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A. Kytmanov, S. Myslivets, and N. Tarkhanov

Abstract

The problem of analytic representation of integrable CR functions on
hypersurfaces with singularities is treated. The nature of singularities
does not matter while the set of singularities has surface measure zero.
For simple singularities like cuspidal points, edges, corners, etc., also
the behaviour of representing analytic functions near singular points is
studied.
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1 Introduction

The theorem of analytic representation for CR functions on a hypersurface
[AH72, Chi75] plays a crucial role in the theory of CR functions, cf. for in-
stance [Khe85]. As but one consequence of such a representation we mention
the Hartogs-Bochner theorem on the removability of compact singularities of
holomorphic functions. Recall the theorem on analytic representation.

Let D be a domain in C*, with n > 1, whose Dolbeault cohomology with
coefficients in the sheaf of germs of holomorphic functions vanishes at step
1, i.e., HY(D,0) = 0. This is the case, in particular, if D is a domain of
holomorphy in C".

Assume that S is a smooth (i.e., of class C'') closed orientable hypersurface
in D, dividing D into two open sets D and D~. We write S in the form
S ={z € D: p(z) = 0} where p is a smooth real-valued function in D, such
that Vp # 0 on S. We set

D* = {z € D: £p(z) > 0}

and give S the orientation induced from D~. Thus, D~ U S is an oriented
manifold with boundary.

As usual, a function f € L} (S) is said to be a CR function on § if it
satisfies

/Sf(%:()

for all differential forms v of bidegree (n, n—2) with coefficients of class C*°(D)
and a compact support in D.

In the terminology of De Rham’s currents this just amounts to saying that
the current f[S]*! is O-closed in D.

Theorem 1.1 ([AH72, Chi75]) For any CR function f € Li,.(S), there
is a distribution h in D with the property that Oh = f[S]*.

Denote h* the restriction of h to D*. From the equality oh = f[S]*! it
follows readily that h* is holomorphic in D*, i.e., h* € O(D*). Moreover, we
have

f=ht—h on 8. (1.1)

If n = 1 a solution A to problem (1.1) is given by the Cauchy-type integral
of f. Any two solutions then differ by a holomorphic function on the whole
domain D.

For n > 1, the boundary behaviour of h* is still completely determined
by the local Bochner-Martinelli integral of the function f, cf. [Kyt95, Ch. 2].
More precisely, the equality (1.1) is interpreted as follows:
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1) ifSeCH keZ, and f € CFMS), 0 < A < 1, then h* € CPNSUDF)

loc loc

and (1.1) is fulfilled at each point of S;

2) if Se€ Ctand f € L (S), p > 1, then for each point 2° € S there is a

loc

neighbourhood U such that

lim [ |(h (¢ +ev(Q) — B (¢~ Q) ~ F(OF dAgums =0,

€0+ Jsnu

where dAg, 1 is the (2n — 1) -dimensional Lebesgue measure on S, and
v(¢) the unit outward normal vector to S at a point ¢ € S.

Recall that by CFMS) is meant the space of all k times differentiable
functions on S whose derivatives of order k satisfy a Holder condition of order
A on any compact subset of S.

If f € LL.(S) is a CR function on S\ o, o being a closed set of zero
measure in S, then the theorem on analytic representation fails in general, cf.
Examples 2.1 and 2.2 below. The main reason of this lies in the fact that the
cohomology group H}(D \ o, O) may be non-trivial.

In case S is the boundary of a bounded domain D~ the problem of analytic
representation just amounts to the problem of analytic continuation of a CR
function f on S\ o to all of D~. The latter problem goes back at least as far
as [Lup87], cf. also the surveys [Sto93, ChS94], and it is well studied.

The problem of analytic representation has been investigated far worse.
The case where o is a holomorphically convex compact set in D and n > 1
is treated in [Kyt90]. In this paper it is shown that H'(D \ o,O) vanishes,
and so the theorem on analytic representation is still valid. This allows one to
describe certain sets removable for the CR functions.

Removable singularities of integrable C'R functions on smooth CR manifolds
S were studied in [Kyt89, KR95, AC94, MP99].

This paper is aimed at describing conditions on a locally integrable function
f under which f still admits an analytic representation (1.1). No assumption
on o is required, moreover, the hypersurface § itself is allowed to have singu-
larities in 0. For model singularities we also describe the behaviour of h* near
the set o.

The case where S bears a power-like cuspidal singularity at an isolated
point is studied in [KMT99].

The first two authors wish to thank the research group of Professor B.-
W. Schulze at the University of Potsdam, where the paper was written, for the
invitation and hospitality.

