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Introduction

Parabolic equations (or, more generally, anisotropic elliptic equations) in an infinite space—
time cylinder M x R may be studied under the aspect of operators on a non—compact
configuration with geometric singularities. This concerns, in particular, the construction of
parametrices within an anisotropic calculus of pseudo—differential operators and the charac-
terisation of asymptotics of solutions.

We consider the case that the cross—section M of the cylinder has conical singularities,
i.e., M x R has edges (if S is the finite set of conical points of M, then ¥ := S x R is the
system of edges in time direction). Let r € Ry denote the distance variable of a point of
M xR to such an edge (i.e., r is the cone axis variable for a conical singularity of M). In this
paper we shall show (under some natural conditions on the t—dependence of the coefficients
of the operators) that ¢ = oo can be interpreted as an “anisotropic” corner (in the sense
of a corner singularity, cf. the definitions below) and that long—time asymptotics have the
character of multiple edge—corner asymptotics with the time ¢ as the corner axis and r as a
second spatial axial variable.
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2 INTRODUCTION

Ellipticity (especially the anisotropic one) on a manifold with geometric singularities
(say, of conical, edge or corner type) is described by a hierarchy of principal symbols, where
the (scalar) interior symbols come from the operators themselves, while a further tuple
of operator—valued symbols is induced by the singularities. Examples are the conormal
symbols near conical singularities, cf. Kondrat’ev [5], Schulze [16], or the boundary symbols
in boundary value problems, cf. Boutet de Monvel [2], Rempel and Schulze [10]. While
for conical singularities the ellipticity with respect to conormal symbols is connected with a
global spectral information along the base of the cone (with eigenvalues non-linearly involved
as complex variables in meromorphic operator functions), for boundary value problems the
ellipticity of boundary symbols encodes the nature of additional conditions of trace and
potential type on the boundary.

Similarly, for edge singularities we have operator—valued edge symbols containing (in gen-
eral) the symbols of edge conditions with an analogue of the Shapiro-Lopatinskij condition
in the elliptic case, cf. Schulze [13], [19].

The nature of trace and potential symbols along an edge Y is connected with the singular
functions of asymptotics near Y with respect to r € Ry. Considering a (stretched) wedge
Ry x X xY with a (stretched) model cone Ry x X 3 (r, ), where X is a closed, compact C*
manifold, asymptotics of solutions u(r, z,t) to elliptic edge problems may have the following
form:

~

oo my(t
u(r,x,t) ~ Z ¢, t)r~P1 O logh r (0.0.1)
j=0 k=0

for r — 0, where p;(t) € C, Rep;(t) = —oo as j — oo for every fixed t € Y, and coeflicients
cji(z,t) that are smooth in 2 € X. (Asymptotics of the form (0.0.1) for fixed ¢ are also
called discrete, cf. Section 2.1 below.)

(0.0.1) is true, indeed, as soon as w is assumed to be smooth outside the edge, cf.
Schulze [12] (for the isotropic case). However, if w is of some finite Sobolev smoothness, the
coefficients have a rather complicated structure with respect to t; their Sobolev smoothness
depends on Rep;(t), and there is an extra dependence on ¢. The exponents may be variable
under varying ¢ and form in general rather irregular clouds of points in the complex plane.
Both the adequate description of t—wise asymptotics themselves and the understanding of
regularity of coefficients belong to the essential features of corner asymptotics.

Variable discrete asymptotics can be managed with the help of continuous asymptotics
as have been introduced in Schulze [11] (formulated in terms of vector—valued analytic func-
tionals in the complex plane). In fact, continuous asymptotics seem to be indispensable to
understanding variable discrete edge asymptotics in reasonable generality. In the present
paper we mainly discuss asymptotics for ¢ — oo with discrete limit and formulate asymp-
totics for finite ¢ as continuous ones without specifying the pointwise discrete behaviour for
finite t that would be an extra program.

Another ingredient is a global contribution from the principal conormal symbol at infinity,
again with non-linearly involved eigenvalues, now related to the base of the corner with its
conical singularities. The interplay between wedge and global corner conormal effects has
been characterised in Schulze [15] within a corresponding corner pseudo—differential calculus,
cf. also [21]. In the present paper we extend these results in combination with the main idea
of a new characterisation of long—time asymptotics for (non—autonomous) parabolic (pseudo—
differential) operators of Krainer and Schulze [7] for a smooth space—time cylinder, under
rather general assumptions on the t—dependence of coefficients at infinity (asymptotics of a
similar type also hold for parabolic boundary value problems, cf. Krainer [6]). Asymptotics
in the case of conical singularities in spatial variables may also be asked for boundary
value problems, i.e., when M is a manifold with boundary and conical singularities; this
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is much more complicated and requires the results of [22]. In the present paper we try to
minimise technicalities and therefore consider the case without boundary. We may look
at typical differential operators, though we get the results in general for pseudo—differential
operators. Elements of the technique on anisotropic pseudo—differential operators near edge—
singularities may also be found in Buchholz and Schulze [3].

1 Anisotropic operators in a cylinder with a conical
base

The natural anisotropic differential operators on a space—time cylinder with a singular cross
section are degenerate in a typical way (in stretched coordinates). They have a scalar
anisotropic homogeneous principal symbol, and the geometric singularities generate a further
(operator—valued) principal edge symbol as well as a subordinate principal conormal symbol.

1.1 Manifolds with conical singularities and operators of Fuchs type

Let M be a compact manifold with a finite set S C M of conical singularities, i.e., M \ S
is smooth, and every v € S has a neighbourhood V' in M that is homeomorphic to a cone
XA = (Ry x X)/({0} x X) for a smooth compact and closed manifold X = X (v), such that
V' \ {v} is diffeomorphic to the open (stretched) cone X" := Ry x X. The map V — X2 is
regarded as a “singular chart” on M near v, and we fix an atlas such that for two such charts
the transition map restricted to X" extends to a diffeomorphism of R} x X to itself, i.e., has
a smooth extension up to r = 0. Thus, with M we can associate the stretched manifold M
that is a smooth, compact manifold with boundary OM 2 | J, ¢ X (v). Conversely, to every
smooth, compact manifold M with boundary we find a manifold M with conical singularities
S as the image under the quotient map M — M that is a diffeomorphism int M — M \ S,
where every component of M is mapped to an element v € S.

For simplicity, throughout this paper we assume that A has only one conical singularity
{v}; the considerations for an arbitrary finite number of conical singularities are completely
analogous.

Let Diff” (X') denote the space of all differential operators of order » on X (with smooth
coefficients); this is a Fréchet space in a natural way. Moreover, define Difff, , (M) to be
the space of all differential operators of order p on int M (with smooth coefficients) that
have locally near M = X in the splitting of variables (r,z) € X" the form

r_“zu:aj(r)<—7“%>j (1.1.1)

with operator—valued coeflicients a; € C™ (R, Diff* (X)), j = 0,...,u. Operators of
that form may be regarded as the typical ones on a manifold with conical singularities and
are called of Fuchs type. Note, that when gy is a Riemannian metric on M that is locally
near OM of the form dr? +r2gx (r) for an r—dependent family gx (r) of Riemannian metrics
on X, smooth in r up to r = 0, the associated Laplace-Beltrami operator A, is of Fuchs
type in this sense (of order u = 2).

