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Introduction

1. P. Gilkey noticed [1] that the Atiyah-Patodi-Singer n-invariant is a homotopy
invariant in the class of elliptic self-adjoint differential operators, provided the following
condition is satisfied

ord A+ dimM =1 (mod?2). (1)

More precisely, in this case the fractional part {n(A)} € R/Z of the spectral n-
invariant defines a homotopy invariant, which is determined by the principal symbol
of the operator.

There arises the problem of computation of the n-invariant in topological terms and
the question of finding examples, which show the nontriviality of the invariant.

On even-dimensional manifolds, operators with a nontrivial n-invariant were con-
structed in [2]. It turned out that geometrical first order Dirac type operators can only

wanez|;|/z

Moreover, if the manifold is orientable then the invariant is a half-integer. An inter-
esting example is given by the Dirac operator on (nonorientable !) pin®-manifolds (see

have dyadic np-invariants
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[2]), e.g., on an even-dimensional real projective space RP*". For a number of mani-
folds, the n-invariant of the Dirac operator was computed in [2, 3], where applications
to geometry are considered.

In this paper, we give a formula for the n-invariant of operators, which satisfy (1).
A geometric second order operator with a nonzero fractional part of the n-invariant is
constructed on some odd-dimensional manifolds. This solves the problem posed in [1].

2. Let us briefly describe the contents of the paper. The computational problem for
the fractional part of the n-invariant is stated in the first section. The following three
sections deal with the case of even order operators (for definiteness). Section 2 starts
with the expression of the fractional part of the n-invariant in terms of the spectral flow
modulo n. The following Section 3 expresses this spectral flow in topological terms.
Then we give an expression for the n-invariant in terms of the linking index in K-theory,
which is more useful for applications. In Section 5 we indicate the changes, which are
necessary to obtain a formula for the fractional part of the n-invariant for odd order
operators. The last section contains a second order operator with a non-zero fractional
part of n-invariant on the nonorientable product RP *" x S'.

Two appendices are placed at the end of the paper. The first contains an expression
of the spectral flow in terms of the index. In particular, we obtain the expression of
the spectral flow for periodic families as the index of a single operator (see [4]). In
the second appendix, we give a formula for the action of antipodal involution on the
K-group of the Thom space for a real vector bundle.

3. A preliminary version [5] contained the formula for the fractional part of the -
invariant. It was obtained by means of the reduction of the spectral invariant n (A) to (a
priori) homotopy invariant of the spectral subspace, which is generated by eigenvectors
of A that correspond to the nonnegative eigenvalues (see [6, 7, 8]).

The present paper contains a direct proof of the formula for the n-invariant. This
proof is independent of the above mentioned construction and the corresponding elliptic
theory in subspaces, which are defined by pseudodifferential projections.

4. We are grateful to Prof. P. Gilkey for advice and a number of valuable remarks
he made in the discussion concerning the results of this paper.



1 Statement of the problem

Let M be a smooth closed n-dimensional manifold and let
A:C*(M,E) — C* (M, E)

be an elliptic self-adjoint operator of a positive order. The spectral n-function of A is

defined |
n(s,A)= 5 <Z sgn A; [A;|7° + dimker A> ) (2)

where the summation is taken over nonzero eigenvalues A; of A with respect to their
multiplicities. The series in (2) is absolutely convergent in the half-plane, which is
defined by the inequality Res > dim M/ ord A. The spectral function n (s, A) extends
analytically to the complex plane with isolated singularities. Moreover, the residue at
the point s = 0 is equal to zero ([4], [9]). The value of the n-function at the origin is
called the n-invariant of operator A:

n(A) =n(0,4).

The spectral n-invariant s not a homotopy invariant of the operator: for a smooth
family of operators A; with parameter ¢, the function  (A;) is a piecewise smooth
function with integer jumps at those values of ¢, where some eigenvalue of operator A;
changes its sign. At the same time, the family of fractional parts

{n(A)} e R/Z

is smooth. It was noticed in [1] that for differential operators, which satisfy condition
(1), the fractional part {5 (A)} is a homotopy invariant of the operator. Condition (1)
will be referred to as the parity condition.

Problem. Compute the fractional invariant {5 (A)} under the parity condition in
terms of the principal symbol of the operator A.

It is useful to enlarge the class of differential operators, in order to apply the
methods of algebraic topology to the problem.

Definition 1 A pseudodifferential operator A is called admissible [1], if it is a classical
operator (see e.g. [10], [11]), and the components of its complete symbol

o (A) (l’, 5) ~ Z ad—j (l‘, 5)
>0
are R,-homogeneous in the following sense:
ag (l',—f) = (_1)k Ak (l’,f) (3)

The basic properties of the p-invariant, which are used in the computation of the
fractional part {n(A)}, are given in the following proposition (e.g., see [4, 1]).
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Proposition 1 Let A be an admissible elliptic self-adjoint operator, which satisfies the
parity condition. Then

L. {n(A)} € R/Z defines a homotopy invariant of the operator A; more precisely,
for a smooth operator family Ay, the following equality is valid

n (A1) —n(Ag) = sf (At)te[o,uv

where sf (At)te[o,l] denotes the spectral flow (see [4]) of the family of self-adjoint

operators Ay,

2. n(Ag) =0, where Ag denotes an admissible operator
A :C*(M,E)— C* (M, FE),

with the principal symbol of the Laplacian, which acts on the sections of a vector
bundle E on an odd-dimensional manifold. A similar statement is valid for
powers of this operator: n (A%) = 0;

3. n(—=A)=—n(A), if A is invertible;

In the following sections, we compute the fractional part of the n-invariant for even
order operators on odd-dimensional manifolds. Odd order operators can be treated
similarly. The changes in the constructions and the proofs are given in Section 5.