2 Non-representable CR functions

We start with two examples.
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Example 2.1 (cf. [Chi75]) Let D be the unit bidisk, i.e.,
D={ze€C®: |n| <1, |z <1},

and
S = {z€D: Iz =0},
o = {z€8: 2 =0}

Set
DE={z€D: £3z > 0}.

Consider the function f(z) = 1/z;. It is easy to see that f € L'(S) is a
CR function on S\ 0.

Were Theorem 1.1 valid for f, we had f = h* —h™ on S\ o, where h* are
holomorphic functions in D*, respectively. Then

lim h* (21, +iS2) dzy = 0,
Szo—0+ ‘Z1|:1/2

by the Cauchy theorem, because h*(z,iSz) is holomorphic in z; in the unit
disk, for each fixed Szy # 0. However,

1
/ —dz, = 2mi
la1|=1/2 1

# 0,

what contradicts Theorem 1.1.
O

This example shows that even in simple situations a variety o of complex
codimension 1 in § is not removable for integrable CR functions.

Example 2.2 (cf. [Kyt90, KMT99]) Let D be the unit bidisk, as in
Example 2.1, and

The origin O(0, 0) is a singular point of S. Indeed, S = {z € D : p(z) =0}
where
p(Z) = 2121 — 2222,

and Vp(z) vanishes at the only point z = O on §. Obviously, this is a conical
point.
Consider the open sets D¥ = {z € D : +p(z) > 0} and the holomorphic

function .

fle) = —

Z1%2
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away from the planes z; = 0, for j = 1, 2. The restriction of f is a smooth CR
function on S\ {O}.
Furthermore, we have f € L'(S). Indeed, parametrise S by

Rzy = r cosyy, Rze = 71 cos o,
Sz = rsinpy; Sze = 71 sin s,

where 0 < r <1 and 0 < ¢q, vy < 2w. Then the Gramian of S has the form

2 0 0
G=1|0 2 0
0 0 r?

whence

dA\3 = VdetGdrdp,dp,
= V2r?drdedes.

1
/ fldss = / aA
S s|21Z2|

1 2 2
:ﬂ/dr/ dcpl/ dps
0 0 0
V2 (2r)?

It follows that

is finite, as desired.

Suppose that f meets the conclusion of Theorem 1.1, i.e., f = hT —h™ on
S\ {O}, where h* € O(D%) are continuous up to S \ {O}. By the Cauchy
theorem in one dimension it follows that

h*(2) dzy Adzy = 0
|21|=1/2
2al=1/2
while .
/ — le A dZQ = (27TZ)2
lz11=1/2 Z1Z9
2al=1/2
is different from zero. The contradiction shows that f can not be represented

as the difference of holomorphic functions on D*.
O

The latter example shows that if the hypersurface S bears singularities then
even isolated points on S can be unremovable for integrable CR functions. All
the points of § different from the origin are removable for integrable CR func-
tions, for they lie on complex manifolds stratifying S\ {O}, cf. Proposition 1
in [KR95].

As a rule, isolated points on a smooth hypersurface are removable for in-
tegrable CR functions, cf. [Kyt89]. Thus, the availability of singular points in
S leads to new effects.
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3 Analytic representation

From now on we consider the following situation. Let D be a domain in C",
n > 1, such that H*(D,O) = 0. Further, S is a closed subset of D dividing
this domain into two open sets D*. Suppose S has the form M U o where o
is a closed set of zero (2n — 1) -dimensional measure in S, and M is a smooth
(i.e., of class C') orientable hypersurface in D\ o. Write

M={zeD\o: p(z) =0}

with p a C! real-valued function in D \ o satisfying Vp # 0 on M, and we
redefine
DF ={2€D\o: +p(z) >0}

We introduce a function space Li..(S) to consist of all f € L} (M) with
the property that

sup |f(2)] dAgy 1 < 00,

e>0 /(MﬂK)\{z: dist(z,0)<e}

for each compact set K C D, where dist(z, o) is the distance of z to o.

If S is a smooth submanifold of D then L (8) coincides with the usual
space of locally integrable functions on S, for Ay, 1(0) = 0.

Moreover, if S has locally finite (2n — 1) -dimensional Lebesgue measure,
e, Ay, 1(SNK) < oo for all compact sets K C D, then the bounded functions
on S belong to L .(S).

Any function f € LL .(8S) defines a current f[S] of degree 1 in D by

loc

(18], ¢) = lim fe,

e—0 M\{z: dist(z,0)<e}

¢ being a differential (2n — 1)-form of class C*°(D) with a compact support
in D.

