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Abstract

The inhomogeneous d-equation is an inexhaustible source of locally
unsolvable equations, subelliptic estimates and other phenomena in par-
tial differential equations. Loosely speaking, for the analysis on complex
manifolds with boundary nonelliptic problems are typical rather than el-
liptic ones. Using explicit integral representations we assign a Fredholm
complex to the Dolbeault complex over an arbitrary bounded domain
in C".
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Introduction

Ellipticity of differential (or pseudodifferential) operators is usually formulated
as a condition on suitable symbols. It is then expected that the ellipticity
entails the Fredholm property in reasonable scales of spaces, e.g., Sobolev
spaces.

For operators on a compact closed C'* manifold this is a well-known re-
lation. There is a natural analogue for complexes, where ellipticity is the
exactness of a corresponding complex of symbols, and the Fredholm problem
means the finiteness of the associated Euler characteristic.

Standard complexes such as the de Rham and the Dolbeault complexes be-
long to the latter category, and it is well known, see Atiyah and Bott [AB67],
that they possess a parametrix in the class of elliptic pseudodifferential com-
plexes.

The case of a compact C*° manifold with boundary is completely differ-
ent. If a certain topological obstruction for the principal symbols vanishes, cf.
Atiyah and Bott [AB64], there are elliptic boundary conditions in the sense
of the Lopatinskii condition. Associated boundary value problems are again
Fredholm in standard Sobolev spaces, cf. also [BAMT1].

On the other hand, the Cauchy-Riemann operator in one complex variable
and many other interesting geometric operators on a manifold with boundary
are elliptic, but they do not admit any elliptic boundary value problems in
that sense.

The program to study boundary value problems without Lopatinskii condi-
tion has been stimulated by the paper of Atiyah, Patodi and Singer [APS75],
who represented the signature of a Riemannian manifold as the index of a
Dirac-type operator under nonlocal boundary conditions. The Fredholm the-
ory of such operators was actually well known in another language by the work
of Kondrat’ev [Kon67] in the context of operators on a manifold with conical
singularities.

It was Calder6én [Cal63] who first suggested a more general approach to
boundary value problems. Given any elliptic differential operator A, the
Cauchy data on the boundary for any solution to Au = 0 uniquely deter-
mine v up to a finite-dimensional effect. Hence it follows that any Fredholm
operator in the space of Cauchy data leads to a Fredholm boundary value
problem for the initial equation Au = 0, too.

In fact, the Cauchy data spaces give rise to various function spaces in the
domain, not necessarily to Sobolev spaces. An example are the generalised
Hardy spaces.

Also Seeley’s paper [See69] belongs to this development, as well as a calculus
of Schulze [Schu01] who completed the set of such problems to a pseudodif-
ferential algebra, where ellipticity does not require the Lopatinskii condition.
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This algebra contains as a very particular case the algebra of Toeplitz operators
on the boundary, cf. [Ven72].

The crucial step in the construction consists of specifying the index element
of the virtual index bundle on the cosphere bundle of the boundary, induced
by the boundary symbol. In general, this may be a hard problem in concrete
cases.

The Dolbeault complex belongs to the examples, where the virtual index
bundle from the boundary symbol is not a pull-back under the canonical pro-
jection of any bundle on the boundary. In other words, in contrast to Fredholm
boundary value problems for complexes with Lopatinskii condition, cf. Dynin
[Dyn72], Pillat and Schulze [PS80], or Rempel and Schulze [RS82], we may
look for alternative constructions of Fredholm complexes associated with the
Dolbeault complex.

This is just the program of the present paper. We prove that any homotopy
formula for the Dolbeault complex over a bounded domain in C* with smooth
boundary leads to a Fredholm complex. While using a special convolution ho-
motopy formula of Koppelman [Kop67], we actually show that the same ideas
work for more general Leray-type integral formulas in strictly pseudoconvex
domains in C".

1 Auxiliary results

Let us introduce necessary notation. We will consider the space C" of complex
variables z = (21, ..., 2,). Write z; = z; +y; for j = 1,...,n. The orientation
of C" is determined by the order of coordinates (z1,...,Zn,y1,--.,Yn). Then
the volume form in C" is

dv = dxNdy
- (%)ndz/\dz,

where dz =dz; A ... Ndz,.

From now on D is a bounded domain with C* boundary in C", such that
C" \ D is connected. We give D by D = {z € C" : p(z) < 0}, where ¢ is a
real-valued function of class C*°(C") with Vo # 0 on 0D. The function ¢ can
be chosen in such a way that |Vp| =1 on 0D.

Recall some properties of the Hodge star operator relative to the usual
Euclidean metric in C*, cf. [Wel73]. Let u be a differential form of bidegree
(p, ¢) having the form

u = ZZU[,](Z) dZI A dZJa
1 J
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where the sums are over all increasing multi-indices

I = (il,...,ip),
J = (jla"'ajq)

of integers 1,...,n, i.e.,
1 <5 < .0 < 4 < n,
1 < 51 < ... < Jg < n,
and
dZ[ = dzil/\.../\dzip,
dz; = dzj A...NdZE,.
Then

*U = Z ZULJ(Z) * (dZ[ VAN dg]) .
w(dzr Ndzy) = (—1ypmorte (%)na(I)U(J)dz[J] Az,

where dz[.J] is obtained from dz by removing the differentials dz;,, ..., dz;,,
and o(J) = %1 is defined by dz; A dz[J] = o(J)dz.

The form *u is thus a differential form of bidegree (n —q,n —p). Moreover,
we have

1) xxu=(=1)PHy;
2) dZ[ VAN dZJ VAN *(dZ[ N di]) = P74y,

If w and v are differential forms of bidegree (p,q) with coefficients of the
Lebesgue class L?*(D) then their Hodge scalar product is defined by

(u,v):/u/\*v,
D
so that ||ul|? = (u, u).

_ Using the Hodge star operator one can explicitly write down the operators
0* and 0* formally adjoint to 0 and 0, respectively:

0" = — %0,
o = —x0x*.