1.2 Typical operators and symbol structures

The simplest example of operators on M x R that we have in mind is the heat operator
Or — Ay, More generally, we may admit gy smoothly depending on ¢.
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The differential operators on M x R in general are assumed to be of the form

n/t
A= A(t)Df (1.2.1)
k=0

for certain Ag(t) € C*(R, Diffg;c’;(s(M)) with a dependence on ¢ for ¢ — oo that will be
specified below. ¢ € N is a chosen anisotropy (that equals 2 for the heat operator) such that
p/l e N

The presence of a geometric singularity (here, a conical one) in the spatial variables
induces an enormous variety of new structures, compared with the smooth case, even if we
are only interested in local aspects with respect to ¢, e.g., (pseudo—differential) parametrices
along the time—edge or asymptotics of solutions. The question of long—time asymptotics
(under our assumptions on the coefficients for ¢ — c0) is connected with the fact that the
configuration M x R for ¢ — oo has the character of an “anisotropic” corner, i.e., a cone
with a base that has itself conical singularities.

A transparent description of asymptotic phenomena requires techniques of the pseudo—
differential analysis on singular manifolds that have edge and corner singularities, here, in
an anisotropic set—up. Asymptotics of solutions will be obtained in form of some anisotropic
elliptic regularity at infinity, based on the properties of parametrices in spaces with asymp-
totics. In this context it is natural to embed our concrete operators into an algebra of
pseudo—differential operators, connected with the choice of £ € N.

Inserting for Ay (t) in (1.2.1) the local expressions r~#tk¢ E;‘:_(fe aji(r,t)(—r),
aj(r,t) € C°(Ry x R, Diff I (X)), cf. formula (1.1.1), we get

n/l p—ke

A=r7# Z Z aj(r, t)(—r%)erDf. (1.2.2)

k=0 j=0

This has the shape of an (anisotropic) edge-degenerate differential operator, cf. the termi-
nology of [19], Section 3.1.2. In other words, ¢ is treated as a variable along the edge.

Our considerations will depend on a suitable notion of anisotropic ellipticity (not really
parabolicity that would be a stronger condition). To this end we introduce the tuple o(A4) =
(04 (A),on(A)) of principal symbols. oy (A) is simply the homogeneous principal symbol of
A, locally being a smooth function oy, (A4)(7, ¢, €,7) in the variables (Z,t) € int M x R with
covariables (€, 7) # 0, satisfying

oy (A) (&, 1, A, \'7) = Moy (A)(E,1,€,7)

for all A € Ry. The second component, the so—called homogeneous principal edge symbol
on(A)(t,7), is the typical contribution from the edge singularity. It is an operator family
parametrised by (¢,7) € R x (R \ {0})

on(A)(t, 1) : KV (XN) = K571 (XM, (1.2.3)

acting between weighted Sobolev spaces K*7(X") on the infinite stretched cone X", of
smoothness s € R and weight v € R, cf. [19], Definition 2.1.57. Recall that the spaces
K57 (X)) are based on the Mellin transform with respect to r € Ry near zero, otherwise
on the Fourier transform as usual, and they equal the standard Sobolev spaces for » — oo.
If w(r) is a cut—off function near r = 0 (i.e., any element in C§°(Ry) such that w(r) = 1
near r = 0) we have wr¢K®7(X") = wK®7T¢(X") for arbitrary s,v,0 € R. Moreover,
Ko9(XN) = r~5L*(Ry x X) for n = dim X, where the L? space refers to drdz, with dz
being the measure associated with a fixed Riemannian metric on X. For u(r,z) € K%7(X")
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we have (kau)(r,z) := A5 u(\r,z) € K*7(X") for every XA € Ry, and k) : £27(X7) —
K57 (X") is a strongly continuous group of isomorphisms on K£*7(X") for every s, (that
is unitary when s =y =0).

We set
“/Z N*M a i
oA(A)(t,T) =m0 ajk(O,t)(—ra—)]rMT. (1.2.4)
k=0 j=0 r
Then
OA(A)(t,NT) = MEpoa(A)(t, T)ky (1.2.5)

for all (¢,7) e R x (R\ {0}), A e R.
The operator A is called anisotropic elliptic with respect to oy (A) if oy (A)(Z,¢,€,7) # 0

for all (Z,t,€,7) € T*(int M x R) \ 0 and if in addition locally near M in a splitting of
variables (r,z,t,0,&,7)

Gy (A)(r,2,t,0,6,7) = oy (A)(r,z,t,r7 0, €17 T) £ 0

for all (r,z,t,0,&,7) € T*([0,e) x X x R)\ 0 for some € > 0. The latter condition is invariant,
i.e., independent of the choice of a singular chart near the conical singularity.
Let us set I'g = {z € C: Rez = f} for any real .

Theorem 1.2.1 Let A be anisotropic elliptic with respect to oy. Then for everyt € R there
is a countable discrete set D(t) C C such that D(t)N{z € C: ¢ < Rez < '} is finite
for every ¢ < ¢, such that (1.2.3) is a Fredholm operator for every v € R with the property
Lop_ N D(t) =0, for arbitrary (t,7) € R x (R \ {0}), and for all s € R.

This type of result is known in analogous form from elliptic operator—valued edge sym-
bols, cf. [19], Theorem 3.5.1, and the exceptional set D(t) is characterised in the following
remark:

Remark 1.2.2 The operator family
“ .
om(A)(t2) ==Y ajo(0,1)27 : HY(X) — H* *(X), (1.2.6)
j=0

called the principal conormal symbol of the operator A, is holomorphic in z € C for every
t € R. The anisotropic oy—ellipticity of A implies that (1.2.6) is a family of Fredholm
operators that is bijective for all z € C\ D(t). In other words, D(t) is determined by the
non-bijectivity points of (1.2.6).

Remark 1.2.3 Under the conditions of Theorem 1.2.1 the dimensions of ker oa(A)(t,T)
and cokeroa(A)(t,7) are independent of s € R. Thus, also the index indoa(A)(t,T) is
independent of s, though it may depend on the weight .

We study operators A under the following hypotheses:
(i) A is anisotropic oy—elliptic.
(ii) Thereisa T € R and a v € R such that Fugs N D(t)y=0forallt>1T.

(iii) indoa(A)(t, 7) =indoa(A)(t,—7) for all ¢ > T, 7 # 0.
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(iv) A has smooth coefficients up to ¢ = £oo in the sense that when we represent A in
the form >°, , Gar(, t)D2 DY locally with respect to Z in a coordinate neighbour-
hood U C int M, we have G (%, F logt) € C*(U x Ry) for all a, k, and in addition
ajr(r, Flogt) € C°(Ry x Ry, Diff* *~7(X)) for all j, k, cf. formula (1.2.2).

