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Abstract. We construct a new calculus of boundary value problems with the transmission
property on a non-compact smooth manifold with boundary and conical exits to infinity.
The symbols are classical both in covariables and variables. The operators are determined
by principal symbol tuples modulo operators of lower orders and weights (such remainders
are compact in weighted Sobolev spaces). We develop the concept of ellipticity, construct
parametrices within the algebra and obtain the Fredholm property. For the existence of
Shapiro-Lopatinskij elliptic boundary conditions to a given elliptic operator we prove an
analogue of the Atiyah-Bott condition.
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Introduction

Elliptic differential (and pseudo-differential) boundary value problems are particularly
simple on either a compact smooth manifold with smooth boundary or on a non-
compact manifold under local aspects, e.g., elliptic regularity or parametrix construc-
tions. This concerns pseudo-differential operators with the transmission property, cf.
Boutet de Monvel [3], or Rempel and Schulze [16], with ellipticity of the boundary data
in the sense of a pseudo-differential analogue of the Shapiro-Lopatinskij condition. An
essential achievement consists of the algebra structure of boundary value problems and
of the fact that parametrices of elliptic operators can be expressed within the algebra.
There 1s an associated boundary symbol algebra that can be viewed as a parameter-
dependent calculus of pseudo-differential operators on the half-axis, the inner normal
to the boundary (with respect to a chosen Riemannian metric).

The global calculus of pseudo-differential boundary value problems on non-compact
or non-smooth manifolds is more complicated. In fact, it is only known in a number
of special situations, for instance, on non-compact smooth manifolds with exits to in-
finity, modelled near the boundary by an infinite half-space, cf. the references below,
and then globally generated by charts with a specific behaviour of transition maps.
Pseudo-differential boundary value problems are also studied on manifolds with singu-
larities, e.g., conical singularities by Schrohe and Schulze [20],[21] or edge and corner
singularities by Rabinovich, Schulze and Tarkhanov [14],[15]. An anisotropic theory
of boundary value problems on an infinite cylinder and parabolicity are studied in
Krainer [12]. Moreover, essential steps for an algebra of operator-valued symbols for
manifolds with edges may be found in Schrohe and Schulze [22],[23],[24]. The latter
theory belongs to the concept of operator algebras with operator-valued symbols with
a specific twisting in the involved parameter spaces, expressed by strongly continuous
groups of isomorphisms in those spaces. The calculus of pseudo-differential operators
based on symbols and Sobolev spaces with such twistings was introduced in Schulze [25]
in connection with pseudo-differential operators on manifolds with edges, cf. also the
monograph [26]. This is, in fact, also a concept to establish algebras of boundary
value problems; the corresponding theory is elaborated in [27] for symbols that have
not necessarily the transmission property. The case with the transmission property is
automatically included, except for the aspect of types in Green and trace operators
in Boutet de Monvel’s operators; a characterisation in twisted operator-valued symbol
terms is contained in Schulze [28] and also in [27]. An application of the edge pseudo-
differential calculus for boundary value problems is the crack theory that is treated in
a new monograph of Kapanadze and Schulze [10], cf. also the article [29]. An essential
tool for this theory are pseudo-differential boundary value problems on manifolds with
exits to infinity.

The main purpose of the present paper is to single out a convenient subalgebra of a
global version of Boutet de Monvel’s algebra on a smooth manifold with exits to infinity.
Such a calculus with general non-classical symbols (without the edge-operator machin-
ery) has been studied by Schrohe [18],[19]. We are interested in classical symbols both
in covariables and variables. This is useful in applications (e.g., in edge boundary value
problems, or crack theory), where explicit criteria for the global ellipticity of boundary
conditions are desirable. Our approach reduces all symbol information of the elliptic
theory to a compact subset in the space of covariables and variables, though the under-
lying manifold is not compact. Moreover, we derive a new topological criterion for the
existence of global boundary conditions satisfying the Shapiro-Lopatinskij condition,
when an elliptic interior symbol with the transmission condition is given. This is an



analogue of the Atiyah-Bott condition, well-known for the case of compact smooth
manifolds with smooth boundary, cf. Atiyah and Bott [1] and Boutet de Monvel [3].
Note that our algebra can also be regarded as a special calculus of pseudo-differential
operators on a manifold with edges that have exits to infinity. The edge here is the
boundary and the model cone (of the wedge) the inner normal. Some ideas of our
theory seem to generalise to the case of edges in general, though there are also essen-
tial differences. The main new point in general is that the transmission property is
to be dismissed completely. A theory analogous to the present one without the trans-
mission property would be of independent interest. New elements that appear in this
context are smoothing Mellin and Green operators with non-trivial asymptotics near
the boundary. Continuity properties of such operators “up to infinity” are studied in
Seiler [32], cf. also [31].

Acknowledgement: The authors are grateful to T. Krainer of the University of
Potsdam for useful remarks to the manuscript.

1 Pseudo-differential operators with exit symbols

1.1 Standard material on pseudo-differential operators

First we recall basic elements of the standard pseudo-differential calculus as they are
needed for the more specific structures in boundary value problems below.

Let SH(U x R™) for p € R and U C R™ open denote the space of all a(z,£) €
C®(U x R™) that satisfy the symbol estimates

|DID a(, )] < e(€)*~ 17! (1)

for all « € N 8 € N” and all x € K for arbitrary K € U,¢ € R”, with constants
¢ = cla, B, K) > 0:(6) = (1+ [¢]*)3.

Moreover, let S()(T7 x (R”\ 0)) be the space of all f € C°(U x (R™\ 0)) with
the property f(z,Al) = M f(z,&) for all A e Ry, (2,£) € U x (R™\ 0). Then we have
X(E)SW(U x (B™\ 0)) C S¥(U x R™) for any excision function y(£) € C®(R?) (i.e.,
x(&) = 0 for |&] < ¢co, x(&§) = 1 for |&] > ¢1 for certain 0 < ¢g < ¢1). We then define
S (U xR") to be the subspace of all a(x, &) € S*(U x R™) such that there are elements
Ay (#,€) € ST x (RPN 0)), j € N, with a(x,€) = 35700 x(E)au—y)(x,€) €
Su=(INFU(T7 x B™) for all N € N. Symbols in SH(U x R") are called classical. The

functions a(,_;) (uniquely determined by a) are called the homogeneous components
of a of order p — j, and we call

ay(a)(z, &) = agy(,§)

the homogeneous principal symbol of order p (if the order y is known by the context,
otherwise we also write o) instead of ). We do not repeat here all known properties
of symbol spaces, such as the relevant Fréchet topologies, asymptotic sums, etc., but
tacitly use them. For details we refer to standard expositions on pseudo-differential
analysis, e.g., Hormander [9] or Treves [33], or to the more general scenario with
operator-valued sumbols below, where scalar symbols are a special case.

Often we have m = 2n, U = Q x  for open 2 C R”™. In that case symbols are
also denoted by a(z,2’,€), (z,2") € Q@ x Q. The Leibniz product between symbols
a(z, &) € SP(2 x R™), b(x,£) € S¥ (2 x R™) is denoted by #, i.e.,

(e O 6) ~ 3 - (Dgale,€)05b(z. €

(a4



(Dy = (1 6(2 L 66 ), 0 = (66 e 66 )). If notation or relations refer to both
1’ i 0w r1 xr
classical or non-classical elements, we write (cl) as subscript. In this sense we define

the spaces of classical or non- classmal pseudo-differential operators to be
LE(9) = {Op(a) : ala, 2',€) € S, (@ x @ x B}, ©

Here, Op is the pseudo differential actlon, based on the Fourier transform F' = Fi,_,¢
in R™ i.e., Op(a =ff gilz=7’ (z, 2", &)u(x’)da’de, d€ = (2m)""d€. As usual,
this is mterpreted n the sense of oscﬂlatory integrals, first for v € C§°(£2), and then
extended to more general distribution spaces. Recall that L=°°(Q) = N,ezL* () is
the space of all operators with kernel in C'*°(Q x Q).

It will be also be important to employ parameter-dependent variants of pseudo-
differential operators, with parameters A € R!, treated as additional covariables. We
set

LA EY) = {Op(a)(N) : ale,a’,&,A) € S (2 x @ x B2},

using the fact that a(z, 2',&,A) € Sfcl)(Q x Q x R+ implies a(z, z’, €, Ao) € Sfcl)(Q X
Q x R for every fixed Ag € R!. In particular, we have L= (Q;R!) = S(R!, L=>°(Q))
with the identification L=°°(Q) = C°°(Q x Q), and S(R', E) being the Schwartz space
of E-valued functions.

Concerning distribution spaces, especially Sobolev spaces, we employ here the usual
notation. LZ#(IR™) is the space of square integrable functions in R”™ with the standard
scalar product. Then H*(R") = {u € S'(R") : (&Y u(é) € LZ(RQ)},S € R, is the
Sobolev space of smoothness s € R, 4(&) = (Frseu)(&). Analogous spaces make sense
on a C'™ manifold X. Let us assume in this section that X is closed and compact. Let
Vect(X) denote the set of all complex C'* vector bundles on X and H*(X, F), F €
Vect(X), the space of all distributional sections in E of Sobolev smoothness s € R.
Furthermore, define Lfd) (X;E,F;RY for p € R, E, F € Vect(X), to be the set of all
parameter-dependent pseudo-differential operators A(A) (with local classical or non-
classical symbols) on X, acting between spaces of distributional sections, i.e.,

AN HY (X, F) — H*7H(X,F), A € BL.
For ! = 0 we simply write Lfd) (X; E, F). The homogeneous principal symbol of order

p of an operator A € Lfcl)(X;E,F) will be denoted by oy (A) (or oy(A)(z,&) for
(z,&) € T*X\0) which is a bundle homomorphism

oy(A) 7 E — 7 F for 7:T"X\0 — X.

Similarly, for A(A\) € L% (X; E, F;RY) we have a corresponding parameter-dependent
homogeneous principal symbol of order p that is a bundle homomorphism 7* F — 7* F

for m: T*X x R\\O — X (here, 0 indicates (£, ) = 0).

1.2 Operators with the transmission property

Boundary value problems on a smooth manifold with smooth boundary will be formu-
lated for operators with the transmission property with respect to the boundary. We
will employ the transmission property in its simplest version for classical symbols.

Let Sﬁcl)(QX@+ xRM) ={a=a |Q><K+><]R" a(z, &) € S“ (QX}R xR™M)}, where 2 C
R"~1is an open set, z = (y,1) € QA xR, £ = (n, 7). Moreover define S5 (Q xR x R"),
to be the subspace of all a(x,£) € 57 (2 x R x ") such that

DtkDy;X{a(u—j)(yatanaT) ( 1)N ]a( )(y’ ) 77’_7—)} 0 (3)



on the set {(y,t,n,7) € QxR xR :y € Q,t = 0,9 = 0,7 € R\0}, for all k¥ €
N,a € N"~! and all j € N. Set S4(Q x Ry x R")y, = {a = a |Qxﬁ+xﬂ&n: a(z, &) €
SH(Q2 x B x R™), }. Symbols in S%(£2 x R x R™);, or in S5 (2 x Ry x R™)y, are said
to have the transmission property with respect to ¢ = 0.
Pseudo-differential operators with symbols a € S% (2 x Ry x R™);y are defined by
the rule
Op*(a)u(x) = r*Op(a)et u(z), (4)

where a € S% (€ x R x R™);, is any extension of a to 2 x R and et is the operator
of extension by zero from Q x Ry to Q x R, while 1t is the operator of restriction
from Q x R to 2 x Ry. As is well-known, Op*(a) for S4(Q x Ry x R");, induces a
continuous operator

Opt(a): C5°(Q x By ) — C™ (2 x Ry) (5)

(that is independent of the choice of the extension @) and extends to a continuous
operator

Op* (a) : [P H*(Q x By) —» H'~H( x By (6)

for arbitrary ¢ € C5°(Q2 x Ry ) and s € R, s > —%. Here, for simplicity, we assume
Q C R"~! to be a domain with smooth boundary; then H*(Q x R}) = H*(R")|axk,.-
Moreover, if £ is a Fréchet space that is a (left) module over an algebra A, [¢]F for

¢ € A denotes the closure of {pe : e € E} in E.

1.3 Calculus on a closed manifold with exits to infinity

A further important ingredient in our theory is the calculus of pseudo-differential op-
erators on a non-compact smooth manifold with conical exits to infinity. The simplest
example is the Euclidian space R™. It can be viewed as a local model for the general
case.

The global pseudo-differential calculus in R™ with weighted symbols and weighted
Sobolev spaces has been introduced by Parenti [13] and further developed by Cordes [4].
The case of manifolds with exits to infinity has been investigated by Schrohe [17].
The substructure with classical (in covariables and variables) symbols is elaborated
in Hirschmann [8], see also Schulze [27], Section 1.2.3. In Section 1.4 below we shall
develop the corresponding operator valued calculus with classical symbols.

Let S#9(R™ x R™) =: S#% for u,d € R denote the set of all a € C°(R” x R) that
satisfy the symbol estimates

D2 D ala,€)] < ()17 ()1 (7)

for all o, 8 € N (x,€&) € R?" with constants ¢ = ¢(a, ) > 0.

This space 1s Fréchet in a canonical way. Like for standard symbol spaces we have
natural embeddings of spaces for different p,d. Moreover, asymptotic sums can be
carried out in these spaces when the orders in one group of variables  and &, or in

both variables tend to —oo. Basic notions and results in this context may be found
in [30], Section 1.4. Recall that

[ 59 (R" x B™) = S(R" x B") =: S™7%(R" x R").
uw,0€R

We are interested in symbols that are classical both in ¢ and in . To this end we
introduce some further notation. Set



S = {a(e,€) € C=(R" x (R™0)) : alx, A) = Ma(z,£)
for all A > 0, (z,&) € R"™ x (R™\0)}

and define analogously the space Séé)

we set

by interchanging the role of & and &. Moreover,

S = {a(x,€) € C((R™0) x (R™0)) : a(Ax, 7€) = M rha(,€)
forall A >0,7>0, (z,&) € (R™\0) x (R™0)}.

It is also useful to have Séfi)lf defined to be the subspace of all a(z,&) € Sé“) such
that a(x,&)|¢j=1 € COO(S”_l,Sng (R™)) where S?~1 = {& € R : |¢] = 1} (clearly, cl,

means that symbols are classical in # with « being treated as a covariable), and Sfl(x)

is defined in an analogous manner, by interchanging the role of z and &.