For s € Z,, we denote by H*(D) the Sobolev space of functions whose
derivatives up to order s belong to L?(D). More generally, we write H*(D, AP7)
for the space of all differential forms u of bidegree (p, ¢) in D, whose coefficients
lie in H*(D). These are Hilbert spaces under standard Hermitian structures.
Since the operator 0 does not change the degree of u in z, we restrict our
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discussion to differential forms of bidegree (0,¢q). For ¢ = 0 we clearly have
H*(D,\°%) = H*(D).

Given any differential form u of bidegree (p, ¢) with continuous coefficients
in D, one says that the tangential part of u on 9D is equal to zero (write

7(u) = 0) if
/8Du/\g:0

for all (n —p,n —q —1)-forms g with C* coefficients in D. This just amounts
to saying that u A do = 0 on OD.

Furthermore, the normal part of v on 0D is said to vanish (write v(u) = 0)
if 7(xu) = 0.

Lemma 1.1

1) 7(u) =0 if and only if (Qu, g) = (u,d*g) for all g € C=(D, Ao 1),
2) w(u) =0 if and only if (9*u,g) = (u,dg) for all g € C>(D, A>0+1),

Proof. This follows from Stokes’ formula.

2 A homotopy formula

The formula of Koppelman [Kop67] for differential forms will be of crucial role
in our considerations.

Denote by ¢((, z) the standard fundamental solution of the Laplace equa-
tion in C",

—2)! 1
—(n2 2 — if n>1,
g(C7z): ( 7”’) |<_Z|
—log|¢ — z|? if n=1,
2m
and set
o 0g = _
Ung1(C,2) =D\ Dol )2 ~dClj, JI A dC | dz,
. ¢
J jEJ
where the sum is over all increasing multi-indices J = (ji,...,7j,) of integers
1,...,n, and the constant o(j, J) = %1 is uniquely determined from the equal-
ity

di; A dCy A dl[j, J) = o (G, J)dC.

The kernel Uy 441(C, 2) is iterpreted as a double differential form of bidegree
(n,n —q — 1) in ¢ and bidegree (0,¢) in z. For ¢ = —1 and ¢ = n we put
Uog+1(¢,2) = 0.
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By §1 of Aizenberg and Dautov [AD83] the kernel Uy ,11(C, ) can be writ-
ten in the form

UO,q+1(<7 Z) - a(Q(C; Z) A Fl q+1(<7 Z),
Fign(Cz) = (=1)" 12(2 o(j, J) (1) d¢[j, ]/\dC[j]> dz;.

J j¢J
(2.1)

We need yet another form of the kernel Uy ,41(C, 2). To this end we intro-
duce the double differential form

Voari(G:2) = 5 - +1 ZZ( o(j U )g(C, 2)dllj, J) A dC )z,

JUJ being the increasing multi-index of length ¢+1 that is obtained by placing
J within J.

Lemma 2.1 For ( # z, it follows that
0;Vo,g+1(C, 2) = Ung11(¢, 2)-
Proof. Given any increasing multi-index K of length ¢ + 1, we get
05 (g(¢,2)dzg) = —%0.%x(9(¢,2)dzk)
S (%)" o(K) % 3Zg(C, 2) A d2[K) A dz

= 9ot (—) Z 5ok N d={K] A dz

A trivial verification shows that

dop ANdz[K] = (=1)%0(k, K \ k)o(K \ k) dz[K \ k],
(=) Do (K\k) = o({l,...,n}\ (K \k))

whence

0 (oG, 2)dzn) = 20(K) Y ol K\ D) 52 deey

keK

For any multi-index J of length ¢ and j € J, we can represent the multi-
index K = j U J in the form K = kU (K \ k) with k£ € K by ¢ + 1 different
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ways. Hence

6:%,q+1 (C: Z)

= q+1 ZZ (a 7 U J)dC[j, ]Ad<)5: (9(¢, 2)dzjur)

J jé

- ZZ Z ( ,(JUJ)\ k) 3< [JaJ]/\dC>dZJUJ

J  jEJ ke(juld)

- UO,q+1 (Ca Z),

as desired.
O

The 0* -exactness of the kernel Up g+1 is mentioned in [Tar90, p. 88], however
no explicit form of V; ;4 is given.

Lemma 2.2 Away from the diagonal of C* x C", we have
éCUO,qul(C’ z) = (=1)1 ézUO,q(C: z).

Proof. Cf. §1 in [ADS83].
O
In particular, the kernels Uy (¢, z) and Uy, (¢, 2) are 0-closed in ¢ and z,
respectively, for ¢ # z.
Consider the bounded operators

M : H*(D,A%) — H*(D,A™),
T : HYD,A") — H*"(D,A»)

defined by

(Mu)(z) = /mu(owo,ﬁl(c,z),
(Tuw)(z) = - /D w(C) A Usg (G, 2)

for z € D. The operators M and T are bounded, for the former is a derivative of
the simple layer potential and the latter is a derivative of the volume potential
in C".

The differential forms (Mu)(z) and (Tu)(z) are defined for = € C* \ D,
too. We write (Mu)* and (Tw)* for the restrictions of Mu and Tu to D and
C" \ D, respectively.

Note that the differential form Mwu has harmonic coefficients away from
the boundary of D, and it decreases as |z|'”%" at the point at infinity. The
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differential form Tu has harmonic coefficients away from the closure of D, and
it decreases as |z|'™%" at the point at infinity.

Having disposed of these preliminary steps we are in a position to formulate
the formula of Koppelman [Kop67], cf. also [AD83].

Lemma 2.3 For any u € H (D, A%9), we have

Mu+T5u+5Tu:{ wz) if z€D, (2.2)

0 if zeC"\D.

Proof. For those differential forms u which are smooth in the closure of
D this formula is proved in [AD83]. Given any u € H'(D, A%), we choose a
sequence {u, } of smooth forms approximating u in the Sobolev norm. Writing
every u, by formula (2.2) and letting ¥ — oo we get this formula for u by
continuity.
O
When ¢ = 0, (2.2) is nothing else than the Bochner-Martinelli formula for
smooth functions.