It can be proved that condition (iii) is independent of the choice of v. Concerning (iv),
only the behaviour for ¢ — oo is of interest. The analogous conditions on the coefficients for
t — —oo is imposed without loss of generality; it will be convenient to formulate results in
Sobolev spaces globally in ¢ € R and to avoid cut-offs with respect to t = co.

2 Weighted wedge Sobolev spaces and edge asymptotics

Asymptotics of solutions in the infinite space-time cylinder are characterised by a spe-
cific interaction between edge asymptotics for finite ¢ and the long—time behaviour. The
functional analytic structure of singular functions is non—trivial even for equations with
constant coefficients; in this case constant discrete edge asymptotics are an adequate choice.
For general t—dependence of coefficients we need continuous asymptotics, a generalisation of
discrete ones.

2.1 Discrete edge asymptotics

Asymptotics for ¢ — oo in our (stretched) space-time cylinder M x R will contain contri-
butions from the edge and from the base of the corner at infinity. The edge part of the
asymptotics is non—trivial also in finite time intervals and necessary for understanding the
limit behaviour for ¢ — oo. In this section we describe the functional analytic structure of
the corresponding singular functions in terms of anisotropic wedge Sobolev spaces.

Let E be a Hilbert space and k) : E — E, A € Ry, be a strongly continuous group of
isomorphisms. Then W?*(R, E) (), s € R, is defined to be the completion of S(R, E) with
respect to the norm {f(T)?s||n(T1>£ﬁ(T)||2E dr}z, s € R, where (t); = (1+|7|?)2, and S(R, E)
is the Schwartz space of E—valued functions. (Clearly, for W*(R, E) := W?*(R, E) 1), we have
WHR, E)p) = We/Y(R, E).) Moreover, if E is a Fréchet space, written as a projective limit
].(iLnjeNEj of Hilbert space E7, j € N, with continuous embeddings E/*! < EJ for all j,
and if {kx}rer, is a strongly continuous group of isomorphisms on E° that restricts to a
strongly continuous group of isomorphisms on E? for all j, we say that E is equipped with
a group action.

We then have continuous embeddings W*(R, E/*1) ) < WH(R, EY) 4 for all j, and we
write W*(R, E)(@) = @jers(R, EJ )(4).

The Hilbert space E = K*7(X"), endowed with the group action {k) }xer, (kau)(r,z) =

A" u(Ar, z), gives rise to the weighted wedge Sobolev space

WS”Y(XA X ]R)(() = WS(]R, e (X/\))(().
For every —oo < ¥ < 0 and © = (¢, 0] we have the Fréchet space
K& (X") =lim 50K 77775 (X ")

of functions of flatness © (relative to the weight v near r = 0). Using the group action on
K&7(X") induced by K*7(X") we then get an associated space

W (X" x R)(g) = W (R, KG" (X™))o) (2.1.1)

of functions of edge flatness © (relative to ) near r = 0.
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The asymptotics themselves are defined as sums of singular and flat functions. To define
corresponding function spaces including their adequate Fréchet topologies we employ the
following notions. Given Fréchet spaces Ey and E;, embedded in a Hausdorff topological
vector space H, we write Eg + Ey = {eg + €1 : ey € Ep, e; € E1} and endow this space
with the Fréchet topology induced by the bijection Ey + Ey =2 Ey @ E1 /A for A = {(e, —e) :
e € Eg N Ey}. We will call Ey + E; the non—direct sum of Ey and E;. Moreover, if a
Fréchet space E is a (left) module over an algebra A, for any a € A we define [a]E to be the
completion of {ae: e € E} in E.

In this paper a cut-off function is an element w(r) € C§°(Ry) with w(r) = 1 in a
neighbourhood of r = 0.

Asymptotics of elements u(r,z) € K*7(X") for r — 0 are in the simplest case discrete,
i.e., of the form

N mj

u(r, ) Z chk 2)r 7P logh r 4 ugay (1, 2) (2.1.2)

7=0 k=0

for a cut—off function w, a flat remainder uga, € Kg7 (X"), and a sequence of pairs (p;, m;) €
C x N, where ”T“ —7+9 <Rep; < ”“ — v forall j =0,...,N. The coefficients c;; are
assumed to belong to ﬁnitefdimensmnal subspaces L; C C°°( ) for 0 < k < m;. Given
weight data (y,©) we call such a sequence P = {(pj,mj,Lj)} a discrete asymptotic type.
For © = (—o00,0] we admit infinite sequences P such that Rep; — —oo as j — oo. Let
mcP be the union of all p;. Let K37 (X") (first for finite ©) denote the subspace of all
u € K*7(X") of the form (2.1.2) for a given P. The space K3”(X") is Fréchet in a natural
way (in fact, K3 (X") = K§7(X") + Ep(X7), where Ep(X ") is defined to be the linear
span of all involved singular functions w(r)cjg (x)r "4 log" r which is of finite dimension).
For infinite © and P we can define K3 (X ") by a simple projective limit over corresponding
spaces for finite weight intervals. The space K37 (X") has a group action, induced by that
on K*7(X"). This gives us the space

WET (X" X R)(g) := W* (R, LB (X)) p) (2.1.3)
of elements of discrete edge asymptotics of type P.

Remark 2.1.1 Let P = {(pj,mj, Lj) }j=o,... v be a discrete asymptotic type, associated with
weight data (7,0), © = (4,0] finite. Then Wy (X" x R)(y is characterised as the subspace
of all u(r,z,t) € WV (X" x R)(y) such that for a choice of a cut-off function w(r)

N m;
u(r, z,t) ZZFfﬁt{ (T[T]l)cjk(w)(r[T]l)_pj logk(r[T]l)ﬁjk(T)}
7=0 k=0
+ue(r,z,t) (2.14)

where cji, € Lj, vy € HYYR), 0 <k <mj, j=0,... ,N andue(r,z,t) € WG (X" xR) ).
For P = {(pj,mj, Lj)} jen associated with (y, (—o0,0]) the space W5 (X" xR)(y) consists of
all u(r,z,t) € WY (X" xR) (g such that for every finite © = (¥, 0] we have a representation
of the form (2.1.4), where the numeration of the points of nc P is chosen in such a way that
{po,....pn}=mcPN{z: 2 —y+ 39 <Rez< 2 —4}.