Pick a non-negative real-valued function p(z) of class C£2 (D), such that
o={z¢€D: o(z) =0}. A function with this property does exist, cf. for
instance Lemma 1.4.13 of [Nar73].

Set

M. ={zeM: o(z) >¢e},

for e > 0. By Sard’s theorem, cf. Theorem 1.4.16 of [Nar73|, M. has a smooth
boundary OM. for almost all ¢ > 0.

Given any compact set K in D, the set of all stationary points of the
function p on M N K is compact and so is its image under p. Hence it follows
that the set of those ¢ > 0, for which oM, N K is a smooth submanifold, is
actually open.
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If f € L. (M) then f € L _(0M.,) for almost all £ > 0. Indeed, let K be

loc loc

a compact set in D, and 0 < a < b be such that oM. N K is smooth for all
¢ € (a,b). By Fubini’s theorem,

b
/ F(2)| dAgn s = / e / £ AG) dAg
{zeM a<p(z)<b}INK a OM:NK

where Ay, o is the (2n — 2) -dimensional Lebesgue measure on OM,. N K, and
A = |dAy,_1/de]|, cf. [Chi85, p. 248]. Since A # 0 on OM,. N K we deduce
that

/ F(2)] dAgn 5 < o0
OM::NK

for almost all € € (a, b), as desired.
Given any function f € L} (M) and compact set K C D, we define

S5(e. K) = /8 e

cf. [KMT99, p. 8] .

Theorem 3.1 Assume that f € Li..(S) is a CR function on S\ o, satis-
fying
Si(e, K) =o0(1) (3.1)

as € — 0, for each compact set K C D. Then Theorem 1.1 holds true for
f, more precisely, we have f = h™ — h™ on S\ o, where h* € O(D*) and
the boundary behaviour of h™ close to S\ o is actually the same as that in
Theorem 1.1.

4 The proof

As is mentioned, any function f € L _(S) defines a current f[S] of degree 1
in D. We show that B
9 (f[S]*) =0 (4.1)

in D, provided that f meets the assumptions of Theorem 3.1.

Lemma 4.1 Suppose f is a locally integrable CR function on S\ o. Then,
for almost all € > 0, we have

whenever v is a differential form of bidegree (n,n — 2) with smooth coefficients
and compact support in D.

'In [KMT99] we use another characteristic of f which differs from Sy (e, K) by the nor-
malising factor 1/vol(OM. N K).
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Proof. Fix 2 € 8\ 0. There is a ball B = B(z° r) with centre 2° and
radius r > 0, such that f can be approximated in the L'(M N B)-norm by
holomorphic polynomials. I.e., there is a sequence of holomorphic polynomials
(p,) such that

/ |f —p,,| dAop—1 — 0
MNB

as ¥ — oo. This is in general a consequence of the approximation theorem
of Baouendi and Treves, cf. [BT81]. For the case of hypersurfaces, see also
Corollary 6.6 in [Kyt95].

We can assume, by decreasing r if necessary, that B does not intersect the
set o.

Suppose a < o(z) < b for all z € M N B, and v is a differential form of
bidegree (n,n — 2) with smooth coefficients and a compact support in B. By
Fubini’s theorem,

b
/ |f _pu| ANy, = / d5/ |f —pu| AdAyy,
MNB a oM:NB

— 0

when v — co. Hence there is a subsequence (v;) such that

/ =Pl AdAgn s — 0
oM:NB

when j — oo, for almost all € € (a,b). This in turn implies

hm |f — pyj| dAgn,Q — 0.
J7e Jom.nB

We thus conclude that the subsequence (p,,j) approximates f in the norm
of L*(OM. N B), for almost all £ € (a,b). By Stokes’ formula,

/ pl/j 5U - / pllj,U
M oM.

for all 5. Letting j — oo we obtain the assertion of the lemma for v supported
in B(2%,r).

Since every v with compact support can be written as the sum of a finite
number of forms supported in a sufficiently small balls, our claim follows in
the general case.

O

Note that the proof of this lemma actually repeats the proof of Lemma 8.2
in [Kyt95].
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We proceed to prove Theorem 3.1. By Lemma 4.1,
@ (fI8I™) vy = (f[S]™,00)

for all (n,n — 2)-forms v with smooth coefficients and compact support in D.

Since
[l e [ ifldan,
IM. OM-NK
= ¢ S¢(e, K)

where ¢ is a positive constant independent of €, and K = supp v, the equality
(4.1) is a direct consequence of (3.1). Thus, the current f[S]*! is 0-closed in
D.