3 Algebraic construction

Let

0 — Vo Aoyt Ay Ay Ny,

0 — @ 2 ot 2 .5 VN — o
be two complexes of Banach spaces. By a cochain mapping of these complexes
is meant any sequence of mappings

c?: VI— Q1
such that the diagram
0 — VO Aoyt A A yN
el bt lon (3.1)
0 — @ L @t L L v — o

commutes, i.e., C?A = BC?! for all q.
Given any cochain mapping C' = {C}, one defines a new complex

Vo v vy 0
dO dl dN—l dN
0O — & — & — ... — S, — ® — 0
0 QO QNfl QN
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A7
dq:< a B)

It is called the cone of the cochain mapping C' and denoted by C(C), cf.
[Spa66] and elsewhere.

By CYA = BC% ! we see that A7 restricts to a mapping ker C? — ker C4+!,
and BY lifts to a mapping coker C? — coker C91. We thus get two associated
complexes

where

0 — kerC® & kerC! L .. L ket — 0,

0 — cokerC® 25 cokerc? Z5 .. Zy cokerC — 0
(3.3)
denoted by ker C' and coker C, respectively.

Lemma 3.1 Complez (3.2) is Fredholm if and only if so are both the com-
plexzes (3.3). In this case

Xc(C) = Xker C — Xcoker C'+

Given a (cochain) complex V', we write xy for the Euler characteristic of

V', i.e, for the alternating sum of dimensions of the cohomology spaces of V,
if defined.
Proof. A trivial verification shows that

H°(C(C)) = H'(kerC),
HY(C(C)) = HYkerC)® H? *(coker C),
HN*He(0)) = HM(cokerO),

and the lemma follows (cf. Proposition 5 in [RS82, 3.2.3.1]).
U
In particular, complex (3.2) is exact if and only if so are both the complexes
(3.3).
We apply the construction of C(C') in the case when

Q' =veju,

U? being closed subspaces of V4, such that A maps U? to U? for each q. Then
A lifts in a natural way to a mapping Q7 — Q¢! which we denote by Ag.
By the very definition it fulfills CYA = AgC% ! where C? are the canonical
mappings. Hence we arrive at the complex

Vo v VN 0
dO dl dN—l dN
0O — & — & —_— ... — S, — ® — 0
0 VO/UO VNfl/UNfl VN/UN

(3.4)
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—A1 0
()

Theorem 3.2 The complex (3.4) is Fredholm if and only if so is the com-
plex

with

0 — U° A oyt A A Uy . (3.5)

In this case the Euler characteristic of (3.4) is equal to that of the complex

(3.5).

Proof. It suffices to combine Lemma 3.1 with the observation that in our
case the complex ker C' reduces to (3.5), and the complex coker C' is zero.
O

4 An exact complex
Given any s = 1,2, ..., we introduce the spaces
US(D,A) = {u € H*(D,A"") : MT/u=0inD forall j € Z,}.

Since both M and T are continuous mappings U*(D, A%?) is a closed sub-
space of H*(D,A™), hence a Hilbert space. We give a description of these
spaces later.

In the meanwhile we note that the operator 17" decreases the degree of the
form in z by 1. It follows T7u = 0 for j > g. Hence the equalities MT7u = 0
for all j € Z, can be formally summarised by saying that M(I — T)"'u = 0
in D, I being the identity operator.

Theorem 4.1 Suppose s > n. The following sequence of Hilbert spaces is
an exact complex:

0 — U*(D,A%) -2 71D, A%) 25 . 25 U (D, A 0. (4.1)

Proof. We begin by verifying that the operator 0 preserves the above
spaces, 1.e., it restricts to a mapping U* (D, A%?) — U4~ 1(D, A®7t1) for all
q.

Let u € U*"9(D,A%). Then MT7u = 0 in D for all j = 0,1,...,q. Set
f=0u. )

The operators 0 and M commute. Indeed, for z ¢ 0D we get

5 (Mu) () = / 00 A DUogea(c.
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e / Q) A Bclngealc )

— Ou(C) A Upg12(¢, 2)

oD
= (Mou) (2),
the second equality being due to Lemma 2.2. Hence it follows that
Mf = 0OMu
=0

in D.
Consider MT'f. By formula (2.2) we get v = T'0u + 01w in D. It follows
that

0 = Mu
= MTOu+ MOoTu
= MTf+0MTu
whence MT'f =0 in D.
We next show that
MT?0u=—MT’"*0Tu (4.2)

for each 7 = 1,...,¢ + 1. To this end, we apply the operator 77~! to both
sides of formula (2.2). This gives

T77 ' =T70u+T7"'0Tu
whence . N o
MT’ 'y = MT0u + MT? 0T u.
Since MT7"'u =0 in D, we get (4.2), as desired.
We now proceed by induction
MT'f = MT0u
= —MT"'0Tu

= (1) MOT?u
= (=1)7OMTu

for j =2,...,¢+ 1. Since MT’u = 0 in D, we deduce that MT7 f = 0 for all
jiez.,.
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We have thus proved that du € U*~97}(D, A%*1). In other words, the
complex (4.1) is well defined.

Let us prove that (4.1) is exact. Suppose u € U*(D,A%%) and du = 0 in
D. Then u is a holomorphic function in D. Since Mu = 0 in D, the Bochner-
Martinelli formula yields v = Mu = 0 in D. Hence (4.1) is exact at step
q=0.

Let 0 < ¢ < n and let f € U 9(D, A%) satisfy 0f = 0 in D. By formula
(2.2) we get

f = Mf+Tof +0Tf
= Ou

where v = T'f. The boundedness of T implies u € H*~4" (D, A%~1). On the
other hand, from MT7f = 0 in D for all j € Z. it follows that the same is
true for u = T'f. Hence u € U971 (D, A1) which shows the exactness of
(4.1) at step q.

Finally, pick f € U*™(D, A%"). The conditions Mf =0 and 9f =0 in D
are automatically fulfilled in this case. By formula (2.2) we obtain f = Ju with
u = Tf. Analysis similar to that at step ¢ shows that u € Us~" (D, A%"~1),
and the proof is complete.

