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1 Introduction

The main object of the present paper is the differential-operator equation
Lu=(—1)™DMt* D™ u) + AD" L (#*" D" u) + 972 Pu = f(t), (1.1)

where m is a natural number, t € (0,b), b < o0, @« > 0, @ # 1,3,....2m — 1, D; = d/dt,
f € Ly_o((0,b),%) = H, A and P are operators acting in some Hilbert space #, commuting
with D; and possessing a complete system of eigenfunctions {yy,}72 , that forms a Riesz basis
in H.

We are interested in the character of boundary conditions for ¢ = 0,5, which guarantee
the existence and uniqueness of solution of (1.1) for every f € H. These conditions depend
on « and on properties of the operators A and P.

In the case when m = 1, A is the operation of multiplication by a constant, P = D? is an
operator on a closed interval and « > 1, the dependence on the sign of A of the character
of the conditions with respect to ¢ was first observed by Keldis [6]. Later, the corresponding
effect was studied by Visik [13]. For 0 < a < 2m this problem has been considered in [2],
[10], [11]. For the case a > 2m the factors t*~! and +*~2™ in (1.1) are essential, and instead
of the usual Ly(0,b) we consider the weighted space La _o(0,b).

Our approach is close to that of Dezin [2] and is based on the case A and P are the operators
of multiplication by numbers ¢ and p. We describe the spectrum of one-dimensional operator
and prove embedding theorems for weighted Sobolev spaces.

The results of this paper have been obtained during my visit of the research group “Par-
tielle Differentialgleichungen und Komplexe Analysis” of the Institute of Mathematics at the
University of Potsdam.
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2 The one—dimensional case

2.1 The space W'

For simplicity, in this section we assume the function u(t) to be real-valued. Let C™ be the
set of m times continuously differentiable functions on [0, b] satisfying the conditions

u(t)] = uP(t)

= =0, k=0,1,..m— 1. (2.1)
t=0

t=b
Denote by W™ the completion of C™ in the norm generated by the inner product
{u,v} = (u(m)’v(m))’

where (-, -) stands for the inner product in L3 (0,b). Moreover, let W denote the completion
of W™ in the norm

b
|u, W2 = / £ u(™ |2 dt. (2.2)
0
Define the inner product in W/* by
{u, v} = (£ ul™ (™),

It is clear that the embedding Wwm c W is proper and that the space W™ coincides with
the class of (m — 2) times continuously differentiable functions u(t) for which u(™=1(t) is
absolutely continuous and (2.1) is fulfilled. It is easy to check that the norms of W™ and
W are equivalent on [n,b], n > 0. Hence it is enough to study the properties of functions
from W7" for ¢t in a neighbourhood of 0. For the proof of the following proposition we refer
to [11].

Proposition 2.1 For every u € W2
|’u,(k)(t)|2 <Oy t2m—2k—1—a |’U,, Woém|2’ (2.3)

where
a#2n+1, n=0,1,.m—1, k=0,1,...m— 1.

For a = 2n 41, n = 0,1,....,m — 1 in (2.3) the factor t>"2¢=1=% should be replaced by
t2m=2k=2n=2|1n¢| k =0,1,....,m — 1.

The inequality (2.3) implies that for @ < 1 (weak degeneracy) the conditions (2.1) are
“retained”, while for @ > 1 (strong degeneracy) not all boundary conditions are “retained”.
For instance, for 1 < a < 3, u(m_l)(t)|t:0 can become infinite, while for a > 2m — 1 all
u®) (t)]4=o may be infinite for k = 0,1, ...,m — 1.

Proposition 2.2 For every a >0, a # 1,3, ...,2m — 1, we have the embedding

W(;n C Lgyafgm. (24)



Proof. Since C™ is dense in W/, it is enough to prove (2.4) in the case where u € C™.
First, for m = 1 have
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0 1 0

2

b
a2 - / £ 210 () 142 w(t) dt
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L boa li 2 ba—2 2
(@—1) /0 £ (w'(t)) dt/o 2 2 (t) dt.
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This implies

ba72 2 4 ba i 2
/Ot u(t)dtgi(a_l)Q /0 £ (u'(t))? dt.

Then, repeating this procedure m times we obtain

ba72m 2 4m
/Ot u(t)dtg(a_1)2(a_3)2“.

This completes the proof of Proposition 2.2.

b

Remark 2.3 The embedding (2.4) breaks down for a =1,3,...,2m — 1.