If S is a smooth hypersurface then (4.1) means that f is a CR function on
S. Hence the singularity of f on ¢ is removable, for every locally integrable
CR function f on S satisfying (3.1).

In case S bears singularities on o the equality (4.1) can be thought of as a
definition of a CR function on a singular space.

Our next goal is to show that the theorem on analytic representation is
valid for all functions f satisfying (4.1). This follows by the same method as
in [Chi75], cf. also Section 6 in [Kyt95].

We first recall a 9-homotopy formula of [HL75]. Namely, let

F= XR:F} (0/0z;)

be a vector field in C* whose coefficients are distributions on all of C*, satis-
fying
~OF;

9, "

j=1
d being the Dirac delta-function. Then, given any current 7" of bidegree (p, q)
with compact support, we have

T = F#0T + 0 (F#T) (4.2)

where F'#T stands for the contraction of T" by F.
More precisely, if

T:ZTLJdZ[/\dZ],

1,J
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the sum being over increasing multi-indices I = (iy,...,1,) and J = (ji, ..., jq)
of 1,...,n, then

FHT =" (Fj«Try)o(I,J,j) dz Adzy

I,] jeJ

where x is the usual convolution of distributions, and o (I, J, j) = £1 is deter-
mined from the equality dz; A dzr AdZp; = o(1,J,j)dzr A dZ;. If ¢ = 0 then
we set F#T = 0, otherwise F'#T is a current of bidegree (p,q — 1) in all of
Ccn.
We take
I |Z|2n ’

ﬂ —
as F', then

J, being the Dirac delta-function at a point z € C*, and U((, z) the Bochner-
Martinelli kernel in C",

U(¢.2) = Gl Sy o nadl)

where

d¢ = dG AL NG, )
dClj] = dG A AdG_1 ANdCisa Ao AN dG,.

Since HY(D, O) = 0 and 9 (f[S]*!) = 0 in D, the current f[S]®! is J-exact
in D, by Dolbeault’s theorem. Thus, there is a distribution A in D, such that
f[S]®t = Oh. Hence it follows that h is holomorphic in D\ S, for f[S]%! is
supported on S.

Pick a point 2° € §. Choose a function x € Cg5,,(D) which is equal to 1
in a polycylindrical neighbourhood U of 2°. The current

T = x f[8]

has a compact support in D and satisfies 97" = 0 in U. Write T by formula
(4.2). Since

OT = O (F#0T)
=0

in U and F#0T has harmonic coefficients in U, we conclude, by Grothendieck’s
lemma, that F#0T is 0-exact in U, i.e., F#0T = Ou for some smooth function
u. Hence it follows that

T =0 (F#T + u)
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in U.
Comparing the latter equality with

oh = fS]"
=T

in U we see that the difference h — (F#1 + u) is holomorphic in U. Hence the
jump of A across S N U is completely determined by the boundary behaviour
of F#T near SNU.

As is shown in [Kyt95, Section 6],
—(FHT) (2) = / WOFO U, ) (4.3)

for all z ¢ S§. Combining this with jump theorems for the Bochner-Martinelli
integral, cf. Chapter 1 ibid, we complete the proof.

5 Analytic sets of singularities

Examples 2.1 and 2.2 show that the condition (3.1) cannot be relaxed in gen-
eral. In Example 2.2 we have

OM.={2€D: |z|=|zn|=c¢}

and so, for the function
!f(Z) =
we get

272w

1
St(e, K) = V2e? //6—2d801d302
00
= \/5(271—)27

which is O(1) as € — 0. Similar considerations apply to the function of Ex-
ample 2.1.

However, for singular sets o lying on analytic hypersurfaces in D, Theo-
rem 3.1 can be strengthen.

More precisely, suppose there exists a holomorphic function F' in D whose
zero set is 0, i.e., 0 = {z € D: F(z) = 0}. Since the Hausdorff dimension of
an analytic set does not exceed 2n — 2, cf. for instance [Chi85, p. 25|, we have
AQn_l(U):: 0.
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Lemma 5.1 Let f € L} (S\ o) be a CR function on S\ o. Suppose there

loc

is a real R > 0 such that dist(z,0)%f(z) € L, .(S). Then there is an integer

\ loc
N > 0 such that FNf € Ll (S) and 9 (FNf[S]*') =0 in D, i.e., FNf is a
CR function on S.

Proof. Given any compact set K C D, we have
[F(2)| = [F(z) = F(¢)]
< Clz—=(

uniformly in z € K and ¢ on compact subsets of . Taking the infimum in
¢ € 0 we get
|F(2)] < Cdist(z,0) (5.1)

for all z € K, with C a constant depending only on K.