O

5 Fredholm problems

For ¢ =0,1,...,n and s > n, we consider the quotient spaces
Hs=4(D, A%9)
s—q(p A0 — ’
OB A = i, aoa)

under the quotient topology. Using the Hilbert structure in H*~9(D, A%?) we
might specify Q*4(D, A®9) as the orthogonal complement of U* (D, A%9) in
H*~ (D, A%).
Denote by C the canonical mapping H*™4(D, A%) to Q*~4(D, A%?). Since

0 fulfills _

0 : H*9(D,A%) — H*~9=1(D, \®t1),

9 : U9D,AN%) — Us—1=1(D, \Oatl)
the second property being a consequence of Theorem 4.1, it lifts to a continuous
mapping

dg: QYD,A") — Q* T H(D, AT
for every ¢. Obviously,

5@ o) 5@ == O,
Co = 0uC.
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The algebraic construction of the operator 5Q is actually the same as that
of the tangential Cauchy-Riemann operator 0y, cf. [KR65].

Applying the algebraic construction (3.4) we thus obtain a complex of
Banach spaces

HS(D,A0,0) HS_I(D,AO’I) Hs_n(D,AO’n) 0
0— o 5 o L5 i 2 e —0
0 QS(D,AO’O) QSWH(D,AU:"A) stn(DjAO,n)
(5.2)
with _
-0 0
A= ( ¢ 0q ) '

Theorem 5.1 Suppose n > 1. Then for each s > n the sequence (5.2) is
an ezxact complew.

Proof. The sequence (5.2) is a complex, for

-0 0 -0 0
AoA = ( Ca@)( C 3@)

_ ?05_ B O_
o —08+8QC aQOaQ

by (5.1).
Let u; € H*(D,A"?) and

then —0u; = 0 and u; € U*(D,A%°). This just amounts to saying that u,
is holomorphic in D and Mwu; = 0 in D. By the Bochner-Martinelli formula,
u; = 0 in D, showing the exactness of (5.2) at step ¢ = 0.

Consider the intermediate fragments of the complex (5.2). Suppose

H*1(D, A1)
( hi ) . o
f2 Qs—q-l—l(D,AO,q—l)

satisfies ~
{ __afl = 0,
Cfi+0gfs = 0
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in D. To shorten notation, we use the same letters for equivalence classes
and their representatives. Then an equivalent formulation of the compatibility
condition (5.3) is
—0fi = 0,
{ fi+0fs € UYD,\%),
Since f; + 0f, is 0-closed, by Theorem 4.1 there exists a differential form
up € US4 (D, A%4~1) such that du, = f1 + 0f, in D. Setting uy = 0 we thus

obtain _
{ —5(f2 jU1) = fi
C(fo—u1) +0quy = fo,
showing the exactness of (5.2) at step q.
Finally we prove the exactness of (5.2) at step ¢ = n + 1. To this end we
pick any f, € Q*7"(D, A%"), the compatibility conditions are missing. Passing
to the representatives of equivalence classes, we rewrite the inhomogeneous

equation
(5} . 0
() -(7)

B —5161 = 0,
up +0uy — f € U™(D,A%")
in D. By formula (2.2) we get fo = Juy where uy = T f, belongs to the space

Hs= YD A=) Setting u; = 0 and uy = T f, we thus derive a solution of
the system, as desired.

in the form

[
6 The casen=1
Consider complex (5.2) in the complex plane, i.e., for n =1,
HS(D,AO,O) HS_I(D,AO’I) 0
0 — @ 2 @ A, @ — 0
0 Q*(D, A" QDA™
(6.1)
where 5
— 0
A= < C 0q ) '

Let us describe the spaces of this complex. By the Cauchy formula for
smooth functions, any v € H*(D,A%°) has the form v = Mu + TOu in D.
Hence it follows that
{Mu+Tou: ue H*(D,\*")}

{TOu: ue H(D,A*0)}

Q'(D,A™) =
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= {Mu: ue H*(D,A")},

which is in fact a generalised Hardy space of holomorphic functions in the
domain D.
Consider the space

U YD, A") = {ue H* Y (D,A"") : MTu =0},

the condition Mu = 0 being automatically fulfilled for all forms u of bidegree
(0,1). If n = 1, both M and T are integral operators with the Cauchy kernel in
the complex plane. Therefore, T'u is a holomorphic function in the complement
of D, and it decreases like 1/|z| when z — oco. It follows that MTu = 0 in D for
allu € H~Y(D, A®'). We have thus proved that U~ (D, A%!) = H*~1(D, A%')
whence Q*~(D, A%!) = 0.

Summarising, we arrive at an exact complex

—0
< M) Hsfl(DjAO,l)
0 — H$(D,A) " — @ — 0
Q*(D,A™)

to be obviously interpreted as a Fredholm boundary value problem for the
Cauchy-Riemann system on C.

7 Identification of Q*(D, A")

We now turn to a description of the spaces U*~%(D, A%9) in order to identify
the quotients Q*~4(D, A%).

Theorem 7.1 Supposen > 1 and u € H*(D,A%°). Then Mu =0 in D if
and only if u vanishes on OD. In particular,

Q*(D,A*") =~ H* 2 (D).

Proof. If u vanishes on 0D then obviously Mu = 0. Conversely, suppose
u € H*(D,A%) and Mu = 0 in D. By Corollary 15.6 of [Kyt95] we deduce
that v = Mwu on 0D, and so u vanishes on the boundary. To prove the
second part of the theorem we observe that H*(D,A%°) is the direct sum of
two subspaces. The first of the two is the subspace of H*(D,A%’) consisting
of harmonic functions. The second subspace consists of those functions in
H*(D, A*%) which vanish on the boundary. As the Dirichlet problem in D is
uniquely solvable, the first subspace is topologically isomorphic to H~"/ 2(0D).
Hence the theorem follows.
O
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8 Description of U* " (D, A"")

In the sequel we need a jump theorem for the boundary integral Mwu in the
formula of Koppelman.

Theorem 8.1 For any differential form u € H*™9(D,A%), s > n, it fol-

lows that
T(Mu)t —7(Mu)~ = 7(u),
v(Mu)™ —v(Mu)~ = 0

on OD.

Proof. Cf. [Kyt95, Tar90].
U

Pick a differential form v € H* (D, A%"). It has the form u = ¢(z)dz,
with ¢ € H*7"(D). Denote by Gu the volume potential of u,

Gulz) — /D u(C) A g(C, )¢
= [ d0uccnac

defined for z € C".

