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Abstract

For a domain D C R" with singular points on the boundary and
a weight function w infinitely differentiable away from the singular
points in D, we consider a C* -algebra G(D;w) of operators acting in the
weighted space L?(D,w). It is generated by the operators of multipli-
cation by continuous functions on D and the operators xp F~'oF xp
where o is a homogeneous function. We show that the techniques of
limit operators apply to define a symbol algebra for G(D;w). When
combined with the local principle, this leads to describing the Fredholm
operators in G(D;w).
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1 Introduction

Let D be a bounded domain in R” whose boundary is smooth everywhere with
the exception of a finite number of singular points. We write sing 0D for the
singular set and allow rather general singularities close to which the boundary
may oscillate.

We consider a C* -algebra G(D;w) of operators in the space L*(D,w) with
a weight w, generated by singular integral operators on D with symbols dis-
continuous at the points of singdD. The weight functions w under study are
supposed to be continuous away from the set sing 9D in the closure of D, the
behaviour of w close to sing dD being controlled. We construct a symbolic
calculus of operators in G(D;w) and give a criterion for an operator to be
Fredholm.

In the book [Pla89] Plamenevskii considered a class of pseudodifferential
operators with discontinuous symbols on manifolds with conical singularities,
the operators acting in spaces with power weights. This investigation was
continued in a series of his papers jointly with Senichkin [PS87, PS90, PS95],
where non-reducible representations for several C*-algebras of pseudodiffer-
ential operators were described. We refer the reader to these papers for the
complete bibliography.

The representation of pseudodifferential operators near singular points as
Mellin operators with stabilising operator-valued symbols plays a crucial role
in the mentioned papers. Since the symbols need not stabilise in our case, we
invoke a limit operator approach [Rab98, RRS98, RRS00] which reduces the
investigation of local invertibility of operators in ¢(D;w) to that for operators
in the algebra of [Plag9].

The question on the boundedness of SIO’s on R" in the weighted LP -spaces
was studied by Hunt, Muckenhoupt and Widom, see [Muc79] and the references
given there. However, as far as the authors know, the Fredholm property for
multidimensional SIO’s in spaces with rather general weights has not been
treated anywhere.

In the present paper we introduce a new class of multidimensional SIO’s
and show the Fredholm property in spaces with general weight functions. The
method relies on a very efficient notion of symbols generated in terms of limit
operators. We systematically study pseudodifferential operators based on the
Mellin transform, with operator-valued symbols and analyticity in a strip of
the complex plane, here, with oscillating coefficients. Concerning Mellin pseu-
dodifferential techniques in general we refer the reader to [Sch91, Sch98].

The Fredholm theory of multidimensional SIO’s in domains with smooth
boundary was first constructed in the papers of Simonenko [Sim65a, Sim65b]
by means of his local theory. Later Vishik and Eskin studied general pseudod-
ifferential problems in domains with smooth boundary, cf. the book [Esk73].
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Boutet de Monvel [BAMT71] restricted himself to pseudodifferential operators
with transmission property in a smooth domain to form the well-known al-
gebra of boundary value problems. Boundary value problems for pseudodif-
ferential operators on singular domains, e.g., with conical points and edges,
were investigated by Schulze [Sch98]. One-dimensional SIO’s on curves which
have oscillating type singularities were studied by the first author jointly with
Bottcher and Karlovich, cf. [BKR96, BKR98, BKR00].

Wide classes of differential operators in domains with point singularities,
edges and corners, close to which the boundary may oscillate and degenerate,
are studied by the authors in [RST00, RST98, RST99].

The structure of the paper is the following. In Sections 2, 3, 4 and 5 we
give necessary material concerning the local principle of Simonenko, Mellin
pseudodifferential operators and limit operators. In Section 6 we specify the
singularities of the boundary and the weight functions we deal with. In Section
7 we recall the Mellin representation of SIO’s of [Pla89]. In Section 8 we
introduce local C* -algebras G(C; w), C being an oscillating cone with singular
points at 0 and oo. We apply limit operators to derive a criterion of local
invertibility at 0 for operators in G(C;w). This leads to a construction of local
symbols at singular points, presented in Section 9. The limit operator approach
still works to describe local symbols at regular points, which is the subject of
Section 10. In Section 11 we make use of the local principle to characterise the
Fredholm operators on oscillating cones. Finally, in Section 12 we construct a
global C* -algebra @(D;w) in the domain D, and give Fredholm criteria in the
algebra.

2 Local principle

In this section we give a slight modification of the local principle of Simonenko,
cf. [Sim65a, Sim65b].

Let X be a Hausdorff topological space endowed with a non-negative mea-
sure m compatible with the topology. As usual, we assume that m is o -additive
and o -finite, i.e., all Borel sets in X are measurable.

Given any 1 < p < oo, we write LP(X,m) for the Lebesgue space of
functions v on X with a finite norm

1/p
Nl = ( [ o dm) .

