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��� Preliminary Remarks

�� In part I� starting from a physical analogy� we carried out a quantiza�
tion of a classical system with linear phase spaceR�n with coordinates q
and p� This quantization procedure can be interpreted in two di�erent
ways�


i� from the algebra of classical observables 
that is� functions�
equipped with the Poisson bracket ff� gg� we proceed to the algebra
of quantum observables 
operators�� whose commutator passes in the
semiclassical limit into the Poisson bracket in the following sense�

� �f� �g� � �ihfdf� gg�O
h��� 
����


ii� we replace the basis classical observables q�� � � � � qn� p�� � � � � pn
by quantum operators with the commutation relations

�eqk� eqj� � �epk� epj � � �

�epj� eqk� � �ih�jk

����


which is of course a special case of relations 
���� satis�ed exactly� and
then pass from the �general� classical observables to the corresponding
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quantum observables according to the law

f
q�� � � � � qn� p�� � � � � pn� �� �f � f
�q�� � � � � �qn� �p�� � � � � �pn�� 
����

in other words� we replace the arguments q�� � � � � qn� p�� � � � � pn of each
classical observable f
q�� � � � � qn� p�� � � � � pn� by their quantum analogs
�q�� � � � � �qn� �p�� � � � � �pn� 
Needless to say� one has to deal with the problem
that this substitution is not uniquely determined� since the quantum
observables �q�� � � � � �qn� �p�� � � � � �pn� as shown by 
����� do not commute��

After this substitution� we obtain a quantization satisfying property

����� Thus� the second interpretation shows that one can quantize the
algebra of classical observables with the Poisson bracket by considering
functions of operators of the form 
����� and this alternative method
of quantization proves to be equivalent to the method based on wave
packets�

�� Now suppose that we intend to quantize some classical mechan�
ics� that is� an algebra of classical observables� which is more compli�
cated than the simplest algebra 
F 
R�n�� f �� �g� of functions on R�n

q�p

with the standard Poisson bracket

ff� gg �
nX

j��

�
�f

�pj

�g

�qj
� �f

�qj

�g

�pj

�
� 
��
�

In this more complicated classical mechanics� the phase space need not
be linear� and the Poisson bracket may be degenerate 
in this case� it
does not correspond to any symplectic structure on the phase space��
Generally speaking� the fact that the phase space is not linear is not
an obstruction to quantization 
at least� to asymptotic quantization��
since one may hope to solve the quantization problem locally 
in this
case� the phase space can be assumed to be linear� and then take global
e�ects into account by pasting local quantizations together� If the Pois�
son bracket is nondegenerate� then it is generated by some symplectic
structure �� on the phase space M � Locally� this structure can always
be reduced to the canonical form

�� � dp � dq �
nX

j��

dpj � dqj 
��	�
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by Darboux� theorem� Then the Poisson bracket acquires the form 
��
�
and the quantization problem can be solved locally by the wave packet
method� The situation is quite di�erent if the Poisson bracket is degen�
erate� Then the quantization problem is nontrivial even locally� and we
do not have any analog of the wave packet transform at hand� In that
situation� it is natural to use the second approach to construct local
quantizations� We can proceed as follows� In the phase space M of our
classical system� we choose some local coordinates x�� � � � � xm 
where m
is the dimension of M�� Let the Poisson bracket be given by

fxj� xkg � Fjk
x�� � � � � xm�� 
����

where the Fjk are some smooth functions de�ned in the domain covered
by the local coordinates and satisfying a system of identities readily fol�
lowing from the skew�symmetry and the Jacobi identity for the Poisson
bracket� Let us quantize relations 
���� by �nding operators A�� � � � � An

satisfying the commutation relations

�Aj� Ak� � �ihFjk
A�� � � � � Ak� �O
h�� 
����

and de�ne a 
local� quantum algebra by setting

�f � f
A�� � � � � Am� 
����

for functions supported in this coordinate domain� Once the local quan�
tization problem is solved� we can proceed to �pasting� the local solu�
tions obtained in coordinate neighborhoods together�

�� All the preceding is no more than an intuitive idea of construc�
tion of a quantization method� since none of the steps involved has
been described or even outlined so far� Moreover� it seems to be ob�
vious 
and actually it is true� that solving commutation relations of
the form 
���� with any nontrivial right�hand sides Fjk is some kind of
art rather than routine work� In any case� our considerations already
show that the notion of functions 
���� of operators is the basis of any
possible implementation of the above�suggested quantization scheme�

Note that the right�hand sides of relations 
���� are also functions of
this sort�� Thus� to develop this approach successfully� we must �rst
have a technique permitting one to work with such functions� Fortu�
nately� this technique is already available� It was developed by Maslov
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�
� more than �	 years ago and is known as the operator method or� in
a more up�to�date terminology� noncommutative analysis� In this part
of the book we give the essentials of noncommutative analysis and then
use it provide a complete quantization scheme for several special classes
of commutation relations 
or the corresponding classical mechanics� if
you prefer that�� We also describe a fairly large class of exactly soluble
commutation relations�

	� Let us describe the structure of this part in more detail� In
Chapter � we present noncommutative analysis itself� that is� the the�
ory of functions of several operators that in general do not commute
with each other� In Chapter � we consider the simplest class of clas�
sical mechanics with exactly soluble commutation relations and carry
out the quantization scheme for this class of relations� In Chapter �
we brie�y outline the main points of the quantization procedure for
relations that cannot be solved explicitly� We point out that in both
cases 
approximately and exactly soluble relations� the quantization it�
self is asymptotic rather than exact� Indeed� even if we manage to solve
equations 
���� exactly 
that is� without the remainder O
h�� as in the
second case�� this does not imply that the relations

� �f� �g� � �ih�df� g�
hold for arbitrary quantized classical observables f and g� 
As was
already indicated in Part I� this is impossible even for the simplest
classical system with a linear phase space and the standard Poisson
bracket�� On the other hand� we shall see that� in contrast with the
quantization procedure� noncommutative analysis need not be asymp�
totic 
even though there are asymptotic versions of it in literature��
Hence the small parameter h only seldom occurs in Chapter �� which
deals with noncommutative analysis itself�



Chapter �

Noncommutative Analysis�
Main Ideas� De�nitions� and
Theorems

The main goal of noncommutative analysis is assigning an exact mean�
ing to the expression f
A�� � � � � Am�� where A�� � � � � Am are given linear
operators in a linear space E and f
x�� � � � � xm� is a given function�
which is referred to as a symbol� The second goal is to develop rules
helping one to handle such functions� 
We shall see that in many cases�
working with functions of noncommuting operators is no more compli�
cated than working with usual functions� the term �noncommutative
analysis� was introduced in �	� to emphasize the analogy between calcu�
lations involving functions of noncommuting operators and usual calcu�
lations in di�erential and integral calculus�� As to de�nitions� even for
m � � it is not a trivial problem to assign a meaning to the expression
f
A� unless f
x� is a polynomial� The solutions of this problem in var�
ious particular cases are known in the literature as �functional calculi�

see x ����� In the presence of several arguments� there is an additional
di�culty� if some of the operators A�� � � � � Am do not commute with
each other� then even for a polynomial f
x�� � � � � xm� the result of the
substitution of the operators A�� � � � � Am for the numerical arguments
x�� � � � � xm is not uniquely determined� and one must have some method
for keeping track of the order in which the operators act� Strange as
it may seem� this is largely a problem of notation� A solution of this
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problem� based on an elegant idea used by R� Feynman ��� in a special
case as long ago as in � 	�� was given by Maslov �
�� The corresponding
material will be given in x ���� Once this notation is introduced� we pro�
ceed to various formulas of the noncommutative operator calculus� The
most important formulas are gathered in x ���� These formulas form a
list of rules 
somewhat similar to tables of derivatives and integrals of
elementary functions in the ordinary calculus� which prove useful in the
derivation of more advanced results in Chapters � and �� Sections ��

and ��	 deal� respectively� with the main techniques useful in dealing
with functions of noncommuting operators and with composition laws
for functions of given operator tuples�

��� Functions of One Operator �Functional
Calculi�

Various constructions of functions f
A� of a single operator A for spe�
ci�c classes of symbol f
x� and operators A are known in the literature�
Let us give just a few examples�

a� Functional calculus of entire functions of bounded operators� If

A � E � E

is a bounded operator in a Banach space E and f
x� is an entire
function with power series expansion

f
x� �
�X
k��

fk
k�
xk� 
����

then one sets

f
A� �
�X
k��

fk
k�
Ak�


In fact� f
x� need not be entire� It su�ces to require that the se�
ries 
���� be convergent in a disk of radius larger than the spectral
radius spr 
A���
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b� Holomorphic functional calculus� This is a �ner version of the
functional calculus for entire functions� If A is again a bounded
operator in a Banach space and f
z� is a function holomorphic
in a neighborhood of the spectrum �
A�� then one sets

f
A� �
�

��i

I
f
��
� �A���d�� 
����

where the integral is taken over the contour lying in the domain
where f is holomorphic and surrounding the spectrum �
A� coun�
terclockwise�

c� Functional calculus of self�adjoint operators� If A � A� is a self�
adjoint 
possibly� unbounded� linear operator in a Hilbert space
H and f is a continuous 
for simplicity� function de�ned in a
neighborhood of the spectrum �
A�� then one sets

f
A� �

�Z
��

f
�� dE�� 
����

where fdExg is the spectral resolution of unity corresponding to
A� The operator f
A� is bounded if the function f
x� is bounded�

d� Fourier	Laplace functional calculus� If iA � E � E is the genera�
tor of a strongly continuous one�parameter group of linear opera�
tors in a Banach space E� then for functions f
x� with continuous
su�ciently rapidly decreasing Fourier transform

ef
p� � � �ip
��

� �Z
��

e�ipxf
x� dx

one sets

f
A� �
ip
��

�Z
��

eiAp ef
p� dp� 
��
�

where eiAp is the one�parameter group generated by iA�����	
�
�p


eiAp� � iAeiAp�

eiAp




p��

� ��
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The precise description of the class of functions f
x� for which def�
inition 
��
� is valid depends on the properties of the group eiAp�
If this is a group of exponential growth� then� generally speaking�
the symbol f
x� must satisfy some analyticity conditions� If this
is a group of at most power�law growth 
in the �nite�dimensional
case� it su�ces to require that all eigenvalues of A be real� the
operator may have Jordan chains�� then the function 
��
� is well�
de�ned for symbols of the class S�
R�� that is� functions f
x�
such that the estimates




��f�x�






 � C�
� � jxj�m� 	 � �� �� �� � � �

hold for some given m 
 ��

The above list of various versions of functional calculus is by no means
complete� but we shall be merciful� Note that� despite the abundance
of versions� they all have some important common features�

	 being applied to a given symbol f
x� and a given operator A� all
versions that are well de�ned for the pair 
f
x�� A� give the same
result��

	 functions f
A� with various symbols f
x� commute with each
other and with the operator A itself�

	 if f
x� � x� then f
A� � A�

	 if f
x� and g
x� are admissible symbols for a given operator A�
then the symbol h
x� � f
x� g
x� is also admissible� and more�
over�

f
A� g
A� � h
A��

With regard for the fact that noncommutative analysis is a general
rather than special theory� we give an axiomatic de�nition of functions
of one operator� This permits us to consider various special cases in a
uni�ed way� All we need in any speci�c example is to prove the validity
of the axioms�

�Unless we consider certain pathological examples�
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De�nition � Let F be a unital algebra of functions f
x� of the vari�
able x ranging in a subset of the complex plane� and let A � E � E be
a linear operator in a linear space E� We say that A is an F �generator
if there exists a homomorphism

�A � F � EndE 
��	�

such that �A�x� � A� 
Here x 
 F is the function identically equal to
x� we assume that F contains this function and hence all polynomials
of x��

Assuming that the homomorphism 
��	� is given� we write

�A
f� � f
A��

Exercise� Prove that the homomorphisms �A corresponding to func�
tional calculi in examples a�!d� and de�ned on appropriate classes of
functions satisfy the conditions of De�nition ��

The condition �A�x� � A uniquely determines the homomorphism
�A on the subalgebra P � F of polynomials� but if P �� F � then the
uniqueness of �A cannot be guaranteed� Usually� F and End E are
equipped with some natural notion of convergence� in this case� we
always require that the mapping 
��	� must be continuous� Unfortu�
nately� even this requirement does not guarantee that �A is unique�
However� the following remarkable theorem holds�

Theorem � 
��
� Let F be a symbol algebra with convergence� Sup�
pose that for each symbol f 
 F the di�erence derivative

�f

�x

x� y� � f
x�� f
y�

x� y

belongs to the projective tensor product F �
F � Then there exists a
unique continuous homomorphism �A for any F�generator A�

The proof of this theorem will be given in the next section� since it
is surprisingly based on the theory of functions of several operators�
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��	 Functions of Several Operators

Suppose that a function f
x�� � � � � xm� and m operators A�� � � � � Am are
given� We wish to de�ne what it means to substitute these operators
for the arguments x�� � � � � xm into the function f
x�� � � � � xm��

f
x�� � � � � xm� �� f
A�� � � � � Am�� 
����

For simplicity� we assume that all operators A�� � � � � Am are F �generators
with the same symbol class F � 
Considering the case in which the
classes of unary symbols are di�erent for di�erent operators Aj is no
more complicated in principle� but it does complicate the notation dra�
matically� and so we avoid it�� First� we consider the case in which the
symbol f
x�� � � � � xm� is factorable�

f
x�� � � � � xm� � f
x�� � � � fm
xm�� 
����

where
f�
x�� � � � � fm
x� 
 F �

In this case� it is clear that one carries out the substitution 
���� by re�
placing the jth factor fj
x� by the operator fj
Aj�� But here comes the
di�culty� the operators fj
Aj� and fk
Ak� do not commute in general�
and hence the order of factor becomes essential� In fact� there is no
distinguished order of factors� and hence the choice of some given order
must be included in the statement of the problem as additional infor�
mation� We denote the order of operators by Feynman indices� 
This
notation was introduced in the large�scale use by Maslov �
��� Speci��
cally� the order in which the operators act� that is� the arrangement of
the corresponding operator factors in an operator expression� will be
determined by numbers over these operators� the smaller a number�
the closer is the corresponding operator to the right in the product� In
other words� operators with smaller numbers act before operators with
larger numbers� For example�

�

A
�

B� BA�



�
A �

�
B�� � A� � �BA�B� �� A� �AB �BA�B� � 
A�B���

�
C

�
C

�
B� CBC�
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etc� In the general case� we write

f�

j�

A�� � � � fn

jm

Am� � f��
A��� � � � f�m
A�m��

where f	�� � � � � 	mg is the permutation of f�� � � � �mg such that

j��� j��� � � � j�m � m�m� �� � � � � ��

Now suppose that a symbol f
x�� � � � � xm� is a sum of factorable symbols
of the form 
�����

f
x�� � � � � xm� �
X
l

fe�
x�� � � � fem
xm�� 
����

where the sum is �nite and fej
x� 
 F � Then the de�nition naturally
extends to such symbols by linearity�

f

�
j�

A�� � � � �
jm

Am

�
�
X
l

�
fe�


j�

A�� � � � fem

jm

Am�

�
�

where the factors in each summand on the right�hand side are arranged
in ascending order of the corresponding Feynman indices� One can
readily verify that this is well de�ned 
that is� independent of the rep�
resentation of f
x�� � � � � xm� in the form 
�����

Thus we have de�ned the expression f

�
j�

A�� � � � �
jm

Am

�
for elements

f 
 F
 � � �
F of the algebraic tensor product of m copies of the space
F of unary symbols� If the mapping f �� f
Aj� is continuous on F for
each j 
which is always assumed�� then the mapping

� � � j�
A������

jm
Am

� F 
 � � �
F� �z 

m copies

� Op

f
x�� � � � � xm� �� f

j�

A�� � � � �
jm

Am�

thus constructed extends by continuity to a mapping 
denoted by the
same letter�

� � F �
 � � � �
F� �z 

m copies

� Op
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of the projective tensor product F �
 � � � �
F of m copies of the space F
of unary symbols� For the case in which F is a Banach space� the pro�
jective tensor product is de�ned as follows� 
For simplicity� we consider
the case m � ��� On F 
F we introduce the norm

jjf jj� � inf
X
l

jjfljj jjgljj� 
�� �

where the in�mum is taken over all possible representations of f
x� y�
in the form

f �
X
l

fl 
 gl�

that is�
f
x� y� �

X
l

fl
x�gl
y�


the sum is �nite�� Now F �
F is de�ned as the completion of the
tensor product F 
 F with respect to the norm 
�� �� If F is a more
general convergence space 
for example� S�
R��� then the de�nition
of the projective tensor product is more complicated� and we do not
reproduce it here� Instead� we refer the reader to the book �	�� Here
we only note that