2 Expression of the n-invariant in terms of the spec-
tral flow

1. Let A be an admissible elliptic self-adjoint operator of even order d = 2[, which
satisfies the parity condition, i.e. the manifold is odd-dimensional.
We introduce the stable homotopy equivalence relation on this set of operators.

Definition 2 Operators with the principal symbol, which is the direct sum of a posi-
tive and a negative definite symbols are called trivial. Two operators A; and A, are
stably homotopic, iff for some trivial operators A’, A” the direct sums

Al D A/ and A2 D A//

are homotopic.



The set of equivalence classes of stably homotopic admissible self-adjoint even order
operators on M is denoted by S (M). This set is a group with respect to the direct
sum of operators.

This group S (M) can be described in terms of K-theory. Indeed, the principal
symbol o (A)(x,&) is a hermitian matrix at each of the points (z,&) of the cosphere
bundle S*M. Let us denote by Il (o (A)) (x, ) the orthogonal projection onto the
subspace generated by eigenvectors of the matrix o (A) (x, &) with positive eigenvalues.
For an even order operator A, we obtain

o (A) (l‘, _5) =0 (A) (l’, 5) :
Consequently, the vector bundle Im I, (o (A)) lifts to the projectivization
Let us define the mapping

S (M) X5 K (PM)/pK (M),
4]~ [ImIly (o (A4))],

where p* : K (M) — K (P*M) is induced by the projection
p: P"M — M.
Lemma 1 \ is an isomorphism.

Proof. Let us construct the inverse

—1

K(PM)/prK (M) *—= S%(M).

Consider an element [L] € K (P*M), where L € Vect (P*M) is a vector bundle. Let
us embed it as a subbundle in the trivial p*CY. The orthogonal projection onto L is

denoted by Il = Il (x,¢)
II:p*CY — p*CY, ImIl ~ L.

Let us define the mapping x~! by the formula

where

A:C®(M,CN) — O~ (M,CY)
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is an arbitrary elliptic self-adjoint admissible even order operator with the principal
symbol

U(A) (l',f) = |§|2l (21—[ (l',f) - 1) : W*(CN — W*CNv
and 7™ : S*M — M is the projection. Let us show that this mapping is well-defined.
Indeed, consider two realizations of L as a subbundle

LcpCM LcpCh,
Then these subbundles are homotopic, i.e. there exists a homotopy of projections
11, : p*CN1+N2 SN p*CN1+N2
* b
over P*M, such that
ImIly =L &0 CpCH M ImI, =06 L C p"CM 2,

The homotopy of projections II; can be lifted up to a homotopy of admissible self-
adjoint operators A,. Therefore, the equivalence class of A is independent of the
realization of the bundle L as a subbundle L C p*CV. This shows that the mapping

Y1 is well-defined. It is the inverse to Y by construction. Lemma 1 is proved.

4

Remark 1 If we drop the requirement of admissibility in the definition of the group
S (M), then the corresponding group S(M) (which is the group of stable homotopy
classes of elliptic self-adjoint operators) was defined in [4], where it is shown that a
similar mapping

X:SM)— K(S"M)/K(M)
is an isomorphism. It is also known that the latter group is isomorphic to K(T*M)
(the elements have compact supports) under the coboundary mapping

K(5*M) - KNT*M).

C

In what follows, we denote by [0(A)] the corresponding element of the odd K-group

[0(A)] = § [ImIT,0(A)] € K (T*M).

C

On an odd-dimensional M, the group K (P*M) /p*K (M) is a torsion group. More
precisely, the following result is valid.

Lemma 2 (Gilkey [1]) Suppose that dim M is odd. Then K*(P*M) [p*K* (M) is a

2-torsion group, i.e. the orders of its elements are powers of two.



2. The last two lemmas imply that for some N > 1 there exists a homotopy of
admissible operators

By : O (M2VE) — C>~ (M,2VE), t€[0,1];

Bo=2"YA=AdA®d...0A, B =240y (-4, (4)

2Vtimes

where operator B is a direct sum of powers of invertible operators
AE/ : O (M, E/) — O (M, E/) R

AE// : O (M, E”) — = (M, E”),

with positive definite leading symbols, and the following vector bundle isomorphism is

valid
NE ~E @ B

Applying Proposition 1 to the homotopy B;, we get

n(B1) —n(Bo) = st (Bt) o1 -

At the end points we have

n(B1) =n(Lp) —n (D) =0, n(Bo)=2"n(A).
Thus, the fractional part of the n-invariant of A is expressed as

n(A)} = {_QLNSf(Bf)te[OJ]} :

In other words,
1
n(A)} = ToN mod 2N‘Sf(Bf)te[o,l] ) (5)
where mod 2V denotes the residue of an integer modulo 2V.

Remark 2 Unfortunately, the formula for the spectral flow with values in a finite
cyclic group (see [4]) does not apply to the present case, since the operator B; does not
have the form, which was assumed in that paper. In the following section, we compute
(5) in terms of the principal symbol o (B;) of the operator family B;.