A bounded operator A in LP(X,m) is said to be of local type provided
Xoy AXo, 18 a compact operator in LP(X, m) for all measurable sets 01,09 C X
with disjoint closures. Here, x, is thought of as the multiplication operator by
the characteristic function of o C X.
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We say that an operator A in L?(X,m) is locally invertible at a point 2° € X
if there are a neighbourhood O of 2° and operators B/,, BY, € L(LP(X,m))
such that

Bl,Axo = Xo;
XOAB;;IO = Xo-

Suppose m has no component with a support in a point. Then the local

principle reads as follows.

Theorem 2.1 Let A be a local type operator in LP(X,m). Then A is
Fredholm if and only if it is locally invertible at each point 2° € X.

3 Mellin operators

Let V' be a Hilbert space, and let £(V') denote the space of all bounded oper-
ators acting in V.

Set dm = dr/r and write H = L*(R,,m;V) for the Hilbert space of all
V -valued functions on the semiaxis with a finite norm

ol = (o) am) "

Let further S(1y) stand for the class of all C'* functions a(r, o) on Ry x R
with values in £(V'), such that

sup ||(TDT)O‘Dga(r, 0)||covy < o0
R+><R

forall o, 8 € Z,.
The elements of S(1y) are called operator-valued Mellin symbols. A symbol
a € S(1y) is said to vary slowly at r =0 if

lim sup [|(rD;)*Dya(r, 0)|| vy = 0 (3.1)

r—0+ 0€R

foralao € Z,, a« #0,and g € Z,.

Analogously we define Mellin symbols that vary slowly at » = oco. Note
that under the change of variables R = 1/r the point R = oo corresponds to
r =20, and

rDy (u(1/r)) = = ((RDg)w) (1/r)

for any w(R) defined near R = oo. Moreover, the change R = expt takes
t =00 to R = oo, and

Dy (u(expt)) = ((RDr) u) (expt)
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for any u(R) defined near R = oo. Thus, our definition of symbols slowly
varying at r = oo agrees with that of [RSTO00].

We write Sy (1y) for the space of those Mellin symbols which vary slowly
both at » = 0 and at r = oo.

We also distinguish the subclass Zy(1y) in S(1y), consisting of those a(r, o)
for which the equality (3.1) holds for all o, 5 € Z., thus including a = 0.
Defining Z,(1y) analogously, we set

Let a € S(1y). The operator A = op(a) given by

aur) =5 [ao [ () atroue)

foru € ngmp(&, V), is called the Mellin pseudodifferential operator with sym-
bol a. Following [RST00], the class of such operators is denoted OP S(1y).
The notation OP Sy (1v), OPZy(1ly), OPZ(1lv), OPZ(1y), etc., has ob-
vious meaning. For A = op(a), with a € S(1y), we will occasionally write
a=04.

Mellin pseudodifferential operators are often defined by double symbols. By
this is meant any C'* function a(r,r’, ) on Ry x Ry x R with values in L(V),

which satisfies

sup ||(7"D,)°‘(7"'DTI)O‘ID§(L(T, ', 0)|| vy < 00
R+XR+XR

for all o, o/, € Z,. Denote S;(1ly) the space of operator-valued functions
with these properties.
We say that a double symbol a(r,r’, 9) varies slowly at r = 0 if

lim  sup ||(rD;)*(r'Dy)* Dla(r,rr’, 0)|| oy = O, (3.2)
r—0+ (r',0)€K XR

for each compact set K C Ry, each a,a’ € Z, with a + o' # 0, and each
f € Zy. Let Sqev(1y) stand for the space of double symbols that vary slowly
both at » =0 and at r = cc.

Let us summarise the properties of Mellin pseudodifferential operators that
we need in the sequel.

Theorem 3.1
1) Any operator A = op(a), a € S(1y), is bounded in H = L*(Ry,m; V),
and

[Alleny < e Y sup [[(rD,)*Dia(r, o)l v,
Oé+6SNR+XR
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where the constants ¢ > 0 and N € Z, are independent of A.

2) If A € OPS(1ly) is invertible in L(H), then the inverse belongs to
OP S(1y), too.

3) If A,B € OP S, (1y), then BA € OP S (1y) and the symbol of BA is
of the form

opa(r, 0) = op(r, 0)oa(r, 0) + s(r, 0),

where s € I(1y).

4)If A € OP Ss(1y), then the adjoint of A in L(H) belongs to OP Ssy(1y),
too, and

oa(r, 0) = (04(r,0))" + 5(r, 0),

where s € I(1y).

5) If A € OP Susv(ly) is an operator with double symbol a(r,r', o), then
A e OPS(1y) and

oalr,0) = a(r,r,0) + s(r, 0),
where s € I(1y).

Proof. Cf. Chapter 2 in [RSTO00].

4 Analytical symbols

Pick a C* function w(r) on R, . Roughly speaking, the weighted space H,, is

defined by
1

H’w = _H7
w
i.e., u € H, just amounts to wu € H. The norm in H, is therefore given by
Jull e, = llwulls.