S�
R�� �
 � � � �
S�
R�� � S�
Rn��

where the symbol space S�
Rn�� which is the main symbol space used
in this book� is de�ned as follows�

S�
Rn� �
�
m

Sm
Rn��

and Sm
Rn� is the Fr"echet space of smooth functions f
x�� x 
 Rn�
with �nite seminorms

jjf jjm�k sup
s�Rn

X
j�j�k

jf ���
x�j 
� � jxj��m�

Let us establish the main rules of �arithmetics� of Feynman indices�
The proofs of all these rules are similar� for symbols belonging to the
algebraic tensor product F 
 � � � 
 F � they are derived from the fact
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that the mapping f �� f
Aj� is a homomorphism for each Aj� and the
passage to general symbols f 
 F �
 � � � �
F is carried out by continuity�

Rule � 
index shifting��

f

j�

A��� � � � �
jm

Am� � f

k�

A��� � � � �
km

Am��

if the sequences j�� � � � � jm and k�� � � � � km are arranged on the real line
in the same order�

With regard for this rule� in the following we allow arbitrary real
numbers as Feynman indices�

Examples� f

�

A�
�

B� � f

�

A�
	

B� � f

e

A�
�

B�� But� in general�

�

A
���

B�
�

A
�

B ��
�

A
�

B �

Rule � 
moving indices apart��

f
� � � �
j

A� � � � �
k

A� � � �� � f
� � � �
j

A� � � � �
j

A� � � ��

if none of the Feynman indices in f
� � � �
j

A� � � � �
k

A� � � �� except for the
indices j and k themselves lies on the interval �j� k� or �k� j��

Examples� f

�

A�
�

A�
�

B� f

�

A�
�

A�
�

B� f

�

A�
�

A�
�

B�� but

f

�

A�
�

A�
�

B �� f

�

A�
�

A�
�

B

in the general case�

We point out that the notation f
� � � �
j

A� � � � �
j

A� � � �� is understood
as follows� the arguments x and y of the function f
� � � � x� � � � � y� � � ��
are identi�ed� that is� the function is restricted to the diagonal x � y�
The new symbol thus obtained has one argument less than f � Into this
symbol� we substitute the same operators as into f � and the �identi�ed�
argument is replaced by the operator A with the Feynman index j�
With regard for Rule �� Rule � can be extended to include sequences
of Feynman indices in which jk may coincide with jl provided that
Ak � Al�
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Rule � 
extraction of a factor�� Let j�� � � � � js and k�� � � � � kr be two
sequences of Feynman indices� and suppose that there exists an interval
�a� b� such that

k�� � � � � kr 
 �a� b�

j�� � � � � js �
 �a� b��

Then

f

j�

A�� � � � �
js

As�g

k�

B�� � � � �
kr

Br� � f

j�

A�� � � � �
js

As�
k�

C� 
�����

where

C � g

k�

B�� � � � �
kr

Br��

We shall write such identities in a more compact form as

f

j�

A�� � � � �
js

As�g

k�

B�� � � � �
kr

Br� � f

j�

A�� � � � �
js

As�
k�

�� g

k�

B�� � � � �
kr

Br����

where the autonomous brackets �� �� introduced in �
� are interpreted as
follows� �rst� one computes the expression in the brackets� and then it
is used as a new operator in subsequent computations� If one needs to
assign a Feynman index to this new operator� then the index is written
over the left autonomous bracket�

Now let us prove Theorem � of the preceding section� Suppose that
there are two distinct homomorphisms

��� �� � F � EndE

such that
���x� � ���x� � A�

We can use either of them to construct functions of operators� we write

��
f� � f
A��

��
f� � f
C��

Thus� A is the same operator as C� but when constructing functions of
these operators� we use the homomorphism �� for A and �� for C� In
the new notation� we must show that

f
A� � f
C�



���� Functions of Several Operators � 

for any symbol f 
 F �
Let us carry out the computations using the above rules� We have

f
A�� f
C� � f

�
A�� f


�
C� � 
f


�
A�� f


�
C�

�f

�y


�
A�

�
C��

So far� we have only used the identical transformation of the symbol

f
x�� f
y� �
�f

�x

x� y�
x� y��

Now we use the fact that �f

�x

 F �
F is an admissible symbol� and so

�f

�x

x� y�
z � �� 
 F �
F �
F �
F

is also an admissible symbol� Moving indices apart by Rule � and
extracting a factor by Rule �� we obtain

f
A�� f
C� � 

�

A �
�

C�
�h

�y


�

A�
	

C�

�
�

��
�

A �
�

C��
�f

�y


�

A�
	

C�

�
�
�
�f

�y


�
A�

	
C� � ��

and the proof of the theorem is complete�
Our next theorem asserts that if two operators A and B commute�

then f

�

A�
�

B� � f

�

A�
�

B�� Needless to say� the same assertion remains
valid if the symbol contains additional arguments that are replaced
by operators whose Feynman indices do not lie on the interval ��� ���
Moreover� the theorem gives an explicit expression for the di�erence

f

�
A�

�
B�� f


�
A�

�
B� for the case in which �A�B� �� ��

Theorem � Suppose that f
x� y� 
 F �
F and F is a proper symbol
space in the sense that �f

�x

 F �
F for each f 
 F � Then

f

�

A�
�

B�� f

�

A�
�

B� �
�

� A�B�
��f

�x �y


�

A�
�

A�
�

B�
	

B��
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Remark � The commutator �A�B� is not an F �generator in general�
But this is not needed for the validity of the assertion of the theorem�
since the symbol into which the commutator �A�B� is substituted is
linear in the corresponding argument�

Proof of Theorem �� We have

f

�

A�
�

B�� f

�

A�
�

B� � f

�

A�
�

B�� f

�

A�
�

B�

� 

�

A �
�

A�
�f

�x


�

A�
�

A�
�

B�

� 

�

A �
�

A�
�f

�x


�

A�
�

A�
	

B��
�

A

�
�f

�x


�

A�
�

A�
�

B�� �f

�x


�

A�
�

A�
	

B�

�
�

Now the second term is equal to

�

A 

�

B � 	

B�
��f

�x �y


�

A�
�

A�
�

B�
	

B� �
�

A 

���

B � ���

B �
��f

�x �y


�

A�
�

A�
�

B�
	

B�

�
�

��
�

A 

���

B � ���

B���
��f

�x �y


�

A�
�

A�
�

B�
	

B� �
�

� A�B�
��f

�x �y


�

A�
�

A�
�

B�
	

B��

as desired�
With regard for Theorem �� from now on we allow the same Feyn�

man indices over two operators A and B not only if A � B 
which is
covered by the rule for moving indices apart�� but also if �A�B� � �� By
the above theorem� such an operator expression has a unique interpre�
tation as follows� we use a �small perturbation� to make the Feynman
indices over A and B distinct� The value of the resulting operator
expression is independent of the details of the perturbation�

��
 Main Formulas of Operator Calculus

In the preceding section� we de�ned functions of several noncommut�
ing operators and proved their simplest properties� In this section�
we obtain main formulas� which are most often used in computations
involving functions of noncommuting operators�
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Theorem 	 
the commutation formula� One has

�A� f
B�� �
�

� A�B�
�f

�x


�

B�
�

B��

Remark � It is assumed here and in the subsequent formulas that all
symbols occurring in these formulas belong to the corresponding symbol
spaces and the operator arguments are generators in the corresponding
classes� we do not indicate this explicitly each time�

The proof is by straightforward computation�

�A� f
B�� �
�

A 
f

�

B�� f




B�� �
�

A 

�

B � �

B�
�f

�x


�

B�
�

B�

�
�

A 

���

B � ���

B �
�f

�x


�

B�
�

B�

�
�

� A�B�
�f

�x


�
B�

�
B��

as desired�
This formula has a little more complicated version� Suppose that

four operators A� B� C� and D satisfy the commutation relation

AB � CA�D� 
�����

Theorem � If 
����� holds� then

Af
B� � f
C�A�
�

D
�f

�x


�

B�
�

C�� 
�����

Proof � We have

Af
B�� f
C�A �
�

A 
f

�

B�� f

�

C�� �
�

A 

�

B � �

C�
�f

�x


�

B�
�

C�

�
�
A 


���

B � ���

C �
�f

�x


�
B�

�
C� �

�
D

�f

�x


�
B�

�
C��

as desired�
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Theorem � 
the Daletskii�Krein formula� Let A
t� be a family of
operators smoothly depending on a parameter t� Then

d

dt

f
A
t��� �

�

dA
t�

dt

�f

�x


�
A 
t��

�
A 
t���

Proof � We have

d

dt
f
A
t�� � lim

�t��

f
A�
t�#t��� f
A
t��

#t

� lim
�t��

�

A 
t�#t�� �

A 
t�

#t

�f

�x



�

A
t�#t��
�

A
t��

� lim
�t��

���

A 
t�#t�� ���

A 
t�

#t

�f

�x



�

A
t�#t��
�

A
t��

� lim
�t��

�

��
A
t�#t��A
t�

#t
��
�f

�x



�

A
t�#t��
�

A
t��

�

�

dA
t�

dt

�f

�x



�

A
t��
�

A
t���

The proof is complete�
The Daletskii!Krein formula has a more general version� which we

give without proof�

Theorem � Let L be an arbitrary derivation of the algebra End E

that is�

L
AB� � L
A�B �AL
B�

for any A�B 
 EndE�� Then

L
f
A�� �
�

L
A�
�f

�x


�
A�

�
A��

Needless to say� the Daletskii!Krein formula is obtained as a special
case of this more general formula if we replace the algebra End E by
End 
C�

�� ��� E�� and consider the derivation L � d

dt
of the latter�

Our next theorem deals with a typical situation of perturbation the�
ory� how does the function f
A� behave as the operator A is subjected
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to a perturbation� A� A� 
B� where 
� � is the small parameter of
the perturbation$ For example� if f
x� � x��� and so

f
A� 
B� � 
A� 
B����

we try to compute the inverse of A�
B assuming that A��� the inverse
of A� is known� Then� under suitable functional�analytic conditions�

A� 
B��� is close to A���


A� 
B��� � A�� � 
C� � 
�C� � � � � �

the subject of perturbation theory is the computation of the corrections
C�� C�� � � � etc� This is of course well known 
e�g�� see ����� Noncommu�
tative analysis o�ers a new insight into the problem and� in particular�
new expansions for the terms of the perturbation theory series� Thus�
the problem is to expand f
A� 
B� in an asymptotic power series in

�

f
A� 
B� ��
�X
j��


jDj� 
�����

the series is asymptotic in the sense that

f
A� 
B��
NX
j��


jDj � O

N���

for each N � �� we write C

� � O

k� is C

� is an operator family
such that 
�kC

� is a continuous operator family on ��� 
�� for some

� 
 � 
in particular� its value at 
 � � can be de�ned by continuity��
Note that the coe�cients D� and D� in 
����� are already known�

D� � f
A�


which is obvious� by setting 
 � � on both sides in 
������� and

D� �
�

B
�f

�x


�

A�
�

A��

which follows by applying the Daletskii!Krein formula 
Theorem ��
with A
t� � A� tB�
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Theorem � Suppose that f is an element of a proper symbol class F �

Recall that this means that �f

�x

 F �
F for any A�
B is an F�generator

for any 
 
 ��� 
���� Then one has the asymptotic expansion

f
A� 
B� ��
�X
j��


j
�jf

�xj


�

A�
�

A� � � �
�j��

A �
�

B
	

B � � �
�j

B� �z 

j factors

� 
���
�

Moreover� one has the following explicit expression for the remainder
in the series 
�����


f
A� 
B��
�X
j��


j
�jf

�xj


�

A�
�

A� � � �
�j��

A �
�

B
	

B � � �
�j

B

� 
N
�Njf

�xN


�
A� � � �

�N��
A �

�N��
A� 
B�

�
B

	
B � � �

�N
B 
���	�

Proof � It su�ces to prove formula 
���	�� known in noncommutative
analysis as the Newton formula �
�� We have

f
A� 
B�� f
A� � 

�
B

�f

�x


�
A�

�
A� 
B� 
�����


the derivation of this equation is the same as in the proof of the
Daletskii!Krein formula�� Thus we have proved 
���	� for N � ��
We proceed by induction over N � If 
���	� has already bean proved for
some N � then we can represent the remainder on the right�hand side in
the form


N
�Nf

�xN


�

A�
�

A� � � � �
�N��

A� 
B�
�

B
	

B � � �
�N

B

� 
N
�Nf

�xN


�

A�
�

A� � � � �
�N��

A �
�

B
	

B � � �
�N

B

�
N
�
�Nf

�xN


�

A� � � � �
�N��

A� 
B�� �Nf

�xN


�

A� � � � �
�N��

A �

�
�

B
	

B � � �
�N

B

� 
N
�Nf

�xN


�

A�
�

A� � � � �
�N��

A �
�

B
	

B � � �
�N

B

�
N

�N��

B

�
�

�x

�Nf

�xN

�


�

A� � � � �
�N��

A �
�N��

A� 
B�
�

B
	

B � � �
�N

B
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� 
N
�Nf

�xN


�

A�
�

A� � � � �
�N��

A �
�

B
	

B � � �
�N

B

�
N�� �
N��f

�xN��


�

A� � � � �
�N��

A �
�N��

A� 
B�
�

B
	

B � � �
�N��

B


we have transformed the term in braces in the same way as in 
�������
which completes the inductive step� The proof of the theorem is com�
plete�

Let us write out a few of the �rst terms in the expansion 
���
��

f
A� 
B� �� f
A� � 

�

B
�f

�x


�

A�
�

A� � 
�
�

B
	

B
��f

�x�


�

A�
�

A�
�

A� � � � � �

Thus� each subsequent term in this expansion depends on more operator
arguments than the preceding term� It would be desirable to simplify
this formula further� this is possible if we assume that the commutators
of A and B are in some sense �small�� Note that if �A�B� � �� then we
can use the shifting indices rule and hence make all Feynman indices
over all occurrences of A in this formula the same 
the same� of course�
pertains to B�� Since the easy�to�verify formula

�Nf

�xN

x� � � � � x� �

�

N �
f �N�
x�

holds� we see that for the case in which �A�B� � �� formula 
���
� is
reduced to the usual Taylor expansion�

f
A� 
B� ��
�X
k��

�

k�
f �k�
A�Bk�

Now we assume that the commutator of A and B is small�

�A�B� � O
h�� 
�����

where h is a small parameter 
this is a typical situation in quantum
mechanics�� Then we can use the commutation formula 
Theorem 
�
to shift the indices appropriately� For example�

B� �f

�x


�
A�

�
A� �

�
B

�f

�x


�
A�

�
A��

�

� B�A�
��f

�x�


�
A�

�
A�

�
A�

�
�

B
�f

�x


�

A��
�

� B�A�
��f

�x�


�

A�
�

A�
�

A�� 
�����
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and� with regard for 
������ we �nd that

f
A� 
B�� f
A� � 

�f

�x

A�B �O
h� �O

���

Now if ��B�A�� A� is also small 
of the order of h�� then we can apply
the same transformation to the second term on the right�hand side in

������ thus obtaining

f
A� 
B� � f
A� � 

�f

�x

A�B �

�

�

��f

�x�

A��B�A� �O

�� �O

h�


for the special case in which 
 � h� the remainder is O
h���� In the
semiclassical setting� the commutators usually satisfy

K
A�B� � O
hlength�K���

where length 
K� is the length of the commutator K� de�ned induc�
tively as follows�

length 
A� � length 
B� � ��

length 
�K��K��� � � � length 
K�� � length 
K���

In this case one can obtain very nice expansions of f
A � hB� for
functions f
x� that are independent of h or depend on h regularly� For
details on computations of this sort� we refer the reader to �
��

We only note a di�erent way for obtaining such expansions� If� in�

stead of f
A�
B�� we deal with f

�

A �

�

B�� then obtaining expansions
in powers of 
 is fairly easy�

f

�

A �

�

B� �
�X
k��

�

k�


�kf �k�
A��

Thus� the problem is to reduce f
A� 
B� to f

�

A �

�

B�� This can
be accomplished as follows�

f
A� 
B�� f

�
A �


�
B� � f


�

�� A� 
B���� f

�
A �


�
B�
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� 

�

�� A� 
B���� �

A �

�

B�
�f

�x


�

�� A� 
B���
�

A �

�

B�

� 

�

�� A� 
B��� �

A �

�

B�
�f

�x


�

�� A� 
B���
�

A �

�

B�

� 

�

�� A� 
B��� �

A �

�

B�
�f

�x


	

�� A� 
B���
�

A �

�

B�

�

�

� B�A�
��f

�x�


�

�� A� 
B���
	

�� A� 
B���
�

A �

�

B��

Now by Rule � the �rst term on the right�hand side is zero� and we
obtain

f
A�
B� � f

�

A �

�

B��

�

� A�B�
��f

�x�


�

�� A�
B���
	

�� A�
B���
�

A �
�

B��

If 
 � h and the commutators satisfy the above�cited smallness condi�
tion� then

f
A� hB� � f

�

A �h
�

B� �
h

�

�

� A�B�
��f

�x�


�

A� �O
h���

The subsequent terms in this expansion can be computed in terms of a
relatively complicated diagram technique� for which we refer the reader
to the book ��� and the literature cited there�

Generally� the computation tools of noncommutative analysis in�
volve quite a lot of formulas� many of which can be found in the above�
mentioned books and papers�

��� Main Tools of Noncommutative Anal�
ysis

In the preceding section we gave a number of formulas that prove useful
in various applications of noncommutative analysis� Even more impor�
tant are some general principals� tricks� and techniques speci�c to non�
commutative analysis and forming the basis of numerous applications
of it�
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It is convenient to consider a slightly more general case than in
the preceding sections� We assume that our �operators� are elements
of some algebra A� not necessarily represented by operators acting on
some linear space� this algebra is assumed to be equipped with some
notion of convergence� Next� we consider some space F of admissible
symbols f
x�� which are functions of one variable x 
depending on
speci�c applications� x ranges over the real line or the complex plane��
F is also assumed to be equipped with some notion of convergence� and
we assume that F is proper in the following sense�

De�nition � We say that the symbol space F is proper if


�� F contains the space P of polynomials�


�� F is an algebra with respect to 
pointwise� multiplication of func�
tions� and the multiplication is continuous�


�� the di�erence derivative �f

�x

x� y� of any symbol f 
 F belongs to

F �
F � Moreover� the mapping

f �� �f

�x

is continuous from F to F �
F �

We recall that F �
F is the projective tensor product of F by itself�
that is� the unique linear space such that any continuous bilinear map
� � F � F � E into a space E with convergence can be factored
through F �
F in a unique way�

F �F �� E

i � � e�
F �
F

�

In this diagram� i � F � F � F �
F is the canonical bilinear map�
ping� and e� is the unique continuous mapping making this diagram
commutative�

We do not touch the problem of the existence of F �
F � cf� �	�� We
only mention that F �
F can be obtained as the completion of the usual
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algebraic� tensor product F
F in the strongest convergence on F
F
in which the induced map e� is continuous� The elements of F 
F can
be thought of as functions of two variables of the form

f
x� y� �
X

fj
x�gj
y�


the sum is �nite�� Hence we obtain the interpretation of F �
F 
after
the completion� as functions of two variables�


Of course� one needs to prove that� say� the embedding F 
 F �
C�
R�� extends by continuity to an embedding F �
F � C�
R����

Now we de�ne an F �generator in A as an element A 
 A such that
there exists a homomorphism

� � �A � F � A
of algebras such that

�A
p� � p
A� 
��� �

for each polynomial p 
 P 
needless to say� it su�ces to require this
property for linear functions p
x���

In this situation� all theorems of the preceding sections still apply�
including the uniqueness Theorem ��

By AF � A we denote the set of F �generators in A�
Our immediate aim is to study how F �generators in A are related

to F �generators in some algebras associated with A�
For an algebra A with convergence� we consider the following alge�

bras with convergence� associated with A�


i� The algebra End 
A� of all continuous linear operators acting on
the linear space A 
the algebra structure of A is ignored��


ii� The algebra Matn
A� of n�n matrices whose entries are elements
of A�

We shall study some speci�c classes of F �generators in these alge�
bras� Let us start from End 
A�� We de�ne the left regular representa�
tion

L � A � End 
A��

A �� LA�
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where LA is given by the formula

LA
B� � AB� B 
 A�

and the right regular representation� which is in fact an antirepresen�
tation�

R � A � End 
A��

A �� RA�

RA
B� � BA� B 
 A�

The di�erence

ad � L�R

is called the adjoint representation and acts by taking commutators�

adA
B� � �A�B��

By virtue of the Jacobi identity

�A� �B�C�� � �B� �C�A��� �C� �A�B��

for commutators� the adjoint representation of any element of A proves
to be a derivation of A�

adA
BC� � adA
B�C �BadA
C�

for any B�C 
 A�
Thus� we take some element A 
 AF � and the problem is� what can

we say about LA� RA and adA$

Theorem �� 
i� The mapping L is a one�to�one correspondence be�
tween AF and End 
F�F � R� where R � End 
A� is the set of right�
invariant endomorphisms


� 
 R � �
AB� � �
A�B �A�B 
 A
� � � LA for some A 
 A�
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ii� The mapping R is a one�to�one correspondence between AF and
End 
A�F �L� where L � End 
A� is the set of left�invariant endomor�
phisms


� 
 L � �
BA� � B�
A� �A�B 
 A
� � � RA for some A 
 A�


iii� ad
AF� � End 
A�F provided that F has the following invariance
property� for any �� � 
 R 
resp�� C�� the mapping

f
x� �� f
�x � �y�

is a continuous mapping of F into F �
F � Moreover� this mapping
continuously depends on � and ��

Proof � Items 
i� and 
ii� are completely similar� and we shall only
prove 
i�� Since A is an algebra with unit� the mapping L has a trivial
kernel� and we only need to prove the implications

A 
 AF � LA 
 End 
A�F �

Let us �rst prove 
��� Let A 
 AF � We set

f
LA�B
def
� f
A�B

for every B 
 A� If p 
 P is a polynomial� then

f
LA�B � f
A�B � p
A�B � Lp�A�B � p
LA�B�

since L is a homomorphism of algebras� Next�

f
LA�
g
LA�
B�� � f
A�g
A�B � �fg�
A�B � �fg�
LA�
B��

and we see that f �� f
LA� is a homomorphism� Next� let us prove

��� Suppose that LA 
 End 
A�F � For each f 
 F � consider the
endomorphism

f
LA� � A � A�
We claim that f
LA� � R� Indeed� for any B 
 A one has

�LA� RB� � ��
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By the commutation formula�

�f
LA�� RB� �
�

� LA� RB�
�f

�x


�

LA�
�

LA� � ��

which just means that f
LA� 
 R� It follows that there exists a unique
element C 
 A such that f
LA� � LC � We set� by de�nition�

f
A�
def
� C�

Since L is monomorphic� we readily �nd that

f
A��
A� � 
fg�
A��

Next� it can be proved that

L�� � R � A
is continuous� and hence we see that the mapping f �� f
A�� being the
composition of �LA with L��� is continuous as well�

Now let us prove 
ii�� Let A 
 AF � For any f 
 F � f
x�y� 
 F �
F
by virtue of the invariance condition� and we set

f
adA�B
def
� f


�

A �
�

A�
�

B

for any B 
 A� Then

f
adA�g
adA�B � f

�

A �
�

A�
�

�� g

�

A �
�

A�
�

B��

� f

�

A �
�

A�g

�

A �
�

A�
�

B

� f

�

A �
�

A�g

�

A �
�

A�
�

B� �fg�
adA�
B��

and remains to verify that

p

�
A � �

A�
�
B� p
adA�

�
B

for any polynomial p
x�� In view of the above� it su�ces to prove this
for p
x� � x� which is tautological�



�
A � �

A�
�
B� AB �BA � �A�B� � adA
B��

The proof of the theorem is complete�
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Remark � In a similar way� one can de�ne functions of every linear
combination �LA��RA� however� this is particularly useful for the case
� � �� � �� considered above� and the case � � � � �� where we deal
with the anticommutation operator

anA � LA �RA�

Functions of anA are de�ned by the similar formula

f
anA�
B� � f

�

A �
�

A�
�

B� B 
 A�

This operator proves useful if one deals with operators satisfying anti�
commutation relations� which is quite common in quantum �eld theory�

Before proceeding to the matrix algebras Mat n
A�� let us prove the
following important theorem�

Theorem �� The sets AF are compatible with algebra homomorphisms�
More precisely� if A and B are two algebras with convergence and

� � A � B
is a continuous homomorphism of algebras� then

�
AF � � BF � 
�����

and moreover�
�
f
A�� � f
�
A�� 
�����

for any f 
 F and A 
 AF �

The proof is trivial� one just takes 
����� as the de�nition of f
�
A���

A special case of this argument has already been used in the proof of
Theorem ����

In particular� the assertion of Theorem �� remains valid for the
special case of inner automorphisms of the algebra A itself� and we
obtain the following important corollary�

Corollary �� Let A 
 AF � and let U 
 A be invertible� Then U��AU 

AF and

f
U��AU� � U��f
A�U

for every f 
 F �
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Now we focus our attention on F �generators in matrix algebras� We
shall consider only the case n � �� that is� the algebra Mat �
A� of ���
block matrices with entries elements of A�

a �

�� A B

C D

�A � A�B�C�D 
 A�

Theorem �� Let A 
 AF � B 
 A� and �A�B� � �� Then

a �

�� A B

� A

�A 
 Mat�
A�F �

Proof � We need to construct a homomorphism

�a � F �Mat�
A�

such that
�a
p� � p
a�

for any polynomial p
x�� To this end� we set

�a
f� �

�� f
A� f �
A�B

� f
A�

�A � 
�����

Let us prove that 
����� is a homomorphism��� f
A� f �
A�B

� f
A�

�A�� g
A� g�
A�B

� g
A�

�A

�

�� f
A�g
A� f
A�g�
A�B � f �
A�Bg
A�

� f
A�g
A�

�A

�

�� 
fg�
A� 
fg��
A�B

� 
fg�
A�

�A �

Here we have essentially used the fact that B commutes with A and
hence with g
A���
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Next� if f
x� � x� then 
����� gives

�a
f� �

�� A B

� A

�A � a�

which completes the proof of the theorem�

Theorem �	 If A�� A� 
 AF � then

A� �A� �
�� A� �

� A�

�A 
 Mat�
A�F �

Proof � f
A� �A�� � f
A��� f
A���
Strange as it may seem� we can combine Theorems �� and �
 and

obtain a result involving no commutativity requirement like that in
Theorem ���

Theorem �� Suppose that A�B 
 AF and C 
 A� Then

a �

�� A C

� B

�A 
 Mat�
A�F �

Proof � For every f 
 F � we set

f
a� �

�� f
A� �f

�x


�

A�
�

B�
�

C

� f
B�

�A � 
�����

Then f
a� � a for f
x� � x� and moreover�

f
a�g
a� �

�� f
A� �f
�x



�

A�
�

B�
�

C

� f
B�

�A�� g
A� �g
�x



�

A�
�

B�
�

C

� g
B�

�A

�

�� f
A�g
A� �f
�x



�

A�
�

B�g

�

B�
�

C �f

�

A�
�g
�x



�

A�
�

B�
�

C

� f
B�g
B�

�A �

Now
f
A�g
A� � �fg�
A�� f
B�g
B� � �fg�
B��
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and� using the identity

�

�x
�fg�
x� y� �

�f

�x

x� y�g
y� � f
x�

�g

�x

x� y��

we �nd that the o��diagonal entry in the last matrix is equal to

�
fg�

�x


�

A�
�

B�
�

C �

Consequently�
f
a�g
a� � 
fg�
a��

and the proof of the theorem is complete�
Various identities that can be obtained readily in End 
A� and

Matn
A� 
examples are given in the above theorems� can often be used
to prove important facts in the algebra A itself� For example� let us
show how Theorem �	 can be used to prove the commutation formulas
of Theorems 
 and 	� First� let us consider the assertion of Theorem 
�
We consider the operator

a �

�� B �A�B�

� B

�A �
Lemma ��

f
a� �

�� f
B� �A� f
B��

� f
B�

�A � 
���
�

Indeed� for f
x� � x we get f
a� � a� and moreover�

f
a�g
a� �

�� f
B�g
B� f
B��A� g
B�� � �A� f
B��g
B�

� f
B�g
B�

�A

�

�� f
B�g
B� �A� f
B�g
B��

� f
B�g
B�

�A �

hence f de�ned in 
���
� is indeed a homomorphism and gives f
a� by
de�nition�
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On the other hand� we can apply Theorem �	 to the element a� By
comparing the o��diagonal entries in the two expressions for f
A�� we
�nd that

�A� f
B�� �
�

� A�B�
�f

�x


�
B�

�
B��

that is� the assertion of Theorem 
 holds�
To obtain the assertion of Theorem 	� consider the operator

a �

�� C D

� B

�A �

where
D � AB � CA�

Lemma ��

f
a� �

�� f
C� Af
B�� f
C�A

� f
B�

�A � 
���	�

Indeed� for f
x� � x we again have f
a� � a� Next�

f
a�g
a�

�

�� f
C�g
C� f
C�
Ag
B�� g
C�A� � 
Af
B�� f
C�A�g
B�

� f
B�g
B�

�A

�

�� �fg
C� A�fg�
B�� �fg�
C�A

� �fg�
B�

�A � 
fg�
a��

as desired� Applying Theorem �	 to f
a� and comparing o��diagonal
entries� we obtain

Af
B�� f
C�A �
�f

�x


�

C�
�

B�
�

D�

which coincides with the assertion of Theorem 	�
Let us now prove a more general version of theorem �	� which will

prove useful in the next section� Suppose that E � E� � E� is a linear
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space with convergence represented as the sum of two subspaces� then
End 
E� can be represented as the �� � block matrix

end 
E� �

�� End 
E�� Hom
E�� E��

Hom
E�� E�� End 
E��

�A �

this means that any element a 
 End 
E� can be represented by a block
matrix of the form

a �

�� a�� a��

a�� a��

�A �

where a�� 
 End 
E��� a�� 
 Hom
E�� E��� etc� and the product of two
elements can be computed by the usual matrix product rule�

Theorem �� Let

a �

�� C D

� B

�A 
 End 
E��

and let C 
 End 
E��F and B 
 End 
E��F � Then a 
 End 
E�F � and

f
a� �

�� f
C�
�
D

�f
�x



�
C�

�
B�

� f
B�

�A �

The proof reproduces that of Theorem �	 word for word�

Corollary �� Suppose that C 
 End 
E��F � B 
 End 
E��F � and

� � E� � E�

is a linear operator such that

�B � C�� 
�����


In this case� one says that � is intertwining operator for the pair

B�C��� Then � is an intertwining operator for the pair 
f
B�� f
C��
with an arbitrary function f 
 F �

�f
B� � f
C��� 
�����
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Proof � Without assuming 
����� momentarily� in the assertion of
Theorem �� we take

D � �B � C��

We claim that then

f
D� �

�� f
C� �f
B�� f
C��

� f
B�

�A 
�����


the argument is the same as in the above proof of Theorem 	�� Com�
paring this with the assertion of Theorem ��� we obtain