We prove this assertion for @ = 1 and m = 1. Consider the function u(t) = |Int|?, t € (0,a),
a < min(1,b). In Ly _1(0,a) its norm is finite for 3 < —1/2, while in W(0,a) it is finite for
B < 1/2. Therefore, for —1/2 < < 1/2 the embedding (2.4) breaks down.

Remark 2.4 The embedding (2.4) is not compact.

For simplicity we verify this assertion for m = 1 and @ = 2. Consider the bounded in W (0, a)
sequence of functions u,(t) = n~ /2t 1/2|Int|"1/2-1/2" where a < min(1,b). It is easy to
check that there is no subsequence of u,(t) convergent in the metric of L2(0,a) (see [3]).

Remark 2.5 For a >0, a # 1,3,...,2m — 1 in the space W' we can define the norm

b m
= [ | (e a)"

The proof of equivalence of the norms (2.2) and (2.6) follows the same lines as those of
Proposition 2.2 and the inequality (2.5) (see [4]). Therefore, we can write

2
dt (2.6)

that is equivalent to (2.2).

W = =2y,



This means that « € W™ implies v = t~*/2u € Wy Observe that for a = 1,3,...,2m — 1
the norms (2.2) and (2.6) are not equivalent. Denote by W the completion of W™ by the
norm (2.6). The inequality (2.3) implies the embedding

Wwmcwm

With the help of Mellin transform (see [9])

Mul(z) = /0 Tl dt,

a norm equivalent to (2.2) can be introduced.
Let vp,v; € C*°[0,b], v1 =1 — vy be cut—off functions with vy(z) = 0 (vo(z) = 1) in some
neighbourhood of z = b (z = 0).

Remark 2.6 The norm given by the formula

[ul [0

[ D) (M) )P ]

Fy2vas2-m

+ / (1 + |Z|2)m |((MRv1u)(2)|? |dz|,
Fijoom

where 'y = {z € C: Rez =}, Ru(z) =v(b—2) and o < 1, is equivalent to (2.2).

For the proof we refer to [4].
Denote by Lo, the weight space

b
Lo ={u(t): |u,Lou|* = / Y Ju(t)|® dt < oo}
0

Proposition 2.7 For every a > 0 the embedding
Wg' C Laa (2.7)

18 compact.

Proof. First consider the case when « # 1,3, ...,2m — 1. It follows from (2.3) that

Ju(®)? < Ci 271 |u, W'

This implies
|u, Lo o] < c1 |u, W5 (2.8)
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To prove that the embedding (2.7) is compact we use (2.3) for k¥ = 1 and write

b
e+ 1) =) Loal = [ e fute+ ) = ute) Pt

b t+h 2
= / t / u' (1) dT
0 t

dt

b t+h 2
< |u,W£1|2/ t* / rm=3-0)/2 qr| gt
0 t
b
— cluWPRRPE [t
0
< clhf Ju, Wi,

where € € [t,t + h]. Therefore,

|u(t + h) —u(t), Lao| < c|h]|u, W
The result now follows from compactness criterion in Ls , (see [2], [10]). Fora = 1,3,
the proof is similar.
Djarov in [3] has proved, that the embedding
W(;n C Lg,ﬂ,

is compact for every 0 > o — 2 and m = 1 . For us it is sufficient the case § = a.
2.2 Self-adjoint Equation
We consider the one-dimensional version of equation (1.1) for A = 0:

Bu = (—1)" D*(t* D" u) + pt**™u = f(t),

where @ > 0, « # 1,3,....,2m — 1, f(t) € Ly, and p is a constant.

(2.10)

Definition 2.8 A function u € W[ is called a generalized solution of equation (2.10), if for

every v € W'
{u,v}a + 0" u,v) = (f,v).

We set
dim,a) =4 (a —1)* (@ —3)? - (a — (2m — 1))%

(2.11)

(2.12)

Theorem 2.9 Assume that p+d(m,a) >0, « >0 and o # 1,3, ...,2m — 1. Then equation

(2.10) has a unique generalized solution for every f € Lo _,.



Proof. Uniqueness of the generalized solution of (2.10) follows from (2.5) and (2.11) with
f =0 and v = u. To prove the existence we consider the functional [;(v) = (f,v), f € La,—a
over the space W/'. Using (2.8) we write

2

b —_
) = / £(t)0(d) dt

2

/bta/2f(t) /2 0 (t) dt

0

b b
—« 2 « v 2
/Ot @) dt/0 1 Jo(t)? dt

< clfy Lo ol o, W

IN

Therefore, [;(v) is a linear bounded functional over the space W7*. The result now follows
from Riesz’s lemma on the representation of such functionals (see [2]). Theorem 2.9 is proved.