3 Computation of the spectral low modulo n

Let n be a fixed natural number. Consider a smooth family of elliptic self-adjoint
operators A, ¢ € [0,1], such that

Ao =nA, A =A0L @ (-AL).
The residue modulo n of the spectral flow of the family (A;) is denoted by
mod n-sf (Ar),cpo] € Zn (6)
(cf. [4]).

The spectral flow for families of this form can be computed by means of the Atiyah—
Singer index formula for families. Namely, the spectral flow (6) can be computed in
terms of the difference construction

[0 (Ay)] € K. (T"M,Z,) (7)
in K-theory with coefficients Z,,. The group on the right-hand side of (7) is defined as
K. (T"M,Z,) = K. (T"M x M,,, T"M x pt), (8)
here M, denotes the Moore space for the group Z,. Let us represent a generator of
the reduced group K°(M,) = Z, by a line bundle v. Let us also fix a trivialization
ny & Cr.

It follows from (8) that the elements of the group K. (71T*M,Z,) can be represented
as families of elliptic symbols on M, which are parametrized by the Moore space.
Let us define the difference construction

[0 (A)] = |Im1Ly (o (Al—t))te[o,u @, Im1ly (o (Al—t))te[o,u =
K(B*M x M,,, B*"M x pt US*M x M,) ~ (9)
~ K (T*M x M,,T*M x pt),

where the vector bundles Im Il (o (A;—;)) are located over the cospheres of M with
radius t. The vector bundle isomorphism over the space S*M x M, (i.e. for t = 1) is
defined by means of the following equivalences

Il (o (A0) @y = nlnlly (o(4) 0 ~
~ Tl (0 (A) @ ny '~ Imll, (0 (A) @ C' ~
~ nplmll; (0 (A)) =Imll; (0 (Ao)).

We are now ready to prove the formula for mod-n spectral flow.

9



Theorem 1 The following equality is valid
mod n'Sf(At)te[o,l] = —pr[o (A)], (10)

where

p: K (T°M,Z,) — K (pt,Z,) = Z, (11)

is the direct image mapping in K-theory with cocfficients Z,,, which is induced by the
mapping p: M — pt.

Proof. Let us consider the family (At)te[o j as a family over the parameter space
[0,1] x M,,. Denote by A;® 1, the corresponding family with coefficients in . Consider
the composition of these self-adjoint elliptic families:

- At@lw t>0
B’f_{A_t T S

At t = 0 the families are glued by the isomorphism

Ao@ 1, =nAo L, 2 Ac 1, '~ A® 1o =nA= Ay
We obtain immediately

ST (Be)yeorg = ST (e (D] = 1) € K (M,,). (12)

On the other hand, the spectral flow for families of this form, i.e. for families that start
and end on the direct sums of positive and negative definite operators, is equal to the
index of an elliptic operator (see Proposition 5 and the Corollary that follows it in the
Appendix A). Thus, the following equality is valid

Sf (Bt)te[—l,l] —_ — lnd U

The element [0 (A;)], which we defined in (9), coincides with [0 (U)] by construction.
Hence, (12) and the Atiyah—Singer index theorem for families give the desired

mod n-sf (A;) ([y] = 1) = —pi [0 (A)] € K (M,,) = Z,.

The formula for spectral flow modulo n is proved.

4

Let us apply the formula for the spectral flow to the family (4). We obtain the
following result for the fractional part of the n-invariant.

Theorem 2 Let A be an admissible elliptic self-adjoint operator of a positive even
order on an odd-dimensional manifold.
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1. The following formula is valid

=gl ez|s) /2. (13)
where oy is an arbitrary homotopy of invertible self-adjoint even symbols
o (2, —&) = o1 (2,6), 00 =2No (A),01 = L, B (—lrsp,) (14)
on the cospheres S*M. The direct image mapping
pr Ko (T°M, Zgn) — K (pt, Zign) =~ Zign

is induced by p: M — pt.

e n (ruzfl] /2).

which is obtained under the natural inclusion of coefficient groups

@'OO:ZQNcZH/Z.

This element is independent of the choice of the homotopy oy.
The K-group with coefficients Z [%]/Z is defined as the direct limit as N — oo

2. Constder the element

1
lim K. (T*M, Zyx) = K. (T*M, 7 H / Z).

—
It is induced by the mappings

Ko (T*M, Zgw) = Ko (T*M, Zgwar) = . ..

Proof. The first assertion follows directly from (5) and Theorem 1.
Let us prove the second assertion. Consider two homotopies oy, o} of the form (14).
We should prove the equality

N o) =i [0l € K. (T"M, Z i)
for some N’ and the natural inclusion

ATt
N Lo — Zign .

11



Consider the superposition of homotopies
o Uo_;Ua;. (15)

In other words, as the parameter ¢ € [0, 3] increases, we start with the homotopy oy,
then do it in the opposite direction, and finally, carry out the second homotopy o7.
Obviously, this superposition is equivalent to the homotopy ;. Hence, we obtain an
equality for the difference constructions

[o,Uo_Uoy = o, € K. (T"M,Z,x).
By the definition (9) of these elements, we obtain
[o Vo Uoy] = [ov] = o Uil @ ([v] = 1),

[o_ Uol] € K, (T*M).