Let Sg“] defined to be the subspace of all a(z,&) € C°(R” x R") such that there
is a ¢ = ¢(a) with

a(z, M) = Ma(x, &) forall A > 1,z € R" |£] > c.

In an analogous manner we define SL(;] by interchanging the role of  and &. Clearly, for
every a(z,§) € Sg“] there is a unique element O'Z(a) € Sé“) with a(z,&) = O'Z(a)(x,é’)
for all (z,£) € R” x R™ with |¢] > ¢ for a constant ¢ = ¢(a) > 0. Analogously, for
every b(z,&) € S there is a unique ¢’ (b) € S99 with b(x, &) = al(b)(x,&) for all
(z,8) € R™ x R™ with |z| > ¢ for some ¢ = ¢(b) > 0.

Set SHldl = Smd n Sk”, Sl = guié Sg“]. Let S“ I be the subspace of all

a(x,€) € S#1 such that there are elements ay(z,¢) € SEN k N s¥ ,k € N, with

aip(x,€) € = (N+1)0

] =

a($’€) -

B
1l

0

for all N € N. Clearly, the remainders automatically belong to S#~(N+1)i01 Moreover,
deﬁne S(/:Jlf to be the subspace Of all Cl(l‘,g) & S“?é SUCh that there are e]ements

ax(x, &) € SH=FE k€ N, with

ag(z,8) € Gr—(N+1)58

=

a($’€) -

B
1l

0

for all N € N. By interchanging the role of  and & we obtain analogously the spaces
S and S“l;é.

cl

Definition 1.1 The space Séflﬁx (R"xR™) of classical (in & and x) symbols of order
(115 8) is defined to be the set of all a(x, &) € SH%(R™xR™) such that there are sequences

ai(z,€) € S([i_k];é, keN and bi(z,&) € Sfl;[é_l],l €N

such that

N
Zak (z,8) € S (N-H); and a(x,&) — Zbl (z,€) € Sfl: (N+1)

k=0

for al N e N.



Remark 1.2 It can easily be proved that S([flg;é C Séflﬁz, Séfl;&[é] C Séflﬁx, where
SO = ghO (mn x BT,

clgie clee

The definition of Séflﬁz gives rise to well-defined maps

oh=k . gre S(“_k);é, keN and o0 T S“;(é_l), leN,

clge Eicly clge clg;w

namely Ui_k(a) = O'Z_k(ak), o~ (a) = ¢27!(b;), with the notation of Definition 1.1.

From the definition we also see that O'Z_k(a) is classical in « of order § and ¢l~!(a)

is classical in £ of order p. So we can form the corresponding homogeneous com-
§—1

ponents o (U“_k(a)) and Ui_k(ag_l(a)) in z and &, respectively. Then we have
- —k k5 —ki6—1
o? l(afZ (a)) = O'Z (00~ Ha)) =: 0'1’276 (a) for all k1 € .
For a(x,&) € Séflﬁz (R™ x R™) we set

)
oy (a) = alj(a), oe(a) := 02(a), oy e(a) = ol (a)
and define
o(a) = (oy(a), 0c(a), oy (a)).
Remark 1.3 a(z,§) € Séfl’jz (R"xR™) and o(a) = 0 implies a(x,£) € Séfl;i;é_l(ﬂ%”

x R™). Moreover, from o(a) we can recover a(x,£) mod Séfl;i;é_l(R” x R™) by setting

a(e,&) = x(§)oy(a)(2,&) + x(2){oe(a)(x, ) = X(E)oy e(a)(2, &)},

)
fi:)lz ) pe(x,ﬁ) €
be arbitrary elements with oc(py) = oy(pe) = py .. Then

where x is any excision function in R™. More generally, let py(x,€) € st
HE )
Sfl&(;x) and py <(z,8) € Séf; )

a(x, &) = x(E)py (2, &) + x(x){pe(®, &) = x(E)py e(x,€)} € Séﬁfz (R™ x R™), and we have
oy(a) = py, oe(a) = pe, oy (@) = pye.

Example 1.4 Let us concider a symbol of the form
a(z, &) =w(x)b(x,&) + (1 —w(x))z™™ Z %o (€)
la|<m

with a cut-off function w in R™ (i.e., w € CFP(R"™), w = 1 in a neighbourhood of the
origin) and symbols b(z,£) € SL(R™ x R"), a,(£) € SH(R™), |a| < m (in the notation
of Section 1.1). Then we have a(x,&) € S0 (R"™ x R"™), where

oy (a)(2,€) = wlz)oy(b) (2, &) + (1 —w(z))e™™ Y 2%oy(a)a(8),
e <m
ce(@)(@,6) = D aalé), opel(e, &)= D oyplaa)(é).
[oe|=m |a]=m

Let us now pass to spaces of global pseudo-differential operators in R”. We for-
mulate some relations both for the classical and non-classical case and indicate it by
subscript (clg.) at the spaces of symbols and (cl) at the spaces of operators. Set

Lfc;f) (R™) = {Op(a) : a(z,&) € S(NCT;&;T,)(R” x R™1,



cf. (1.1). As is well-known Op induces isomorphisms

Op : Sty | (R™ x R") — LI (R7) (8)
for all 4,8 € R. Recall that L7~ (R") = ﬂu,éeJR LF% (R™) equals the space of all
integral operators with kernels in S(R™ xR™). Let us form the weighted Sobolev spaces

o2 (R") = ()2 H* (R")
for 5,0 € R. Then every A € Lfc;f) (R™) induces continuous operators
A HSC(R™) — HE~He=(R™) (9)
for all s, 0 € R. Moreover, A restricts to a continuous operator
A:S(R™Y) — S(R™). (10)
For A4 € Lgfé (R™) we set
76l A4) = 7(a), 0(A) = 02(a), 0uo(4) = 7y.cla),
where a = Op~!(A), according to relation (8).

Remark 1.5 The pseudo-differential operator calculus globally in R™ with weighted
symbols and weighted Sobolev spaces can be generalised to the case of R® x R" 3 (z, %)
with different weights for large |x| or |&|. Instead of (7) the symbol estimates are
|D§‘Dg‘D?a(1‘,i‘,€)| < c<€>“_|ﬁ|<x>5_|°‘|<i‘>g_|5‘| for all a,&, 8 and (z,%) € R**" ¢ €
R™7 with constants ¢ = (o, &, B). Such a theory is elaborated in Gerisch [6].

We now formulate the basic elements of the pseudo-differential calculus on a smooth
manifold M with conical exits to infinity, as it is necessary for boundary value problems
below. For simplicity we restrict ourselves to the case of charts that are conical “near
infinity”. This is a special case of a more general framework of Schrohe [17]. Our
manifolds M are defined as unions

k
M=KuU[]J[l-e00)xX;

j=1

for some 0 < ¢ < 1, where X;,j = 1,...,k, are closed compact C'° manifolds, K
is a compact smooth manifold with smooth boundary 0K that is diffeomorphic to
the disjoint union U§:1 X, identified with {1 — e} x U§:1 X; by a gluing map. On
the conical exits to infinity [1 — ¢, o0) x X; we fix Riemannian metrics of the form
dr? 4+ r%g;, r € [1 — ¢, 00), with Riemannian metrics g; on X;,j = 1,..., k. Moreover,
we choose a Riemannian metric on M that restricts to these metrics on the conical
exits. Since X; may have different connected components we may (and will) assume
k=1 and set X = X;.

Let Vect(M) denote the set of all smooth complex vector bundles on M that we
represent over [1,00) x X as pull-backs of bundles on X with respect to the canonical
projection [1,00) x X — X. Hermitian metrics in the bundles are assumed to be
homogeneous of order 0 with respect to homotheties along [1,00). On M we fix an
open covering by neighbourhoods

{Ul,...,UL,UL_H,...,UN} (11)



with (U3 U...U)N([1,00) x X) =0 and U; = (1 —¢,00) x Ujl, where {Ujl}j:L+1,...N
is an open covering of X. Concerning charts x; : U; — V; to open sets V;,j =
L+1,...,N, we choose them of the form V; = {# € R" : |2]| > l—e 5 € Vi) for
certain open sets le C S"~1 (the unit sphere in R™). Transition diffeomorphisms are
assumed to be homogeneous of order 1 in r = |z| for » > 1.

Let us now define weighted Sobolev spaces H*¢(M, E) of distributional sections
in F € Vect(M) of smoothness s € R and weight ¢ € R (at infinity). To this end, let
p; € C°(U;),j = L+1,..., N, be asystem of functions that are pull-backs Xjp; under
the chosen charts x; : U; — V;, where ¢; € C*°(R"),@; =0 for [z <1—-5,8; =0
in a neighbourhood of {z : [z] > 1—¢,{ € oUY, and @j(Az) = @;(z) for all
|z] > 1,A > 1. In addition we prescribe the values of ¢; = (X;)_lgoj on Uj1 in such
a way that Z?;L_H ¢; = 1 for all points in M that correspond to |x| > 1 in local
coordinates. Given an FE € Vect(M) of fibre dimension k& we choose trivialisations
that are compatible with x; : U; — V;,j = L+ 1,...,N, 7; : Ely; — V; x Cck,
and homogeneous of order 0 with respect to homotheties in r € [1,00). Then we can
easily define H*¢(M, E) as a subspace of H (M, E) in an invariant way by requiring
(1)« (pju) € HS¢(R", C*) = H*¢(R") @ C* for every L + 1 < j < N, where (7;).
denotes the push-forward of sections under 7;. Setting

S(M, E) = proj lim{ H"'(M, F) : | € N} (12)

we get a definition of the Schwartz space of sections in £. By means of the chosen Rie-
mannian metric on M and the Hermitian metric in E we get L?(M, F) = H%(M, )
with a corresponding scalar product.

Moreover, observe that the operator spaces Lfc;f) (R™) have evident m x k-matrix
valued variants Lfc;f) (R CF,Cm) = Lfc;f) (R") @ C™ @ C*. They can be localised to
open sets V' C R” that are conical in the large (i.e., # € V,|z| > R implies Az € V
for all A > 1, for some R = R(V) > 0). Then, given bundles F and F' € Vect(M)
of fibre dimensions k and m, respectively, we can invariantly define the spaces of
pseudo-differential operators

L (M; B, F)
on M as subspaces of all standard pseudo-differential operators A of order p € R,
acting between distributional sections in £ and F', such that

(i) the push-forwards of ¢; AG; with respect to the trivialisations of Ely,, F'|y; be-
long to Lfc;f) (R™;C*,C™) for all j = L+1,..., N and arbitrary functions ¢;, @;
of the above kind (recall that “cl” means classical in & and z),

(ii) YA € L7 (M; B, I) for arbitrary 1, W € C°°(M) with suppy Nsuppe) = (f

and ¢, ¢ homogeneous of order zero for large r (on the conical exits of M).

Here, L7°%7%°(M; E, F) is the space of all integral operators on M with kernels
in S(M, F)©.S(M, E*) (integration on M refers to the measure associated with the
chosen Riemannian metric; E* is the dual bundle to E).

Note that the operators A € L“?é(M; E, F) induce continuous maps

A:HY(M,E) — H*=M¢= (M, F)

for all 5,0 € R, and A restricts to a continuous map S(M, E) — S(M, F).
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To define the symbol structure we restrict ourselves to classical operators. First,
to A € Lgfé(M; E| F') we have the homogeneous principal symbol of order p

oy(A) iy B — my F, omy t T"MN\O — M. (13)

The exit symbol components of order ¢ and (y,d) are defined near r = oo on the
conical exit (R,o0) x X for any R > 1 —¢. Given trivialisations

7 Bly, — V; x C*, 95 Fly, — V; x C, (14)
of E/, F on U; we have the symbols
UG(AJ)(x’g) for ($’€) € VJ x R, Ulﬂ,e(Aj)(x’g) for ($’€) € VJ x (Rn\o)’

where Aj is the push-forward of A|y, with respect to (14). They behave invariant with
respect to the transition maps and define globally bundle homomorphisms

o (A) 7l E — 1l F, me :T"M|xr — X1, (15)

oy (A4): FzyeE — FzyeF, Tyt (TTMN\O)|xp — X (16)

In this notation X, means the base of [R,o0) x X “at infinity” with an obvious
geometric meaning (for instance, for M = R™ we have X, = S"~! interpreted as the
manifold that completes R™ to a compact space at infinity), and X2 =Ry X X.

An operator A € Lgl’é(M; E| F) is called elliptic if (13), (15) and (16) are isomor-
phisms.

An operator P € Lc_lu;_é(M;F;E) is called a parametrix of A if PA -1 €
L=~ (M;E,E), AP—T¢€ L™~ (M;F F).

Theorem 1.6 Let A € Lgfé(M; E, F) be elliptic. Then the operator
A HS(M,E) — H*=He=0(M, F)

1s Fredholm for every s, 0 € R, and there is a parametriz P € L;“;_é(M; F E).

1.4 Calculus with operator-valued symbols

As noted in the beginning the theory of boundary value problems can be formulated
in a convenient way in terms of pseudo-differential operators with operator-valued
symbols. Given a Hilbert space E with a strongly continuous group {sx}rer, of
isomorphisms, acting on E, we define the Sobolev space W*(RY, E) of E-valued dis-
tributions of smoothness s € R to be the completion of S(IRY, E) with respect to the
norm { f ()| Js= () [ pcdn} . Here, w(n) i= wgy), and a(n) = (Fyopyu)(n) is the
Fourier transform in R?. Given an open set Q C R? there is an evident notion of
spaces Wi, (22, E) and Wi, (2, E). Moreover, if E and E are Hilbert spaces with
strongly continuous groups of isomorphisms {# }xer, and {Fx}rer,, respectively, we
define the symbol space S*(U x R4 E, E), p € R U C RP open, to be the set of all
a(y,n) € C=(UxRY L(E, E)) (with L(E, E) being equipped with the norm topology)
such that
&= () DEDE aly, ) el o ) <l

for all @« € NP, 5 € N? and all y € K for arbitrary K @ U,n € RY with constants
c=cla,,K)>0.
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Let St (U x (R\0); E, E) denote the set of all f(y,1) € C°(U x (RN\0), L(E, E))
such that f(y, An) = AR f(y, 7])/@;1 forall A € Ry, (y,n) € U x (RN\0). Furthermore,
let S5 (U xIRY; E, E) (the space of classical operator-valued symbols of order p1) defined
to be the set of all a(y,n) € C°(U x Rq,E(E,E)) such that there are elements

a(u—y(y, 1) € SEI(U x (RI\0); E, E), j € N, with

N
a(y,n) — Y x(agu—j(y.n) € S*=NFU x R

7=0

for all N € N (with x being any excision function in ). Set 5(a)(y,n) := agu(y,n)
for the homogeneous principal symbol of a(y, n) of order p.