Recall that H = L*(Ry,m;V) whence H,, = L*(R.,|w|*m; V). In what
follows we take w(r) = exp A(r) where A satisfies

Slélp | (rD.)* A(r)]| < oo (4.1)

for all @« = 1,2,.... To explain the estimates (4.1) we observe that

(rD)w(r) = ( ST i (PDIA@) . ((rDrwA(r))ia) w(r)

1o +...fatqg =

for all o, where n;, . ;. are non-negative integers. Hence (4.1) just amounts to
saying that the quotients
(rDy)*w(r)

w(r
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are bounded uniformly in r € R, .

We may regard w(r) as a C* function on R, with values in £(V'), the
value of w at r being identified with the multiplication operator by w(r). By
the above, the hypothesis is that w(r) fulfills the symbol estimates of the class
S(w, 1y), cf. [RSTI8]. Thus, the concept of slowly varying symbols applies to
w(r).

We say that w(r) is a slowly varying weight function on R, if (4.1) holds
and

lir% (rD.)*A(r) = 0,
T
lim (rD,)>A(r) = 0.
r—0o0

For @ = 1, (4.1) shows that there is a finite interval (¢,d) > 0 with the

property that
¢ <infrA'(r) <suprA'(r) <d. (4.2)
R+ R+

Let us denote by W(e, d) the set of all slowly varying weight functions w(r)

on R, , that satisfy (4.2) !

Definition 4.1 Let © = R+i(c,d). The symbol space S(1y;0O) is defined
to consist of all a € S(ly) that extend analytically in o to the strip © and
satisfy

sup ||(7"Dr)aD§a(T; 0+ 1)||cvy < o0
R4 xR

uniformly in v on compact subsets of (c,d).

The operators of OP S(1y; ©) are said to be Mellin pseudodifferential op-
erators with analytical symbols.

In an evident way we also introduce the class S (1y; ©) of slowly varying
analytical symbols, the analyticity always referring to the covariable p.

Theorem 4.2
1) Let w satisfy (4.1) and (4.2), and a € S(1y;0). Then wop(a)w™" lies
in OP Sy(1y). In fact,

wop(a)w™" = op (a(r, 0 + io(r,1")))

where o(r,r'") fo (rfr=0) A" (r?r"1=0) db.
2) Let w € W(e, d) and a € S (1y;0). Then wop(a)w™" € OP Sy (1y)
and
wop(a)w™" = op (a(r, 0+ irA'(r))) + S,
where S € OPZI(1y).
1To extend the notation of [RST98] we should write A'(V; (¢, d)) for this class.
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Proof. We only sketch the proof. For u € C%, (R, ,V), an easy compu-
tation gives

]_ N ! / !
(w op(a) w’lu) (et) — % / dQ ez(tft )geA(et)fA(et )CL (et7 Q) u(et ) dt'
R R
_ i / do eit=t")(e—iv(t,t)) o (et, Q) u(et’) dt'
2m R R
]_ - 4 4
= — / dr [ e (' 7 +iv(t, t')) u(e”) dt’
R R

27
where

1
’U(t, t’) _ / e@t—l—(l—ﬂ)t’Al(et%-l-(l—ﬁ)t’) de)
0

the third equality being a consequence of the analiticity of ¢ and the Cauchy-
Poincaré Theorem. Changing the variables by

t = logr,
t = logr’
yields
1 i dr’
(w op(a) w’lu) (r) = %/RdT /R+ (%) a(r, 7+ dv(logr,logr’)) u(r') 1"_7:’
and obviously v(logr,logr’) = o(r,r"), which explains the theorem. See
[Rab95a] for more details.
U

Clearly, the condition (4.2) yields o(r,7’) € (¢, d) for all (r,7") € Ry x Ry,
hence a(r, o+ io(r,r")) is well defined.

Corollary 4.3 Suppose w satisfy (4.1) and (4.2), and a € S(1y;©). Then
the operator A = op(a) is bounded in H,.

Proof. Indeed,

[Aullg, = llwAullx

VAN

lw Aw ™l e llwull

lw Aw™ | e ulla,

and w Aw™!

3.1 and 4.2.

is a bounded operator in H, which follows easily from Theorems

U
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5 Limit operators

Let (k1) be the group of unitary dilatation operators on H = L*(Ry.,m; V),

1.e.
r
(kau) (r) =u (X)
for all uw € H.

Definition 5.1 Let A € L(H) and let A = (N\,) be a sequence in Ry
tending to 0. The limat

AA = s— lim H;UIAH,\V,
V—00

if exists in the strong topology of L(H), is called the limit operator of A defined
by the sequence A.

In the same manner we introduce limit operators of A defined by sequences
A= ()\,) in R; tending to co.

Denote LOg(A) and LO4(A) the sets of all limit operators of A defined
by various sequences A = ()\,) in R, tending to 0 or oo, respectively. Basic
properties of limit operators are summarised in the following theorem.

Theorem 5.2 Suppose A = (),) is a sequence in Ry tending to 0 (or co).
Then:
1) If A € L(H) and the limit operator Ap ezists, then

1Ax ey < Al 2.

2) If A,B € L(H) and the limit operators Ay, By exist, then (A + B)a
exists, too, and
(A+B)A = A\ + B,

3)If A, B € L(H) and the limit operators Ay, By exist, then (BA), exists,
too, and

(BA)A = BAAA.