The family o_; U o} is even with respect to the cotangent variables. We conclude that
the element [o_; U o}] lies in the range of the composition

KYP*M)/p*K'(M) — K'(S*M)/m* K" (M) — K. (T*M).
By virtue of Lemma 2, we have for some N’
2N o Uol] = 0.

Consequently,
il o] =il o] =2V [ Vo] @ (] — 1) = 0.
This gives the desired

4 Eta invariant and linking index in K-theory

The formula (13) can be written in the form that is more suitable for applications. We
shall show that the fractional part of twice the n-invariant is determined by the element
of the group K} (T*M) (see Remark 1). This element is defined by the principal symbol

of the operator. The n-invariant can be calculated as the linking index in K-theory.

1. Let us define the linking pairing
(,): Tor K'Y (T"M) x Tor K (M) — Q/Z (16)
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in the following way (cf. [12]).
The short exact sequence

0—Z-5Q— Q/Z —0

induces a long exact sequence in K-theory

s K(T"M) = K(T"M, Q) — K(T"M,Q/Z) % KNT*M) % KXT"M,Q) — -
(17)
Here K-theories with coefficients Q and Q/Z are defined as the direct limits (see [4])

K*(X,Q) = lim K*(X,Z), AN/

K (X,Q/2Z) = Jim K*(X.Zx), 2, C

Y

(18)

Let us note the natural isomorphism
K*(X,Q) ~ K*(X)® Q.
Consider two torsion elements
x € Tor KT (T*M), y & Tor K' (M).

Then 7.z = 0 and the exact sequence (17) implies that for some 2’ € K'(T*M,Q/Z)
the following equality holds da’ = .

Definition 3 The number
(z,y) = p (2'y), (19)

is called the linking index of elements x and y. Here
pr K (T°M,Q/Z) — K.(pt,Q/Z)= Q/Z.

Lemma 3 The product
vy e K.(T"M,Q/Z)

is determined by x and y, it is independent of the choice of x'. Therefore, the linking
index is well-defined.

Proof.  The sequence (17) implies that the arbitrariness in the choice of 2’ is
generated by the elements of the group K!(7T*M) © Q. However, the product
(KAT*M) ® Q) x TorK*(M) — KX(T"M) @ Q

C

is trivial. This proves the lemma.
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Theorem 3 The following equality holds

{20 (A)} = (o (A)], [1 = A" (M™)]), (20)

where A is an admissible elliptic self-adjoint even order operator, A" (M™) is the ori-
entation bundle of the odd-dimensional manifold M.

Remark 3 It follows from this result that the invariant {2n (A)} is determined by the
element [0 (A)] € K} (T*M).

Proof of Theorem 3. By virtue of (13), the fractional part of the n-invariant is equal
to

WA} = gemlod, [ € Ko (1M, Za).
The element [o;] satisfies the relation (see (17))
Do) =[o(A)) € K (T*M).
Moreover, this element is invariant under the action of antipodal involution
a:T"M —-T"M, o(x,f)=(x,=¢)

on the K-group. Thus,
1 b
{2n(A)} = o P! (1 +a")[od]. (21)

We show in Appendix B that the involution a* acts on the K-group as the product
with the orientation bundle:

a'r = (=1)" [A" (M")]x.

Substituting the last expression in (21), we get

201} = s (o] (1= A" (7).

The right hand side of this expression coincides with the linking index (see (19), (18)).
The theorem is proved.

4

2. The formula for the fractional part of the n-invariant can be written in the form,
which resembles the index formula in K-theory. In contrast to the index, which is
computed under the collapsing map to the point, the n-invariant is computed in terms
of the map to the projective space.
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The orientation bundle A™ (M™") is a line bundle with the structure group Z,. Con-
sider the classifying mapping

f:M"— BZy, =RP™,
i.e. the mapping f: M” — RPN for which an isomorphism is valid

here ~ is the line bundle over the projective space RP 2", The mapping f is uniquely
defined up to homotopy. The reduced K-group of the projective space RP*" is a cyclic

group ~
K(RP*N) = Z,n,

the generator is 1 — [y]. The Poincare duality for torsion subgroups (16) implies that
the value of the linking pairing with this element defines an isomorphism ~

KYT*RP*Y) = Ta K{T*RP*N) ~ Zye Z[i]/Z )
22
r = <$, [1 - 7]>

Proposition 2 The fractional part of twice the n-invariant is equal to
{2n(A)} = filo(A)], (23)

flo(A)] € KNT"RP*N) ~ Zov C Z E] /Z.

Proof. From the definitions of the linking index and the mapping f, we obtain

{2n(A)} = pr([o(A)] > [1 = A"(M)]) = pr ([o(A)] < [1 = [*7]).

Here x denotes the product
Tor K7 (T*M) x TorK*(M) — K.(T"M,Q/Z)
from Lemma 3. By the functoriality of the direct image map pi, we have

{2n(A)} = pifi ([o(A)] x fL =) = p(filo(A)] < [L =) = (file(A)], [T =),

where p' : RPY — pt. By virtue of (22), the last expression coincides with the desired

(23). The Proposition is proved.
0
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Corollary 1 On an orientable manifold, the n-invariant is at most a half-integer. In
the nonorientable case the following estimate for its denominator is valid:

{2 (4)} =0, (24)

on an n = 2k + 1-dimensional manifold.
Proof. By the approximation theorem, we can choose the classifying mapping

f:M—RP".