In the case U = Q x ©, Q C R? open, the variables in U will also be denoted by
(y,y'). Similarly to (2) we set

L{y (2 E, E) = {Op(a) s a(y,y',n) € Sfy (2 x Q x R% E, E)}, (17)

where Op refers to the action in the y-variables on 2, while the values of ampli-
tude functions are operators in L(E, E). For A € LY(Q; E, E) we set 05(A)(y,n) =
a(uy (¥, Y1) |y=y, called the homogeneous principal symbol of A of order u. Every
A€ LHQE, E) induces continuous operators

A Wi (@, E) — W H(Q, E)

loc

for each s € R. More details of this kind on the pseudo-differential calculus with
operator-valued symbols may be found in [26], [30]. In particular, all elements of
the theory have a reasonable generalisation to Fréchet spaces E and E, written as
projective limits of corresponding scales of Hilbert spaces, where the strong continuous
actions are defined by extensions or restrictions to the Hilbert spaces of the respective
scales [30], Section 1.3.1. This will tacitly be used below. Let us now pass to an
analogue of the global pseudo-differential calculus of Section 1.3 with operator-valued
symbols. Let S#° (R x }Rq;E,E) for p,6 € R denote the space of all a(y,n) €
C*(R?x R? L(E, E)) that satisfy the symbol estimates

&= Dy DY aly, M)l cp,m) < e~ (y)* 1

for all o, 3 € N9, (y,n) € R?9 with constants ¢ = ¢(«, 3) > 0. This space is Fréchet,
and again, like for standard symbols, we have generalisations of the structures from
the local spaces to the global ones. Further details are given in [30], [5], see also [31].

We now define operator-valued symbols that are classical both in n and y, where
the group actions on E, E are taken as the identities for all A € R4 when y is treated
as as a covariable. Similarly to the scalar case we set

S = {a(y,n) € C= (BT x (R9\0), L(E, E)) : aly, M) = MRra(y, n)ry
for all A >0, (y,7) € R?x (RN\0)},

S = {aly,n) € C((BN0) x B, L(E, B)) : a(\y, n) = X'a(y, n)
for all A > 0, (y,n) € (RN\0) x R},

and

Sy = {a(y,n) € C(([RN0) x (RN\0), £L(E, E))
a(Ay, ™) = MrHkra(y, n)x7! for all A > 0,7 > 0, (y,1) € (R?\0) x (R1\0)}.
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Moreover, let Sgtlc)l;j defined to be the subspace of all a(y, ) € 57(7“) such that a(y, n)|j, =1

€ O (9971, Sgly (R% E, E)) (where in Sgly (R% E, E)) the spaces E and E are endowed
with the identities for all A € Ry as the corresponding group actions), and Séil’n(i/) the
subspace of all a(y,n) € Sg(jé) such that a(y,n)|jyj=1 € C=(S71, Séfln(Rq; E E)).
Let 57[7“] defined to be the set of all a(y, n) € C*°(RIx R L(E, E)) such that there
is a ¢ = ¢(a) with
a(y, An) = M Rxal(y, 7])/@;1 forall A > 1,y e R |n| > c.

Similarly, the space Sg[f] is defined to be the set of all a(y, ) € C®(RYx RY, L(E, E))
such that there is a ¢ = ¢(a) with

a(Ay,n) = Na(y,n) forall A >1,|y| > c,neR%

Clearly, for every a(y,n) € 57[7“] there is a unique element o} (a) € 57(7“) with a(y,n) =
ob(a)(y,n) for all (y,n) € RIxR?with || > ¢ for a constant ¢ = ¢(a) > 0. Analogously,
for every b(y,n) € Sg[f] there is a unique o?,(b) € Sg(jé) with b(y, ) = 0%, (b)(y,n) for all
(y,n) € RY x RY with |y| > ¢ for some ¢ = ¢(b) > 0. Set Kl = gmd A Sg[f], Sluld =
S“?éﬂSgu]. Moreover, let Sflfé] denote the subspace of all a(y, n) € Sl such that there
are elements ay (y, ) € 57[7“"‘] N Sg[f] k€ N, with a(y,n) — Zi\;o ax(y,m) € SH—(N+1)9
for all N € N. Similarly, we define S([i]jé to be the subspace of all a(y,n) € SHlé guch
that there are elements b;(y,n) € 57[7“] N Sg[f_l],l € N, with a(y,n) — Zi\;o ai(y,n) €
SHrd=(N+1) for all N € N.

Let Séﬁf defined to be the set of all a(y,n) € SH9 such that there are elements
ax(y,n) € S | € I satisfying the relation a(y,n) — Ei\;o ax(y,m) € SH—(N+1)9
for all N € N.

Analogously, define Séﬁf to be the set of all a(y,n) € S#9 such that there are

elements a;(y,n) € S*P~1, 1 € I, satisfying the relation a(y,n) — Y11, ai(y,n) €
SHd=(N+1) for all N € .
Note that 57[7“] N Sg[f] C Stuld  guild],

Definition 1.7 The space Séﬁf (R x RY E, E) of classical (in y and n) symbols

of order (u;8) is defined to be the) set of all a(y,n) € SH°(RY x }Rq;E,E) such that
there are sequences ag(y,n) € SEfy_k];é, keN, and bi(y,n) € Sg;jé_l] €N, with

N N
a(y,n) — Zak(y, n) € S:l;(N+1);5 and a(y, ) — sz(y, n) € Séil;j—(N+1)
k=0 =0

for al N e N.

Remark 1.8 We have S([fll]jé C Séfl;iy, Séflfé] C Séfl;iy, where Séll;,iy = Séffiy(ﬂ%q X
R% E, E).

Given a € Séfl;jy we set O'S_k(a) = U“_k(ak), Ug,_l(a) = o-i,‘l(bl), with the notation of
Definition 1.7. This gives us well-defined maps

p—k . qpd (n=k);é S—1 . qusd w;(6=1)
ol .Sdmy — Sn;dy , keN, ol .Sdmy — Sdn;y ,leN.
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The corresponding homogeneous components Ug,_l(ag_k(a)) and of~
and 7, respectively, are compatible in the sense

Ug,_l (gg_k(a)) = O-N—k(o_gl—l(a)) —. Ug;fc;é—l(a)
for all k,1 € N. For a(y,n) € Séfl?jy(Rq x R% E, E) we set

oo(a) = a¥i(a), ou(a) = 0¥ (a), 0a.e(a) = % (a)

and define
o(a) = (0a(a), 0e(a), 09 (a)). (18)
Remark 1.9 a(y,n) € Séfij(Rq x R4 E,E) and o(a) = 0 implies a(y,n) €
Séfl;i;é_l(]Rq X Rq;E,E). Moreover, if x 1s any excision function in RY, we have
16—
X(mea(a)(y, n) + x(¥){oe (@) (y,n) — x(Mos . (a)(y,n)} = a(y,n) mod S~ 7" (R x
Rq;E,E). More generally, let ps(y,n) € S(@l;j,pe/(y, n) € 540 gnd poe(y,n) €

7 clnsy
57(7‘;26) be arbitrary elements with oer(ps) = 05(per) = paer. Then a(y,n) = x(1)pa(y, 1)

+ XWH{per(.n) = X(Mpoer(y,m)} € S4° (RY x RS E,E), and we have y(a) =
paa Ue’(a) = pe’a Ua,e’(a) = pa,e’~

Remark 1.10 An element a(y,n) € Séfl;jy(ﬂ%q x RY% E, E) is uniquely determined
by the sequence ’

{ob™ (a)(y,m), o2 (@) (y, m) e, (19)
mod S~ (RY x RY; E, E).

In fact, by the construction of Remark 1.9 we can form
ao(y, 1) = () (@) (. 0) + x(w){od () (v, ) = x(n)o5 L (a) v )}

for any fixed excision function x, where b1 (y,n) = a(y,n) — ao(y,n) € Sﬁ;i;é_l(Rq X

R E, E) Then Ug_l(bl)(y, n), Ug,_l(bl)(y, n) is completely determined by (19), and
we can form

ar(y,n) = x(m)os ™ (b1) (y,n) + xS (b1) (. n) — x ()b 27 (be) (y,m) )

Then by := b1 — a1 € Su;i;é_z(ﬂ%q x R4 E, E) or by = a—ag —ay € S50 RY x

cl clyy

R% E, E) Continuing this procedure successively we get a sequence of symbols ag (y, n)
€ Séfl;lz;é—k(ﬂ%q x R4 E E), k € N, with a(y, 1) — Zi\;o ar(y,n) € S(;jl;(yN+1);6—(N+1)

(RIxR%E, E) for all N. Thus we can recover a(y, ) as an asymptotic sum a(y, n) ~

ZZOIO ak(ya 77)

According to the generalities about symbols with exit behaviour, cf. [5], Proposi-
tion 1.5, we can produce a(y,n) as a convergent sum a(y,n) = > p, X(%)ak(y, n),
where x is an excision function in R? x R? and c¢; a sequence of non-negative reals,
tending to infinity sufficiently fast, as & — oo.

Remark 1.11 a(y,n) € Sgﬁy(ﬂzaq x % Eo, E), b(y,n) € Si (R? x R E, Eq)
implies (ab)(y,n) € Séfljl;;é‘l'“ (R4 x RY; E, E), and we have

o(ab) = o(a)o(b) (20)

with componentwise multiplication.
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Remark 1.12 Operator-valued symbols of the classes Séfl;jy(ﬂ%q X }Rq;E,E) can
also be multiplied by scalar ones, namely b(y,n) € ng:y(Rq x R?). We then obtain
(ab)(y,n) € Séfljl;;é-l_n(ﬂ%q x RY; E, E) including the symbol relation (20). In particular,
we have ’ R R

S (RIxRYGE,E) = ())"(y)° S5 (R? x R E, E).

Set R R
L3 (R% B, E) = {Op(a) : a(y,n) € Sty (R x R%E, E)}. (21)
Notice that the subscript “cl” on the left hand side means “classical” both in  and y (in
contrast to the corresponding notation in (17)). Similarly to (8) we have isomorphisms

Op: Sty (RYx RY E, E) — L) (R% E, E) (22)

for all y,d € R.This is a consequence of the same kind of oscillatory integral arguments
as in the scalar case, cf. [5], Proposition 1.11.
Set
WE(RY E) = (y)” W (RY, E),
endowed with the norm |[ullwsems £) = |[(y)2u||ws((®4,E)- Then every A € LF* (R E,
E) induces continuous operators

A WHE(RY E) — WETHe (R, E) (23)

for all s,0 € R, cf. [5], Proposition 1.21. In addition, A is continuous in the sense

A: SR E) — S(RY E), (24)
cf. [5], Proposition 1.8.

Remark 1.13 If we have an operator Op(a) for a(y,n) € Sélc;lé. )(}Rq x R% E, E),

choose any o € R and form the operator (y)*Op(a){y)~® : S(RL E) — S(RY, E)

Then, there is a unique symbol a,(y,n) € Séglé. )(}Rq x R%G E | E) such that

()“Op(a){(y)™* = Op(aa)- (25)
Thus, (25) has an extension by continuity to a continuous operator (23) for all s, € R.

This is a direct consequence of {(y)*Op(a){y)~* € Lfc;f) (R4 E, E) and of the isomor-
phism (22).

2 Boundary value problems in the half-space

2.1 Operators on the half-axis

The operator-valued symbols in the present set-up will take their values in a certain
algebra of operators on the half-axis. The essential features of this algebra may be
described in terms of block-matrices

H* (Ry) HomH (Ry)
a:<op-l(_)(a) 8)+g: @+ — fast " (26)
CN_ ©N+
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for p € Z and N_, Ny € N (s € R will be specified below). The operator op™(a) =
rtop(a)et is defined for symbols a(r) € S4(R)¢r, i.e., symbols of order p with the
transmission property, where rt and et are restriction and extension operators as in
(4), while op(.) denotes the pseudo-differential action on R, i.e.,

op(a)u(t) = // =7 g (FYu(t')dt dr.

(Here, for the moment, we consider symbols with constant coefficients). Moreover, g¢
is a Green operator of type d € N on the half-axis, defined as a sum

. a0
— . t
g—go+;gg< . 0) (27)

for continuous operators

L*(Ry) S(Ey) L2(Ry4) S(Ey)
g; P — B with g7 : P — B
CN- CN+ CN+ CN-

(here, * denotes the adjoint with respect to the corresponding scalar products in
L3(R,) @ CV* ) and we set S(Ry) = S(R)lg, - Let I4(Ry; N_, Ny ) denote the space
of all such operators (27), and let D*¢(Ry; N_, N, ) denote the space of all operators
(26), s > d— %, for arbitrary a € S% (R ) and g € T4(Ry; N_, Ny) (for No = Ny =0
we write ['Y(R; ) and D*4(R, ), respectively). The following properties are part of the
boundary symbol calculus for boundary value problems, cf. Boutet de Monvel [3], or

Rempel and Schulze [16].

Theorem 2.1 a € D#4R,; No, Ny) and b € DV¢(Ry; N_, No) implies ab €
DHv R (R N_ Ny for h = max(v +d,e).

Theorem 2.2 Let @ € D*4(Ry; N_, Ny ) where a(t) # 0 for all 7 € R, and

assume that a defines an invertible operator (26) for some so € R, so > max(p, d) — +.

2
Then (26) is invertible for all s € R, s > max(p, d) — % In addition

S(Ey) S(Ey)
a: ) — S
CN_ ©N+

is invertible, and we have a=! € D—w(d=mF (Ry; Ny, N_); here vt = max(v, 0).

2.2 Boundary symbols associated with interior symbols

In this section we introduce a special symbol class on R” that gives rise to operator-
valued symbols in the sense of Section 1.4.