�f
B�� f
C�� �
�

�� �B � C���
�f

�x


�

C�
�

B��

Now it remains to use 
������ and we arrive at the desired relation

������

So far� we have stated our assertions in this section for functions
of a single operator� Appropriate analogs of these assertions hold for
functions of several operators� Let us give a list of the most common
formulas�


i� U��f

�
A�� � � � �

n

An�U � f

�

�� U��A�U ��� � � � �
n

�� U��AnU ����


ii� if �Bj � Cj� for j � �� � � � � n� then

� � f
 �

B�� � � � �
n

Bn� � f

�

C�� � � � �
n

Cn� � ��


iii� f

�

LA�
� � � � �

n

LAn� � L
f�

�

A������
n

An�
�


iv� f

�

RA�
� � � � �

n

RAn� � R
f�

n

A������
�

An�

note the reverse order of indices

in the last formula� owing to the fact that R is an antihomomor�
phism��


v� f

�

adA�
� � � � �

n

adAn�
C� � f

�

A� �
��

A�� � � � �
n

An �
�n

An�
�

C�


vi� if � � A� B is a homomorphism of algebras� then

��f

�

A�� � � � �
n

An�� � f
�

�

A��� � � � � �

n

An���
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The reader can readily reconstruct the assumptions 
omitted here
and quite similar to those for the case in which f 
 F� under which
these assertions hold� We only mention that in our case f 
 Fn �
F �
 � � � �
F� �z 


n copies

�

��� Composition Laws and Ordered Rep�
resentations

The technique of noncommutative analysis� developed in the preced�
ing chapter� readily permits us to quantize a classical system once we
know the quantization of �basic� variables� In other words� if any
dynamic variable in the classical system has the form f
x�� � � � � xn��
where x�� � � � � xn is the set of basic variables 
in the simplest situa�
tion� n � �m� where m is the number of degrees of freedom� and

x�� � � � � x�m� � 
q�� � � � � qm� p�� � � � � pm� is the set of coordinates and
momenta�� and if we know that the basic variables x�� � � � � xn are rep�
resented in the quantum setting by some operators A�� � � � � An� then
to each dynamic variable f � f
x�� � � � � xn� we assign the quantum
operator

�f � f

�

A�� � � � �
n

An�� 
��� �

Needless to say� we must take care that the classical variable f belongs
to Fn � F �
 � � � �
F � where F is such that the Aj are F �generators�

The choice of a di�erent ordering of operators in 
��� � makes little
di�erence from the semiclassical point of view� since all commutators
�Aj� Ak� in quantummechanics use to beO
h�� and so it follows from the
index permutation theorem 
theorem � in x ���� that the new de�nition
will di�er from 
��� � by O
h�� One of the most important properties
of quantum systems is that their dynamic variables� like those of the
corresponding classical systems� form algebras� i�e�� the set of dynamic
variables is closed with respect to the operators of addition� multiplica�
tion� and multiplication by scalars� While addition and multiplication
by scalars are re�ected by the very same operations at the classical
level� multiplication is not�

�f�g �� cfg�
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And so we face the problem of computing the symbol of the product
�f�g� i�e�� the classical dynamic variable h such that

�h � �f�g�

in terms of f and g� This computation is of interest both in quantum
mechanics 
where it describes the composition law in the algebra of
quantum observables� and in the theory of di�erential equations 
where
it reduces the task of computing the inverse A�� of a di�erential oper�

ator A � f

�
�
x��i

	

�x

�
� �f to solving an equation for the symbol of

the inverse��
In the next chapter we consider some situations in which the com�

position can be computed in a closed form explicitly� Chapter � deals
with the cases in which the composition law can be computed only
asymptotically 
or even exists only in the asymptotic sense�� However�
�rst of all we have to establish some general conditions under which
the composition law is possible at all and reveal the structure of the
composition law� This is carried out in this section�

Thus we deal with the following situation� Let A be an algebra with
convergence� and let some elements

A�� � � � � An 
 AF

be given� where F is a proper class of symbols in the sense of De�nition
 x ��
� We consider the subspace 
not necessarily closed�

% � fB 
 A jB � f

�

A�� � � � �
n

An�� f 
 Fng
of A formed by operators B representable in the form

B � f

�

A�� � � � �
n

An�

with given ordering
�

A�� � � � �
n

An of the operators A�� � � � � An and with
symbols f 
 F �
 � � � �
F � The main questions we are dealing with in
this section are as follows�

	 Is % � A a subalgebra�$

�Not necessarily closed�
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	 If % is a subalgebra� how can one compute the product in % in
terms of symbols$

In the following� for brevity we write �f or f
A� instead of f
A�� � � � � An��

so that A is understood as the n�tuple A � 

�

A�� � � � �
n

An��
First� let us establish some necessary conditions for % to be a sub�

algebra� The following lemma is obvious from the de�nitions�

Lemma �� If % is a subalgebra� then there exist functions fjk 
 Fn�
j� k � �� � � � � n� such that

AjAk � fjk
A�� 
�����


Needless to say� for j � k one can take fjk
x� � xjxk��
Thus� the operators A�� � � � � An must satisfy a system of relations of

the form 
������ Such systems will be referred to as general commuta�
tion relations�

The condition given in Lemma �� is not su�cient� We have given
this lemma for the only reason that commutation relations are usually
a starting point for constructing the composition law and proving that
% is an algebra� In subsequent chapters we indicate special classes of
relations which do imply that % is an algebra�

In fact� if % is an algebra� then a stronger condition holds� Consider
the product Aj � f
A�� where f 
 Fn is arbitrary�

If � is an algebra� than Aj � F 
A� 
 %� that is�

Aj � f
A� � g
A� 
�����

for some g 
 Fn� For given j� formula 
����� speci�es a well�de�ned
mapping elj � Fn � Fn�Ker�� 
�����

where � is the mapping f �� f
A�� We suppose that the mapping

����� can be lifted to a continuous linear mapping

lj � Fn � Fn� 
�����

The n�tuple l � 
l�� � � � � ln� of operators lj acting on Fn is called the

left ordered representation of the n�tuple A � 

�
A�� � � � �

n

An�� We note
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that the left ordered representation depends on the ordering� not only
on the operators A�� � � � � An themselves� 
In �	� an example is given of
two operators A� B such that the ordered representation exists for the

pair
�

A�
�

B and does not exist for the pair
�

A�
�

B��
It turns out that the existence of a left regular representation is

almost su�cient for % to be an algebra� More precisely� the following
theorem is valid

Theorem �� Suppose that the tuple A � 

�

A�� � � � �
n

An� has a left or�

dered representation� i�e�� a tuple l � 

�

l�� � � � �
n

ln� of operators lj � Fn �
Fn such that


ljf�
A� � Aj � f
A�� j � �� � � � � n� 
���
�

for each symbol f 
 Fn� Then % is a left module over

P � fB 
 A jB � p
A� for some polynomial pg�
The proof is easy� We represent a polynomial p
x� �

P
a�x

� as a
sum of monomials and prove the desired assertion for each of the mono�
mials by induction on the order of the monomial� using the operators
lj�

However� this theorem� though su�cient in a number of applica�
tions� is as weak as it is easy� Fortunately� there is a stronger theorem�
which tells us under what conditions % is not only a P�module� but an
algebra as well� This theorem involves an additional condition� a very
natural one� imposed on the left ordered representation�

Theorem �� Let A � 

�

A�� � � � �
n

An� be an n�tuple of F�generators in
A� Suppose that A has a left ordered representation l � 
l�� � � � � ln� such
that each lj is an F�generator in Fn� Then

% � ff
A� j f 
 Fng
is a subalgebra of A 
not necessarily closed�� The composition law in
% is given by the formula

f
A�g
A� � h
A��

h
x� � �f
l�g�
x�� f� g 
 Fn� 
���	�
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Thus� to obtain the symbol of the product of two operators with
symbols in Fn� we must just substitute the left ordered representation
into the �rst symbol and act with the operator thus obtained on the
second symbol� This is possible since the lj are F �generators and so
f
l� is a well�de�ned operator in Fn for f 
 Fn� As a result� the symbol
space Fn is equipped with a binary operation� which will be denoted
by ��

f � g def
� f
l�g� 
�����

This operation is obviously bilinear 
but not necessarily associative�
associativity and related issues will be discussed later on in this section��
In terms of this �twisted multiplication� 
������ Theorem �� can be
stated as follows� the mapping

� � Fn �A
f �� f
A� 
�����

is a �homomorphism�� that is� � is linear and

�
f � g� � �
f��
g�� 
�����


On the right�hand side in 
������ we have the usual multiplication in
A��

Let us proceed to the proof of Theorem ���
Proof of Theorem ��� Condition 
���
�� which express the fact that

l � 
l�� � � � � ln� is a left regular representation of A� can be put in the
following form� the diagrams

Fn


����� A
j j

lj � � LAj

Fn


����� A

j � �� � � � � n� commute� 
Recall that LAj is the operator of left mul�
tiplication by Aj�� In other words� � is an intertwining operator for
each pair 
lj� LAj �� Now we are in a position to use Corollary � and
Theorem �� 
more precisely� their several�operator analogs 
ii� and 
iii�
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listed in the end of the preceding section�� Using 
ii�� we �nd that the
diagram