4) If A € L(H) and the limit operator Ax exists, then (A*)a exists, too,
and

(A")a = (Ar)"

5) If a sequence A, € L(H) converges to A € L(H) in L(H) and the limit
operators (A,)a ezist for v large enough, then Ay exists, too, and

AA = lim (A,,)A.

V—00
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Proof. The proof is immediate by Definition 5.1.
O

Let us denote by C;°(R,) the space of all C* functions a(r) on R, that
satisfy

sup | (rD,)%a(r)] < oo
reRy

foralla € Z,.

Definition 5.3 The space G(H) is defined to consist of all A € L(H) such
that
tim |4, sy = 0

uniformly with respect to A € Ry, for each function a € C°(R}), where
an(r) =a (rlogh) )

Note that the diffecomorphism r — §(r) = logr pulls back the additive
group structure of R to the multiplicative group structure on R,. On the
other hand, the multiplicative structure of the real axis is pulled back to R,
as

5 O(MS(r)) = 1",
for h,r € Ry.

Theorem 5.4 G(H) is a C*-algebra.

Proof. Let A, B € G(H). Obviously, we have A+ B € G(H). Furthermore,
it follows from the equality

[BA, kyay) = B[A, kaay] + [B, kxap)A

that
lin [[BA, wxan]ll e = 0

uniformly with respect to A € R;, for each function a € C;°(R;). Thus,
BA € G(H). In the same way the formula

[A*a /‘dwh] = [/‘f/\ah; A]*

implies A* € G(H). Finally, G(H) is obviously a closed subalgebra of L(H),
which completes the proof.
U

Let us give an example of operators in G(H ) which are especially important
for us.

Theorem 5.5 OP S(1y) C G(H)
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Proof. The proof easily follows from the composition formula for Mellin
pseudodifferential operators.
O
Denote G'(H) the subalgebra of G(H) consisting of all operators A with
the property that each sequence A = ()\,) tending to zero or infinity has a
subsequence A" = ()\,,j) which defines a limit operator A, of A.

Example 5.6 Let A € G(H) and kA = Ax, for all A € Ry. Then
A € @'(H) and all limit operators of A coincide with A.
U

Example 5.7 Write M, for the multiplication operator by any function

a € C{°(Ry), acting in H. Then M, € @'(H). Indeed, pick a sequence
A= ()\) in R, tending to 0. We have

m;lMa/@\ =M

K]>\ a
for all A € Ry. The sequence
kyla=a(\r)

is bounded in the topology of C72 (R, ). By the Heine-Borel property of the
space CP% (R, ), there is a subsequence a (A,,r) which converges in C72(R,)
to a function ay(r). It is easy to verify that ay € C;°(R;) and the limit
operator of M, relative to A’ = ()\,,j) is M,

U

An operator A € L(H) is said to be locally invertible at the point r = 0 if
there are an € > 0 and operators B', B” € L(H) such that

BIAX& = Xe
XsAB" = Xe

where x, is the multiplication operator by the characteristic function of the
interval (0, ].

Theorem 5.8 An operator A € G'(H) is locally invertible at the point
r =0 if and only if all limit operators Ay € LOy(A) are uniformly invertible,
that s

sup | Ay leq) < oo
AAELOO(A)

Proof. Cf. [RRS00].
O
In the same manner we define the local invertibility of operators in L(H)
at the point r = +00. Theorem 5.8 still extends to this case.
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6 Oscillating cones

Recall that a standard cone with vertex at z° in R” is

x—a°

Cro={rx eR": € O},

| — ]

where € is a domain on S"~!, the unit sphere in R".
Fix a domain Q on S" L. Let S(r,w), r > 0, be a family of diffeomorphisms
of Q2 onto €,, a domain on S™ !, such that

1) S(r,-) oscillates about a diffeomorphism of €2, when r — 0;
2) (rD,)*S(r,), « € Z,, are bounded uniformly in r € Ry ;
3) (rD,)S(r,w) — 0 uniformly in w € €, when r — 0.

rD
D

r

The condition 1) requires some explanation. Namely, by this we mean that
any sequence (r,,) tending to 0 has a subsequence R’ = (r,,j) with the property
that S(r,,,-) converges to a diffeomorphism Sg of © onto a domain Qg on
St

Example 6.1 To encompass the definitions of [RST00, RST98, RST99],
take S(r,w) = h (f(r)h~'(w)) where h is a diffeomorphism of a starlike domain
in R"~! onto a domain  C S*1.

]

By an oscillating cone with vertex at 2° in R” is meant the set
Coos={r=a"+7rS(rw): reRy, we},

S(r,-), r > 0, being a family as above.

7 Mellin representation of SIO’s

Following [Pla89] we introduce the operators

(B @) = —pot et [,
—1 _ F(_i)‘+%) iZ(—iA+2) 1 ! !
BV @) = = /S (w08 )

acting on functions u, f € C®(S"1).
It is well known that the operator-valued function E'(\) is analytic in the
entire complex plane with the exception of A\ = i(k + n/2), k € Z,. In
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particular, E()\) € L(C>(S"™ 1)) is analytic everywhere in the lower half-plane
R + i(—00,n/2).