From (5.1) it follows that FV f € LL (8), for every integer N satisfying
N > R.

Let v be a differential form of bidegree (n,n — 2) with smooth coefficients
and a compact support in K. Then

@ (FY IS ,v) = /S FN f
_ /SFNfa((l—Xg)v)+/SFNfa(XsU)

where x. is a C* function in D which is equal to 1 in O /3). N K and vanishes
outside Oy/3).. Here,

O.={ze€D: dist(z,0) < ¢}

stands for the ¢ -neighbourhood of o in D.
We may take as x. the convolution of the characteristic function of the set
O(1/2)e N K and a standard bell-shaped function. Then

|(0/0%;)xe| < const %

in all of C*, for each j = 1,...,n, cf. for instance Lemma 1.1.12 in [Tar97].
By (5.1),

|/FNf5(ng)| < ceNRl/ |dist (2, o) f| dAgy 1
s SNK

- 0

as ¢ — 0, provided that N > R + 1.
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On the other hand, the integral
/FNfa((1 — Xe)v) = / fO(FN(1—x.)v)
s S

vanishes because the differential form F" (1 — x.)v is supported in D\ 0. This
completes the proof.
U
We are now in a position to formulate the main result of this section. In
case both § and o are smooth manifolds and f € L{ .(S) this result is proved
in [KR95], cf. Proposition 1.

Theorem 5.2 Let 0 C S be the zero set of a holomorphic function F
in D. Assume that f € L (S \ o) is a CR function on S\ o, such that

loc

dist(z,0)%f(2) € LL.(S), for some R > 0. Then Theorem 3.1 on analytic

loc
representation holds for f.

Proof. From Lemma 5.1 and the proof of the second part of Theorem 3.1
we deduce that the theorem on analytic representation is valid for FVf. In
other words, there are functions h* € O(D*) such that F¥f = h* — h~ on
the smooth part of S, i.e., on S\ 0. Hence

ht  h~

FN FN

on 8\ 0. Obviously, this analytic representation behaves near S \ ¢ in the
same way as that of Theorem 3.1, as desired.

f=

O

Note that Example 2.2 does not contradict Theorem 5.2. Indeed, the point

0(0,0) lies in the analytic set 0 = {z € D : 2z = 23}. On the set S\ o we
have

1
—— =h" —h" (5.2)
Z1R2
where
o= 11
Z9 — R 217
1 1
h~ = —.
22 T Z1 %2

Thus, the equality (5.2) holds almost everywhere on S\ {O}, but it fails to be
fulfilled in the sense of distributions on S\ {O}.

Corollary 5.3 Under the hypotheses of Theorem 5.2, if moreover S is a
C* hypersurface in D then the function f extends to a CR distribution f on
S, i.e., 0 is a removable set for all CR functions of finite order of growth close
to o.
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Proof. Consider the functions
HE = E
FN

holomorphic in D*. Using a Lojasiewicz’s inequality, cf. Chapter 4 in [Mal66],
we conclude that for any compact set K C D there are constants C' > 0 and
E > 0, such that

|F(2)] > Cdist(z,0)"
> Cdist(z,S)”
for all z € K. It follows that
H(2) :

< _
= dist(z, S)”

for all z € K N'D*, with some constants ¢ and 7, for the Bochner-Martinelli
integral of f has a similar estimate near S.

According to [Str84], the functions H*(z) possess weak boundary values
on S, which are CR functions f*. Setting

f=f"-i

finishes the proof.
O
If S is the boundary of a bounded domain in C* Corollary 5.3 is proved in
[Kyt89].

6 Hypersurfaces with cuspidal edges

In the rest part of the paper we study the boundary behaviour of the func-
tions h* near the singular set 0. As is mentioned, this behaviour coincides
completely with that of the Bochner-Martinelli integral of f. Hence we will be
aimed at investigating the boundary behaviour of this integral close to o. If §
is piecewise smooth the behaviour of the Bochner-Martinelli integral near § is
studied fairly well, cf. the book [Kyt95] and the references given there. How-
ever, for arbitrary singular sets o, the problem is hard. We restrict ourselves
to those classes of o which are usually encountered in the analysis on singular
spaces cf. [Sch98, RST00].

We identify C* with R*". Let the coordinates w = (wy,...,ws,) of R*"
split as w = (W', wy41, w") where

w' o= (wy,...,w,),

w’ = (’U)q+2, Ceey w?n)-
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We require 0 < g < 2n — 2. Set

wl = (yla"'ayq)a
wq+1 = T,
’U)" = (xl,...,xd+1),

where d =2n — 2 — q.