Remark 2.1.2 The expansion (2.1.f1) can also be mterpreted in terms of particular ana-
lytic functionals ( € A'(C,C® (X, H*/*(R))) carried by the set {po,... ,pn}, H/'(R) =
Fi o  H*Y(R) (cf also the notation in Section 2.2 below). In fact, setting

N mj

=33 e ) (e

7=0 k=0

, (2.1.5)

Z=Ppj
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h € A(C), we have, in particular,

N mj
(Cr7) =Y > (=D eji (@) (r)r ™7 logh r.
j=0 k=0
Then (2.1.4) takes the form
u(ryz,t) = FL {7, w(r[mo(C, () ™)} + ue(r, 2, 1), (2.1.6)

With M, the stretched spatial manifold in the sense of Section 1.1 of dimension 1+ n, we
associate the double manifold 2M (obtained by gluing two copies of M together along the
common boundary OM). Let L! (2M; R; ), denote the space of all classical (anisotropic)
pseudo—differential operators on 2M of order p the local amplitude functions of which
anisotropically depend on the parameter 7 of anisotropy £. More precisely, such amplitude
functions can be written as asymptotic expansions a(Z, &, 7) ~ E;’;O agu—j (@, & 1)x(&,T),

where a, ;) (%,€,7) € (U x (R*2\{0})), satisfy a(,_; (&, A&, A7) = W~a(, ;) (7,€,7)

foral A e Ry, allz € U, (§,7) #0, j € N, and x is an excision function.
For every p € R there exists an element R*(7) € L (2M, R) ;) that induces isomorphisms

RM(7) : H®(2M) — H*~"(2M)

for all s € R and all 7 € R. We then define the anisotropic space H*(2M x R)(,), s € R, to
be the completion of C§°(2M x R) with respect to the norm

{/ IR (r) ()22 00 dT}é.

Let rint m denote the operator of restriction u — it m, and set H*(MxR) (¢) = Tint wH ® (2Mx
R)(¢), equipped with the quotient norm from H®*(2M x R)(,) that identifies elements u; and
us in that space if 1y m(u1 — uz) = 0. Choose a collar neighbourhood U of OM in M with a
splitting of coordinates & = (r,z) € [0,1] x X, and let w(r) be an arbitrary cut—off function
with w(r) =0 for r > 1 —¢ for some 0 < & < 1.

We then define the spaces

W (M X R) () = [w]V*7 (X7 x R) (g + [1 — w]H* (M x R)p) (2.1.7)
and

WET(M X R) ) = [wW5T (X" X R)(¢) + [1 — w]H*(M x R)(p)- (2.1.8)
It can be easily proved that this is a correct definition, i.e., if ¢ € C§°(R;) is any function
with compact support in (0,1), then [p]W*7 (M x R) ) = [p]H*(M x R) .

2.2 Continuous edge asymptotics with discrete limit at infinity

As noted in the beginning, asymptotics of solutions to anisotropic elliptic operators Au = f
on M x R with A being of the form (2.1.2) are expected to be like (0.0.1), provided f has
asymptotics of analogous structure. We concentrate in this paper on the long—time effect
and disregard some details from finite time intervals (these are very interesting, too, cf.
Schulze [17], [18] or Schulze and Witt [23] for the isotropic case). In any case the concept
of continuous asymptotics is helpful, cf. [11].
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We employ this under the aspect of a discrete limit at infinity that we introduce in this
section.

Let E be a Fréchet space and let A(U, E) for an open set U C C denote the space
of all holomorphic functions in U with values in E. Moreover, if KCC is any compact
set, A'(K, E) will denote the space of all analytic functionals carried by K with values
in E (recall that A'(K) = A'(K,C) is a nuclear Fréchet space in a natural way; then
A (K,E) = A(K)®,E). In the present application we set E = C*(X), where X is the
base of our conical singularity.

Let V! for any V C C denote the smallest closed set, containing V such that zg,z; € V7,
and Rezp = Rez; implies (1 — A)zg + Az; € VI forall 0 < A < 1.

Let V € C, V = V', and assume that V C {z : Rez < %t — 4} for some y € R
and VN{z: ¢ < Rez < ¢} compact for every ¢ < ¢’. Then, if we fix any R > 0, the
set K :=Vn{z: 2 —5—- R < Rez} is compact, and we have K = K'. Choose any
(say smooth) curve C’ surrounding K clockwise and a function f € A(C\ K, E). Then the
expression

C:h— 2% /f(z)h(z) dz,  he AQ), (2.2.1)

c

defines an element ¢ € A'(K, E); conversely, every ¢ € A'(K, E) can be written in this form
for a suitable f € A(C \ K, E) (the property K = K7 is not really necessary, though for
several reasons it is convenient to impose it, e.g., to avoid bounded connected components
of C\ K).

Example 2.2.1 Let E = C®(X,H*/*(R)) and K = {po,... ,pn}. Then (2.1.5) can be
expressed in the form (2.2.1) for

N mj

f(Z) = (—1)kk!cjk(x)ﬁjk (T)(Z — pj)_(k+1),
=0 k=0

For any fixed choice of a cut—off function w(r) we set
Ex(X") ={w(C,r 7): ¢ € A(K,C(X))}; (2.2.2)

here, ( is applied to 7~* as a holomorphic function in z.

The space (2.2.2) is Fréchet by an isomorphism Ex(XM) =2 A'(K,C*(X)). In fact,
consider the Mellin transform (Mu)(z) = [~ r r) dr (first for u € C§°(R;, E), and then
extended to more general functlon and dlstrlbutlon spaces) and form the weighted Mellin
transform (M, u)(z) = M(r—"u)(z + ), v € R. Then we have f(z) = M, (w((,r %)) €
A(C\ K, E), and (2.2.1) reproduces (. Now Ex(X") is a subspace of K7 (X").

Let us define the non—direct sum of Fréchet spaces

Ex(XMN) + KT (XM) (2.2.3)

for any fixed finite weight interval ©® = (,0]. The space (2.2.3) is independent of the
choice of R when R > —4 if the set V is given and K defined by the above—mentioned
intersection. Given u,v € Ex(X") we write u ~ v if u —v € KF"7(X"). Then the quotient
space P = Ex(X")/ ~ is called a continuous asymptotic type, and we set K37 (X") :=
Ex (X)) + KG7(X"). To define spaces with continuous asymptotics for an infinite weight
interval we proceed as follows: First observe that in the construction before we may set
K=Vn{z: & — 549 —1<Rez} without changing that space. Starting from the set
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V, to every finite ¥ := —j, j € N, we then get a continuous asymptotic type P; (namely
Ek,;(X")/ ~), and we can pass to the projective limit

K5 (X7) = Lim K5 (X7,

the subspace of K%7(X") with continuous asymptotics of type P, associated with V' and
the infinite weight interval (—oo,0]. In other words, by suitable projective limits we can
pass from finite to infinite weight intervals ©.

We can adopt notation from the preceding section for the case of continuous asymptotics
and get a corresponding space Wj7 (M xR) (¢) for each continuous asymptotic type P. In this
definition P is formally constant with respect to ¢, insofar the carrier set V' is independent of
t. However, we can single out subspaces with a specific control of dependence of “coefficients”
of asymptotics on ¢ that allows us to consider variable V' and to describe a limit for ¢ — oo.

Let us choose any smooth function 7 — [7], that has the property [r], > 0 for all 7 € R
and [r], = |7]* for |7| > ¢ for some ¢ > 0.

We want to employ the following analogue of Proposition 3.1.32 from [19].