Let Séfl’jx (R™ x R™). defined to be the subspace of all a(z,£) € Séfl&;z (R™ x R™)
vanishing on the set

Tr:={{x = (y,t) e R" : |z| > R, |{| > Rly|} (28)

for some constant R = R(a); In an analogous manner we define the more general space
SH(R™ x R™). Set SAY (R™ x Ry = SH? (R x R™)x N SH (R x R");, and

clee
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5 =N n - ~ ) n n wt _ mn— ™

Sé‘ilyg,z(]Rﬂ' x R )tr,x = {a = a|ﬁi><]1§" : a(x,g) € Sﬁlg;z (]R x R )tr’X}’R-l- =R 1 X ]R+.
Similarly, we can define the spaces Sélcﬁ)(ﬂ%” x R™), Séll;j R” x R™)¢p =, S(‘flf (@j_ X
R™)tr =, where cly means symbols that are only classical in §. For a € Séﬁf (R" x

R™)« we formop(a)(y, n)u(t) = [[ ei(t_tl)Ta(y, t,n, T)u(t')dt'dr and set op™ (a)(y,n) =
rtop(a)(y,n)et, where rt and et are of analogous meaning on R as the corresponding
operators rT and et in Section 1.2 _

We also form op™ (a)(y, n) for symbols a(y,t,n,7) € Séﬁf (}RT_IL_ x R™)ir = ; the exten-

sion et includes an extension of a to a corresponding @, though op™ (a)(y,n) does not

depend on the choice of a.
Proposition 2.3 a(z,¢) € S#9(R™ x R") < implies
op(a)(y,n) € 5" (B! x RPL HE(R), H*TH(R))
for every s € R.
The simple proof is left to the reader.
Proposition 2.4 a(z,£) € Séﬁf (@j_ x R™)r < implies
opt(a)(y,n) € S (R RPTH HO(Ry), H TH(RY))
for every s > —% and
op*(a)(y,n) € S (R"™ x R"71 S(Ry), S(By)).

The proof of this result can be given similarly to Theorem 2.2.11 in [20].
Given a symbol a(x,€) € Séﬁf (@j_ x R™)¢, we call the operator family

op* (ale=o)(y,n) + H*(Ry) — H'"H(Ry),

5 > —% (or opt(ali=o0)(y,n) : S(Ry) — S(R4)) the boundary symbol associated
with a(z, &).

Remark 2.5 For a(xz,€) € Séfl’jx (@j_ x R™)¢ we have
op™(ale=o)(y, n) € SA7 (R"™H x R H (), H 7H(IRy)),

s> —1

5. and op* (ali=o)(y,1) € 547 (B" =" x B* =L S(EL), S(EL)).

For a(x,&) € SHio (@j_ x R™) we form

o(a) = (0y(a), 7e(a), oy e(a); 7o (a), 0er(a), 09 e (),

for Ty (a) = 0y (a)|ﬁix(ﬂgn\0), Ue(a) = Ue(a)|(ﬁz\0)xkn, 0'¢7e(a) = a¢ye(d)|(m\0)x(w\o)

with an @ € Séﬁf (R™ x ™), where a = d|gr ., and
+

Ua(a)(ya 77) = 06(0p+(a|t:0))(ya 77)’ (y’ 77) € Rn_l X (Rn_l\o)a
oer(a)(y, 1) = oo (op™ (ali=0)) (v, 1), (y,m) € (R"TN0) x R,
7o, (a)(y,n) = 0o, (0p* (ale=0))(y,n), (y,n) € (R"7N0) x (R"1\0),
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where the right hand sides are understood in the sense of (18). (Here, ¢’ is used for the
exit symbol components along y € R"~!, while e indicates exit symbol components of
interior symbols with respect to € R").

It is useful to decompose symbols in Séfl’jz (@j_ x R™) into a =<-part and an interior
part by a suitable partition of unity.

Definition 2.6 A function y» € C* (@1) is called a global admissible cut-off func-
tion in B, if
(1) 0< xx(x) <1 forallx € @_I_,
(i7) there is an R > 0 such that x=(Az) = xx(z) for al X > 1,|z| > R,

(i11)y x=(x) =1 for 0 <t < & for some ¢ > 0, x=(z) = 0 for |z| > R,t > R|y| and
Xx(z) =0 for |#| < R,t > & for some £ > ¢ and non-negative reals R and R.

A function xx € C'™ (@1) 15 called a local admissible cut-off function in @j_ of ot has

the properties (i), (i4) and

(#5d); x=(x) = v(z)(1 — w(®)) forw = Mﬁz for some & € CP(R"),0 < @(x) <1
for all x € R™ and &(x) = 1 in a neighbourhood of x = 0 and v = %|Ki for
some 3 € C(R™\0) with sc(Ax) = »(x) for all A € Ry, & € R™0, such that for
some y € R with |y| = 1, and certain 0 < ¢ < £ < % we have x(x) = 1 for

all v € S*~1 ﬁ@j_ with |v —y| < ¢ and »(x) = 0 for all x € S"~! ﬁ@j_ with
|z —y| > €.

For a(x,&) € SHio (@j_ x R™) and any (local or global) admissible cut-off function

Cl&;z L.
Y= we then get a decomposition

a(@,§) = xx()a(z,&) + (1 — x<(2))a(z,£)

where ax(z,£) := xx(z)a(z,£) € Séfl’jz (EZXR”)X and (1—xx(z))a(z,£) € Séfl’jx (@j_x
R™).

Remark 2.7 The operator of multiplication M, _ by any x<x € C(R"™) with
Xx(Az) = xx(z) for all |x| > R for some R > 0 and A > 1, can be regarded as
an element in Lgfo(}R”). In other words, we have M, A AM, . € Lfc;f) (R™) for every
A€ Lfc;f) (R™). If x=x and Xx are two such functions with suppxx= Nsuppy= = 0§ we
have xxAxX=x € L™°72(R") for arbitrary A € Lfﬁg(ﬂ%”). A similar observation is
true in the operator-valued case.

2.3 Green symbols

Pseudo-differential boundary value problems are described by a symbol structure that
reflects an analogue of Green’s function and generates boundary (and potential) con-
ditions of elliptic boundary value problems. This is summarised by the following
definition.

Definition 2.8 The space Ré’oﬁ (RP=1x R"=L N_ Ny) of Green symbols of order
1€ R, type 0 and weight § € R is defined to be space of all operator-valued symbols

gly,m) € S (R ) RPTH LA (Ry) @ CV- S(By) @ CVF)
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such that
g (y,m) € SHS (R RM L L2(Ry) @ CV S(By) @ CV- ),

Moreover, the space Ré’d;é (RP=1xR"=1 N_ Ni) of Green symbols of order p € R,
type d € N and weight 6 € R s defined to be the space of all operator families of the
form

d .
ol 0
= ; 2
9(y,m) go(y,n)Jr;gy(y,n)( 0 0) (29)
for arbitrary g; € Ré_j’O;é(R”_l x R"=LN_ Ny),j=0,...,d

Proposition 2.9 FEvery g(y,n) € Ré’d;é (RP=1 x R"=L N_ N,) belongs to
Séﬁf (RP=tx RP=L He(Ry) & CV- SRy ) & CV+) for every real s > d — £.

The specific aspect in our symbol calculus near exits to infinity consists of classical
elements, here with respect to y € R?~1. Let Ré’i}é (RP=1x R"=1 N_ N, ) denote the
subspace of all g(y,n) € Ré’d;é (R™=1 x R"=L N_, Ny) of the form (29) for g;(y,n) €

Ré_C{’O;é(R”_l x R~ N_ | N,), where Ré’?f(ﬂ%”_l x R"=L N_ N, ) is defined to be
the space of all

g(y, 77) € Séil;iy(Rn—l « Rn—l; LZ(]R+) @ CN- ’S(@_l_) ® @N+)

with
9 (y,m) € S(ﬁfy(ﬂ%”‘l x R*L 2Ry @ OV SRy ) @ CV-).
Similarly to Proposition 2.9 we have
RE (BI1 X B LN_ VL) C ST (BY X B Y (Ry) & OV S(E) & C)

(30)
for all s > d — % Applying (18) we then get the triple of principal symbols

a(g) = (0a(9), 0e1(9), 00, (9))- (31)

Remark 2.10 There is a direct analogue of Remark 1.9 in the framework of Green
symbols that we do not repeat in this version in detail. Let us only observe that we can
recover g(y,n) from (31) modRéy_j’d;é_l(R"_l x R"=L N_ Ny by x(n)oa(g)(y, n) +

X {oe (9)(y, 1) = x(M) oo, (9)(y )} € RET (R~ x RPTL N Ny),

Lemma 2.11 Let p(y,t) € C*™(R? x Ry) and assume that for some § € R the
following estimates hold: SUD, ¢, | Dy e(y, )] < c{y)=1el for all y € RY and all o € WY,
with constants ¢ = c(a) > 0. Then the operator M, sy of multiplication by ¢(y,t)

fulfils the relation
Mgy € SP0(RY x RY LA(Ry), L*(R4)). (32)

Proof. We have to check the symbol estimates

16~ (DY D Mgy () |ezage ) < efy)®1
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for all a, 8 € N? and all (y,7) € R? x R? with suitable ¢ = c(a, 3) > 0. Because
My ¢ is independent of 7 it suffices to consider # = 0. Using £~ (n) D My k() =
Dy My t(y)-1y We get for u € L*(Ry)

||x = (M { Dy Dy Mgy o Ye(m)u(t)l|L2(ey) = [1Dge(y, 1)~ ul)llem ) <

sup e, [Dg o (v, 1) ™ ullr2gey) < ()’ full 2@, ©

Lemma 2.12 Let ¢(y,t) € C°(R? x R, ) be a function such that there are con-
stants m,d € R such that SUP, ¢, |D§‘Diwg0(y,t)| < C<y>5—|a|<t>m—M forally € RY ¢ €
Ry and all o« € N9, M € N, with constants ¢ = c¢(a, M) > 0. Then we have

Map(y,t) € 50,5 (Rq X Rq; S(@‘F)a S(@‘F)) (33)
Proof. Let us express the Schwartz space as a projective limit
S(Ry) = proj im{{t)=*H*(R,) : k € N}.

An operator b is continuous in S(R, ) if for every k € N there is an [ = {(k) € IN such
that

ol e ey=trr (), 00y -+ e 1)) < €

for certain ¢ = e(k,l) > 0. The symbol estimates for (33) require for every k € N an
! =1(k) € N such that

16~ (MADy Mgy b ()l ey - mr ) < )™ Ml |y v (34)

for constants ¢ > 0 depending on k,[, «, for all a and k. Similarly to the proof of
Lemma 2.11 the n-derivatives may be ignored. Estimate (34) is equivalent to

16 Dy oy, () ™) ol ar ) < e)* ™Mol e (35)

for all v € HY(Ry). Setting [ = k 4+ mT for mt = max(m, 0) we get (35) from the
system of simpler estimates

DI ™" Dy ey, tm) ™ Yo e ) < @) lollmige,)

for all 0 < j < k. The function Df{<t>_m+D§‘g0(y,t<77>_1)v(t)} Is a sum of expressions
of the form

Vjaags (1) = ()™ I ) =32 (D DY ) (y, t(n) ™) DI (1)

for ji+ja+js = j and constants ¢ = ¢(ji, ja, j3). We now employ the assumption on ¢,
namely sup, .z, |(Dy Di* @) (y, t(n)~")| < (y)?~ 1l (t(n)=")m=72. Using (t(n)~")"~7> <
<t>m_j2 for m — j» > 0 and <t<77>_1>m_j2 <1 for m — jo < 0 we immediately get

||vj1j2j3 (t) | |L2(]R+) < C<77>6_|a| | |D£3v| |L2(]R+)

for all y € RY, with different constants ¢ > 0. This gives us finally the estimates (35).
O
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2.4 The algebra of boundary value problems
Definition 2.13 Rgl’d;é (RP=IxR"=L N_ N, for (u,d) € ZxN,§ € R, is defined

to be the set of all operator families

a(y,n) = ( Op+(a0)(y’ " 8 ) +9(y.m)

for arbitrary a(x, &) € € SHe (@ xR < and g(y,n) € Ré ! (}R” LxRr=L N_ Ny).

Clg

Observe that the components of
o(a) = (oy(a), 0c(a), oy c(a);o5(a),ou(a), oo (a)) (36)
for a(y,n) € Rgl’d;é (R~ x R™=% N_, N,), given by
ay(a) = oy(a), oela) = oe(a), oyela) =0y c(a),
and
+
O'a(a) _ ( Ua(op O(Cl|t:0)) 8 ) +0.6(g)’
_ ( oe(opt(ali=0)) 0
oe(a) = ( 0 0
1 + —
rou(a) = ( Toe (opo(a|t_0)) 8 ) +oo.(9)

are uniquely determined by a(y,n), and that o(a) = 0 implies a(y,n) € R~ Ldio-1
(R*=1 x R™=1 N_| N,).

Moreover, a(y,n) € Rgl’d;é (R"=1 x R4 Ng, N;) and b(y,n) € RLVY(R ! x
R"=L N_ Np) implies (ab)(y,n) € Rg{l'y’h;é-"g(R”_lxR”_l; N_, Ny) for h = max(v+
d, e) where o(ab) = o(a)o(b) (with componentwise multiplication).

Next we define spaces of smoothing operators in the half-space. The space
Booibi—oe (@j_; N_, N,) is defined to be the set of all block matrix operators

A = T C . @ — @ )
SR CN-) SR-L CN+)
where
(i) Au(y,t ff]R" a(y,t, ¢, tu(y',t")dy d¢’ for certain a(y,t,y',t') € S(@j_x@i)(:

S(R" x Rn)|]1§+><]1§+)’u € S(E)),

(il) Ku(y,t) = Z;\;_l Koy, t) for Kiu(y,t) = [gao ki(y,t, 9 )o(y)dy’ for certain
ki(y,t, ') € S(By x R"1)(= S(R" x }R”_l)ﬁzxkn_l), for v = (v)i=1, n_ €

]

(iii) Tu(y) = (Tnu(y))m=1,... 5, Tor Tnu( ff]R m (Y, ¢, ) u(y , t)dy dt’ for cer-
tain by, (y, 9y, ') € S(}R” bx R_l_)(_ S(}R” Ly R )hRn—lfor)’ m=1,..., Ny for
u € S(}Ri),
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(iv) Culy) = (Z;\; S etm (y, )0 (¥)AY )m=1,.. N, for certain ¢ (y,y') € S(R™ ™! x
RPN I=1,...,N.,m=1,...,N4.

B_Oo’d?_oo(@j_; N_,N;) for d € N is the space of all operators
d .
_ (o0
C_CO+;C]< 0 0 )

for arbitrary C; € B_OO’O?_OO(@:L_; N_,Ny),j=0,...,d.