On the other hand, E(A)™! is an analytic operator-valued function in all
of C outside the points A = —i(k + n/2), with k¥ € Z,. In particular, the
function E(\)~! € £(C*>(S™!)) is analytic everywhere in the upper half-plane
R + i(—n/2, 00).

For A\ # +i(k +n/2), k € Z., the operators E(\) and E(\)™! are known
to be inverse to each other, cf. [Pla89, p. 18].

Let o(z,€) be a C* function on (R" \ {0}) x (R" \ {0}), homogeneous of
order 0 in both z and £. Consider the SIO

(FoFu) (z) = (Qi)n /R g (,€) Fu(€) de (7.1)
defined for u € Cg (R \ {0}), where Fu(§) = [, e~ (x")dz" is the

Fourier transform of .
In polar coordinates (r,w) € Ry x S"°! the operator (7.1) admits the
representation

i(A+ig dr’
(F o Fu) / i / 4o (W) ulr')
Ry r

for u € Cg5p (R4, C(S™ 1)), where
as(Nu=EN_ ", o(w,w) E\)uswt, (7.2)

w'—w

cf. [Pla89, p. 40]. Moreover, the function a,()\) with values in £L(L*(S™1)) is
analytic in the strip R +i(—n/2,n/2) and satisfies the estimates

sup [|D;as (0 +#7)lleaen-) < o0
for all f € Z, uniformly in v on compact subsets of (—n/2,n/2), cf. ibid.,
p- 66.

Corollary 7.1 Suppose w € W(—n/2,n/2). Then A = F~'oF extends to
a continuous mapping of L*(R",w). Moreover, WAW =" € OP 8, (1y) where
V =L2(S"Y) and W = wr™/?, and
WAW ™ = op (a, (0 + irA'(r))) + S,
where S € OPZI(1y).
Proof. Indeed, L*(R", w) is easily identified with L*(R,, [W|*m; V). Fur-

thermore,

WAW™ = W (r 2op(a,)rz) W!
= wop(a,)w™,

and it remains to make use of Theorem 4.2.
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8 Local invertibility at the vertex

Let w € W(—n/2,n/2). Denote G(Cys;w) the C*-algebra in L(L*(Cys,w))
generated by the operators xc, s A ¢, s, Where A is a SIO of the form (7.1) and
Xcos the characteristic function of Cy g, and by the multiplication operators
M,, where a(z) is a continuous function on the one-point compactification of
R".

We write C'(R") for the space of all continuous functions on the one-point
compactification of R".

We are aimed at describing the limit operators of any A € G(Cy s; w) at the
singular points 0 and co. In terms of the limit operators we give conditions
for local invertibility of A at these points. To this end, we first assign the set
of limit operators to each generator of the C*-algebra G(Cy s;w). Note that
this algebra is unitary equivalent to the algebra w G(Cps;w)w ' of operators
acting on L?(Cps).

Let a(z) € C(R"). It is evident that all limit operators of M, at z = 0
amount to Mg, the multiplication operator by the constant «(0). Similarly,
all limit operators of M, at x = oo coincide with Mgy().

We now consider the limit operators at x = 0 for the multiplication operator
by the characteristic function of the oscillating cone Cy s. We have

r.) = 1 if weS(rQ);
XeosU @)= 0 if we S(r,Q),

where ) is a domain on S"! with smooth boundary, and S(r,Q) = €, the
image of Q2 by S. Pick a sequence (\,) tending to 0. By the above, it has a
subsequence A’ = (),,) such that S(\,,7,-) converges to a diffeomorphism Sy
of Q onto a domain Q4 on S*~!. For abbreviation, we write Xco s instead of
M, ., thus obtaining

Xco s
. -1 .
s—lim & Ky, = s—lim ATy W
o0 Ay XCo,s Av; j=00 Xco,s( vils )
= XCO,SA, (7”, w))

the limit being in the strong topology of L*(R", w). Since Sy, does not depend
on r, we conclude that
CO,SA/ = {.’E eR": % S QAI},

i.e., Cos,, is a standard cone with vertex at the origin. In the same way we
describe the limit operators of ]\4XC0 . at = oo.

Finally, we look at a SIO A = F~!'oF in the space L*(R", w), where o(z, )
is a C* function on (R™ \ {0}) x (R™ \ {0}), homogeneous in both = and &,
ie.,

oM, M) = o(x,§)
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for all A\, Ao > 0. Letting W = wr™/?, we consider the operator W~'AW. By
Corollary 7.1,
WAW™! = op (as(0+ iF(r))) +op (s)

where s(r,0) € Z(12@n-1)) and F(r) = rA'(r). Fix a sequence A = (),)
tending either to 0 or to co. An easy verification shows that