Suppose X is a compact connected submanifold of dimension d and class
C' in R such that 0 ¢ X. For example, X may be a d-dimensional sphere
with centre at the origin. Consider

Co={(r,w") e R*™ : r€0,6%, w" = o(r)r, z € X}

where ¢ € C'0, %] satisfies ¢(0) = 0 and (r) > 0 for r € (0,£°]. Obviously,
Cy is a smooth (i.e., of class C') submanifold of R¥*2 \ {0}. Moreover, 0 is a
singular point of Cy, for ¢'(0) < co.

If ¢'(0) # 0 then 0 is a conical point of Cy. In case ¢'(0) = 0 the point 0 is
a cusp, cf. [RSTO00].

Denote by A4 the d-dimensional Lebesgue measure on X, and by Ay, the
(d + 1) -dimensional Lebesgue measure on Cy.

Lemma 6.1 For some constants ¢,C' > 0, we have

¢ (p(r)*drdAg < dAgyy < C (o(r)* drdAy. (6.1)

Proof. We can locally give X a parametric representation
T = F1 (19),
Tar1 = Fan(9),

where ¥ = (91, ...,9;) varies over an open set U C R?, and F = (F},..., Fy1)
is a C'' mapping of U to R*! having maximal rank d in U. Then C; has local
parametric representation

(r; o(r) F'(9))

where r € [0,£°] and 9 € U.
Let G¢, be the Gramian of Cy, i.e.,

L+ ()2 (F.F) o (FF)) ... ¢¢(FF))
. — | e (Fo, F) @ (B, k) - ¢ (Fy, Fy,)
CO_ P P P

oy’ (Fﬂd, F) @ (F,, Fy) .. ©*(F),. Fy)
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where Féj = (0F1/0Y,,...,0Fy41/0V;), and (Féj,Fék) is the scalar product
of Féj and Fy , for j,k=1,...,d. Then

dANgi1 = \/det G, drdd, ... dYy.
On the other hand, the Gramian of X is

GX = <<F1;J7 Fé;g)) j=1,....d

k=1,....d

whence

Jaet G
dhgyy = YEETO gan,

= d(r,9) (gp(r))d drdAg,

the function ®(r, ) being different from zero on [0,°] x U. Consequently,
0 <c¢<®(r,9) <C on this set, and the lemma follows.
O

In the sequel we assume that & = Y x Cy where Y is a connected open
set in R?, and Cy a hypersurface in R**? with a singularity at the origin, as
above. Thus, § is a wedge with the edge 0 = Y x {0}. It is clear that the
(2n — 1) -dimensional Hausdorff measure of S is locally finite. Furthermore,
we have D\ § = Dt U D™, the coordinate w,;; being positive in the domain
D+.

Similar considerations apply to & which are obtained locally by embedding
Y x Cy to D. The estimates given below remain still valid in this more general
situation. For simplicity of notation, we restrict our discussion to the local
case S =Y x (.

The case ¢ = 0 and d = 2n — 2 corresponds to a point singularity at the
origin. It is treated in [KMT99].

We can assume, by shrinking D if necessary, that f € L'(S). In fact, this
means that f is an integrable function on the set ¥ x [0,°] x X with respect

to the measure
dNg,—1 = +/det G, dydrd?,

where dy = dy; . . . dy,. We require also that Ay, _1(S) < 00, i.e., Y be bounded
in R?.
As M, we take Y x C. where
C.={(r,w") e R : rcle, w'=y(r)z, » € X},
for e > 0. Then OM, =Y x 0C., with

aCE = {(ﬁ,w") c Rd+2 . U)” = (10(6):1;’ T € X}
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Hence analysis similar to that in the proof of Lemma 6.1 shows that the
Lebesgue measure dAy, 5 on OM., fulfills

c(p(e) dydAg < dAgy o < C (p(e))* dydAy, (6.2)

where dy is the Lebesgue measure on Y, dA4 is that on X, and the constants
¢,C' > 0 are independent of ¢.

For a locally integrable function f on S\ o, we consider a slight modification
of the characteristic Sf(e, K), namely

S0 = [ 1) dyds
Y x0Ce
where € € (0, £°].

Corollary 6.2 Suppose f € L'(S) is a CR function on S\ o. If

Si(e) = o (@dl(g)> N

then Theorem 1.1 on analytic representation holds for f.