Let Lgfé (R™)_ denote the subspace of all P € Lgfé (R™) such that thereisan R >0
with ¢ Py = 0 for all ¢, ¢ € CF°(IR™) with suppy, suppyy C R™\Tg, cf. (28). Moreover,
we set L4 (RT)_ = {P = Plg : P € L}{’(R")_}. For P = Plgs, P € L4 (R")_ we
define

o(P) = (Uw(p”ﬁjrx(ﬂgn\o)aU'e(P)|(ﬁjr\o)><]RnaO'w,e(ﬁ”(ﬁj‘r\o)x(n&n\o)) (37)

Definition 2.14 The space Bgl’d;é (@j_, N_,Ny) for (p,d) € ZxN,§ € R, is defined
to be the set of all operators

A=0p(a)+P+C (38)

P 0
0 0

Lgfé (R™)_ and C € B_Oo’d?_oo(@j_; N_,Ni). Moreover, we set

for arbitrary a(y,n) € Rgl’d;é (Rt x R"=L N_ N,),P e ( ) with P €

BAS(RY) = ule BYS (R No, Ny ). (39)

Similarly, we get the subspaces of so-called Green operators (of order p, type d, and
weight §) Bé’if (@j_, N_,Ny) and Bg’yiié (@1) when we require amplitude functions to
belong to R_é’if (RP=1 x R"=L N_ N,) and Ré’if (RP=1 x R™=1) respectively. For
Ae B”’d;é(Ri; N_, N;) we write ordA = (u;9).

cl

©,0;8

4 (@i) are differential operators

Note that particularly simple elements in B

A= aa(x)Dg (40)

lo|<p
with coefficients a, = ao‘ﬁi where dq () € SSI(R’;).

Theorem 2.15 For every p € 7 the space BQ’O;O(@Z) (cf. the notation (39))
contains an element R* that induces isomorphisms

REH%C(RY) — H7ME(RY) (41)
for all s,0 € R as well as isomorphisms
R ST — S, (42)

where R=F := (R*)~1 € B;“’O;O(@i).
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This is a well-known result for ¢ = 0, proved in this form for all s € R in Grubb [7];

note that for s < —% we have to compose the pseudo-differential operators from the

right by an extension operator [ : H*(R"}) — H*(R"), while for s > —% we can take

et. Let us mention for completeness that order reductions for s > ut — % have been
constructed before by Boutet de Monvel [3]. The symbols from [7] have the form

0 = (x(zm —ir) (43

& = (n,7) € R” for a sufficiently large constant @ > 0 and a function x € S(R) with
F~1x supported in R_ and x(0) = 1. It was proved in [20], Section 5.3, that (43) is
a classical symbol in . In other words, we have 7 (¢§) € Séfli (}Ri x R™)¢y, and we

can set R¥u =17 Op(r”)l where [ = e* for s > —%. It is now trivial that R* induces
isomorphisms for all s, g, because the operators with symbols (43) in R” belong to
LY (™, of. (9).

Note that the operator R* is elliptic of order (y;0) in the sense of Definition 2.21
below.

Writing A € Bgl’d;é (@j_, N_, N;) in the form (38) we set

(0 (A), 0e(A), 0y (A)) = (0y(a) + 0y (P), 0c(a) + 0c(P), 0y (@) + oy (P)),
where we use notation from (36) and (37). Moreover, we define
(0a(A), 0e1(A), 05,01 (A)) = (05(a), oe(a), 75,0 (a)), (44)
cf. the notation in (36). Finally, we set
7(A) = (04 (A), 0e(A), 04 c(A); 00(A), 0e (A), 75,01 (A)), (45)

called the principal symbol of the operator A.
Let us set

symb B (R N, Ny) = {o(A) - A € BY (R, N_, Ny

Remark 2.16 The space symngl’d;é (@j_, N_,Ny) can easily be defined intrinsi-
cally, i.e., as a space of symbol tuples (py, Pe, Py .e; Po, Per, Po o) with natural compati-
bility conditions between the components. Then o : A — o(A) is a surjective map

o Bgl’d;é (@j_, N_,Ny) — symngl’d;é (@j_, N_,Ny), (46)
and there s a linear right inverse
op : symb Bgl’d;é (@j_, N_,Ny) — Bgl’d;é (@j_, N_,Ny) (47)

of ¢. Moreover, we have ker o = Bgl_l’d;é_l(@j_; N_,N;). Any choice of a map (47)
with (46) is called an operator convention.
Remark 2.17 An operator A € Bgl’d;é (@j_, N_, N, induces continuous operators

T T

S(}) S(E})
A D — D . (48)
SR V=) S(RP=1 CN+)
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This is an immediate consequence of the fact that A can be written in the form

+ Aet
A:(r ¢ 8)+Op(g)—|—C (49)
for an A € Lgfé (R (= {fl € Lgfé (R") = A has the transmission property with
respect to ¢t = 0}), and C € B_Oo’d?_oo(@j_;]\f_,]\ﬁ_), where (48) is clear for C, while
the continuity for the other ingredients, immediately follow from (10) and (24).

Theorem 2.18 A ¢ Bgl’d;é (@j_, Ny, Ny) and B € Bé’l’e;g(@j_; N_, Ny) implies AB €
Bgfl'”’h;é-l'g(@j_; N_,Ny) for h=max(v + d,e), and we have

o(AB) = o(A)o(B)
(with componentwise multiplication). If A or B is a Green operator then so is AB.

The proof of this theorem is very close to the corresponding proof in Boutet de Monvel’s
calculus in local terms. Therefore, we only sketch the typical novelty in the framework
with weights. Compositions of the form (G 4 C).A or B(é + C~) for smoothing operators
C,C and Green operators G = Op(g), G= Op(§) in the corresponding spaces are again
of the type Green plus smoothing operator (this can easily be verified, if we represent
A or B like (38)). Tt remains to consider compositions (r"’fle"’)(r"’ée"’) that equal
1t ABet —|—r+f~1(1 — @"’)Be"’, where ©F denotes the characteristic function of R%. The
first summand is as desired, while r"’fl(l — @"’)Be"’ has to be recognised as an element
Op(g) (modulo a smoothing remainder) for some Green symbol g(y, n) of weight § + ¢
for |y| — oco. Here, we can write A= x=A+ (1 - Xx)fl and B = =B + (1 -
Xx)é for a certain global admissible cut-off function yx in R”, cf. Definition 2.6.
Then, r"’XXzZl(l - O0T)x= Bet is obviously of the asserted form because the weight
contributions for ¢ — oo are cutted out, while r* (1 —Xx)fl(l —-0T)x= Bet, r"’Xxfl(l —
ot)(1 —XX)Be‘l' and 1t (1 —Xx)fl(l -07)(1 —XX)Be+ are smoothing, cf. Remark 2.7.

Remark 2.19 The operator 8¢ of multiplication by diag({x)?, (y)¢ ®@ide~) belongs
to BSI’O;(;(@:L_; N, N) and induces isomorphisms

Hee(Rn) He(R7)
S¢: @ — @
Hs;g(Rn—l’CN) Hs(Rn_l,CN)

for all s € R. Moreover, we have
SEOBY A (Es N_, Ny )S™0 = B (s N_, V)

(clearly, the dimensions in the factors of the latter relation are assumed to be Ny and
N_, respectively).

Theorem 2.20 A € Bgl’d;é (@j_, N_, N;) induces continuous operators

Hs;Q(RT_ll_) Hs—u;g—é(Rr_lz_)
A & — @ (50)
H5§Q(Rn—1’©N—) Hs—u;g—é(Rn—1’©N+)

for all s,0 € R,;s > d — % If ordA < (p;9) (i.e., the relation < holds for both
components) the operator (50) is compact.
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Proof. Write A in the form (49). The assertion for C is obvious. Concerning rt Aet
it suffices to apply (9) and (10), combined with the properties (6) and (5). It remains
Op(g). For simplicity we assume ¢ to be of the form of an upper left corner, i.e.,
gly,n) € Ré’i}é (R~ x R™"=1) ¢f. the notation in Definition 2.8. The other entries in
the general block matrix case can be treated in a similar manner which is left to the
reader. So we show the continuity

Op(g) : HY¢(R) — H M5 (RY),
s>d— % Applying Theorem 2.15 it suffices to prove the continuity of
RTFOp(g)R™" + HY¢(RT) — HYC(RY).

The symbol g(y,n) may be written in the form g(y,n) = (y)°a(y,n) for a(y,n) €
Ré’i}o(}R”_l x R"~1). Now, using Theorem 2.18 we get op(a)R™* = Op(b) + C' for
some b(y,n) € Ré_cﬁ’O;o(R”_l x R"" Y and C € B_w’o?_w(@i). In the following C'
may be ignored; we then have to show the continuity of

RE1(g) Op(b) + HO# () — HO# (1), (51)

From the general pseudo-differential calculus with operator-valued symbols we know
that

(1)°Op(b)(y)~* = Op(c)
with some symbol ¢(y,n) that in this case again belongs to RSG_yC’f’O;O(R”_l x R,
Thus, the operator in (51) gets the form

R*™#0p(c)(y)’ = Op(d)(y)’ + C

for another C' € B=°%= and d(y,n) € R%OC;IO(R”_l x R"~1). We may concentrate
on the proof of the continuity

Op(d)(y)® : HY ¢ (RY) — H*™°(R})
for arbitrary ¢ € R. This is equivalent to the continuity of
()27 0p(d)(y)’ (x) ¢ : L*(RY) — L*(RY),
z = (y,t). By the argument used above in connection with (51) we find an f(y,n) €
R%%F(R”_l x R"=1) such that
(2)°7°0p(d)(y)’ (x) ™% = (2)°~* (1)° " Op(F) () () ~*.

Now ¢(y,t) := (y)2(x) ¢ for ¢ > 0 satisfies the assumptions of Lemma 2.11 for § = 0.
For ¢ — & < 0 we can apply Lemma 2.11 once again for ¢(y,t) = (2)¢~%(y)°~¢ and get

(2)=°Op(d){y)’ (x)~¢ = Op(My)Op(f)Op(M,)

as a continuous operator L*(R’) — L*(R%). Let us now examine the case ¢ > 0 but
0—38 > 0. We then write (2)29(y)0=¢ = o(y, 1) ()20 for (y, ) = ()2~ (y) =2 (t)o~e.
The function 1 satisfies the assumptions of Lemma 2.11, while My.-s belongs to
SOO(Rr-L x RP=L S(Ry), S(Ry)) by Lemma 2.12. This gives us

Migye-s fy,m) € SPO (R x R L (Ry ), L*(Ry))

25



Hence, setting again ¢(y,t) = (y)2(x)~¢, we see that

()27 )2 Op(F) () ()72 = Op(My)Op(M(s)e-s f)OP(My)

is a continuous operator LZ(}RQL_) — LZ(R’_IL_). In an analogous manner we can proceed
in the remaining cases concerning the sign of ¢ and ¢ — 4. The compactness of A for
ordA < (u;d) then follows from the continuity of A to spaces of better smoothness
and weight and from corresponding compact embeddings of Sobolev spaces. O

2.5 Ellipticity

The principal symbol structure of the preceding section gives rise to an adequate notion
of ellipticity of pseudo-differential boundary value problems globally on the half-space.

Definition 2.21 An operator A € Bgl’d;é (EZ;N_,N+) is called elliptic (of order
(1;9)) of
(i) op(A)(z,€) forall (x,€)€RL x (R"\0),
go(A)(x, &) for all (z,€) € (RL\0) x R”,
oye(A)(,€) forall (x,£) € (B3\0) x (R™\0)

are non-zero,

(it) oa(A)(y,n) for all (y,m) € R"~1 x (R"~1\0),
oo (A)(y,m) for all (y,m) € (R*"N\0) x R™1,
7o, (A)(y,m) for all (y,n) € (R*~1\0) x (R"1\0)

are 1somorphisms

S(Ey) S(Ey)
s> — s>
CN_ ©N+

Remark 2.22 Condition (i) in the latter definition can equivalently be replaced
by bijectivities in the sense

H (R y) HemH(Ry)
53] — 53]
CN_ ©N+

for any s > max(p, d) — %

Sy

Definition 2.23 Given A € Bgl’d;é (@j_, N_,Ny), an operator P € B;“’e;_é(}R_l_;
Ny, N_) for some e € N is called a parametriz of A if PA—-T € B_Oo’d“_oo(@j_; N_,
N_) and AP -7 € B_Oo’dr?_oo(@j_; Ny, Ny) for certain di,d, € N.

We shall see below that the ellipticity of an operator A € Bgl’d;é (EZ;N_,N+)
entails the existence of a parametrix. First we want to construct further examples of
elliptic boundary value problems.

2
The Dirichlet problem for ¢ — A, with the Laplace operator A = Z?Il %, and a
7
constant ¢ > 0 is represented by the operator

He=2(R7)
Ay = ( c;A ) L HO(RD) — Hs_l&n:) (52)
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For convenience we pass to

o Ho=2(R1)
Ay = ( Qr,A ) L H*(RY) — HS—Z?B}R”:) (53)

where @ is an order reduction on the boundary that we take of the form @ =
Opy(<77>%), such that @ : H*(R"~!) — Hs_%(}R”_l) is an isomorphism for all s € R.
Then we have A5 € Bgl’l;o(@j_; 0,1). We want to show that (53) is an isomorphism for
all s > % and construct the inverse. We have for « = (y,t),£ = (,7)

ay(A2) = €, ge(Az) = e+ €7, oy e(A2) = [€[,
2 g2 2 g2 2 g2
0'6(./42) _ ( |77| 3t ) ,O'e/(.Az) _ ( C+<|7777>|%r/ at ) ,O'a,e'(.Az) _ ( |77| N /at ) )

In|3r/

Hence Aj is elliptic in the sense of Definition 2.21. First we invert the operator family

2 S(Ry)
a—0 —
) SRy) — @ (54)
( o ) + -

where a 1= (c+|n|?)7, 8 := () 2. Let us write [+ (r) = azir; then I_(7)l4(7) = a’472
and a? — 7 = opT(I_l;) = opT (l_)op+_(l+) (the latter identity is true because [_ is a

minus function; opt(l_) : S(Ry) — S(R4) is an isomorphism). Thus, to invert (54),
it suffices to consider

] _ sE
(! ) s — e

which is an isomorphism, because opT(l;) : S(Ry) — S(Ry) is surjective and Br/
induces an isomorphism of ker op* (/1) = {ye™*" : v € C} to C. Let us form the
potential k = k(a) : C — S(Ry), defined by kv = y3~te=?! v € C. Then

(o ety w=( 7).

because 1'opt (l_l__l) =0, and hence

( op;£f+) )_1 = (opt(I3") k).