Kyt (WAW ™) kx, = op (a,(0+ iF (A1) 4+ op (s(Ar, 0)) -

Let A" = ()\,,j) be a subsequence of A with the property that the sequence
F(A,;r) converges in the topology of Cf.(Ry) to a function Fy/(r). Since A, r
converges either to 0 or to oo, for each fixed r > 0, and w(r) is a slowly varying
weight function on R, we easily deduce that the limit function F is actually

constant. As is shown in [Pla89, pp. 77-78],

lim  sup ||(TDT)”‘D§ (%(Q +iF (A1) — as(0+ iFA')) lcez2@n-1y) =0
I (r,0)€ K xR
(8.1)

for each compact set K € Ry, and all o, 3 € Z,. This equality yields, by
Theorem 3.1, 1), that

s—lim op (a,(0+iF(\,r))) = op (as(0+iFy)).
j—00
On the other hand, since s(r, 0) € Z(172(sn-1)) We get

limsup ||(rD;)* Dy s(r, 0)l| £(z2(en-1)) = 0
r—0 QER

whence
s— lim op (s(A,,r, 0)) = 0.
J—00

We have thus proved that the limit operators at the points r = 0 and
r = oo for the generators of the C* -algebra W @¢(Cy s; w) W™ are:

1) The multiplication operators by a(0) and a(oco), for a function a of
C(R™).

2) The multiplication operators by the characteristic function of a cone
Co,s,, cutting off a domain Qy = Sy () on the unit sphere, Sy being a
partial limit of S(r,w) when 7 tends to 0 or co.

3) The SIO’s that have the form op (a,(0+ iFy/)) in the Mellin realisa-
tion, where F), is a partial limit of F'(r) when r tends to 0 or co. They act
continuously in spaces with power-like weight functions as

rfaop (aq(0)) r=" o L*(R™, |z|7"v=2) — LR, |2| 7"V~ %)

where |Fy/| < n/2.
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Suppose an operator A € W @G(Cy s; w) W' has the form
I
A= [T
i=1 j=1
where A;; is an operator of one of the above three types. Let (\,) be a sequence
of R, tending to zero or co. Then there is a subsequence A’ = ()\,,j) defining a
limit operator (A;;)as, for each indices 7 and j. We may now invoke Theorem

5.2 to deduce that .
AAI = Z H(AU)A'
i=1 j=1
and

I
A e < 1D TTAD e,
i=1 j=1

where H = L*(Ry, m; L*(S™™')). Moreover, for any A € W ¢(Cp s; w) W~ and
a sequence (\,) tending to zero or infinity, there is a subsequence A’ = ()\,,j)
defining a limit operator Ay, of A. Another way of stating this property is to
say:

Wa(Cos;w) W' — @'(H).

The limit operators A, belong to the C* -algebra generated by the operators
of multiplication by constants, the multiplication operator by the characteristic
function of the cone Cy g, , and SIO’s of the form |z|/a+"/2 =g F|g|~Fa=n/2 on
R™.

As is shown in [Pla89), this latter algebra is unitary equivalent to a subal-
gebra of the C'* -algebra

Cy(R +iFy, L2(2))
of bounded continuous functions on the line R + ¢F, with values in the C*-
algebra generated by pseudodifferential operators of order zero acting in the
space L?(Qy), where Q) = S, (Q) is a subdomain of S"~! with smooth bound-
ary.

Denote ¥(0) and X(oco) the sets of all sequences A = ()\,) converging to
zero and infinity, respectively, such that the limits

lim S(A,,-) = Sa(),

V—00

lim F(\,) = Fj

V—00

exist.

Theorem 8.1 An operator A € G(Cys;w) acting in L*(Cos,w) is locally
invertible at the point 0 (or oo) if and only if all limit operators

Ay DR, 2|7 7%) —» AR, 2|~ 79),
A belonging to X(0) or ¥(o0), are uniformly invertible.
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9 Local symbol at singular points

By the above, the invertibility of A, is equivalent to that of an operator-valued
function

O'(AA)(Q—F?:FA) : L2(QA) — L2(QA)

in Cb(R + 1 F)y, ,CO(QA))
Given any A = ()\,) in X(0), write

ON\ : @(CO,S;w) — Cb(R+iFA,£O(QA))

for the morphism of C* -algebras that assigns to A € G(Cy,s;w) the operator-
valued symbol o(Ay) of the limit operator of A.

Now we introduce local symbols at the points 0 and oo as the morphisms
of C*-algebras

smby = G(Cos3w) = Dpes) Co(R+iFp, L2()),
smbo, 1 G(Cos3w) = Drenior) Oo(R+iFy, L2(2))

given by

smby = @aex(0)0a,
smb,, = DAex(c0)0A-

Using this notion we can equivalently reformulate Theorem 8.1 in the fol-
lowing way.

Theorem 9.1 An operator A € G(Cys;w) acting in L*(Cos,w) is locally
invertible at the point x°, where z° = 0 or oo, if and only if smbo(A) is
invertible in

D rcsoy Oo(R +iFy, LO(Qy)).

The invertibility of smb,o(A) in €, cy0) Co(R+iFa, L2(Q4)) just amounts
to the existence of oy(A)~ !, for each A € ("), the inverse satisfying the
estimate

sup ||UA(A)_1(Q—|— iFA)||[,(L2(S"*1)) < 00. (91)

e€R
Aex(20)

Following [RRS98] we can relax the latter condition by requiring an esti-
mate like (9.1) for every fixed A € £(?).