Remark 2.10 Observe that the generalized solution wu(t) of equation (2.10) belongs to
W2 (8,b — &) for every 6§ > 0.

Hence in each interval (§,b—¢) the generalized solution u(t) coincides with the usual solution
of (2.10).
An element f € Ly _, can be represented in the form

ft) =t f(t) (2.13)

It is clear that f; € L, and
|f7 L2,fa| = |f17 L2,a|'

Now, using Definition 2.8 we define an operator B : W' C Ly o — Lo 4.

Definition 2.11 We say that a function u(t) € W[* belongs to the domain D(B) of an
operator B if (2.11) is fulfilled for some f € Ly . In this case we will write Bu = f, where
the function fy is specified by (2.13).

It follows from Definition 2.11 that the operator B acts by the formula
Bu =t *{(=1)"Di"(t* D" u) + pt* *™ u}
and for every u € D(B), v € W' and f € Ly _,
(Bu,v)a = (f,v),
where (-, ), stands for the inner product in Lo 4.

Theorem 2.12 Under the assumptions of Theorem 2.12 the operator B is positive and self-
adjoint in Lg o. Moreover, B!: Ly o — L3 o s a compact operator.



Proof. The symmetry and positivity of B is an immediate consequence of Definition 2.11.
The self-adjointness of the symmetric operator B follows from the fact that, according to
Theorem 2.9, for every f € Ly _, the equation (1.1) is solvable, that is, for every f; € Lo,
of the form (2.13) the equation Bu = f is solvable. Using (2.5), (2.11) with v = u and the
embedding Ly o2, C Lo o wWe can write

< (d(m,q) +p) [u, L2 a—2m|”
S |u7 ng|2 +p |’LL, LZ,a72m|2
< |f,L2,,a| |U’7L2,a = |f17L2,Oé| |U’7L2,a

(d(ma Oé) + p) c |U'7 L2,a|2

Therefore,
B~ f1, Loo| < e1]f1, Loal.

This implies that B! is bounded. To prove that B! is compact it remains to observe that,
according to Proposition 2.2, the embedding D(B) C W7 C Ly is compact. Theorem 2.12
is proved.

Applying standard properties of the spectra of self-adjoint compact operators we get the
following corollary (see [5]).

Corollary 2.13 The operator B has a pure point spectrum, and the system of corresponding
eigenfunctions is dense in Lo q.

Observe that if A is an eigenvalue of B, and wu(t) is the corresponding eigenfunction, then
according to Definition 2.11,

(—=1)™ DIM(t* DI u) + pt* 2™ u = A" u.

Remark 2.14 Note that, if p = 0, a« = 2m and f € L9(0,b), then the spectrum of the
operator B is pure continuous and coincides with the ray [d(m,2m); +00) (when p # 0, then
we can take X —p instead of the spectral parameter X).

For the proof we refer to [11] and note that it is in fact a consequence of the embedding (2.4).
Now we consider equation (2.10), as above, with p = 0 and f € L 2p—q

Qu = (—=1)™ DI™t* D" u) = f(t), f € Lagm-a- (2.14)

We can define (as for equation (2.10)) generalized solutions for equation (2.14) and prove
that for every f € Ly 2,—o a generalized solution exists and is unique. Let f = ta=2m g It
is clear that fi € L2 4—2,. Then we can define an operator Q : Lo o—2, — L2q—2/, as in
Definition 2.11.

Theorem 2.15 The operator Q has a pure continuous spectrum which coincides with the ray
[d(m, a); +00).

Theorem 2.15 can be proved similarly to [11] with the help of embedding (2.4).



2.3 Non-selfadjoint Equation

Now we consider the one-dimensional version of equation (1.1)
Su=(—1)™ DI*(t* D" u) + aD*" 1 (t*" D) + pt® 2y = f(2), (2.15)
where a > 0, a # 1,3,...,2m — 1, f(t) € Ly _q, a and p are constant.

Definition 2.16 A function u € W is called generalized solution of equation (2.15), if for
every v € W

fu, v}a + a(=1)™ (1271 DY, DI 4+ p(t7 2w, 0) = (£, 0). (2.16)
Theorem 2.17 Let the following condition be fulfilled
ala —1)(=1)" >0, y=d(m,a) +a/2(a — 1)(=1)""d(m — 1, — 2) + p > 0, (2.17)

where d(m, ) is defined in (2.12). Then equation (2.15) has a unique generalized solution
for every f(t) € Ly, _q.