The reduced K-groups for the projective spaces have the form
K (RP*) ~ K (RP#+) & Z.
Consequently,
2°[1 — A" (M™)] = 0.
Hence, we obtain the desired
{21 (A)} = ([o(A)], [2° (1 = A" (M")]) = {[o(4)],0) = 0.
O

Remark 4 For Dirac type operators on even-dimensional manifolds, similar estimates
were obtained in [2].

5 Odd order operators
1. Let
A:C™ (M, E) — O (M, E)

be an admissible elliptic self-adjoint operator.
Let us introduce the stable homotopy equivalence relation on this set of operators.

Definition 4 The direct sums
A (—A),

for an elliptic self-adjoint operator A are called trivial operators. Two operators A,
and A, are said to be stably homotopic, if for some trivial operators A’, A” the direct
sums

Al S, A/ and A2 D A//

are homotopic.
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The group of stable homotopy equivalence classes of odd order d = 2] 4 1 elliptic
operators on M is denoted by S (M). It is a group with respect to the direct sum.
Principal symbols of odd order operators satisfy the equality

o (A)(z, =) = —o (A)(,£).

This gives
Im 1L (o (A)) (x, =€) = Im1L; (0 (A)) (2,€)]", (25)
for the bundle defined by the positive spectral projection Il (o (A)).
In contrast to the case of even order operators, the vector bundles on S* M, which

satisfy (25), can not be described in terms of some bundles over the projectivization

P*M, as it was done in Section 2. However, the following result is valid. Its proof
follows from [13].

Theorem 4 The group S°¥ (M) is a 2-torsion group.

Proof. For the sake of completeness of the presentation, let us recall the proof of
this result. It suffices to show that for an arbitrary elliptic self-adjoint operator A of
odd order for some NN there exists a homotopy

2V A ~ 2V (= A)

(this gives the desired triviality ON+L A ~ ZN(A b —A)).
Denote by L the vector bundle ImIl o (A) C 7*F on the cospheres. We obtain

oL = L*, (26)

since A has odd order. Here L' is the orthogonal complement of the bundle L. Similarly
to the proof of the theorem for even order operators, it is sufficient to construct a
homotopy of subbundles

VL~ 2N (27)

which satisfy (26).

We claim that modulo 2-torsion the elements of K (S*M) are invariant under the
involution a*. Indeed, the projection S*M — P*M on an even-dimensional M induces
an isomorphism

K(P"M)oZ H L K(SM) T H

in K-theory, modulo 2-torsion (this can be proved using the Mayer-Vietoris principle).
Hence, (26) implies the existence of an isomorphism

o N s oN L

17



Let us extend it to the whole space 2¥7*E O 2V [ in accordance with the decomposition
g2V E=2"L @ 2Va L —» 2Na" L @ 2V L =2V 1"k
as
o()=o()@o(=E).
Consider an even vector bundle isomorphism
ot oNt g s oNtl

It takes 2Y+1 L to 2Vt a*L and it is homotopic to the identity, since it is the sum of
mutually inverse isomorphisms. If we denote such homotopy by

~ ]
oy, oco=1l,00=0FHc ",

then the desired homotopy of subbundles (27), which satisfy (26), has the form
O't(QN—I—lL).

This proves the Theorem.
O

Similarly to the even order case, Theorem 4 implies the existence of a homotopy
By, t€[0,1]; By =2V A, By = Ao & (—Ao) (28)
of odd order operators, where Aq is invertible. We obtain as before n(B;) = 0, and
the n-invariant is expressed in terms of the spectral flow

1

n(A)} = ToN mod 2N‘Sf(Bf)te[o,l] )

In order to compute the right-hand side of this equality, let us extend the family B; up
to a family, which satisfies the conditions of the Theorem on the spectral flow modulo
n. To this end, it suffices to construct a homotopy of invertible operators

Ay 0 AL 0
0 —A, 0 —1]Ao| /°

The desired homotopy can be defined, for example, by the formula (see [14])

Ao 0 sin? ¢ COs (p sin T
(0 g )+l = a0 C el e

cospsing  cos?p
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Now we can apply the spectral flow Theorem 1 to the superposition of homotopies (28)
and (29). It is possible to obtain the expression for the fractional part of the n-invariant
for odd order operators along the lines of (13).

Let us finally note that the formulas of Theorem 3 and Proposition 2, which ex-
press the n-invariant as a linking index, remain valid for odd order operators on even-
dimensional manifolds.

2. Example (pin® Dirac operator, see [2]). Consider the even-dimensional real pro-
jective space RP?". A straightforward computation shows that its orientation bundle
is isomorphic to the line bundle v. Therefore, the orientation bundle is the generator
of the reduced K-group

1— [A* (RP?")] € K (RP?").

On the other hand, RP?" has a pin® structure, while the principal symbol of the
self-adjoint pin® Dirac operator D on it defines a generator of the isomorphic group

[0(D)] € K! (T"RP?") = Tor K} (T"RP>") =~ Zyn.