Denote by Z,0(Co.s; w) the two-sided ideal in the algebra G(Cy g; w), gener-
ated by the multiplication operators M,, where a € C,(R™) satisfies

lim a(z) = 0.
z—a0
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Theorem 9.2 An operator A € G(Cy s;w) is locally invertible at the point
2% =0 or oo if and only if the coset A+Z,0(Co 53 w) is invertible in the quotient
algebra
on _ @(CO,S;U}) ‘

IIO (C[)’S; w)

Proof. We give the proof for 2° = 0. The same reasoning applies to the
case 7° = oo.
Suppose the coset A+Z,0(Cy g; w) is invertible in the quotient algebra @ o.

Then there are operators By, By € G(Cy s; w) with the property that

BlA - ]_—Sl,
AB2 - 1—52

where Sl, 52 S IIO (C[)’S; ’U))
Choose R > 0 such that

1Sixrllc2@oswy < 1/2,
IxrSallceoswy < 1/2

where x g is the characteristic function of the ball By with centre 2° and radius
R in R". Let R’ < R. Then

BiAxrg = (1-5Sixr)Xr:
Xr ABy = xg (1 —xgrS2),

whence )
(1-Sixr)” BiA XRl’ = Xr,
Xr ABy (1 — xrS2) = Xxr-

Conversely, suppose A is locally invertible at the point 2°. Then a priori
estimates
¢ ||XRU||L2(co,s,w)a
clixrfllrzcosw)

[ Ax rul| 2o 5 )

>
A xRSl 2o sw) =

hold, with ¢ a positive constant independent of v and f.
From the first estimate it follows that

| (xrA" Axru, xru) | 2> ¢ [XRUl 205 0)
for all u € L*(Cyg,w), the scalar product being in L?(Cy g, w). Hence the
operator ygA*Axp is invertible in L?(Cy s N Br, w), and the inverse G' belongs
to G(Co,s N Br;w). We thus get

G xXrA"AXR = Xr
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whence BjA =1 — 5}, with

Bl — GXRA*a
St = (1—xr)—GxrA"A(1 —xr)

belonging to G(Cys; w) and Z,o(Co,s; w), respectively.

In the same we construct a By € G(Cy s; w) satisfying ABy = 1 — Sy, where
Sy € T,0(Co,s;w). This means that the coset A + Z,0(Cp g;w) is invertible in
Qa:o-

O

Note that smb,o(A) = 0 if A € T,0(Cys;w). Hence the symbol mapping
smb,o extends to the quotient algebra (),0 to characterise the invertible cosets
thereof, c¢f. Theorem 9.1.

10 Local symbol at regular points

In this section we define a local symbol of operators in the algebra G(Cy s; w)
at the regular points of Cy s.

Let 2° be an interior point of the cone Cys. We are going to evaluate the
symbol for
I J
A=>"T]44 (10.1)

i=1 j=1

where A;; are operators described at the beginning of Section 8. Thus, we look
for a symbol for the generators.

Let A = M, be the multiplication operator by a function a € C(R”) We
introduce polar coordinates (r,w) around z° and pick a sequence A = ()\,)
converging to zero. Then the limit operator A, is easily seen to be Mg0). We
write it simply a(z") and set

smbgo(A) = a(z?).

Let A = xc, s F7'0F x¢,5, where F~'oF is a SIO of the form (7.1). Given
any sequence A = (),) converging to zero, the limit operator of A defined by
Ais Ay = Flo(2% &)F, which does not depend on A at all. We therefore
introduce

smb,o(A) = o(2°, €).

For A of the form (10.1), we set

smbyo(A) = Z H smby,o(Ay),

i=1 j=1
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which is a homogeneous function on R" continuous on the unit sphere. The
well-known estimate

sup [smbyo(A)] < [[All 22 ey s.m))
gesn-1

allows us to define smb,o(A) for each operator A € G(Cy s;w).

Denote by Z,0(Cy s; w) the ideal in G(Cp s; w) generated by the multiplica-
tion operators M,, where a € C(R™) satisfies lim, ,,0 a(xz) = 0. We actually
have

|A +Zyo(Cos5w) @, = sup [smbyo(A)]
£€Sn71
where )0 is the quotient algebra G(Cy s;w)/Z,0(Co,s;w). Hence the mapping
smb,o: Qg0 — C(S™ 1) is an isometrical embedding of C* -algebras.

Theorem 10.1 Suppose A € G(Cys;w). For an interior point z° of Cy s,
the coset A+Z,0(Cy g3 w) is invertible in Qo if and only if smb,o(A) is invertible
in C(S™71).

It remains to consider the case 2° € 9Cys \ {0}, i.e., regular boundary
points which are, of course, also regarded as singular ones of the configuration.

We still set smbyo(A) = a(2?) if A = M, is the multiplication operator by
an a € C(R™).