Theorem 8.2 Given any form u € H* (D, A%"), the following are equiv-

alent:
1) weUs™(D,A"").
2) MTu=0inD.
3) T?u=01inC",
4)  Gulsp extends to an antiholomorphic function in D.
5) ¢= Av in D, where v € H*""2(D)N H*(C") is harmonic in C*\ D and

v|op extends to an antiholomorphic function in D.
The proof falls naturally into a number of lemmas.
Lemma 8.3 In order that MTu = 0 in D it is necessary and sufficient that
the restriction of Gu to 0D might be extended to an antiholomorphic function

i D.

Proof. Set
P (Tu) (2) = / () (©) nalG.2)iC

for z € C".
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We first show that M (Tw) = 0 in D if and only if P (T'u) is antiholomorphic
in D. Indeed,

M (Tu) () = / () Q) A Ui (C.2)

_ /8 ROIEE Z(_l)ﬂg—gj(c, 2)dcdzlj]

_ j(_ma% ([ @©nstaac) azi

j=1

_ D—%% (P(Tu) (2)) dz[j]

j=1

for » € D. If M (Tu) = 0 in D then P (Tu) is antiholomorphic in D, and
conversely, as desired.
Consider now the form P (T'u). An easy calculation shows that

(Tw) () AdC = —/Du(w)/\Uo,n(w,g)Adg

_ _/Dc(w)Z(—ujlﬁ(w,g)dmdwdg‘m/\dg

— ow;
— z:(—l)jl% (/D c(w) g(w, )dw A dw> dC[j] A dC

= S 2Ol i

i=1

for all ¢ € C*. The function Gu is of class H?(C") and harmonic in C* \ D,
hence the differential form (Tu) A d( is closed in C* \ D, for

d(Tu) Ad¢ = A(Gu)dl AdC
= 0

in C" \ D.
If 2z € D then

P(Tu)(z) = / 96 (T (O e

"\ dg 0 (Gu) -
= — — d¢ N d
/@\D;a@-“’z) SO nc
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n

= /ap (Gu) () Z(—l)j_lg—g(C, 2) dC A dclj]

J=1

_ /8 (@) (TG 2)

by Stokes’ formula.

By Corollary 15.6 of [Kyt95] it follows that P (T'u) is antiholomorphic in
D if and only if P(Tu) = Gu on 90D. Thus, the equality MTu = 0 in
D just amounts to saying that the restriction of Gu to 0D extends to an

antiholomorphic function in D.
O

Lemma 8.3 yields the equivalence of assertions 2) and 4) in Theorem 8.2.

Lemma 8.4 The equality MTwu = 0 holds in D if and only if T?u = 0 in
all of C".

Proof. We first rewrite the kernel Uy, _1((,2) in a slightly different way.
Namely, we put all increasing multi-indices J of length n — 2 in order

J=1,...,5—-17+1,...,k—=1k+1,...,n)
where 1 < 7 <k <n. Then

99,

UO,n—l(C, Z) = Z <(_1)n+]+k1@d<—_k + (_1)Tb+j+k aCk

i<k 0 ’

as is easy to check.
Hence it follows that
TU(C) A UO,n—l(Ca Z)

e (09 0(Gu) g 0 (Gu)
h Z( D’ <3Cj Gk, G 0C;

= =Y (dg(¢,2) Ad(Gu) (C) AdC A dCl, k]) dz[j, k],

i<k

) d¢ A dC dz]j, k]

j<k

for

dg(C, z) A d (Gu) (¢) A dC A dC]j, k]

Z 0y 0 (Gu) 0 (Gu) : .

(L qytk1 @3(GU)_3_93(GU)> =
= (=1) (8@ 5 56 00 dC A dC
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whenever 1 < j < k <n.
We thus get

() = 5 ([ dafc.) 1 (Go) € G n i) i
j<k P
for all z € C*. For z € C" \ D we can moreover invoke Stokes’ formula, thus
obtaining

1) == 3 ([ (Gu) (@) dalc. ) n g ncli ) ik
ek \Jop
If MTu = 0 in D then the restriction of Gu to 0D extends, by Lemma 8.3,
to an antiholomorphic function in D. Hence T?u (z) = 0 for all z € C* \ D,
because Gu is orthogonal to the 0 -closed differential forms dg(¢, 2) AdCAdC], k]
by Stokes’ formula.
Let z € D. Then

/ dg A d(Gu) A dC A dC[j, K]
D

= lim dg A d(Gu) A dC A dC[j, k]
e20JD\(¢: (¢ 2[<e}

= —/ (Gu) dg A dC A dC[j, k] + lim (Gu) dg A dC A dC[5, k]
oD eS¢ ¢—2)=2}

oD

the latter equality being due to the fact that the restriction of the form d.g(¢, z)
to {C : |¢ — z| = e} vanishes, for ¢((, z) is constant on this sphere. Once again
we invoke the condition M7Twu = 0 in D and Lemma 8.3 to conclude that
T?u (z) = 0 for all z € D. Since T?u is of class H'(C", A®>"~2) we deduce that
T?u vanishes in all of C".

Conversely, let us show that if 724 = 0 in C" then Gu|sp extends to
an antiholomorphic function in D. By the above Gu is orthogonal under
integration over 0D to the differential forms

dg(C, z) A dC A dClj, k] (8.1)

for z ¢ OD. Since g((, 2) is a fundamental solution of the Laplace equation in
C" (up to a constant factor), differential forms of the type (8.1) are dense in the
space of all J-exact forms of bidegree (n — 2,2). By the Hartogs theorem for
antiholomorphic functions the restriction Gu |sp extends to an antiholomorphic
function in D. We have thus proved the equivalence of assertions 2) and 3), as
desired.

[0 The equivalence of assertions 1), 2), 3) and 4) follows from Lemmas 8.3
and 8.4 and from the definition of U*~"(D, A°").
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Lemma 8.5 The assertions 4) and 5) of Theorem 8.2 are equivalent.

Proof. Suppose Gu |gp extends to an antiholomorphic function in D. The
potential Gu possesses the following properties:

a) Gu e H*""2(D)n H?*(C");
b) Gu is a harmonic function in C* \ D;

¢) AGu = cin D, A being the 1/4 multiple of the usual Laplace operator
in C".

It follows that we can take
v = Gu.