Consider now a(7) = o? + 72. The operator in (54) can be written

( OPgr(/a) ) _ ( Op+0(l—) (f ) ( Op;r(/h) )

and hence



Here opt (l_l__l)op‘l'(l:l) =opt(a~!)+g for a certain g € T°(R,). It follows altogether

( opgr@ ) —(opt(a )4y k),

i.e., we calculated the inverse of (54). Inserting now the expression for o = a(n), 5 =
B(n), we easily see that the ingredients of

ger(A2) = (opt(a™ () +9(n)  k(n) (55)

belong to R 7(R"~! x R"711,0) (they are, of course, independent of y), and it is
clear that A;' = Op, (cer (As)~1) which belongs to 652’0;0(@1; 1,0). The method of
calculating (55) gives us analogously s (As)~" and 05 /(A2)~!, and

o(A1) = (€172 (e + 1) 7 €% 0a(Az) ™ oer(A2) T 09,00 (A2) 7).

It is then obvious how to express ./41_1, namely

- - 1 0
aran (L0

Remark 2.24 Similar arquments apply to the Neumann problem for c — A in the
half-space, with v'0; in place of . To get an element with unified orders we can pass
to the boundary operator Rr’d; for R = Opy(<77>%). We see that

c—A 2,2;0 37 .
(5md ) esr @

s also elliptic in the sense of Definition 2.21 and even invertible as an operator
H*(R%) — H =3 (RE)@H*~*(R"™1) fors > % The inverse belongs to B_z’O;O(RZ; 1,0).

cl
We shall construct in Section 4.3 below a general class of further examples of this kind.

Theorem 2.25 Forevery N € N there exist elliptic elements .AJ"\', € BSI’O;O(@Z; 0,N)
and Ay € BSI’O;O(@Z; N,0) that induce isomorphisms

He(RY)
AL HA(RD) — < :
Hs (Rn—l’ CN)
He (1)
Ay e S HEY
Hs (Rn—l’ CN)

forall s > —%, where Ay = (A%) ™ .

Proof. Let us start from the above operator A, and form
Ao = ROTP AR € ByO(B;0,1) (56)

for any fixed sg > 2, where R = R! € Bl’O;O(@i) is the order reducing element

cl

from Theorem 2.15 and R := diag(R', R') for R' = Op,((n) ® idg~). Then, setting
AT = Ay, we can form A}, inductively by

Ay = ( TJ-IY ) =1 Ty 0 ( T+ ) = Ty A
N 1 +
0 1 17



+
Here, .,41" = ( ?}I— ) . Moreover, from the above construction of .,42_1 and Theo-
1

rem 2.15 it follows that we may set Ay := (A})~!. O

2.6 Parametrices and Fredholm property
Theorem 2.26 Let A € Bgl’d;é (@j_; N_, Ny) be elliptic. Then

HS;Q(Rr_ll_) Hs—u;g—é(ﬂy_ll_)
A D — 53] (57)
Hee(Rr—1, @N_) HS—N;Q—é(Rn—l’ ©N+)

is a Predholm operator for every s > max(p,d) — % and every o € R, and A has a

parametriz P € B;“’(d_“)Jr;_é(@i; Ny, N_) where d; = max(p,d) and d, = (d — p)*
(cf. the notation in Definition 2.23).

The proof of this theorem will be given below after some preparations.

Remark 2.27 Applying Remark 2.19 we can reduce the proof of Theorem 2.26 to
the case 6 = 0. In other words, it suffices to consider the operator SeIASTe €
Bgl’d;o(Rj_; N_, Ny). Furthermore, we can reduce orders and pass to

Ag = R (STOAS IR € BY (B N, Ny )
for any choice of so > max(u, d), where R(1) = diag(R!, Rﬁ\,i) for R?Vi = 0p({(n) ®
ideng ), of. similarly (56). Clearly, the ellipticity of A is equivalent to that of Ay, and

the construction of a parametriz Py for Ao gives us immediately a parametriz P of A,
namely

P =S RVPOR;

So we mainly concentrate on the case A € BO’O;O(@Z; N_,Ny).

cl

hsee. (58)

Let p(x,€) € ngo(@j_ x R™)r < be a symbol with

op(p) #0  forall  (z,€) € B} x (R™\0), (59)
oe(p) #0 for all (z,€) € (@1\0) x R™, (60)
gue(p) 20 forall  (x,6) € (RL\0) x (R™\0). (61)
Set
b11(y,m) = op™ (ple=0)(y, 1), (62)

and consider the operator families

a5 (b11) (4, 1), o (B11) (4, m), 00,0 (B11) (y, ) + LP(Ry) — LP(Ry), (63)

7o (by) for (y,n) € R x (R*=1\0), oer (b1,) for (y,n) € (R"N0) x R~ 0 cr(B]4)
for (y,n) € (R"71N\0) x (R"~1\0).

These are families of Fredholm operators parametrised by the corresponding sets
of (y,n)-variables.
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Proposition 2.28 For every € > 0 there exists an R = R. > 0 such that

lloa(b11)(y, ) — oo, (811) (Y, Ml er2ryy) < € (64)
for all |y| > R and n € R*~1\0,

llea (1) (y,m) — oer (V) (v M cewy)) < € (65)
for all |ly| > R and |n| > R,

lloer(B10) (Y, n) — 00,0 (V1) (v, ey <€ (66)
Jor all ly] € R"=1\0 and |n| > R.

Proof. Let us first verify (64). Both op(oy (p)|e=0)(y, n) and op(oy «(p)le=o0)(y,n) can
be regarded as parameter-dependent families of pseudo-differential operators L? (R 4) —
L?(R,) with parameter y € R"~! smoothly dependent on n with |p| = 1.
But
oD (7 (plico) — 4,e(Pli=o)) (4, ) (67)

is of order —1 in the parameter. A well-known result on operator norms of parameter-
dependent pseudo-differential operators, cf., e.g., [30], Section 1.2.2, tells us that the
L(L*(R4))-norm of (67) tends to zero for |y| — oo, in this case uniformly for |y| = 1.
Thus, composing (67) from the right with et and from the left with r* we get relation
(64) for all |y| > R,R = R., and || = 1.

In a similar way we can argue for (66), now with n € R"~1\0 as parameter and
smooth dependence on y with |y| = 1. This gives us relation (66). Estimate (65) is
then an obvious consequence of (64) and (66).

Corollary 2.29 Under the conditions of Proposition 2.28 there exists an R = R, >
0 such that the Fredholm famailies

co(bi)(y,m) : L(Ry) — L*(Ry)  for  O0<[|y| <R, In|=R
and
oo (1), )t LP(Ry) — L2 (Ry)  for  |yl=R, 0< g <R,
satisfy |loa(b11) (v, n) — oo (011) (0, Ml e(L2(ryy) < € for all ly| = |n] = R.
Let € > 0, and set

T. = {(y,n) € RX*= D : |y| = |n] = R.}, D. =T, x [0, 1],

and form '
ZI={(y,n) e R*™7V: |y| < R. +, |n| = R},

oI ={(y,n) e R*"=V: |y| = R., || < R + j}

for j = 0,1, 00. Define the spaces I = (Z¢ Uy HI) Uy, D/ ~, where Uy is the disjoint
union, while U, is the disjoint union combined with the projection to the quotient
space, given by natural identifications 7. N ZJ = T, x {0}, T. N HI = T, x {1}.

Write for abbreviation 7. = Zao, H. = Hf, L. = ]Lg. Moreover, let D, ; := 1T, x
0,7 and L, ; := Z. Ug H. Up De -, 0 < 7 < 1, where Uy is defined by means the
identifications T, N Z. =2 T, x {0}, T. N H. = T, x {r}. Thus L. = L. 1, and we set
B, = H-4<€,0~
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Define an operator function F'(m), m € L., by the following relations:
Fly,n) = oa(biy)(y,n)  for  m=(yn) € Z,
Fly,n) = oe(b11)(y,n)  for  m=(y,n) € H.,
F(y,n,8) =d0a(b11)(y,n) + (1 =)o (b)) (y,n)  for  m=(y,n,6) € D..
From Corollary 2.29 we get
1F(y,m,8) = Fy,m, 0|z < 16— 0 (68)
for all (y,n,9), (y,n,0") € D;,0< 4,8 < 1. We have
F e C(Le, L(L*(R4))), (69)

and F|z,, F'|g. are continuous families of Fredholm operators. Relation (68) shows that
(69) is a family of Fredholm operators for all m € L., provided € > 0 is sufficiently
small. We then get an index element indy, F' € K(L.). Because of K(L. ) = K(L.)
for all 0 <7 <1, indy, F represents, in fact, an element in K (B.) that we denote by

indg, {05 (b11) (¥, n), oo (b11) (y, 1)} € K (B). (70)

Our next objective 1s to check, whether the operator family by, (y,n) for an elliptic
symbol p(x,&) € nggo (}Ri x R™)¢, can be completed to a block matrix valued symbol

s

Boob o
Vo= (02 ) estl @ xR E R (1)
LP(Ry) LP(Ry)
E - & , E= & (72)
CN_ ©N+

with suitable N_ N such that the homogeneous symbols

co(®)(y,m) €S, (y,m) R x (R7N\0), (73)
oo (V) (y,n) € S, (y,n) € (R"™N0) x R" L, (74)
o, (b)) (y, 1) € S50, (w,m) € (R710) x (R*71\0), (75)

are isomorphisms.

Theorem 2.30 Let p(z,§) € S0 (@j_ X R™), be (0y, 0e, 0y )-elliptic, i.e., rela-

clge

tions (59), (60) and (61) are fulfiled. Then the following conditions are equivalent:

(i) The families of Fredholm operators L*(R,) — L*(Ry)

ao(byy)(y,m) for (y,m) € R"x (R*™1\0), (76)
oo (b)) (y,m) for (y,n) € (R™N\0) x R~ (77)
oo,e(b11)(wm) for (y,m) € (R"N\0) x (R"7N\0) (78)

can be completed to D*°(Ry ; N_, Ny )-valued families of isomorphisms (73), (74)
and (75), respectively.
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(i)
indg, {05 (b,), 0er (b))} € 7L K ({+}), (79)
where my 1B, — {4} is the projection of B. to a single point {4}, (K({+}) = Z).

Proof. (¢) = (i) : In the construction of the proof we choose £ > 0 sufficiently small.
Assume that we have isomorphism-valued symbols (73), (74) and (75), associated with
the given upper left corners (76), (77) and (78). Then the above Fredholm family F(m)
on L., associated with {o5(b),), oo (b1)} has the property indy, F = [CN+] — [CV-],
ie., indy I" € Z which implies indg, {05(0],),0e/(b]1)} € Z = 77 K({+}).

(#4) = (é) : Condition indp_{cs(b};), 0 (b)1)} € 7L K ({+}) implies the existence
of numbers N1 € N with indg,{o5(b),), ger (b))} = [CV+] — [CV-]. Replacing N+ by
Ny + M for sufficiently large M and denoting the enlarged numbers again by N1 we
find operator families

k(m) : CN- — L¥(Ry), t(m) : L2 (Ry) — C+, g(m) : CV- — O+,

such that O LQ(R+) LQ(R+)
f(m) :z( 1m) g(m) ): C%_ — @%+ (80)

is a family of isomorphisms, continuously parametrised by IL.. It is evident that they
can be chosen as D%O(Ry; N_, N, )-valued functions, similarly to the construction of
bijective boundary symbols in the local algebra of boundary value problems with the
transmission property. In addition it is clear that the functions k(m), ¢(m) and ¢(m)
can be chosen to be smooth in (y, n).

Let us now define a Fredholm family F''(m) for m € I} by

FY(m) = F(m) for m €.,
FY(m) = (1= N)aa(b11)(y, n) + Aoa,er (b11) (y: )
for R. < |y|<R.+1,|n|= R., where A= R, — |y|,
FH(m) = (1= N)aer (b11) (y, n) + Aoa,er (b11) (y: )
for |yl = Re, R: <|n| < R:+ 1, where A= R. —|n|.

Estimates (64) and (66) show that F'' is a family of Fredholm operators on L.,
provided £ > 0 is sufficiently small. We can construct a family of isomorphisms

1 1 L*(Ry) L*(Ry)
1oy FRm) ki(m)
fr(m) = ( tl(m) ql(m) ) : @%— — @%+ ) (81)

m € L}, similarly as f(m) (if necessary, we take N_, N larger than before), where

L. = f. Since F(m) is a-priori given on 1.2°

2, we can also form

SP) - SP) )

~ : (F(m) kl(m) ): Lz(R+) Lz(R+)
CN_ ©N+

m € L. Due to (64) and (66) this is a family of Fredholm operators. Clearly, we may
choose f1(m) in such a way that f1|Zsl and f1|H51 are smooth in (y,n). Let us finally
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look at IL2°. The operator function f!, first given on L., canonically extends to I.°
by homogeneity of order zero to IL°°\IL! in y and 7. Let f°° denote this extension,

oy o ()R ()
o= ) i) 2

Il = f. Since f° is obtained by homogeneous extension of a family of
:
isomorphisms, it is again isomorphism-valued. Moreover, we can also form

joo oy . [ F(m)  k=(m)

[ (m) = ( °(m)  ¢*(m) )
which is a family of isomorphisms because of the corresponding property of (82) and
relations (64) and (66).

Then, to get (73), (74) and (75), it is suffices to define o5(b’)(y, n) as the extension
by homogeneity 0 in 5 of f | 750 to R~ x (R™=1\0), oo (b')(y,n) as the extension by
homogeneity 0 in y of f°° |Fe to (}R”_l\O) x R"1and 5 (b')(y,n) as the extension
by homogeneity 0 in y and 5 of f> l{lyl=Rot1,ln|=R.41} b0 (R7TN0) x (R?=1\0). T
justify the notation in (73), (74) and (75) (i.e., to generate the latter homogeneous
functions in terms of a symbol (71)) we can ﬁrst form b"(y,n) = x(n)oa(b')(y,n) +

x(W){oe () (y,n)—x(n)oa . (b)(y,n)} € ngsty(R”_lxR”_l; E, E), cf. the second part
of Remark 1.9, and then define b’(y, n) by replacing the upper left entry of b”(y, n) by
bii(y,m). O

Remark 2.31 Notice that Theorem 2.30 is an analogue of the Atiyah-Bott condi-
tion for the existence of elliptic boundary conditions to an elliptic operator A, cf. also
Section 3.4 below.