Proof. For the proof, it suffices to combine Theorem 3.1 and estimate
(6.2).
O
In particular, the condition of Corollary 6.2 is satisfied for the CR functions
[ of class L>(S).
In the case of point singularities, i.e., ¢ = 0 and d = 2n — 2, Corollary 6.2
just amounts to Theorem 2.1 of [KMT99].

7 Auxiliary estimates

Let f € L'(S). Consider the integral

ANy,
Pue) = [ 7O seps,
where
2= (i)
- (y7 r? x)?
and m > 0.

We are interested in investigating the behaviour of the integral P,,(z) for
z close to o, depending on the behaviour of the function f near the singular
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set 0. We restrict ourselves to the case z € DT, the estimates for z € D+ are
similar.

Let Z be the orthogonal projection of z to the subspace R? x R, namely,
zZ=(y,r,0). If z € Dt then r > 0 and

2l <zl < C 2], (7.1)

with C' a constant independent of z. Indeed, we have

o= et ()

< |yP+ 1+

the constant ¢ > 0 depending only on ¢ and X, for ¢ € C[0,£"] vanishes at
0 and X is compact. Hence it follows that

|2
1 < —
el
< ly?+ (L +¢)r?
I
< 1l+4egc,

as desired.

From (7.1) we deduce that z and Z are equivalent when z — 0. If we
estimate P,,(z) in terms of ¢(r), for any z lying in the plane z = 0, then
similar estimates will be valid for all z = (y,r,x) in D*. Hence we assume in
the sequel that z = Z.

The estimates (5.1) yield

B ; dAsgp, 1 (V)
Pm(Z) — /S |f( )| (|U' _ y|2 + (Uq+1 . 7”)2 + |,Ull|2)m/2

T , dv' dAy(z)
< ¢ [ o [ 000l o e

where 7 = wvgq;. Since X is compact and 0 ¢ X the module of z € X
is uniformly bounded below by a constant 6 > 0. Taking into account the
equality

/Y X |f (W', 7, p(r)a)| dv' dAa(z) = Sy (7)

we thus arrive at an estimate

0

Pal <€ [ e S (1)
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for any z = (y,7,0) in D™.
Replacing § (1) by ¢(7), which does not cause any confusion, we now
proceed to estimate the integral

0

) ()
/0 ((7——7")2—|—902(7—))m/2 Sf(T) dT,

for r > 0.

To this end, we need auxiliary material. Let 7° = 7%(r) stand for the
minimum point of the function (7 — )% + *(7) over 7 € [0,&"].

Lemma 7.1 The following formulas hold:

r

fm Sy 1O
B e e oo N
0 ENEIQ)E

Proof. At the point of minimum we clearly have r — 7 = o(7%) ¢'(77%),
whence

~ 1
.
For 7 > r, the function (7 — 7)? 4+ ©?(7) increases, and so 0 < 7*(r) < r.
It follows that 7*(r) — 04 as r — 0+. Hence we conclude that

= lim <1+@(T*) <,0'(7'*)>

lim =z
r—0+ 7% (7”) r—0+ T*
= 1+ (¢'(0))%

as desired.

To prove the second formula, we consider separately two cases, namely
©'(0) =0 and ¢'(0) > 0.

If ©'(0) = 0, then the first equality gives

T‘ —_
r—04+ 7% (T) o
We claim that
lim —20)

Indeed,
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p(r) — e(r*(r))

= Y0
=T 00
= )

= 1+@(T7 ()¢ (6(r)),

and this latter expression tends to 1 when r — 0+, for 7*(r) — 0 and 6(r) — 0
when r — 0+.

Therefore
* 2 2( % 2( x I %\\2
PR L @@ ) )
r—0+ ©2(r) r—0+4 ©3(r)

which is due to L’Hospital’s rule. Hence

(T =)+ () :
TILI(L)OJF 902(7”) - rgrgl+

g02
_ (nm so(f‘)) (1+ (£(0))°)

which establishes the formula.

O
Our next objective is to estimate the integral
0
¢ dr
Zs(r) = , 7.3
0= T (79

for s € R

Lemma 7.2 As defined above, the integral Zy(r) meets the following esti-
mates:
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1) If2 <s, then

3) Ifs <1, then

Proof.
1) Let s > 2. Then

- 1 € ©*72(r)dr
L) =2 | (

o r= P )T

Using Lemma 7.1, we obtain

0

i) < —< [ et {r)dr
20 < 5 ), oA e e
C e dr
), T "

the constants ¢ and C being independent of r € (0,£°].
Let us prove that

(7 =)+ ()

(r =1+ 0)

for all 7,7 € (0,£°], where a and A are positive constants independent of 7 and

T

a < < A (7.5)

To do this, denote y = (r). Since ¢'(r) > 0 for all 7 € (0,£°], there exists
an inverse function 7 = ¢ 1(y) which is differentiable in y > 0.