Conversely, suppose u fulfills 5). Write v by the Green formula in a complex
form (cf. Theorem 1.1 in [Kyt95])

n

v(z) = /((C)Um ¢, %) Z ]_lﬁCJ ]/\d() /g({,z)Ade/\dC

oD j=1 D

for 2 € D. Since v € H(C") is harmonic in C* \ D, we get from the proof of
Lemma 8.3

[ 0Tt = [ ot Y1y gatti adc

for any z € D. Hence
o) = [ olc.a80(0)dCndc
D
= (Gu) (2),

and so Gu |sp extends to an antiholomorphic function in D.

This proves the theorem.

9 Regular domains

In contrast to the extreme cases ¢ = 0 and ¢ = n, where the domain D is
arbitrary, we describe the spaces U* 4(D,A%"), 1 < ¢ < n — 1, for a more
restricted class of D. We call them “regular” domains.

By a reqular domain we mean any domain D in C*, such that the cohomol-
ogy H1(C"\D, O) vanishes for every ¢ = 1,...,n—2, and for any 0-closed form
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f € HY(C"\ D, A%9) the equation du = f has a solution u € H*(C*\ D, A®4~1)
satisfying
lull g cnvpa0a-1y < C [ fll a1 @n\p,a00)

with C' a constant independent of f. It is well known that strictly pseudoconvex
domains in C" meet these conditions, cf. Theorem 8.7 in [Khe85].

Theorem 9.1 Suppose D is a reqular domain. For any u € H* (D, A7)
with 0 < g < n — 2, the condition Mu = 0 in D is equivalent to 7(u) = 0 on
oD.

Proof. We first show a condition for the 0 -closedness of the form Mu.

Lemma 9.2 The form (Mu)* is 0 -closed in D if and only if the form
(Mu)~ is O -closed in C* \ D.

Proof. Let 9(Mu)~ = 0. Then v (9(Mu)*) = 0 by Theorem 8.1, for
v(O(Mu)*) =

on dD. Since (Mu)™ is harmonic and, by Lemma 2.1, 9* -closed in D, we get

[o(Mu)*|* = (9(Mu)*, ( u)*)
— (( + a* )+)
= ((Mu A 00")(Mu)™)
0

whence 9(Mu)™ = 0 in D. The proof of the converse assertion is quite analo-
gous.
U

Lemma 9.3 In order that (Mu)™ = 0 in D it is necessary and sufficient
that 7(u) = —7(Mu)~ and O(Mu)~ =0 in C* \ D.

Proof. Suppose that (Mu)™ = 0 in D. By Theorem 8.1 we see that
7(u) = —7(Mu)~ because 7(Mu)* = 0. Since d(Mu)* = 0, Lemma 9.2 yields
O(Mu)~ =0, as desired.

Conversely, let 7(u) = —7(Mu)~ and d(Mu)~ = 0. By Lemma 9.2 we then
get (Mu)™ = 0, and Theorem 8.1 gives 7(Mu)* = 0. Moreover, Lemma 2.1
shows that (Mu)® = 0* f where

f(z) = / U0 A Vagrlc. )
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for z € D. Applying Lemma 1.1 we thus obtain

I(Mu) " = ((Mu)*, (Mu)*)
= ((Mu )" 8* f)
(O(Mu)*, f)
0

whence (Mu)t =0, as desired.
O
We emphasize that Lemmas 9.2 and 9.3 hold for arbitrary domains D and
differential forms u of any bidegree.

Lemma 9.4 Suppose f € HY(C" \ D, A%?) satisfies Of =0, 0*f = 0 and
v(f)=0. Then f =0.

Proof. Since the domain D is regular, there is a form u € H'(C"\D, A%4™)
such that du = f. Considering the Hodge scalar product in C* \ D we obtain

£ = (£.f)
u, f)
“f)

Il
E\/_\A
QJ\“

|
o

whence f = 0.
U
End of the proof of Theorem 9.1. Suppose (Mu)*t = 0. From Lemma
9.3 it follows that 7(u) = —7(Mu)~ and d(Mu)~ = 0 in C* \ D. Further-
more, Theorem 8.1 implies v(Mu)~ = v(Mu)* = 0. By Lemma 2.1 we de-
duce 0*(Mu)~ = 0. Applying Lemma 9.4 to the form f = (Mu)~ we derive
(Mu)~ = 0in C* \ D. Hence 7(u) = —7(Mu)~ = 0, as desired. Conversely,
if 7(u) = 0 then Mu = 0 by the very definition of the boundary integral Mu.
The proof is complete.
U

Theorem 9.5 Let D be a regular domain in C* and 1 < q¢q < n —1. If
u € H9(D, A%) satisfies Mu = 0 and MTu = 0 in D thenu € Us~4(D, A®9).

The proof of this theorem will follow from two lemmas.

Lemma 9.6 Suppose that 1 < ¢ < n-—1. Ifué€ Hs~9(D, A%) satisfies
MTu =0 in D then Tu=0 in C* \ D.
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Proof. Suppose MTwu = 0 in D. Since the degree of the form MTwu in Z is
equal to ¢ —1 < n — 1, we obtain 7(7Tu) = 0 on 0D by Theorem 9.1. We now
invoke Lemma 2.1 to see that

Tu() = = [ WO ATh(.2)
_ /D w(C) A5 Vo, (G, 2)

_ 5 /D u(C) A V(€. 2)

= —0"Vu

for any z € C".