The canonical projection T*R"~1 — R"~! restricted to the subset B, C T*R"!
gives us a projection . : B, — B. = {y € R"~1: |y| < R.}. Condition (79) can
equivalently be written

indg, {05 (b11), 0o (b11)} € 72K (B:),
since B. is contractible to a point {+}.

Corollary 2.32 Given a symbol p(z,£) € nggow (@j_ X R™)yy that is (0y, 0, 0y c)-
elliptic, under the condition (79) for b},(y,n) = op*(pli=0)(y, n) we find a

b(y,n) € RGO x R"L N Ny)

for suitable N_, Ny € N, such that (76), (77) and (78) are isomorphims L*(R,) &
CN- — LYRy) ® CN+, ¢f. Definition 2.21. To construct b(y,n) it suffices to define
b(y,n) by replacing the upper left entry of b (y,n) by opt(p=)(y,n) for p<(z,£) =
Xx(2)p(x, &) with some global admissible cut-off function xx, ¢f. Definition 2.6.

Proposition 2.33 Let G € Bg%lo( +) be an operator such that A := 14 G is

elliptic in the sense of Definition 2.21. Then there is a G E BOOO(}R_I_) such that

(il

A =1+ G is a parametriz of A, i.e., AA—1,AA—1¢€ B~ (@_l_)

Proof. Let us first observe that for every ¢ € TO(Ry) (ie., g € L(L*(R,))) with
g,9* : L*(R4) — S(R,) being continuous, cf. Section 2.1, we have ag, ga € I'*(R4)
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for every a € L(L*(R4)). Then, if 1 +¢ : L?*(Ry) — L?*(Ry) fora g € E(LZ(R+))
is invertible, we have ¢ = (1 + g) Ve £(L2(Ry)) and a(l 4+ g) = 1 = a + ag, ie.,

a=14+g for g = —ag € T°(Ry). Analogous conclusions are valid for the symbols
0o(l+ G),0.(1 +G) and 05 (1 4+ G). Then, setting

Go(y,n) = oo(1+ G y,m) = 1,Ge(y,n) =0 (1+G) " Hy,m) — 1,

ﬁa,e'(y, 77) = Ua,e’(l + G)_l(ya 77) - 1a

we can form §(y,n) == x(1)da(y, 1) + X (1) Ger (. 1) = X (Mo, (4, 1)) € Ry (B! x
R"=1) of. Remark 1.9. For G; = Opy(N) we then have (1 4+ G)(1 4+ G1) = 1+ G»
where G € B_1 0 _1( _|_). Then G‘y € Bg ‘7’0’ ‘7( ) for all j, and we can carry out
the asymptotic sum ijo(— ) G‘% in the class of operators 1 + Baldo _1( +) (which
is just a version of the formal Neumann series argument in our operator class) In

other Words we can find a G5 € B_1 0; _1(}R ) such that (1+ Gz)(l + Gg) =14+C for
C e B> (@_l_) Because (1 + Gl)(l + G3) =1+ G for some G € Bg’%o(@j_) we
get (1 + G)(l + G) =14 C. Similar arguments from the left yield a G € BO % O(R_l_)
with (14 G)(l +G)—1¢e B=%0- (@_I_). Then a standard algebraic argument gives

us G = G mod B_w’o?_w(@i). In other words A = 1 + G is as desired. O

Proof of Theorem 2.26. As noted in Remark 2.27 we may content ourselves with
the case p = d = § = 0. The ellipticity of A with respect to (oy(A), 0c(A), oy (A))
allows us to form a symbol p(z,&) = x(§)oy (A) "z, &) + x(z){oe(A) 7 (2, €)
—X(€)ye(A) T (2, €)} € ST (B x R, where (04 (p), 0e(p), 0y,e(p)) = (o (A) Y,
oe(A)7 oy (A)71). We now observe that p(x,&) meets the assumption of Theo-
rem 2.30. In fact, the original symbol a(z, &) belonging to A satisfies these conditions
because the assumed bijectivities just correspond to the ellipticity of A with respect
to (05(A),0c(A), 05 (A)). Hence relation (80) with respect to a(z,£) is fulfiled.
This implies the corresponding relation with respect to p(z,£) because the index el-
ement in 73 K({+}) is just the inverse of that for a(z,&). By construction we have
p(x,&)a(z, &) =1+ r(x,€) for an r(x,€) € ST _1(}R x R™)¢p. This yields

Clg

px,§)F#a(e, &) =1+ 7(z,8) (83)

for an ) € e S7Y _1(}R x B™)ip. A formal Neumann series argument, applied

( g Clg
to 1+ 7 _( ,€) in terms of the Leibniz multiplication # gives us a symbol q(a: &) €
STETHEL x Ry such that (14 §(z,€))#(1 + #(x,€)) = 1 mod S~ (] x R").

Clg

Setting 7(z,€) = (1 + 4(z,€))#p(x, ) from relation (83) we get. jx,€)fa(e, ) =
1mod S~ (]R x R™). Applying Corollary 2.32 to p(x, &) we can generate a by, n)

of the asserted kind, more precisely b(y,n) € RSI’O;O(}R”_l x R"~1). Then the operator
~ R 0
P._Op(b)-l-(O 0)

for R := QTJ: Op,(p), cf. Definition 2.6, has the property AP = I +G for
some g € BO’O’O(}R_I_, Ny, Ny). Since A and P are both elliptic also Z + G is elliptic.
Applying Theorem 2.25 to N = N we can pass to the elliptic operator Ay, (I—I—Q)AJ_\&r

that has the form 1 + G for a G € Bg’oc;lo(@j_). Proposition 2.33 gives us a G €
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B (BY) such that (14+G)(1+G) = 1+C for a €' € B=%=(R} ). It follows that
.AN+./475./4]_V1(1 + G) = 14 C for an element C' € B_OO’O?_OO(@T_:_). This yields

APARL (1 + G An, = AR (14 C) AN, =1+C
for a remainder C € B_OO’O?_OO(@:L_; Ny, Ny). Hence,

Po = PAN. (1 4+ G)An, € B (Rl ; Ny, N_)

cl

is a right parametrix of A. In an analogous manner we can construct a parametrix from
the left; then a standard argument shows that Py is also a left parametrix. In other
words, when we go back to the original orders of Theorem 2.26, we get a parametrix P
by formula (58), where its type is (d — p)T and the types d; and d, of remainders are
an immediate consequence of Theorem 2.18. The Fredholm property of (57) follows
from the fact that the remainders are compact operators in the respective spaces, since
they improve smoothness and weight. This completes the proof of Theorem 2.26. O

3 The global theory

3.1 Boundary value problems on smooth manifolds

The calculus of boundary value problems that we intend to develop in Section 3.2 below
on a manifold with exits to infinity will be a substructure of a corresponding calculus on
a general (not necessarily compact) smooth manifold with smooth boundary. Thisis, in
fact, Boutet de Monvel’s algebra [3] that we employ as the corresponding background.
Concerning details, cf. the monograph of Rempel and Schulze [16] or Schulze [30],
Chapter 4. For future references we want to give a brief description.

Let M be a smooth manifold with smooth boundary dM, choose vector bun-
dles E,F € Vect(M),J~,Jt € Vect(dM), and set v = (F,F;J~,J%). We then
have the space B=°%%(M;wv) of all smoothing operators C§°(M, E) & C§°(OM,J~) —
C®(M,F) & C*(0M,JT) of type 0 that are given by corresponding C*° kernels,
smooth up to boundary (in the corresponding variables on M). Integrations refer
to Riemannian metrics on M and M that we keep fixed in the sequel, further to
Hermitian metrics in the occurring vector bundles. Assume that the Riemannian met-
ric on M induces the product metric of (0M) x [0,1) in a collar neighbourhood of
OM . Incidentally we employ 2M | the double of M, obtained by gluing together two
copies of M along OM by an identification diffeomorphism. On M we have the space
Diﬂj(M; E, F) of all differential operators of order j acting between sections in the
bundles F and F. Then B~°4(M;w), the space of all smoothing operators on M of
type d € N, 1s defined to be the set of all

d .
DI 0
gzgo+zgj( 0 0 )
j=1
for arbitrary Go,...,Gq € B~=%(M;v) and DI € Diﬂj(M; E,F). To introduce the
space of Green operators on M we first consider an open set @ C R~ n = dimM,

and define Ré’d(Q x Rk m; N_, N, ), the space of all Green symbols of order p
and type d, to be the set of all

9(ym) = goly,m) + 395y ) ( %7 8 )
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for g;(y,n) € Ré_j’o(Q x R"=Lk m; N_  N;). Here RgO(Q x Rl k m; N_ Ny) 3
g(y,n) is given by the conditions

g(ya 77) € SZI(Q X Rn_l; Lz(R-l-a Ck) D CN_ aS(@-l-a @n) D ©N+)a

g (5,1) € S4(Q x BP L LRy, O7) @ OV, S(B,, OF) @ C- ),

= (y,t) is the splitting of variables in local coordinates near OM (cf. analogously
Definition 2.8), and k,m, N_ and Ny are the fibre dimensions of E, F,J~ and J*,
respectively. Now Bé’d(M;v) is defined to be the set of all operators of the form
Go + C for arbitrary C € B~°4(M;v) and operators G, that are concentrated in a
collar neighbourhood of 9M and are locally finite sums of operators of the form Op(g)
for certain ¢(y,n) € Ré’d(Q xR"=L k m; N_, N1). The pull-backs refer to charts U —
2 x Ry for coordinate patches U near M and trivialisations of the involved bundles;
“Gy concentrated near 9M” means that for certain functions ¢, ¢ € C°°(M) that equal
1 in a collar neighbourhood of M and 0 outside another collar neighbourhood of d M
we have Gg = M QOM¢, cf. similar notation in (92) below.

Finally, let L% (2M; E F)tr for B, F € Vect(2M) denote the subspace of all A€
LE(2M; E F) (classical “in &-variables” )pseudo differential operators on 2M of order
1 acting between sections of the bundles E F that have the transmission property with
respect to M. We employ the standard Sobolev spaces Hcomp(M, E),H) .(M,E) of
smoothness s € R for bundles E € Vect(M). “comp” and “loc” are understood
in the sense Hi (M, E) = Hip,(2M, E)|a, H, (M, E) = Hj,.(2M, E)|m for any
E € Vect(2M) with E = E|yr. Forevery A € L (2M; E, F)ye and E = Elyr, F = Flar
we can form 1t Aet, where et is the extension by zero from intM to 2M and r* the
restriction from 2M to intM; this gives us continuous operators

vt Aet : HE (M, E) — H'-"(M,F)

comp loc
1
for all s > —3.

Definition 3.1 The space B4 (M;v) for p € Z,d € Nyv = (E,F;J~,J%), is
defined to be the set of all operators

. rtAet 0
A= (0T 0 )+ (54)

for arbitrary A € LA (2M; E, F)tr and G € Bé’d(M;v).

An operator A € B*#%(M;v) induces continuous operators

Hgomp(M’ E) HIZCN(M F)
A: & — @
comp(ﬁM J ) li)cu(aM ‘]+)

for all s > d — % (which entails continuity between C'* sections. In particular, if M is

compact, “comp” and “loc¢” are superfluous, and we get continuous operators

H*(M,E) H*=#(M,F)
A ® — & (85)
H* (M, J") He = (OM, J+).
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The principal symbol structure of A € B#%(M;w) consists of a pair
a(A) = (0y(A),05(A)),

where oy (A), the homogeneous principal interior symbol of order 4, is a bundle ho-
momorphism R

oy (A) = oy (4)
for my : T*M\0 — M, and o5(A), the homogeneous principal boundary symbol of
order p, a bundle homomorphism

T*M\0 ZFZE—>7T,Z}F, (86)

E'® S(Ry) F'e S(Ry)
oa(A) 75 ® — 7 ® (87)
J- JT
for mp : T*(OM)\0 — M. Alternatively, o5(.A) may be regarded as a homomorphism
o H () Pl o HH(R)
oa(A) 7} ® — 7 ® (88)
J- JT

forall s > d— 1, cf. Remark 2.22. Setting symbB*4(M;v) = {o(A) : A € B*4(M;v)}
there is a map

op : symbB*4(M;v) — BM(M;v)
with o o op = id on the symbol space. We have o(A) = 0 = A € B*~L4(M;v); if M
is compact, the operator (85) is compact when its symbol vanishes.

Theorem 3.2 Let M be compact; then A € B*4(M;v),v = (Eo, F;Jo, J1),
and B € BY¢(M;w),w = (E, Eo;J™,Jo), implies AB € BT (M;v o w), for
h = max(v + d,e), vow = (E,F;J~,J%), and we have o(AB) = o(A)o(B) (with
componentwise multiplication). An analogous result holds for general M when we

replace the composition by AM,B for a compactly supported ¢ € C(M) where
o(AMLB) = o(AM,)o(B).

An operator A € B*(M;w) is called elliptic, if both (86), and (87) are iso-
morphisms (the second condition is equivalent to the bijectivity of (88) for all s >
max(p, d) — 1).

Theorem 3.3 Let M be compact. Then the following conditions are equivalent:

(i) A€ B»Y(M;wv) is elliptic,

(i%) the operator (85) is Fredholm for some s = sy > max(u, d) — %

If A is elliptic, then (85) is a Fredholm operator for all s > max(u,d) — %, and there
s a parametriz P € B_“’(d_“)Jr(M;v_l) of A in the sense

PA—-TI€B ™% M;v), AP -7 € B~ "% (M;v,) (89)
Jor i = max(p,d), v, = (E,E;J~,J7),dr = (d — )t v, = (F, F; Jt, Jt).

Remark 3.4 FEllipticity of A € B*Y(M;wv) for non-compact M entails the eris-
tence of a parametriz P € B_“’(d_“)Jr(M;v_l), where (89) is to be replaced by

MyPMuA— M, € B~ (M;v), MyAMyP — M, € B~ (M;v,)

for arbitrary ¢, € C (M) with ¢tp = ¢ (and M, My being the multiplication
operators, containing evident tensor products with the identity maps in the respective
vector bundles).
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3.2 Calculus on manifolds with exits to infinity

In this paper a manifold M with boundary and conical exits to infinity is defined
to be a smooth manifold with smooth boundary containing a submanifold C' that is
diffeomorphic (in the sense of manifolds with boundary) to (1—¢, 0c0) x X with a smooth
compact manifold X with smooth boundary Y, where M\C' is compact. Concerning
the local descriptions we proceed similarly to Section 1.3 above. To simplify the
considerations we assume (without loss of generality) that there is a smooth manifold
2M without boundary (the double of M) where 2M has conical exits to infinity, cf.
Section 1.3, with 2X being the base of the infinite part of 2M that is diffeomorphic
to (1 —e,00) x (2X). Here 2X, the double of X, is obtained from two copies of X,
glued together along the common boundary Y by an identification diffeomorphism to
a smooth closed compact manifold.