Put
T—r = w,
r = r

and
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where w? + §? = 1. Then

(T—r?+¢%(r) _ w+e*(w+e'(y))
(T =712+ ¢*(r) w? +y?
_ 0P+ (V0 + o7 (97))
192
o, (eWh+ e (09))
-t ()

which gives

(T =P+ (1) <90(19u7 + o7 (09) — ol (99)) + 90(901(19?]))>2

(7 =7)%+ ¢*(r) o v
_ a4 (so’(9) 19;0+19y>

the constant A does not depend on 7 and 7.
Considering the reverse fraction, we obtain an estimate

(7 —7r)2+ ©*(r) < 1

(r—r)2+¢2(1) ~ a
with a a constant independent of 7 and r. This yields (7.5). Finally, combining
(7.4) and (7.5) we get

I Z5 ()]

IN

2Q=21Q=21Q

IN

VAN
3

as desired.

2) Suppose 1 < s < 2. Once again we make use of the estimate (7.5) to

obtain
0

) = — /0 ; 7r)dr

@ 1(r) T —1)% 4 ¢%(7))

1 1 e’ dr

e o YN —
a7 ¢ M) Jo (T —1)2+ 2(r)

1 1

= i bos[r = V=T AE
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whence
20 - o KT

when r — 0+. This establishes the formula.
3) If s <1 then

0

(1 1 )/E dr
max |\ —-, —=s 572
Ay ()

24 2(r))
11 / dr

< max Ry _

- ax’ A2 ) Jy |T—r

and the proof is complete.

| Zs ()

IN

O
We are now in a position to prove the main result of this section giving

sharp estimates of the potential P,,(z).

Theorem 7.3 Suppose that f € L'(S) and

as € — 0+, for some N < d.
1) If24d—m < N, then

1
P (2)| = O <¢N+md1(|(r, x)|)> as |(r,x)| — 0.

2) If1+d—m <N <2+d—m, then

o DeselaDl Y L
Pl =0 (e intinay) o l0oI>0

3) If N <1+d—m, then
Pm(2)| =0 (1) as |[(r,z)] = 0.
Proof. Indeed, let us continue the inequality (7.2), thus obtaining

0

: P! (7)
Pl = © | e
< ' IN-l—m—d(T)a

the last integral being introduced by (7.3). To complete the proof it remains
to apply Lemma 7.2.

U

25
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Remark 7.4 It is easy to see that Theorem 7.3 actually remains valid for
all z € D~.

8 Boundary behaviour of representing func-
tions

Consider the Bochner-Martinelli integral M (z) of f,

—Mvwaéﬂomga,zeb#

Since |M(2)| < ¢ [Pan_1(2)], with ¢ a constant independent of z, Theo-
rem 7.3 for m = 2n — 1 implies the following statements.

Corollary 8.1 Under the assumptions of Theorem 7.3, the following esti-
mates hold for z € D\ S:

1) If 2n+3+4+d <N, then

1
|M(z)] —O(@N+2n2d(|(n$)|)> as |(r,z)] = 0.

2) If 2n+2+d < N < —-2n+3+d, then

|M(z)|:O<¢|10gw(|(r’x)|)| ) as |(r,a)| = 0.

(o))

3) If N < —=2n+2+d, then
|M(2)] =0(1) as |(r,z)] =0

The equality (4.3) enables us to apply Corollary 8.1 to highlight the bound-
ary behaviour of the representing analytic functions h*(z) of Theorem 3.1.

Theorem 8.2 Let f € L. (S) be a CR function on S\ o satisfying

loc

565920 (v

as € — 0, for any compact set K C D, where N < 0. Then,

1) For —2n+3 < N, we have

iZ = 1 as r,x .
=0 () @ (ol
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2) For —2n+2 < N < —2n+ 3, we have

|hi(Z)|:O< |loggp(|(r,x)|)|> as |(T,Ji)|—>0.

pht2n2(|(r, 2)])

3) For N < —2n+ 2, we have

W= (2)]=0(1) as |(r,z)] — 0.

In particular, h*(2) are of finite order of growth when |(r, z)| — 0, provided
that so is f.

For the case of point singularity 0 = {z°} on S, Corollary 8.1 and Theo-
rem 8.2 are proved in [KMT99.
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