Proof. Uniqueness. For the proof of uniqueness in equality (2.16) we set f = 0 and u = v.
Let @ > 1 (in the case a < 1 the proof is similar and we use that (t"‘_l (u(m_l)(t))2> li=o =0
[see Proposition 2.1]). Then integrating by parts we get

b
(et ) = [Tt gD gy a
0

-
- agl/ob tafz(u(m*”(t)fdt.

It follows from (2.3) that (t"‘_l (u(m_l)(t)2> lt=o is finite. Using (2.5) we can write

b 9 b
/ =2 (um (1) dt > d(m — 1.0~ 2) / 192 (4, (1))2 di.
0 0
From this inequality and (2.5) we get
0="{u,u} + a(=1)"" W™ D) £ p*2my, u)

> 4 /0 " mu(0)

+ %a(—l)m (t“—l(u(m‘”(t))2> |i=0-
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Now uniqueness of the generalized solution immediately follows from the condition (2.17).
Egistence. First note that the functional If(v) = (f,v) can be represented in the form (f,v) =
{u*,v}, where u* € W/ (see the proof of Theorem 2.9). The last two terms in the left-hand
side of equality (2.16) also can be regarded as a continuous linear functional relative to u
and represented in the form {u, v}, where v € W/. Indeed, using inequality (2.5) we can
write

la(=)™ 7 (I DM u, D )+ p(t T w, w)]

< ot/ D uy /2 D )|+ [p(t°2 192
b 9 1/2

< c1|u,wgl|{ / 22 (stm= 1)) dt}
0

+  calu, Ly o2m||v, L2,.a—2ml

2
< gl Wl Wi+ calu W o, W3
a_
= clu, Wi |jv, W5'|.
Now from (2.16) we obtain
{u, (I + K)v} = {u*,v} (2.18)

for every v € WJ'. Note that the image of the operator I + K is dense in W/*. Indeed, if
there exists a ug € W/;* such that

{U()a (I + ’C)U} =0

for every v € W, we get ug = 0, since we have already proved uniqueness of the generalized
solution for equation (2.15).
Let 0 < od(m,a) <. Then we can write

{u,(I + K)u} > ofu, u}+[(1—0)d(m,a)

b
b oa/2(a— D)(=1)"dm — 1,0 - 2) +p]/0 19=2m 2 () i

b
= ofu,u}+(y— Ud(m,a))/ tO2my2 (1) dt
0
> ofu, u}.
Finally, we get
{u, (I +K)u} > o{u, u}. (2.19)
From (2.19) it follows that (I + )~ is defined on W and is bounded therefore, there exist
I+ K* and (I +K*)"! = ((I+K) !)*. Then from (2.18) we obtain
w=(I+K)  u*
Theorem 2.17 is proved.

Let f = t*f;. As in the self-adjoint case we can define an operator S, according to
Definition 2.11.



Definition 2.18 We say that u(t) € D(S) if (2.16) is fulfilled for some f € Ly o, and then
we will write Su = fi.

Proposition 2.19 Under the assumptions of Theorem 2.17 the operator S—! : Lyo —
D(S) C Ly is compact.

Proof. For the proof we first note that
[u, La,a| < (d(m, @)~ f1, Lol (2.20)
Indeed, setting v = u in (2.16) we obtain

d(mua)|u7L2,a|2 S d(mua)|L2,a72m|2
< |(f,u)]
<

|fs L2,—allts Lol = [f1, Lo,a||u; Lol

Now to complete the proof of Proposition 2.19 it is enough to apply the compactness of the
embedding (2.7). Proposition 2.19 is proved.
For the case a(a — 1)(—1)™ < 0 we consider the operator

Tv = (=1)™ DI(t* D" v) + aD™ (t* 1D Lo) + pt® 2™y = g(t). (2.21)

Definition 2.20 We say that v is a generalized solution of (2.21), if the following equality
holds
(Su,v) = (u,9), (2.22)

for every u € D(S).

Let g = t%g1. Definition 2.20 of a generalized solutions defines an operator T : Ly o — L2 o
(see Definition 2.18). We can express formula (2.22) in the form (Su,v)q = (u,9)q. Since
D(S) = D(S) is dense in Ly ,, we obtain that

T =S*
in Lgya.