The symbol o (D) can be written explicitly.
Consider the set of Clifford matrices g, e1,...,€2,:

€rE; + €€k = 25k]

of dimension 2" x 2", For a vector v = (vg,...,vq,) € R?*"! define a linear operator
2n
e(v) = Zviei - — .
=0

Consider the self-adjoint symbol on the unit sphere S?* ¢ R?"+!
o (D) (z,8) =ie(x)e(€): CT" — C,

where £ is a tangent vector at a point € S**. The symbol o (D) (z,§) is invariant
under the involution

(l‘, 5) — (—l‘, _5) :
Thus, it defines an elliptic symbol on the projective space RP?" — this is the symbol
of the pin® Dirac operator.

The nondegeneracy of the linking pairing (16) implies that the above described
generators satisfy the equality

(2 o (D)), [1 = A% (RP™)]) =
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Hence, the n-invariant of the pin® Dirac operator D has a “large” fractional part:

2 (D)} = 2 [o (D)], [1 - A7 (RE*)]) = 2.

This example shows that the estimate (24) of the denominator of the n-invariant is
sharp on even-dimensional manifolds. The fractional part {n (D)} was first computed
in [2], where the following equality was obtained

WD) = 5 (30)

6 The problem of P. Gilkey

In this section, we construct an even order operator on an odd-dimensional manifold,
such that the n-invariant has a nontrivial fractional part.

Consider the product RP?* x S'. The coordinates are denoted by z, ¢, the dual
coordinates in the cotangent spaces are £, 7. Let us define a second-order elliptic dif-
ferential operator D on this manifold.

On the cylinder RP?" x [0, 7], consider the expression

28in @ <—i%> D —icoseD Age™ + <_i88_@> i <_i%>

D= , .
A+ <—i%> e <_i88_<p> ZSinc,o <@%> D 4+ 1cos gOD

where D is the pin® Dirac operator on the projective space (see previous section), while

A\, denotes the Laplacian
A, = D%

The expression D is self-adjoint and elliptic. Indeed, the self-adjointness is obvious,
while the ellipticity is a consequence of the fact that the principal symbol

_ [ 27sin @U(D)(x,f) 2710 4 72
o(D) = ( £2ei 4 emior? —27 sin po(D)(x, &) )

satisfies the equation
o (D) (67) = (& +77)°
(i.e. D is a square root of the square of the Laplacian).
The principal symbol of D has the following property

@l = (25 ) el (V) 61)
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Let F be the vector bundle on RP*" x S', which is obtained from the trivial bundle
C ¥ @C*" on the cylinder RP** x [0, 7] by means of the following transition function,
which is defined on its bases
0 1
(0)

It follows from (31) that the principal symbol o(D) acts on the bundle F:
o(D): 7 F — 7*F, 7:S*RP* xS') — RP*" x S.

Denote by
D:.C~ (RPQ” X SI,F> — (RPQ” X SI,F>
a second-order elliptic self-adjoint differential operator, which is obtained as a result

of smoothing the coefficients of the operator D on the product RP*" x S,
The following theorem answers a question of [1].

Theorem 5 The following equality is valid
1

{20(D)} = 5.

Corollary 2 There exist even order operators on odd-dimensional manifolds with an

arbitrary dyadic n-invariants.

The proof of the theorem is given at the end of the section. It is based on several
auxiliary statements, which we now describe.

Unfortunately, the direct application of the formulas (20) or (23) to D is rather
cumbersome (it is equivalent to the direct computation of the direct image in K-
theory).

Our computation of the n-invariant is based on the following observation. The
principal symbol of D defines the element

o (D)] € K! (T* (RP* x SY)) ,

which is representable as the symbol of the ”cross product” [4] of an elliptic self-adjoint
operator on the projective space and an elliptic operator on the circle with a nonzero
index.

Consider the pseudodifferential elliptic operator Dy of order 1

1 | d
D=3 Q+ RN+ -Q), @=—ig veb2r] (3

on the circle S! of length 27. The expression

: kelh=De | >0
ik 9 — Yy
Dle ¥ = { _kei(k+1)@7 k < 0

gives: ind Dy = 2.
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Proposition 3 The following equality holds
[0 (D)] = [0 (D)][o (D1)], (33)

where

[c(D)] € K} (T"RP*), [o(Dy)] € K.(T"S").

Proof. Recall that the product [0 (D)][o(D1)] is realized as the so-called cross
product o(D)#0o(Dy) of elliptic symbols
(ool 160D}
O'(D)#O'(Dl)—<1®o_(D1) (D)ol ) (34)

In our case D is not a differential operator. Hence, its principal symbol o (Dy) is not
a polynomial. Therefore, the symbol o (D) #0 (D1) is not smooth (while the operator
D# D, is not pseudodifferential).

A trick to overcome this difficulty was introduced in [9]. The symbol (34) is replaced
by a homotopic smooth symbol. To this end, let us replace the nonpseudodifferential

operator |@] in the expression (32) for D; by a pseudodifferential operator v/ D? + (Q)?
on the product of manifolds. The resulting elliptic symbol

( 7 (D) (2,6) Lt (r + 1) 4 e (1= 7)]
Llemie

, >,§2+72:1 (35)
TH+1)+e? (1 7)) —0o (D) ()

is linearly homotopic to (34).