Proposition 2.2.2 Let P be a continuous asymptotic type associated with a carrier set
Vc{zeC: Rez < nTH — v} that has the above—mentioned properties. Then, every
u(r,x,t) € W (X" x R)(¢) can be written in the form

+1

u(r,z,t) = F A, {0, w(rlrlo)(Ge, (r[rle) )} + ue (r,z,t) (2.2.4)
for every finite © = (3,0], ¢ <0, for a certain element
(o € A'(Ko,C>®(X, H*/*(R)), (2.2.5)

where H¥/Y(R) = F;_,, H*/*(R), Ko =V N{z: Rez > ol — v+ 9 -1} and ue(r,z,t) €
W(f)’v(X/\ X ]R)(().

We can write
A'(Ko,C> (X, H*/'(R) = A'(Ko,C™ (X))@, H*/ (R)

and thus represent elements (g in that space as convergent sums

o = Ao b, (2.2.6)

Jj=0

A; € C, such that E;’;O IAj| < oo and sequences (g ; € A'(Ke,C®(X)), v; € H¥!(R),
tending to zero for j — oo in the respective spaces. Inserting (2.2.6) into the corresponding
expression in (2.2.4) we get a convergent sum. Then, similarly to the representation of
singular functions for discrete asymptotics in (2.1.4), also in the continuous case the singular
functions are expressed in terms of elements

n41
2

F A, w(rrle)(Ce, (r[r)e)~%)o(1)} (2.2.7)

for suitable (o € A'(Keo,C® (X)), v € H¥/!(R). Recall that also the singular functions on
the right hand side of (2.1.4) can be written in the form (2.2.7), where (o is represented
via (2.2.1) by a C°(X)-valued meromorphic function f(z) with poles p; of multiplicities
mj + 1 and Laurent coefficients at (z — pj)’(’““) belonging to Lj, 0 < k < mj. In other
words, both in the discrete and continuous case we may look at the expressions (2.2.7).
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Remark 2.2.3 The space Wp" (X" x R)(y) for a continuous asymptotic type P (of carrier
V) remains unchanged when we admit the analytic functionals ¢ in (2.2.7) to be smooth
functions in t € R up to t = oo, more precisely, ( € CP®(R, A (Ko,C* (X)), and
C(xlogt) € C®°(R,, A (Keo,C®(X)). A corresponding local result (with respect to the edge
variable) in the isotropic set—up is proved in [19], Proposition 3.1.35. The corresponding
global (with respect to t € R) result can be obtained by interpreting expression (2.2.7) as
Op(k)v for a suitable operator—valued symbol k(t,7). The latter aspect is of crucial impor-
tance, so we formulate this separately in Section 2.3 below.

Remark 2.2.4 Singular functions in the frame of continuous asymptotics with ((t) €
C=(R, A'(Ke,C™(X,Ht(R))) are able to express t—dependent discrete asymptotics, sim-
ilarly to the scenario discussed in Schulze [12], [17], [18]. It suffices to insert functions ((t)
that are t—wise discrete and of finite order, given by t—dependent C> (X, H/*(R))—valued
meromorphic functions f(t,z) with poles p;(t) and multiplicities m;(t) + 1 depending on t,
cf. Example 2.2.1.

Definition 2.2.5 An element ((t) € C*(R, A'(Ke,C>(X))), © = (¥,0] finite, is called
smooth up to t = oo if ((2) := ((—log?t) has the property (1) € C®(R,, A' (Ko, C®(X)).
The function ((t) is said to have a discrete limit at infinity if ((0) is discrete, i.e., there is
a discrete asymptotic type P = {(pj,mj,L;)} such that mcP C {z: ”T'H —v+ ¥ <Rez<

otl — Y and (¢ (0),h) = > Y3 Cik d:k h(z)|z=p;, h € A(C), with coefficients cj € Lj,
nggmj,forall]

2.3 Calculus with operator—valued symbols

Let us now turn to (anisotropic) operator—valued symbols that are involved in several vari-
ants in our final result on long—time asymptotics.

Definition 2.3.1 Let (E,{kx}rer,) and (E, {Fx}arer,) be Hilbert spaces with group ac-
tions. Then SH(Q x ]R;E,Ev)(g) for any open @ C R is defined to be the space of all
a(t,7) € C®(Q x R, L(E, E)) such that

IR A ADEDLalt, ™) oy, oy < ()i (2.3.1)

for allk,j € N and all t € K for arbitrary KCQ, 7 € R, with constants ¢ = ¢(k, j, K) > 0.

More generally, we shall employ symbol classes S*(2 x R;E,E)(l) when E or E are
Fréchet spaces with group actions. For E = CN we always set xy = idg, A € R.. There
is also a notion of (anisotropic) classical symbols in terms of asymptotic expansions into
functions a,_; (t,7) € C°(Q x (R {0}), L(E, E)), j € N, such that

Q(p—j) (t, )\ZT) = /\uij%)\a(“_j) (t, T)Iixl

for all (t,7) € Qx (R\0), A € R;. Let S{(AxR; E, E)(l) denote the corresponding subspace
of classical symbols.
Given an element a(t,7) € SH(AXR; E E)(() we set Op(a = [[ et a(t, )u(t")

dt'dr, dr = (2m)"tdr. Then Op(a) : C§°(Q, E) — COO(Q,E) is a continuous operator.
In particular, let us set Q@ = R, and let S{)‘(Cl) (R x ]R;E,E)(,g) denote the subspace of all
S(Cl) RxR;E E)( ¢) such that the symbol estimates of (2.3.1) hold uniformly for all (,7) €
R x R (subscript (cl) means that we talk about general or classical spaces). In particular,
S(Cl) (R, E E)(() the subspace of all a(r) € S( o) (R x R;E,EN)(() that are independent of ¢,

is contained in S,‘;(cl) (R x R; E,E)(g).
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Theorem 2.3.2 Let a(t,7) € S (R xR; E, EN)(() ; then Op(a) extends to a continuous oper-
ator

Op(a) : W3 (R, E) 5y — W (R, E)

for every s € R.

For a proof, cf. Seiler [25]. Theorem 3.14, combined with Corollary 3.16 to reduce orders.

The spaces S{)‘(Cl) (R x ]R;E,E)(,g) contain several interesting subclasses, namely those
with exit behaviour of order zero as well as with exponential stabilisation for [¢| — oo.
More precisely, we have SE(R x ]R;E,EN)(Z), defined by the system of symbol estimates
||%<_71>Z{D£6Dla(t,T)}H<T>£||£(E’E) < c(t)*’“(ﬂg*j for all k,j € N and all (t,7) € R x R
¢ = c¢(k,j) > 0, and the space S¥(R x ]R;E,EN)(Z), defined to be the set of all a(t,7) €
SERxR; E, E)(l) such that w(t)a(£logt, 1) € S* (K+7t~x R; E, E)(l) for any cut—off function
w, where the symbol estimates for the latter spaces are required uniformly up to ¢ = 0.
Similarly, we define the subspaces with subscript cl. We then have altogether

Si’f

oy (B B, E) ) C Sk (R x R B, E)

C SR X R E, E)) C Sp,

b(cl) (]R X ]R; E, E)(l)

Analogous considerations make sense when E or E are Fréchet spaces with group actions
in the above sense. In particular, Theorem 2.3.2 remains true also in this case.