Theorem 2.21 Under the assumptions of Theorem 2.17, for every g € Lo _o a generalized
solution of equation (2.21) exists and is unique. Moreover, T™! : Ly — Lg o is compact.

Proof. Solvability of the equation Su = f; for any right-hand side implies uniqueness of the
solution of (2.21), while existence of the bounded operator S™! (Proposition 2.19) implies
solvability of (2.21) for any g € Lo _, (see, for example, [1]).

Because of (S*)~! = (S71)*, compactness of the operator S~! implies compactness of the
operator T~!. Theorem 2.21 is proved.
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Remark 2.22 For o > 1, and for every generalized solution v of the equation (2.21), we
have

(== ™0 8)°) li=o = 0. (2.23)

In fact, replacing g by Tw in equality (2.22), integrating by parts the second term and using
equality (2.16) we obtain (2.23). Note that for equation (2.15) the left-hand side of (2.23) for
a(—1)™ > 0 is only bounded.

3 Operator Equation

In this section we consider the operator equation (1.1):

Lu=(=1)"D"(t* D" u) + AD™ *(t* 1D u) +t* 2™ Pu = f(t), f € H.

Recall that if a system {p}}72, is a Riesz basis in H, every element € H can be uniquely
represented in the form z = Y 77 | zxpk, and the inequality

oo o
2 Yzl < 2l < ea Y Jal (3.1)
k=1 k=1
holds, where || - || stands for the norm in H.

By assumption, the operators A and P appearing in (1.1) have a complete common system
of eigenfunctions {¢;}72, that forms Riesz basis in . So we have

u(t) = > w(t) or, F(8) =D falt) ok, Apr = arpr, Por = pi ok, k €N (3.2)
k=1 k=1

Hence, the operator equation (1.1) can be decomposed into an infinite chain of ordinary
differential equations

Ly up, = (=1)" D™ (t* D™ uy,) + ap, DLt D ug) + 1272 pruy, = fi(t), k €N (3.3)
The condition f € H implies that f, € Ly _, for kK € N. For the one-dimensional equation
(3.3) we can define the generalized solutions ug(t),k € N (compare with the Definitions 2.8,
2.16 and 2.20).

Definition 3.1 A function u € W5*((0,b),H) C L2 o((0,b),H) admitting the representation

u(t) =Y uk(t)pr,
k=1

where ug(t) are the generalized solutions of the one-dimensional equation (3.3) is called a
generalized solution of the operator equation (1.1).
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The following theorem is a consequense of the general results of Dezin [1].

Theorem 3.2 The operator equation (1.1) is uniquely solvable if and only if the one—dimensional
equation (3.3) is uniquely solvable and the inequality

|[uk, Lol < c|fk, L2,—al = clgk, L2,a] (3.4)
is fulfilled, uniformly with respect to k € N, where fr, = t%gy.

Theorems 2.9, 2.17 and 2.21 shows us that a sufficient condition for relations (3.4) are either

pr +d(m,a) >e>0,keN, (3.5)
for all £ € N, with a =0, or

Ve = d(m,a) + ag/2(a — 1)(=1)"d(m — 1,a — 2) + p > € > 0, (3.6)
for all k£ € N, such that a # 0. Therefore, we can state the following result.

Theorem 3.3 Let (3.5) and (3.6) be fulfilled and let o # 1,3, ...,2m — 1. Then the operator
equation (1.1) has a unique generalized solution for every f € H.

Proof. Observe that if u is generalized solution of (1.1), then according to (3.1) and (3.4)

we have
b
/ 1 Ju(t)| dt
0
b (o0}
o [ o)
0 k=1

(0.0)
< ¢ Z |fk7L2,—0¢|2
k=1

|u7 L2,a((07 b)7 7_l)|2

IN

< df,HP. (3.7)

Similarly to (2.13) we set f = t*g. It is clear that ¢ € Ly4((0,b),H) and |f, H| =
|9, L2, ((0,0),H)|. Inequality (3.7) can be written in the form

|U7L2,a((07b)7H)| S C|97L2,a((07b)7H)|' (38)

Analogously to the one-dimensional case the generalized solution of the operator equation
(1.1) generates the operator

A W&"((O, b),H) C L2,a((07 b),H) - L2,a((07 b),H)

Inequality (3.8) implies that A=! : Lo ((0,0),H) — W™((0,b),H) C L2.4((0,b),H) is a
bounded operator. Hence, we have 0 € p(A), where p(A) is the resolvent set of the operator A.
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