Let us look for the limit operators of x¢, s at z°. Write (r,w) for polar
coordinates with centre z°. If A = (),) is a sequence of positive numbers
converging to zero then

. -1 . .
lim K3 Xeos K, = lim xe, o (A7, w)
V—00 V—00

= lim T, W
r—0 XCO,S( ) )
- XHZO )

where Hpo is the tangent cone (half-space) to Cy g at the point z°.

Hence the limit operator of A = x¢, s F~'0F x¢, s defined by a sequence A
is

xu, F~lo(a®, &) F xu,,

which is actually independent of A. Similarly to [Esk73] we assign an operator-
valued symbol to xm , F' o (2°, ) F xu,, which is a family of Hopf-Wiener
operators on the half-line defined by the unit inward normal vector v(z°) to
0Co,s at x°. Namely, set

smbyo(A) = X, Fy 02, m, 0)Fsy X,
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for n € S"72 where Nj; = {rv(z°) : £r >0}, z = (y,r) is the splitting of co-
ordinates corresponding to H,o = 0H,o EBNIO, and £ = (n, o) the corresponding
covariables.

For general A of the form (10.1), we set

smbo(A) = Z H smb,o (Aj;),

i=1 j=1

thus obtaining a family of Hopf-Wiener operators on N;fo, continuously param-
etrised by n € S"~2. Tt is well known that

Sélp , ||Smbx0 (A) ||‘C(L2(N+O )) S ||A||£(L2(Co,5,’w))
neS™™ ‘

which allows one to extend the symbol mapping smb,o(A) to the entire algebra
G(Co,s;w). In fact, we have

14+ Zeo Cosiw)llg,e = sup_flsmbao(A)llgrqvry)
ne n—2 r

for all A € G(Cy s;w). This just amounts to saying that the mapping
smbyo 1 Quo — C(S"7% L(L*(NK)))
is an isometrical embedding of C* -algebras.

Theorem 10.2 Let A € G(Cys;w). Given any point 2° € 9Cy s \ {0}, the
coset A+ T,0(Co g5 w) is invertible in Qo if and only if smbyo(A) is invertible
in C(S" 2%, L(L*(N}))).

An operator A € G(Cp,s;w) is said to be uniformly elliptic if smb,o(A)
is invertible in the corresponding C* -algebra, for each 2° € Cy s \ {0}, and
the inverse is bounded uniformly in z°. For uniformly elliptic operators A,
condition (9.1) is equivalent to the invertibility of oy (A)(0o+iFy) for all p € R
and A € X(a).

11 Fredholm property

Combining Theorems 2.1 and 5.8 we deduce that for an operator A € G(Cy s; w)
to be Fredholm it is necessary and sufficient that all of its limit operators be
invertible and the norms of their inverses be uniformly bounded. We now
invoke the symbol calculus of Sections 9 and 10 to characterise the Fredholm

property.
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Theorem 11.1 An operator A € G(Cys; w) is Fredholm if and only if, for
each 2° € Cys U {00}, the local symbol smb,o(A) is invertible in the corre-
sponding C* -algebra.

Proof. The proof follows immediately from the local principle of Simo-
nenko, cf. Theorem 2.1.
O
Recall that a symbol calculus requires a Banach algebra S,0 of operator-
valued functions as well as a continuous algebra homomorphism smb from the
Banach algebra of operators into S;o.

12 Global algebra

Let D be a bounded domain in R® whose boundary is smooth outside of a
finite set of singular points z!,..., 2% € 9D. We assume that every point
x” has a neighbourhood O, such that D N Oy, = Cypv gv N Oyv where Cypv g,
is an oscillating cone with vertex at =¥, and S¥(r,-), r > 0, is a family of
diffeomorphisms on S™ !, as in Section 6. As usual, we write C,v g» for the
shift of C()’SV by zv.

Denote G(D;w) the C*-algebra of operators in L*(D,w) generated by the
SIO’s of the form yp F 1o F xp, and the operators of multiplication by contin-
uous functions on D, the closure of D. The weight function w is assumed to be

C> away from the singular points z!,..., 2", and close to any 2", to coincide
with some w” € W(—n/2,n/2). This ensures the boundedness of SIO’s in
L*(D,w).

Let ¥ be a singular point. Given any operator A € @(D;w), the restric-
tion of A to a sufficiently small neighbourhood O,» of z¥ coincides with the
restriction of an operator A” € G(Cyv gv;w") to Oyv. Hence we can define the

mapping

¢(D;w)

, 0
I, (D; w) — Drcsr) Oo(R+iFy, L2(E2))

smbv :
by smby»(A) = smby. (A”).

In a similar way we introduce symbol mappings

a(D; w)

Tomw 6"

smbo :

at the interior points 2° of D, and

G(D;w)

byo : )
SRt T (D w)

— C(S"7% L(L*(N)))
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at the regular points z° of dD.

By the above, an operator A € G(D;w) is locally invertible at a point
2° € D if and only if smb,o(A) is invertible in S,0. Hence the following
theorem holds.

Theorem 12.1 For an operator A € G(D;w) to be Fredholm it is necessary
and sufficient that smbgo(A) be invertible in Syo, for each z° € D.
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