Fn


����� A
j j

f�l� � � f�LA�

Fn


����� A�
commutes for every f 
 Fn� In other words�

�f
l�g�
A� � f
LA�
g
A���

It remains to notice that� by 
iii��

f
LA�
g
A�� � Lf�A�g
A� � f
A�g
A��

The proof is complete�

Remark 	 Let us also state� without proof� the following assertion�
intermediate between Theorems �� and ��� Suppose that l is a left
regular representation of a tuple A of F �generators� Next� let F��� � F
be a subalgebra� We assume that each lj� j � �� � � � � n� is an F����

generator in Fn� Then functions f
l� � f

�

l�� � � � �
n

ln� are well de�ned
for

f 
 F���n � F��� �
 � � � �
F���� �z 

n times

� Fn�

We set

%��� � ff
A� j f 
 F���ng�
% � ff
A� j f 
 Fng�

These are linear subspaces of A 
not necessarily closed�� The assertion
is as follows�

Under the above conditions�

%���% � %�

and
f
A�g
A� � �f
l�g�
A�� f 
 F���n� g 
 Fn�
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For F��� � F we obtain Theorem ��� and for F��� � F 
the set of
polynomials� we return to Theorem ���

Now we return to the binary operation 
����� on the symbol space
Fn� We are interested in the following closely related problems�


a� Is the operation 
�� associative$ That is� is 
Fn� �� an associative
algebra$


b� Is the left regular representation unique$


c� Is the mapping � � f �� f
A� a monomorphism$

It turns out that problems 
a�!
c� are� in a sense� very close� that
is� the positive answer to one of them implies the positive answer to
the others� This is however true only if we shift a bit to a di�erent
setting� The root of the problem can be explained as follows� By way
of example� let us consider pairwise commuting operators A�� � � � � An�

�Aj� Ak� � �� j� k � �� � � � � n� 
��� �

Then� obviously� one can take lj to be the operator of multiplication by
xj�

ljf
x�� � � � � xn� � xjf
x�� � � � � xn�� 
��
��

Then f � g � fg 
the usual pointwise multiplication of functions�� and

Fn� �� is an associative algebra� Suppose for simplicity that A � Fn�
As the operators Aj satisfying relations 
��� �� we can take the following
tuples of operators�


A� Aj � xj 
the operator of multiplication by xj� j � �� � � � � n�


B� Aj � � 
zero operator�� j � �� � � � � N �

In case 
A�� the mapping � is a monomorphism� and the left regular
representation is unique� In case 
B�� � is not a monomorphism 
� �
f
x� �� f
���� and the left regular representations is nonunique 
say�
we can take lj � �� j � �� � � � � n� instead of 
��
����

The explanation is that in case 
B� the operators Aj satisfy a lot of
additional identities that are not corollaries of 
��� �� To avoid com�
plications� we slightly modify the notion of left ordered representation�
Namely� we shall deal with left ordered representations of systems of

relations rather than of individual tuples 

�
A�� � � � �

n

An��
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De�nition �� A relation is an identity of the form

�

k�

Bj�� � � � �
km

B jm� � �� 
��
��

where m is a given number� � 
 Fm� j�� � � � � jm 
 f�� � � � � ng� and
k�� � � � � km are distinct Feynman indices� One says that an n�tuple

A � 

�

A�� � � � �
n

An� of F �generators satis�es relation 
��
�� if

�

k�

Aj� � � � � �
km

A jm� � ��


Thus� the �native� Feynman indices of the tuple are disregarded� and
the numbers prescribed by the relation are used instead��

Let & be a system of relations 
the symbols � occuring in these
relations will be numbered by a subscript 	� � � ��� 	 � �� � � � � N��

De�nition �	 A tuple l � 

�

l�� � � � �
n

ln� of F �generators lj � Fn � Fn

is called a left ordered representation of the system & if it is a left or�

dered representation of every n�tuple A � 

�

A�� � � � �
n

An� of F �generators
satisfying & and if the following regularity condition is satis�ed�

f
l�� � f
x�� 
��
��

where � is the symbol identically equal to unity�

Remark � The regularity condition 
��
�� is quite natural� since� of
course�

f
A�� � f
A�

for any symbol f � In terms of the twisted multiplication 
������ this
means that � is the right unit� f � � � �� 
Note that� by the de�nition
of the twisted multiplication� ��f � f � so that in fact � is the two�sided
unit in this case��

Now we introduce a notion central to the problem that we deal with
in this section�
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De�nition �� Let l � 

�

l�� � � � �
n

ln� be a left ordered representation of
a system & of relations� We say that the generalized Jacobi condi�
tion holds for l and & if l itself satis�es all relations in & 
i�e� l is a
representation of &��

Theorem �� Let & be a system of relations admitting at least one left
ordered representation l� Then the following conditions are equivalent�


i� There exists a tuple A of F�generators satisfying the system &
such that � � f �� f
A� is a monomorphism�


ii� The left ordered representation is unique�


iii� The generalized Jacobi condition holds for l and &�

If these conditions are satis�ed� then the twisted multiplication f � g �
f
l�g is associative� and for every representation A of the system &�
the mapping

� � Fn � A�
A �� f
A�

is a homomorphism of associative algebras 
Fn� �� and A�

Since under the generalized Jacobi condition the left regular repre�
sentation is unique� we see that this condition in fact expresses a prop�
erty of a system of relations itself� In the next chapter� we shall see
that for the classical Lie commutation relations the generalized Jacobi
condition degenerates into the ordinary Jacobi identity for commuta�
tors�

Proof of Theorem ��� 
i��
ii�� We argue by contradiction� If there
are two left ordered representations� l and el� such that� say� lk �� elk for
some k� then there is a symbol f
x� such that h � lkfelkf �� �� Then

h
A� � 
lkf�
A�� 
elkf�
A� � Akf
A��Akf
A� � �

for any n�tuple A of F �generators satisfying &� This� however� contra�
dicts 
i��
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ii��
iii�� We again argue by contradiction� Let the generalized
Jacobi condition fail� Then� for some 	�

��

k�

l j� � � � � �
km

l jm� �� ��

Hence there is a symbol g
x� such that

h � ��

k�

l j�� � � � �
km

l jm�g �� ��

However�

h
A� � ����

k�

Aj� � � � � �
km

A jm���g
A� � � 
��
��

for any n�tuple A � 
A�� � � � � An� of F �generators satisfying &� 
The
proof of the left equality is essentially the same as that of the compo�
sition formula 
���	��� Now we set

�eljf �
x� � �ljf �
x� � f
�� � h
x�� j � �� � � � � n�

This is well de�ned� since the functional f �� f
�� is continuous on Fn�
With regard for 
��
��� the new operators elj also form a left ordered

representation el of &� which does not however coincide with l�

iii��
i� Under condition 
iii�� the operators lj themselves satisfy

&� By virtue of the regularity condition 
��
��� the mapping f �� f
l�
is a monomorphism 
a right inverse is given by B �� B
��� Thus we
arrive at 
i��

It remains to prove the associativity of the twisted multiplication
under conditions 
i�!
iii�� 
That � is a homomorphism is obvious�� We
have


f � g� � h � f � 
g � h� � f�
f � g� � h�
l�� �f � 
g � h��
l�g�
� f
f
l�g
l��h
l�� f
l�
g
l�h
l��g
�� � �


we have used condition 
iii���
The proof of the theorem is complete�

Remark � Quite similar results hold for right ordered representations
determined by the formula

f
A�Aj � 
rjf�
A�� j � �� � � � � n�
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We do not reproduce these results here� leaving the obvious restatement
to the reader� We only note in passing that the only subtle point
is the reversed order of Feynman indices in the de�nition of twisted
multiplication and the composition formula�

f � g � g

n
r�� � � � �

�
rn�f� 
��

�


The same pertains to the Jacobi condition� the operators r�� � � � � rn
must satisfy

��

�k�
r j� � � � � �

�kn
r jn� � ��� 
��
	�

Finally� note that if the Jacobi condition is satis�ed� then the left
and right regular representations can be reconstructed from each other
by the formulas

rjf � f
l�
xj�� ljf � f

�
r �
xj�� 
��
��

where the backward arrow stands for the reverse ordering of operators�
Numerous examples of computing ordered representations for speci�c
systems of operators and'or commutation relations can be found in the
subsequent chapters�
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