Proposition 2.3.3 Let (o € A'(Ko,C™(X)) (in the notation of Proposition 2.2.2) and set

a(t) = [T]?UJ(T[T]@)(C@,(T[T]g)_z), regarded as a map a(t) : C — K7 (X"). Then we
have a(t) € S (R; C, K> (X)) (4), and hence

Op(a) : H*/*(R) — W*(X" x R)(y) (2.3.2)
is continuous for every s € R.

Proof. Writing E = C, E = K°7(X"), where E is endowed with idg for all A € R,
and E with the group action {kj}xer, induced by that on K®7(X") for any s, we have
a(t) € C®(R,L(E,E)) and a(\7) = kya(r) for all A > 1, |7| > ¢ for some ¢ > 0. This
yields a(7) € SBI(]R;E,EV)(Z). The continuity (2.3.2) is a simple special case of Theorem
2.3.2. O

Remark 2.3.4 The expressions (2.2.7) of the singular functions of the edge asymptotics are
nothing else than Op(a)v for v € H¥/¢(R).

3 Corner asymptotics at infinity

Asymptotics of solutions will be studied in combination with anisotropic elliptic regularity
in weighted Sobolev spaces with iterated edge—corner asymptotics for ¢ — oco. We state the
results under natural weight conditions and trace and potential data along the time-edge.

3.1 The structure of singular functions

Using the material of Section 2.1 we can introduce weighted Sobolev spaces H*Y (M) := {u €
H (intM) : wu € K%7(X")}, 5,7 € R, where a collar neighbourhood of OM is identified
with [0,1) x X, and w is a cut—off function vanishing for r > 1 — ¢ for some 0 < € < 1.
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Moreover, for every (discrete or continuous) asymptotic type P we set Hp"(M) = {u €
HET(M) @ wu € KB7(X™)}. This is a Fréchet space in a natural way. In particular, we
consider the spaces Hp"" (M) = (), Hp (M).

Given weight data (d,Z), where 6 € R is an exponential weight for ¢t = co and = = (¢, 0]
a weight interval that is first assumed to be finite, we call a sequence

Q = {(qLJnLJHL)}LZO,... N

for N = N(Q) < oo a discrete corner asymptotic type associated with (4,Z) if ¢, € C,
M2 _§4+¢&<Req < 22-6,n, €N, and H, is a finite-dimensional subspace of H " (M)
for a certain asymptotlc type P, 0 < < N. If E is infinite we admit NV = oo and require in
that case Req, & —oc0 as 1 — oo, where P is independent of .. We call P a cone asymptotic
type belonging to Q.

If P is any cone asymptotic type and = = (£, 0] a finite weight interval, we set

W;’%;J(M X ]R) (&)
= () x(0)e” CTEWET (M x R) 1) + (1 — x()e™ W5 (M x R)y),

e>0

(3.1.1)

where x(t) € C*°(R) is any function with x(¢) = 0 for ¢t < to and x(¢) = 1 for ¢t > ¢; for
certain top < t;. The space (3.1.1) is Fréchet in a natural way. For 2 = (—o00,0] we define
Wg 510 (M x R)(¢) to be the projective limit over all spaces W ’”é 0] (M x R), £ <0.

Now if @ is a corner asymptotic type to weight data (9, =), Z finite, and P an associated
cone asymptotic type to weight data (v, ©), we set

WEL (M x R)) = {u(i, £) € e TWET(M x R)(y) :

N n,

Z Z . (T €q”tt'i ew ’ZJ(M X ]R)([)}

=0 k=0

where a,,(Z) are coefficients in H,, 0 < ¥ < n; (uniquely determined by u), N = N(Q).
For = infinite we define the space Wp ’7’ (Ml x IR) (¢ by a corresponding projective limit over
finite weight 1ntervals

The spaces Wp, ’7’ (MxR) (g define the functional analytic structure of long—time asymp-
totics of solutlons to (anisotropic) elliptic equations Au = f when the right hand sides f
belong to a space of analogous nature, namely V\/’S =30 (M x R) g for certain P Q How-

ever, this is only true under some additional control of u, connected with the fact that the
time—edge behaves like an inner boundary that is resp0n51b1e for boundary conditions, re-
ferring to a weight for » — 0. Moreover, the corner singularity ¢ = oo requires some growth
condition for ¢ — co. Both aspects are governed by certain (operator-valued) symbols, the
so—called edge symbol o, and the corner conormal symbol o. to be defined below.

3.2 Operators with trace and potential conditions

Set W* 70 (M x R)(¢) = e StW 7 (M x R)(¢), 8,7,0 € R. The given differential operator A
induces continuous maps A : W% (M x R) () — W= =10 (M x R)(¢) for every s,v,d € R.
This is a consequence of the growth conditions on the coefficients and of Theorem 2.3.2

(concerning a neighbourhood of 9Mx R) as well as of known continuity properties in Sobolev
spaces far from OM x R. Let H/69(Y,CN) := e ®*H*/{(R) ® CN with H"(R) being the
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standard Sobolev space on R of smoothness v. With A we can connect a block matrix
operator

4 K Wi (M x R) () WE—HY =10 (M x R) )
A= T Q : @ — =) (3.2.1)
Hs/[;d(y) CN- ) H(s—u)/f;é(Y, (CN+)

that is continuous for all s € R. Here, Y is the time—edge, (i.e., a disjoint union of copies of
R when M has a finite number of conical points). Recall that for simplicity we have assumed
Y =R (the general case is completely analogous).

The meaning of the entries in (3.2.1) is the same as in the pseudo—differential calculus
on a manifold with edge singularities: 7' is a vector of trace conditions, K a vector of
potential conditions, and () is a matrix of classical pseudo—differential operators on Y, cf.
[19], Section 3.4.4. Recall that T" and K are (modulo smoothing operators) of the classes
Op S (RxR; E, CN+) (g and Op St a(RxR; CN- ,E)(g), respectively, where E = K7 (X")
and E = [Cs—H=# (XN for arbitrary s € R. The symbols have, in fact, more specific
properties; for instance, we may replace E by

YN = () K T
keN

for some asymptotic type @) with respect to r — 0, and trace operators 7' can be characterised
by duality in terms of potential operators of a similar structure, cf. [19]. The operators
(3.2.1) can be regarded as elements of a (graded) algebra of block matrix operators (where
compositions are defined, when the numbers of rows and columns of the factors fit together),
cf. [14] or [19]. Let C*(M x R,g; N_, Ny )y for g = (7,7 — p,0;4,Z) denote the subset
of all elements of order u, acting like (3.2.1), where the weight intervals © = (—(k + 1),0],
k € N, (with respect to power weights for r — 0) and = = (—(v + 1),0] (with respect
to exponential weights for ¢ — o0) are fixed. From now on we freely use the tools of that
algebra, more precisely, an anisotropic variant, according to our anisotropy ¢, combined with
a modification for ¢ — +oo that consists of a corner pseudo-differential calculus in %VNZ et

for t — 0 in the sense of the theory of [20] and of an analogous calculus in ¢ = et for £ — 0
in a version without asymptotics, also in anisotropic form.