In order to compare the elements in (33), let us make one more homotopy. Note
that the symbols on the antidiagonal of the matrix (35) are constant in the variables
(&, 7) at the points ¢ = 0 and 7. Therefore, the symbol (35) is linearly homotopic to
the symbol

|sinplo (D) (z,¢) ple?(r+ )+ e (1—7)] )

o' (z,0,6,7) = : ;
(z,¢ ) ( %[e_w (T4 1) +e%(1—7) —|sinplo (D) (x,€)

It turns out that the symbol o’ can be transformed to o(D) under the quadratic
coordinate transformation

(I)(&T) = (27—577—2 - 52)7
so that
o' (z,0,®(&7)) = o(D)(z,9,6,7), ¢ €[0,7].

Geometrically, this coordinate transformation is a double covering of the sphere such
that the big circles, which pass through the north pole, are covered twice. Let us
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S*RP’xS)=NUS S*RP'%S)=WUE

r\\\\ WY <}\\\ @j)/” @)

L S S

0 72' 0 T 272'

Figure 1: Two decompositions of S*(RP*" x S!)

decompose the spherical bundle S*(RP** x S') into pieces, in order to obtain a one-
to-one mapping.
Consider the bundle S*(RP*" x S!) with the circle of length 7. The symbol o(D)

is defined on this space. We decompose this cospherical bundle into two submanifolds
N =S*(RP* xSHn{r>0},5 =S RP* xSHn{r <0}

according to the sign of 7.
The space S*(RP ** x S1 ), where the symbol ¢’ is defined, corresponds to the circle
of length 27. This time we take a different decomposition

W =S*(RP* x 83,)N{r # —1,p € (0,7)},
E=S5RP> xS!)n{r£1,¢¢€ (21}
The pieces N, W and S, E are pairwise homeomorphic (see Fig. 1):
O:N—W, ®(x,0,,7)=(2,0,276, 7% — &%)
VS — B, U(x,p67)= (2,047,272 — 12).

In addition, the symbols satisfy the relations

o' 0® =o(D), a'o\I/:<_01 (1)>a(1>)<(1) _01> (36)

On the boundaries of N and S, the symbol o(D) depends only on the points of the
base RP** x S' . Therefore, the following decomposition is valid

[0(D)] = [o(D)|n] + [o(D)]s] € K(T™(RP*" x 81). (37)
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Here we employ the isomorphism
K(S*(RP** x SY))/K(RP*" x S') ~ K}(T*(RP*"* x SY)).
Similarly, the symbol ¢’ depends only on x, ¢ on the boundary of W, E. Consequently,
o) = ['In] + [o'ls] (39)

Substituting the result of transformations (37), (38) in (36), we obtain the desired
equality

Let M, 3 be two smooth closed manifolds. Consider two elements
[01] € TorK! (T*My) , [o3) € K2 (T*M,) .

The product My x M, is denoted by M. Let us compute the linking index of the
product
[o1] [o2) € Tor K (T*M)

with the orientation bundle of M; x M,.
Proposition 4 Suppose that My is orientable. Then the following formula is valid
(ol (o, [1 = A (M)]) = (o], [1 = AF (M) loa], dim My = (39)
Proof. Consider the commutative diagram

K2 (T*"M,,Q/Z) x KO (T"My) — K?(1T"M,Q/Z)

C

- |

Tor K' (T*My) x KO(T*M;) ——— Tor K! (T*M),

where j denotes the multiplication (see Lemma 3) from the right by [1 — A¥(M;)]. The
horizontal maps denote products in K-theory. By virtue of the orientability of the
second factor, we have

L= [AF (M) = 1= (A" (M)
Hence, (39) follows from this diagram, when we apply the direct image mapping
p K2 (T"M,Q/Z) — Q/Z.

This proves Proposition 4.
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Remark 5 Formula (39) is an analog of the well-known property of the n-invariant
(see [4]), namely, the n-invariant of a cross product of operators is the product of the
n-tnvariant of the first factor times the index of the second one.

Proof of Theorem 5. By virtue of (20), we have
{20(D)} = ([0 (D)].[1 = A" (RP* x §")]).
The formula (39) for the product and the decomposition (33) lead to
{20 (D)} = ([0 (D)], [1 = A*" (RP*")]) ind D;.

Consequently

{20(D)} = {2 (D)}ind Dy = 5 2= L

In the second equality we use (30).

Appendix A. Spectral flow and index

Let (At)te[0,1

which starts and ends on the direct sums of positive- and negative-definite operators:

] be a family of elliptic self-adjoint operators on a compact closed manifold,

Ao=ADp & (-Lpy), A= Ap & (—Lpy).

The spectral flow for families of this form is equal to the index of an elliptic operator
on M.
Let us denote by
U:C*(M,Ey) — C* (M, E}) (40)

a pseudodifferential operator with principal symbol o(U), which is defined as the so-
lution of the Cauchy problem

d d

= | ST (7 (A0), Ty (o (A0)| s wo =1 (41)

at t = 1:
o(U) = uy.