The differential form Vu has harmonic coefficients in C*\ D since the kernel
Vo,4(C, 2) is harmonic in the external variable 2. Let us show that 97w = 0 in
C*\ D. )

The form 0T'u has the following properties:

a) 7(0Tu) =0, for 7(0Tu) = 0y 7(Tu) = 0;
b) 3(3Tu) = 0:
¢) 0Tu=—00"Vu=00Vuin C"\D.
Considering the Hodge inner product over C* \ D, we now obtain

10T u|* = (0Tu,0Tu)
= (5 Tu,0%0 Vu)
= (55 Tu,0 Vu)
=0
whence dTu = 0 in C* \ D.
On the other hand, the form 7T'u has the following properties:
a) 7(Tu) = 0;
b) 0Tu = 0;
¢) Tu=—0"Vuin C"\D.
It follows that

[Tull®* = (Tu,Tu)
= (Tu,—é* Vu)
= — (5Tu, Vu)
=0

whence Tu = 0 in C* \ D, as desired.
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Lemma 9.7 Let 1 < ¢ <n—1. Ifu € H*9(D,A%) satisfies MTu = 0
in D then T?u =0 in C".
Proof. As mentioned in the proof of Lemma 9.6, we have

Tu = —0"Vu
= 0% Vu

for all z € C*. Hence the differential form Tu A Fy ,_1(+, 2) is 0 -closed, for

Tu N Fl,q—l('; Z) = *(8* VU) N Fl,q—l(';Z)
= (8* VU) /\*Fl,q—l(';z)

where % F ,_1(+, z) is a differential form with constant coefficients. The equality
(2.1) thus gives

Thu(:) = = [ TulQ) AUy a(G.2)
- - / Tu(C) A g€, 2) A Frg1(G, )
= (V7 [ 0T A6 Fra(6.2)
= (17 [ AU A g€ A Frga(6,2)
= (1 [ TuO A€ AR g2
=0

for any z € C", because 7(T'u) = 0 on 9D. In the fourth equality we replaced
0 by the total exterior derivative d since the differential form in parentheses
has already n differentials in (.

O

Theorem 9.5 has thus been proved.

10 Characterisation of U*¢(D, A\"9)

We proceed to describe the spaces U*~4(D, A%?) for 1 < g < n — 1. The case
q = n — 1 still falls out the common schema.

Theorem 10.1 Suppose D is a reqular domain in C* and 1 < g <n —1.
In order that u € U*~4(D, A%?) it is necessary and sufficient that 7(u) = 0 and
u = Av in D, where v € H*~2(D, A%) N H2(C*, A%9) satisfies 0*v = 0 and
9*0v =0 in C* \ D.
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In particular, v is obviously a harmonic form away from the closure of D
in C".

Proof. Write

u(z) = ch(z)dij
J

where the sum is over all increasing multi-indices J = (jy, ..., j,) of integers
1,...,n. Let us transform the integral Tu(z) for z € C* \ D. By Lemma 2.1
we get

Tu(z)

- /D u(€) A Ung(C. 2)
_ 5 /D u(€) A Vi (G, 2).

/u ) A Vog(C,2)
;( / 9(¢, )d(/\d() dz;

for z € C*. Then Tu = —0* Vu. The form Vu possesses the following proper-
ties:

a) Vue H*92(D,A%) N H2(C", A%9);

b) Vuisa hlarmonic form in C* \ D;

c) AVu= U in D.

Set

]

If Mu =0, MTu =0 and ¢ < n — 1, then Theorem 9.1 and Lemma 9.6
imply that ¢(u) = 0 and Tu = 0 in C* \ D. Hence §* Vu = 0 in C" \ D.

Summarising we conclude that the differential form v = 2 Vu meets the
conclusion of Theorem 10.1, for

0 = Av
= 00"v + 0" v
d*Ov
in C" \ D.
Conversely, if 7(u) = 0 and u = Av where v satisfies the conditions of the

theorem, then Mu = 0 and v = 2Vu. We show the latter equality by the
Green formula in a complex form, applied to the coefficients of v.

Namely, write
0(Q) =D vs(Q)d,
7
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where the sum is over all increasing multi-indices J of length ¢. By Theorem
1.1 of [Kyt95]

vs(z) = / (00la(2) =gl o) + /D g(2)Avy dEAdC (10.1)

for z € D, where

(o) = z<—1>n+w§—gjdz A dclj]

j=1

Since v; € H?(C") are harmonic functions in C* \ D we get by Stokes’ formula

| vt = [ gt

for z € D. Hence it follows that
oz = [ gl.2)duddndg
D
- / ¢ g(2)dC A d,
D

c; being the coefficient of u by dz;. The latter integral is the coefficient of dz;
in the differential form V'« multiplied by 2. Hence v = 2V u.
From the properties of v we deduce that

FVu = 0*v

S| =

in C* \ D. Therefore, Tu = —0* Vu = 0 in C* \ D, showing the theorem.
U

11 Thecaseg=n—1

In the section we describe the remaining spaces U* " *1(D, A1) for regular
domains.

Theorem 11.1 Assume that D is a regular domain in C*. In order that
w € U~ D, A>"1) it is necessary and sufficient that

1) uw = Av in D, where v € H™"3(D, A%=1) n H2(C*, A®>"~1) satisfies
Ov =0 and O*v =0 in C* \ D;

2) Ou= Agdz in D, where g € H* "*2(D)N H?(C") is harmonic in C* \ D
and g |op extends to an antiholomorphic function in D.
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Proof. Let u € H* (D, A%"") satisfy MTu = 0 in D. Applying
Lemma 9.6 gives Tu = 0 in C* \ D. Writing v in the form

n

u(z) =) ¢;(2)dz[]]

i=1

we thus get
Tu(z) = / w(C) AN Upp-1(¢, 2)
— i1l 8g 1)kl dg =
= /Z( D, = (=1 (C)a<k>d</\d<d i K]

j<k

3 ((—1)?‘18% (G6) (2 (15 (Ge) (2)) el

i<k
=0 (11.1)
for all z € C* \ D, where
(Gey) (2) = / ¢5(0) 9(C, 2)dC A dC.
D

For the differential form v(z) = Y77, (G¢;) (2)dz[j] the equality (11.1)
reduces to 0*v = 0 in C* \ D. Indeed,

5*u(2)
_ %_ *az Y= (Ge;) dz; A dz
_ %_ *;< az, (Gew) — (—1)i- ai (Gq,)) (dz; A dzy) Adz
- 22( 52 (6e5) = (=171 5 (G ) L 1
=0

by (11.1).