To give more details we first introduce the smoothing operators of the theory. Parallel to
the wedge spaces with asymptotics in ¢t—direction we can also consider spaces H E;a(Y, CcN) =
HI"%;J(]R) ® CN, where R = {(rj,h;)} are (scalar) asymptotic types, similarly to those for
conical singularities, associated with weight data (J,Z). The simplest way to define these
spaces is to set u € H; (R) & {u € HY,.(R) : w(@)i 7u(—logt) € K37 (Ry ), ¢(t)u € H*}
for any cut—off function w(t), £ € Ry, and a function ¢ € C*°(R) such that +(t) = 1 for
t < to, ¥(t) = 0 for t > t; for certain ty < ¢1. Let C™°(M x R, g; N_, N ) defined to be the
space of all continuous operators (3.2.1) that induce continuous operators

WM x Ry Wiy "M x R)
C: ©® - ® (3.2.2)
HS/Z;J(Y7 (CN, ) HEO;&(Y, CN+)

for all s € R, with certain asymptotic types (P, Q); R) and such that the formal adjoint C* has
analogous mapping properties (C* is taken with respect to the scalar products of the spaces
where smoothness and weights are equal to zero). In addition, the involved asymptotic types
are assumed to have discrete limits for ¢ — oco.

The lower right corner @ of a block matrix operator A € C*(M x R,g; N_, N, ) is an

Ny x N_ matrix of elements Q;; € L% (R) (4 (= Lgl/ l(]R{)) such that for the diffeomorphisms
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X+ :R—= Ry, xa it — eFt, and cut—off functions w, @ on Ry the operators w{(x+)«Qij }&
belong to the cone algebra on Ry with discrete asymptotics for the + sign and without
asymptotics for the — sign and weight data induced by the choice of (4, E), cf. [16], Definition
1.2.1 and [14], Definition 6 in Section 1.2.4 (for MLgl/l(K”).

Moreover, the space C*(M x R, g) ) of upper left corners A of operators A € C*(M x
R,g;N_,Ny)( is a subspace of LY (int M x R)(, such that (modulo C~*(M x R,g) =
C (M x R, g30,0))

(i) for any choice of cut—off functions o(r), o(r) supported in a collar neighbourhood of
OM the operators w{(x+)«(1 —0)A(1—7)}® belong to the cone algebra on Ry x (2M)

without asymptotics (i.e., to ® ML (R, x (2M)) for 7 = x+(t), cf. [14], page 219),

(ii) oAo belongs to an anisotropic analogue of the wedge algebra on X x R with con-
tinuous asymptotics, cf. [19], Definition 3.4.29, and [3], where the involved operator—
valued symbols are supposed to belong to S¥(R x R;E,E)(l) for E = K7 (X"),
E = Ks=rr=1(XM), s € R,

(iii) let x4 : M x R — M x R, denote the map (Z,t) — (Z,e~%) and let w, @ be cut—off
functions in £ = e~* € Ry ; then w{(x4)«A}D belongs to an anisotropic analogue of
the corner algebra on M x R in the sense of [15], Definition 3.1.2, in addition, the
involved asymptotic types along the one—dimensional edge (both in the Green and the
smoothing Mellin symbols) are assumed to have discrete limits for ¢ — occ.

Finally, an analogue of condition (iii) is required for the full block matrix 4 € C*(M x
R,g; N_,Ny) -
Every A € C*(M x R,g; N_, Ny )(y) is continuous in the sense
Syt S—p,y—;0
B M xR)y  WpgT (M xR

)

A: ® - @ (3.2.3)
H;/Z;‘S(Y, CcN-) Hg—ﬂ)/f;J(Y, CN+)

for arbitrary asymptotic types P, (Q and R with certain resulting ]3, @, and R (associated
with the corresponding weight data) and all s € R If (P,Q; R) have discrete limits for
t — oo, then the same is true of (13, Q: ﬁ)

The upper left corners of elements A € C*(M x R,g; N_, N1 are classical anisotropic
pseudo—differential operators in (int M) x R, locally decribed by (scalar) amplitude functions
with a homogeneous principal part of order p,

oy (A)F,1,6,7),  (@1,6,7) € T*((M\S) x R) \0.
In the splitting of covariables Z into (r, ) it takes the form
r_“5¢ (A) (Ta €T, t: ro, 57 TjT):

where oy (A)(r,z,t,0,£,7) is smooth up to r = 0 and 7, (A)(r, z, Flogt, g, &,7) smooth up
tor=0andt=0.

Moreover, according to the ideas of the edge pseudo—differential calculus, locally near
OM x R the operatorA4 is an anisotropic pseudo—differential operator with an operator—

valued amplitude function of the class S*(R; x ]RT;E,E')(@) for E = K*7(X") @ CN-,
E = Ks=#7=1(X") @ CN+, for all s € R, and there is a principal edge symbol.

on(A)(t,T) :E — E, (t,7) e Rx (R\ {0}),
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where oA (A)(Flogt,7) is smooth in t up to ¢ = 0. Finally, there is a principal corner
conormal symbol that is responsible for a control of A for ¢ — oo, namely

oe(A)(w) : H*T(M) & CV= — H*THI (M) & CVr,

s € R, depending on w € FnT-I—Z_J for the chosen weight 6 € R. Then

o(A) = (04 (A), o7 (A), 0¢(A)) (3.2.4)

is called the principal symbol of 4. Note that there are various kinds of subordinate symbols,
for instance, the principal cone conormal symbol oy (A)(¢, 2), cf. formula (1.2.6), or the
cone and corner conormal symbols of lower conormal orders that take part in the specific
transformation of asymptotic types (P, Q; R) — (P,Q; R) in (3.2.3).

Theorem 3.2.1 A € C*(M x R,g; No, N1 )(¢), B € C*(M x R, h; N, No)(p) for g = (v —
v,y —v—p,0;0,8), h = (7,7 —v,0;6,E) implies AB € C*(M x R,g o h; N_, Ny) (g for
goh=(v,y—v—u,0;6,E), and we have

o(AB) = o(A)o(B)

with componentwise multiplication.

This result is an anisotropic analogue of [15], Theorem 3.2.9 as far as it concerns ¢t < oo,
while for ¢ — —oo it corresponding to an anisotropic form of [15], Theorem 1.4.24.

3.3 Asymptotics and (anisotropic) elliptic regularity

We now turn to our result on long—time asymptotics of solutions u € W=7 (M x R) ;) &
H=>9(Y,CN-) of

Au = f € W5 BT (M x R)g) ® HEW5(y, o) (3.3.1)

for given asymptotic types (13, Q; ﬁ) where
AEC”(MXRag)N—7N+)(Z)7 g:(777_ua®)675) (332)

The assumption on u may be regarded as a weight control that is imposed on a solution,
both for r — 0 and ¢ — co. Moreover, we talk about functions v = (u1,us) where u; is
given on M x R and us on Y. This reflects another control of solutions, namely of trace
and potential data along the edge Y. If we are interested only in u;, the control consists of
the assumption that the first component f; of f = (f1, f2) on the right hand side belongs
to a certain subspace of W;;_i‘ YT (M x R) (¢) that is (roughly speaking) characterised as

the complement of the imaée of the potential operator in A, and, in addition, u; takes
prescribed edge trace values fa.