One can show that the difference construction

[0 (U)] € K (B*M, S*M)
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for (40) has the form

[o(U)] = [ImIl (o (A)) ,ToEL |, T B*M — M,

t€[0,1]
for the vector bundle

Im T4 (0 (Ae))epo s moE] € Vect (B*M) .
Here the base of the bundle ImIl; (o (A4)) is the cosphere space of radius t. The

bundles Im L (¢ (A¢)), ¢ and 7} E] coincide over the subspace S*M C B*M.

te[0,1]

Proposition 5 The following equality holds

sf (Ay), g = —ind U. (42)

te[0,1]

Proof. Denote by P; the family of nonnegative spectral projections for A;. The
expression

Pt:

(for invertible A;) together with the results of R. Seeley [15] imply that the principal
symbol of this projection coincides with the projection Il; (o (A;)). Denote by U,
a smooth family of pseudodifferential operators, which corresponds to the family of
principal symbols defined by (41). It follows that the symbol w; is unitary and it
defines an isomorphism of subbundles

u s Im 14 (0 (Ag)) — Im 1Ly (0 (Ay)).
Hence, the operator
H_|_ (At) Ut :Im H_|_ (Ao) — Im H_|_ (At)

has the fredholm property (its almost inverse is 11, (Ag) U;'). The desired equality
(42) is a consequence of the following more general relation

sf (A,) = —ind (4 (A) Uy : Im 14 (Ag) — Im 114 (Ay)), (43)

T€[0,¢]
which connects the index and the spectral flow.

In the case of general position, the proof of (43) meets no essential difficulties.
Indeed, for the variation of the parameter ¢, both sides of the formula have the same
jumps. These occur only for those values of the parameter, for which some eigenvalue
of A; changes its sign (for the right-hand side the sign change leads to a discontinuous
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change of the spectral projection 111 (A;) and, consequently, of the index). For example,
if some eigenvalue at t = ¢y passes from the negative to the positive side then we obtain

s (AT)TE[O,L‘—I—E] —sf (AT)TE[O,L‘—E] = sf (AT)TE[L‘—E,L‘—I—E] = 17
by virtue of the additivity of the spectral flow. Similarly for the index
ind (I1y (Arsz) Ungelly (Ao)) — ind (1L (As—c) U114 (Ao)) =
ind (I (Asye) Upy UL (Arl)) = =1

(in this notation the spaces, where the operators act, are omitted — we assume that
they act in the subspaces defined by the corresponding projections). We have used the
logarithmic property of the index.

The proof of the statement in the general case can be obtained, if one uses the
definition of the spectral flow in terms of spectral projections (see [16] and also [17]).
This proves Proposition 5.

4

Remark 6 There is a generalization of this result to the case of families of self-adjoint
operators over some parameter space [0, 1] x X for a compact space X. The notion of
the spectral flow in this case was introduced in [18].

Appendix B. Antipodal involution and orientability

Let V be a real vector bundle over a compact space X. In the present appendix, we
investigate the action of the antipodal involution

a:V—V, a(v)=—v
on the group K7 (V).
Theorem 6 The following formula is valid
o =(-D)"A"(V): K (V) — K (V), n=dimV.

Proof. Tt suffices to prove the statement for the group K? (V') of an even-dimensional
bundle V., dimV = 2k. The elements of this group can be realized in terms of the
difference construction

[E,F,0] € K°(V),  E,F € Vect(X),

where

o:mlH —71'F, 7:5V =X
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is an isomorphism over the spheres SV (we assume that V is equipped with a scalar
product).

M. Karoubi showed in [19, 20] that the group K9 (V) is generated by the elements
with quadratic transition functions, which we describe below.

Denote by CI1(V) the Clifford algebra bundle, associated with the bundle V. Con-
sider the quadruples of the form

(Evcvflva)v (44)

where (F,c¢) is a Clifford module over Cl(V), i.e. a complex vector bundle £ and a
homomorphism of algebra bundles

c:Cl(V) — End (F),

while the involutions

fiza € End(E), fi=[fi=1

anticommute with the Clifford structure
fipc(0)+e(®) fiz=0, veV CCUV).

According to [19], the group K (V) is generated by the difference constructions of the
form

fker (fi = 1) ker (fo = 1) (1= ¢(v) f2) (1 + (o) f1)]. (15)

It is clear from this expression that the antipodal involution « acts on the quadruples
(44) as
a” (Evcvflva) = (E7 _cvflva) .

Let us show that the quadruple

(Ev_cvflva)

differs from

(Evcvflva) ®A2k (V)

by a vector bundle isomorphism.
Let us take a local frame ey, e, ..., €35 in V' and consider the element

g = @'kc(el) . ..c(ezk)-

Then 3% = 1, 3 anticommutes with the Clifford structure ¢ and commutes with the
involutions fj 5

Be(v) + c(v)3 =0, fiB = B (46)
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Under the change of the frame, the element 3 is multiplied by the sign of the transition
matrix, i.e. globally it defines a vector bundle isomorphism

B:E— E@A* V).
The commutation relations (46) take the form

B (c(v) @ Lpanvy) B=—c(v), B7"(fi @ Lyzepry) B = fi.

Hence, the quadruples
a*(E7cvf17f2) and (E7cvf17f2)®/\2k(v)

are isomorphic. This proves the theorem, since elements (45) generate the whole group

KO(V).

C

O
Corollary 3 The same formula
o = (=1)"A"(V): K (V,Z,) — KI(V,Z,)
holds in K -theory with cocfficients Z,,.

Indeed, K-theory with coefficients in Z,, is defined by means of the Moore space
M,
K:(V.Z,)=K;(VxM,,V xpt).
Applying the theorem just proved to the product X x M, and the pull-back of V', we
obtain the desired result in K-theory with coefficients.

Remark 7 For a smooth manifold X with the cotangent bundle V = T* X, expression
(45) defines a class of elliptic symbols, such that an arbitrary symbol reduces to a
symbol from this class by a stable homotopy.
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