) — S(R, E)

for £ € R™ as in Section 2.2. The corresponding operator spaces are denoted as
follows:

Lt (R R™; B, B) := {op,(a)(§); a € S (R x R* xR, E, E)},

L& (R R™; B, E) := {op,(a)(¢); a € SPE (R x R* x H; E, E)}.
As before, Theorem 2.7.4 below guarantees that these spaces are well-defined in
the sense, that the action applied to left-symbols only already gives the full space
of operators, and by means of the uniqueness of the left-symbol for the action of
the operator we have the canonical isomorphism between symbols and operators,
which induces a Fréchet topology on the operator spaces.

2.7.3 Remark. In the sequel, the asymptotic expansions are to be understood in
the following sense:

Let (ur),(or) C R be sequences such that ug, 0 — —o0, and @ := max py, as
k— o0 keN
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well as ¢ := max g. Moreover, let
keEN

. Sukyek?l(]RX]Rn X]R;E7E)
Qa i 2
k S"‘jk’gkyl(]Rx]Rn xH;E,E)a

SHEl (R x R* x R, E, E)
SEEYR x R* x H; B, E).

We write a (N) > aj if for every R € R there is a kp € N such that for k£ > kg
j=1

k SRRELR x R* x R E, E)
- gR.Rit " HE.E
vV T RxR*xH E,E).

2.7.4 Theorem. Leta € S*2123¢(Rx Rx R" x R; E, E). Then there exist unique
left- and right-symbols ar (r,€,7), ar(r',&,7) € SWertet(R x R x R; E, E) such
that op,(a)(§) = opr(ar)(§) = opr(ar)(§) as operators on S(R, E). These symbols
are given by means of oscillatory integral formulas analogous to that of Theorem
2.2.2. The class of Volterra symbols remains preserved, i. e., if a € 55’91792;4(]1% X

R x R* x H; E, E), then also ar,,ar € S TR x R x H; E, E).

More precisely, the mappings a — ar,,apr are well-defined and continuous in the
spaces

GHe1se2;t (R xR x R" x ]R;E,E) } {Su791+92;f(R xR" x R; E Ev)

(el) -
e (R x R x R x H B, ) St (R x R x B B, E).

Vi(el)

Moreover, we have the asymptotic expansions

00
Z Dk’a (ry 1" &) [ =r

g i

YeOR DEa(r 1!, &, 7) |peyr-

??‘||_A

2.7.5 Theorem. Let E, E and E be Hilbert spaces. Let

(el)

. SMEYR x R* x R; E, E)
“ESeE (R x R x BB, B),

(eh)

b SR x R x Ry B, E)
S“j(’fl)e(]Rx]R” x H; E, E),
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and A(§) = op,-(a)(€), B(&) = op,.(b)(€). Then the composition as operators on
S(R,E) is given as A(§)B(§) = opr(a#b)(§) with the Leibniz-product

(el)

Shtuetei R x Rr x H; E, E).

4h e {SHJrN’yQJrQ’;l(]R xR" xR E, E)
a
(ct)

of the symbols a and b. The analogue of the oscillatory integral formula (2.2.i)
for the Leibniz-product from Theorem 2.2.4 is valid, and we have the asymptotic

expansion
o0

1
aF#b o Z E(@fa)(be).

k=0

2.7.6 Remark. From Theorem 2.7.4 we obtain the following pseudolocality prop-
erty of this calculus:

Let -
S}thyQZ?l(R xRxR* xR, E,F)

a(r,r' €,7) € ; -
( &) {55791,921(]1@ XxRxR"xH; E, F)

such that a(r,r',&,7) =0 for |r — 7’| < ¢ for a sufficiently small € > 0. Then

L= ~%(R;R"; E, E
oprla)(e) € 47 R
1% (RzR 7E7E)'

2.7.7 Proposition. Let a € S% (R x R" x H; E, E). Then op,(a)(£) restricts
for every ro € R to a family of continuous operators

op () (€) : So((=00,70), E) — So((~00,70), E).

Proof. This follows analogously to Theorem 2.5.8. d

2.7.8 Notation. Let [] : R — R, be a smoothed norm function, i. e. [-] €
C>®(R,R,), and [r] = |r| for |r| sufficiently large. Note that []¢ € S¢(R) for every
oe R

2.7.9 Theorem. Let {Ey, E,E,} and {Ey, E, E,} be Hilbert triples, and A(£) =
opr(a)(§) with a € SE‘(J’Z‘;;Z(R x R" x R; Ey, Ey). Then the formal adjoint operators

A(€)™)? with respect to the []~° L?-inner product belong to Lé‘c’l");e(]R; R"; By, Ey).
More precisely, for u € S(R, Ey) and v € S(R, E1) we have

/ (A(E)u) (), 0(r)) [ dr = / (u(r), (AE)D20) (1) p [ dr

R R
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with A(&)*)% = op,.(a*)?)(¢), where a™*)9 ¢ Sélc’l‘;;l(]R x R* x R; Ey, E) is given

a0 = (1] (alr', &,7)) "),

We have the asymptotic expansion

a5 (rer) ~ Y S (7P D) (95 DY alr £,7))").

Dlol
k=0 prg— DT
2.7.10 Definition. Let E be a Hilbert space. For 5,6 € R define
H**(R, B) := (r) " H*(R, E)

with the Sobolev space H*(R, E), see Definition 2.2.12. This space is endowed with
the induced scalar product which turns it into a Hilbert space.

Moreover, for rg € R let Hg’a((—oo,ro],E) denote the closed subspace of all
u € H*(R,E) such that supp(u) C (—o0,7g], which equals the closure of
So((—=00,70), E) in H*°(R, E).

2.7.11 Theorem. Let E and E be Hilbert spaces. Moreover, let a € S*%{(R x
R* x R; E, E), and s,0,v,0' € R where v > % and ¢§' > .

Then op,(a)(§) extends for § € R™ by continuity to an operator op,(a)(§) €
L(H**(R,E), H*"9~9 (R, E)), which induces a continuous embedding

SH(R™ H**(R, E), H* "% (R E)) v>0

LY (R;R™; B, E) — o
( ) {S“”(JR”;HS"*(JR, E),H """ (R,E)) v<0

into the space of operator-valued symbols in the Sobolev spaces.

Moreover, restriction of Volterra pseudodifferential operators on the H; ’J—Spaces
provides continuous mappings

SH(R™; Hy (=00, 70}, B), Hy "~ (=00, 70), E))
if v>0

Sk (R Hy (=00, 7o), B), Hy 070 ((—o00,10), E))
if v<0

L% (®R;R"; E,E) —

for each ro € R.
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