Our next goal is to establish the equality v = 0 in C* \ D. Indeed, the
equality 0*v = 0 means that 0 x v = 0. Thus, the differential form %v is of
bidegree (1,n) and 0-closed in the complement of D. Since the domain D is
regular this differential form is J-exact for n > 2. Hence there exists a form
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w € H'(C*\ D, A%") such that dw = xv. This form w is actually harmonic in
C* \ D. Indeed, we have

0 (Aw) = A (0w)

in C* \ D, for the coefficients of v are harmonic functions away from D. Tt
follows that Aw is an antiholomorphic form in the complement of D. By
the Hartogs theorem it extends to an integrable antiholomorphic form in all
of C*. We now invoke the Liouville theorem for integrable antiholomorphic
forms which is proved in much the same way as the Liouville theorem for
bounded holomorphic functions. This gives Aw = 0 or A (xw) = 0. Since
*x0w = (—=1)""1v we get

ov = (—=1)"10xow

= 00" (xw)
= A (xw)
=0
in C" \ D, as desired.
If n =2 then (11.1) implies
0 0
8—22 (GCl) + 8—z1 (GCQ) =0

and both Ge¢; and Ge¢y are harmonic functions in C* \75. It follows that

52 o2
R P P )
82
- 079029 Gea),
ie.,
a% <a% (Gey) — a% (G02)> 0

in C* \ D. Pick any complex line z; = 2? which does not meet D. On this line
the function

0 0
— (Gey) — — (Ge
07, (Ger) 0%, (Ge)
is antiholomorphic and it tends to zero at the point at infinity. By the Liouville
theorem it vanishes on this line. Since the function is real analytic it is equal
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to zero everywhere in the complement of D. This just amounts to saying that
v is O -closed, i.e., Ov = 0.

By the properties of the volume potential we see that v € H*(C", A%"1)
and Av = ypu in C*, where xp is the characteristic function of D.

We have thus proved that if v € H*"*(D, A1) and MTu = 0 in D,
then v = Av in D, where v € HS™"F3(D A1) N H2(C*, A1) satisfies
Ov =0 and §*v =0 in C* \ D.

Conversely, let u = Av with v satisfying the conditions of Theorem 11.1.

Write .
z) = Zvj(z) dz[j]

where v; € H"3(D) N H*(C"). By the Green formula in a complex form
(cf. (10.1)) we get

vi(2) = /m) (vU0.1(+, 2) = g(-, 2)u(v5)) +/Dg(-,Z)Avj d¢ A d¢

forall z € D and j = 1,...,n. Since v; € H?(C") are harmonic functions in
C™ \ D we obtain by Stokes’ formula

[ ot = [ o2t

for z € D. Hence it follows that
v; = Gej

in D forany j=1,...,n.

Recall that ¢; is the coefficient of dz[j] in the form u. By the above, the
equality 0*v = 0 in the complement of D is equivalent to Tu = 0 there. Since
Tu € H?(C", A°*=2) the equality Tu = 0 in C* \ D implies 7(Tu) = 0 whence
MTu =0 in D.

We have thus proved that the condition M7Tu = 0 in D is equivalent to the
assumption 1) of Theorem 11.1.

We now turn to the condition Mu = 0 in D. Namely, we have

Mu(z) = /m)u(g)AUo,n(g,z)

_ /87) ( ) A (zn: agjdgdz[j]>
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for z € D. Hence the condition Mu = 0 in D is equivalent to the fact that the

function
n

/8 > (O a(€. k] A e

is antiholomorphic in the domain D. Applying Stokes’ formula to this integral
we get

[ S a@utcaamng = [ 310 @O ) nac

o >
-/ ,;( - 185 9(¢,2)dC A d
for any z € C* \ D, since the integral
[0 e aan e = 3 1F o (G )

k=1 k=1m

vanishes by the closedness of the differential form

n

o(z) =) (Gey) (2)dz[j]

J=1

Summarising we deduce that the condition Mu = 0 in D just amounts to
saying that the potential

(Gou) () = /D g—g;g«,z)dm ac

k=1

_ /D 3u(C) A g(C, 2)dC,

when restricted to 0D, extends to an antiholomorphic function in D. We can
thus take g = G Ou in all of C*. Obviously, this function meets all assumptions
of 2).

Conversely, if du = Agdz in D, where g € H* "*2(D)NH?(C") is harmonic
in C*\D and g |sp extends to an antiholomorphic function in D, then ¢ = G du
in D by the Green formula. It follows that the restriction of G 0u to 0D
extends to an antiholomorphic function in D. Hence Mu = 0 in D, showing
the theorem.

O
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12 Concluding remarks

The exact subcomplex of the Dolbeault complex introduced in Section 4 is by
no means unique. It is of interest because of its link to the integral formula of
Koppelman, cf. Lemma 2.3.

As but one example of other exact subcomplexes of the Dolbeault com-
plex we show here a subcomplex closely related to the 0-Neumann problem.
While this latter problem is subelliptic only in strictly pseudoconvex domains
on complex manifolds, the subcomplex is exact in any domain with smooth
boundary.

More precisely, for s = 2,3, ..., we introduce the space 4*(D, A%9) to con-
sists of all u € H*(D, A%) such that

m(u) = 0,
E/agug = 0, (12.1)
v(du) = 0

on D, and §*u = Av in D, with v € H+(D, A%—1) 0 H2(D, %),

Lemma 12.1 As described above, the differential form v satisfies 0*v = 0
in D.

Proof. Indeed, from O*u = Av it follows that 0*00*v = 0in D. Combining
this with 7(0"v) = 0 on 9D we get d0*v = 0 in D. Using once again the
condition 7(0*v) = 0 on 0D we in turn obtain 0*v = 0 in D, as desired.

0

Lemma 12.2 Suppose that u € U (D,A) is 0 -closed in D. Then we
have u = Ov, v being as above.

Proof. Indeed, the equality 0*u = Av implies, by Lemma 12.1, that
d*(u — dv) = 0 in D. On the other hand, we have d(u — dv) = 0 in D, for u
is 0-closed in D. Since both 7(u — dv) and v(u — Ov) vanish on the boundary
of D, it follows from the uniqueness theorem that u — dv = 0 in D, which
completes the proof.

O

Invoking these lemmas we easily arrive at the following theorem analogous
to Theorem 4.1.

Theorem 12.3 Suppose s > n. The following sequence of Hilbert spaces
is an exact complex:

0 — £9(D,A%) L5 1D, A% Ly L s (DA — 0,
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Since u + {7(u),v(du)} is a Dirichlet system of order 1 on D, we obvi-
ously have

[}

U*(D,A*°) = H*(D)nH'(D
W(D,A™) = H*(D)n H*(D

);
).
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