The upper left corner A of A may be a differential operator as in Section 1.2, where we
assume, in particular, anisotropic ellipticity. Also in this case A is a block matrix containing
extra edge data, required in a way that 4 is anisotropic elliptic with respect to o(A), cf.
Definition 3.3.1 below. These additional data are indispensable to get asymptotic results,
even for finite ¢t and r — 0. This belongs to the main aspects of asymptotic phenomena under
geometric singularities. The asymptotics themselves, in particular, the singular functions,
are expressed in terms of weighted Sobolev spaces with asymptotics, formulated in Section
3.1 above. They show a typical interplay between asymptotic information for r — 0 and
t — oo. Asymptotics of solutions will be obtained as an aspect of (anisotropic) elliptic
regularity in such weighted Sobolev spaces.
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Definition 3.3.1 An operator (3.3.2) is called (anisotropic) elliptic if

(i) J¢(A)(i,t,5~,7') #0 on T*((M\ S) x R) \ 0 and 54 (A)(r,z,Flogt,5,&,7) £ 0 on
T*([0,e) x X x [0,€)) \ O for an € > 0 (where the intervals [0,e) refer to r and t,
respectively),

(ii) on(A)(t,7) : E — E is an isomorphism for all (t,7) € R x (R \ {0}), where E =
K7 (XMN) @ CN-, E =K m7#(X") @ CN+, s € R, and or(A)(Flogt,7): E - E
is an isomorphism for all (t,7) € [0,¢) x (R \ {0}) for some € > 0,

(iii) oc(A)(w) : HST(M) & CN- — HZ w7 #(M) @ CN+ is an isomorphism for all w €
Fn_+2_6, s e R

Conditions (ii), (iii) refer to some fixed s = sp € R; they are then valid for all s € R.
Note that condition (ii) is an anisotropic analogue of the Shapiro—Lopatinskij condition for
edge singularities.

Remark 3.3.2 A consequence of the assumption on discrete limits for t — oo of the asymp-
totic types in an elliptic operator A is that o.(A)(w) is a meromorphic operator function
inw € C with values in L(H®Y (M) @ CN-, Hs~#7=#(M) ® CN+), s € R, that is invertible
outside a discrete set D C C of points such that DN {w : ¢ < Rew < ¢} is finite for
every ¢ < c. If ¢ € C is a pole of o.(A)(w), the Laurent coefficients at (z — q)~*+1),
0 <k <ml(q), are of finite rank and Green operators with discrete asymptotics in the sense
of the cone algebra on M, augmented by the finite—dimensional entries of our block matrices.
The inverse o.(A)~(w) is of analogous nature.

Theorem 3.3.3 Let A € C*(M x R,g; N_, Ny )y be (anisotropic) elliptic. Then there
exists a P € CTH(MxR,g~'; Ny, N_) () for g=" = (y—p,7, 0;6,Z) such that PA=1+C;,
AP =T +C, for certain C, € C"°M x R,g,; N_,N_), C, € C"°(M x R,g;; N4+, N;) for
9=01,70:6,5), 9, = (y— 17— 10:4,%).

Proof. We can construct P in the form P = Z;:o @ Pj; for any choice of functions
@j,¥; € C(R) such that Z;:o vj =1, @;vp; = @; for j = 0,1, such that ¢, are equal
to 1 for t < tg and O for ¢ > fo, for certain tg < fo, and 1,1 are equal to 1 for t > t;
and 0 for t < ¢; for certain ¢; < ¢;. The operators P;j can be chosen as parametrices of the
anisotropic elliptic edge operator A, applying the scheme of the isotropic theory, cf. [19],
Section 3.5.2. By virtue of the assumptions on the coefficients the construction of Py can be
carried out uniformly up to ¢ = —oo. This step has some relation to a corresponding result
of Seiler [24] in its anisotropic analogue. [24] contains many other useful elements of the edge
operator technique (cf. Gil, Schulze, and Seiler [4]). The operator P; can be constructed
along the lines of the proof of the parametrix part of Theorem 3.3.4 from [15], again a in
corresponding anisotropic form. An inspection of the proof shows that the discrete limits
for t — oo of asymptotic types in the occurring operators remain preserved in all steps. The
reason is the particular nature of the inverse of the principal conormal corner symbol, cf.
Remark 3.3.2. Applying the compatibility of the constructions on every finite t—interval we
get P in the asserted form. O

Theorem 3.3.4 Let A € C*(M x R,g; N_,Ny)) be (anisotropic) elliptic. Then u €
W_OO’FY;(S(M X ]R)(l) 5%} H_OO;(S(Y, (CN_) and

Au=f € WEE T (M x R)) @ HETW/E (v, N (3.3.3)



18 REFERENCES

for any s € R and asymptotic types (P, Q; R) implies u € W;B& (MxR) g EBHIS%/Z;(S(Y, CcN-)

for certain resulting asymptotic types (P, Q; R). If (ﬁ, Q; IN%) have discrete limits for t — oo,
then the same is true of (P, Q; R).

Proof. Applying Theorem 3.3.3 we find a parametrix P € C7#(M x R,gil;N+,N7)(()
of A, such that, in particular, PAu = u + Cu for every u € W79 (M x R)o) @
H=>9(Y,CN-), where C; € C~°(M x R,g,; N_,N_). The fact that P acts as a con-
tinuous operator between spaces with asymptotics (cf. formula (3.2.3)) gives us PAu €

;,’181 (M x R)py @ HE/IM(Y, CN-) for certain asymptotic types (P, Q1; R;). Moreover,
we have Cju € W;Zéf(M x R) @ HIO%;‘S(Y, CN-) for other asymptotic types (P2, Q2; Ro)

)

(cf. formula (3.2.2)). This yields altogether v = PAu — Cu € {W;;ﬂgl (M x R)(g) @

H;/IK;J(Y, CN-)} + {W;ZZQ;S(M x R) @ H,O;;;&(Y, CN-)} which is the desired result, since the
latter space is contained in a space of the form Wlsg’vg‘s(M X R)¢) @ HIS%/Z;(S(Y, CN-) for a
suitable choice of (P, @; R). In this construction the asymptotic types (P;, Qq; R;), i = 1,2,
and (P, Q; R) have discrete limits for ¢ — oo if this property is assumed on (13, @; ]Ai;), be-
cause compositions of operators in our algebra as well as continuous maps in corresponding
weighted Sobolev spaces with asymptotics preserve discrete limits for ¢ — oo. O

Remark 3.3.5 Our constructions become simpler if we consider operators with constant
coefficients fort > T for some T'. In that case we may choose the edge part of the asymptotics
of f to be constant and discrete for t > T, and we then get the same for u for large t.
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