To describe the pseudo-differential calculus of boundary value problems on M we
mainly concentrate on C'; the calculus on the “bounded” part of M has been explained
in Section 3.1. If {ﬁj}jILW,N denotes an open covering of 2M of analogous meaning
as (11), we have the subsystem {Uj}j:LH,...,N of “infinite” neighbourhoods. Without
loss of generality we can choose the numeration in such a way that Uj NoM = § for
j=L+1,...,B,U;NdM # @ for j=B+1,... N, foracertain L+1< B < N.
Similarly to Section 1.3 we have charts

Ni:Uj—V;, j=B+1,...,N

where V; = {z € R™ : |2] > 1 — ¢, re7 € V') for certain open sets ‘N/jl cshln=
dim(2M). We may (and will) assume that ﬁj has the form 2U; for an infinite neigh-
bourhood U; on M,U; N OM # @, that is glued together with its counterpart to
U; = 2U; along U; N OM, where x; : U; NOM — V; "R~ and

Xj = Xilo, Uj — V;inBL =V, j=B+1,...,N. (90)

Let U C M be a neighbourhood of M that equals U; for some B+1 < j < N,
and let x : U = V C @j_ be the chart corresponding to (90). We call U a local
admissible neighbourhood and any ¢ € C'*(U) a local admissible cut-off function on M
if ¢ = x™ 3 for some local admissible cut-off function ¢ in @j_ (that is supported in V),
cf. Definition 2.6. Moreover, the above-mentioned infinite part C' = (1 —¢,00) x X of
M allows us to define global admissible neighbourhoods on M, namely sets of the form
(1—¢,00) XY x [0, 5) for some (small) 3 > 0, where Y x [0, 3) denotes a corresponding
collar neighbourhood of ¥ in X. Then a ¢ € C(M) is called a global admissible
cut-off function on M if 0 < ¢ < 1,supp o= C (I — 5,00) x Y x [0,0), ¢= = 1 for
m € (1,00) x Y x [0, %), and p(Am) = ¢(m) for all A > 1,m € (R,o0) x Y x [0, %) for
some R > 1.

Given a vector bundle E € Vect(M) we fix an E € Vect(2M) such that E = E|y.
In Section 1.3 we have defined weighted Sobolev spaces H*¢(2M, E) for s,0 € R. Let
Hy%(M, E) denote the subspace of all u € H*¢(2M, E) with supp v C M. Similarly,
denoting by M_ the negative counterpart of M in 2M, we have Hy¢(M_, E_) for
E_ = E|p_. Let rt be the operator of restriction to intM = M\JM, and set

H%¢(M,E) = {rtu:ue H¢(2M, E)}. (91)
There is then an isomorphism of (91) to the space H*¢(2M, E)/HS;Q(M_,E_) which

gives us a Banach space structure on (91) (in fact, a Hilbert space structure) via
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the quotient topology. Similarly to (12) we introduce the Schwartz space S(M, E) of
sections in F.

Let LY} 6(2M E, F)tr for E,F € Vect(2M) denote the subspace of all A€ LY 6(2M
E F) that have the transmission property with respect to M. Then, if e+ is the
operator of extension by zero from M to 2M, analogously to (4) we form 1+ Aet for
arbitrary Ae Lgfé(QM; E, F)tr and get continuous operators

vt Aet . HY¢(M, E) — H*#¢~%(M, F)

for all s > —% and ¢ € R.

In order to introduce the global space of pseudo-differential boundary value prob-
lems on M we first introduce the smoothing elements of type 0. Let E| F € Vect(M),
J=,Jt € Vect(OM). Recall that all bundles are equipped with Hermitian metrics
(homogeneous of order zero in the axial variable of the conical exits). Moreover, on
M and OM we have fixed Riemannian metrics such that the metric on dM is induced
by that on M. There are then associated measures dm on M and dn on M. Now
B=o0%=(M;v) for v = (E, F; J=,Jt) is defined to be the space of all operators

o O H*¢(M, E) S(M, F)
C = ( 011 012 ) . D N D
e H*e(OM, J™) S(OM, Jt)

5,0 € R such that Cj; are integral operators with kernels ¢;;, where ¢11(m,m’) €
S(M F)©rS(M, E*), c1a(m,n') € S(M, F)©rS(OM, (J7)*), ca1(n,m’') € S(OM, JT)
@rS(M, E*), cas(n,n') € S(OM, JT)©,S(OM, (J~)*) and

(Cruw)(m) = /M<cu<m,m’>,u<m'>>Edm'

with (.,.)g denoting the pointwise pairing in the fibers of E| etc. Let Diﬂ"gé(M; E E)
be the space of all differential operators of order j on M (acting on sections of the

bundles E) that belong to L‘Qé(M; E, E) (cf., in particular, formula (40)). Then the
space B4~ (M ;v) of all smoothing operators of type d € N is defined to be the

set of all
d .
D70
c=coey e (1)
j=1

for arbitrary C; € B0~ (M;v) and D’ € Diﬂ"gfo(M; EE).
Next we introduce the space of classical Green operators on M, that is an analogue
B”’d;é( n'N_,N+), cf. Definition 2.14. First, for arbitrary k,m € N there is an

evident block-matrix version Bé B (]RT_IL_; k,m; N_, Ni). Every operator Q in this space
is continuous in the sense

He(RY, CF) He—mie=d(R% ™)
Q: & — D
Hee(R?=1 CN-) He—#ie=8(Rn—1 CN+)

for s > d— % If s¢ and ¥ are local admissible cut-off functions in @j_, we have

M, QM € BLE (1 k,m; N2, Ny), (92)
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for every @ € Bé’c(lf (@i;k,m;N_,N+), where M,, is the operator of multiplica-

tion by diag(sc ® idgm, #|gn-1 @ idvy ) and similarly My. Given bundles F, F' €
Vect(M), J=,JT € Vect(9M), an operator

H®¢(M, F) Hes=He=3(M, F)
G: ® — ® (93)
H*2(OM, J ™) He=He=9(9M, J+)

is said to be supported in a global admissible neighbourhood of M if there are global
admissible cut-off functions ¢, %= on M such that G = M, _GMy_. Similarly, we
say that a @ € Bé’yi;ﬁ (@j_, k,m; N_, N;) is supported in a local admissible set in @j_
if Q satisfies a relation Q@ = M, QM for certain local admissible cut-off functions
s and ¥. If x : U — V is one of the charts (90), we have an associated chart
X' :UNOM = VNR" ! and there are corresponding trivialisations of the bundles
E,F and J~,J%, respectively. x gives rise to a push-forward of operators

Hee(Rn %) He=Hie=d(Rn Cm)
X MG My - & — ® ,
He(R"=1 CN-) [s-wie=d(Rn=1 CN+)

where k,m and N_, N, are the fibre dimensions of the bundles F, F and J=, 6 J¥,
respectively, and ¢, 9 local admissible cut-off functions supported by U.
Now Bé’i}é(M;v) for v = (E, F;J~,J7T) is defined to be the set of all operators

G =Go+G1 +C, where C € B~°%7°°(M;v) and
(i) Gy is supported in Upyi1<;<nUj, cf. (90), where

Xj- Mo, GoMy, € BE S (B k,m; N_, Ny)

for arbitrary local admissible cut-off functions ¢; and ¢; on M supported in
U, B+41<j<N.

(i1) G is an operator (93) that is supported in a collar neighbourhood of the boundary
of the finite part M, i.e., 9(M\C), and it is a Green operator of order p and
type d in Boutet de Monvel’s algebra on M\C'.
It can be easily be proved that this is a correct definition; in fact, the operators in the
space Bé’yi;ﬁ (@j_; k,m; N_  N;), supported in an admissible set in @j_, are invariant
under the transition maps generated by the charts and corresponding trivialisations of
the involved bundles.

Definition 3.5 The space Bgl’d;é(M; v) forpceZ,deN,§eR andv = (E, F;J",

JY), E,F € Vect(M), J~,JT € Vect(IM), is defined to be the set of all operators
+ Jeot
A= (0T 0 )0 (049

for arbitrary A € Lgfé(QM; E, F)tr (with E|M =F, F|M =F)and G € Bé’if(M;v).

Theorem 3.6 FEvery operator A € Bgl’d;é(M; v), v = (E,F;J~,J%), induces con-
tinuous operators

H*¢(M, E) He=#e=3(M, F)
A & — &
H*2(OM, J ™) He=He=9(9M, J+)
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for all real s > d — % and all o € R. In particular, A is also continuous in the sense

S(M, E) S(M, F)
A & — & )
S(OM, J-) S(OM, J+)

This result is an easy consequence of Theorem 2.20 and Remark 2.17.

Similarly to the global principal symbol structure of operators on a closed manifold
with exit to infinity, cf. Section 1.3, we now introduce global principal symbols for
an operator A € Bgl’d;é(M;v), v = (E,F;J~,J%) for E,F € Vect(M),J™,J*t €
Vect(0M). The principal interior symbols only depend on A in (94). According to
formulas (13), (15), (16), we have (oy, ([I), O'e(A), 0'1#76(14)) for any A € Lgfé(QM; E, F),
where

0'¢(f~1) : FZE — FZF, Ty T (2M)\0 — 2M,
O'e(A) : WZE — WZF, me 1 I (2M)|2x)n, — (2x)2,
oy e(A) : ﬂ—ZJ,eE — 71':;761{7, Tye o (T*(2M)\0)|(2x)n. —> (2X)7,.
Restricting this to M (and taking for the projections the same notation) we get

oy (A) 1= oy (A)

oo P Ty B — my Fyomy s TMN\0 — M, (95)

oe(A) := 0(A)

T M|y Mo E— P, me i T M|xa — X2, (96)

oy (A) = U¢76(A)|(T*M\0)|xgo cmy B F omye (TTMN\0)|xy — X2

(97)
Concerning the principal boundary symbol components we first have
E'® S(Ry) F'e S(Ry)
oo(A) & — 7 P (98)
J- JT

for my @ T*(OM)\0 — IM, according to the inclusion Bgl’d;é(M;v) C BHY(M;v),
E'= Elom, F' = Flom, cf. Section 3.1. Moreover, the ¢’— and (9, e’)-components of
(44) (in the corresponding (m x k) block matrix-valued version) have a simple invariant
meaning with respect to the transition maps from the local representations of 4 on
the infinite part of M. The system of the local boundary (¢/— and (9,¢’)—) symbols
in the sense of (44) gives us bundle homomorphisms

E'® S(Ry) F'o S(Ry)
oer(A) 1 75 ) — T ) (99)
J~ JT

for mer : T*(OM)|ys — Y2 and

E @ S(Ry) F' o S(Ry)
To,0(A) - 75 o ® — T e & (100)
J- J+

for mg o+ (T*(OM)\O)|yr — Y. Note that S(R; ) may be replaced by Sobolev spaces
on the half-axis for s > d — %, cf. analogously Section 3.1. Let

7 (A) = (04 (A),0e(A), 0y e(A); 78 (A), 0er (A), 09 er(A)) (101)
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for A € Bgl’d;é(M;v), and set symngl’d;é(M;v) ={o(Ad) : A€ Bgl’d;é(M;v)}. We
then have a direct generalisation of Remark 2.16; the obvious details are left to the
reader.

Note that there are natural compatibility properties between the components of

o(A).

Theorem 3.7 A € Bgl’d;é(M;v), v=(Ey, F;Jo,J*t), and B € B, (M;w), w =
(E, Ey; J7, Jy), implies AB € BQ*””T;“Q(M; vow) for h = max(v+d,e) and vow =
(E,F;J~,J%), and we have o(AB) = o(A)o(B) (with componentwise multiplication).

Theorem 3.7 1s the global version of Theorem 2.18 and, in fact, a direct consequence
of this local composition result.

3.3 Ellipticity, parametrices and Fredholm property

Definition 3.8 An operator A € Bgl’d;é(M;v) for v = (E,F;J,J%) is called
elliptic of order (u,d) if all bundle homomorphisms (95), (96), (97), (98), (99), (100)

are 1somorphisms.

Similarly to Remark 2.22, in the conditions for (98), (99), (100) we may replace

S(R;) by H*(R,) and H*~#(R), respectivly, for s > max(yu,d) — %

Definition 3.9 Given A € Bgl’d;é(M;v) forv = (E,F;J~,J%) an operator P €
B;“’e;_é(M;v_l) Jor vl = (F, E;J%,J7) and some e € N is called a parametriz of
A if

PA-TeB >4~ (M;v), AP —I€ B> ~%(M;v,)

for certain d;,d, € N, and v, = (E, E;J~,J7),v, = (F, F; Jt Jt).

Note that the Theorem 3.7 entails o(A)~! = ¢(P) (with componentwise inversion)
where P is a parametrix of A.

Theorem 3.10 Let A € Bgl’d;é(M; v) be elliptic. Then

H*¢(M, E) He=#e=3(M, F)
A ® — ® (102)
H*2(OM, J ™) He=He=9(9M, J+)

is a Fredholm operator for every s > max(p,d) — % and every o € R, and A has a

parametriz P € B;“’(d_“)Jr;_é(M;v_l), where d; = max(u,d) and d, = (d — p)* (cf.
the notation in Definition 3.9).

The proof of this result can be given similarly to Theorem 2.26. Alternatively, the
methods of Section 2.6 can also be used to first construct ¢(A)~! and to form P :=
op(c(A)~Y) € B_“’(d_“)Jr?_é(M;v_l). Then we get PA -1 € B~Lo~1(M;v;) for

some e, and we get P itself by a formal Neumann series argument.

Remark 3.11 Let A € Bgl’d;é(M;v) be elliptic. Then we have elliptic reqularity
of solutions in the following sense. Au = f € H*=He=(M, F) @ H*~#e=3(dM, Jt)
for any s > max(u, d) — % and g € R and v € H" (M, E)® H" > (0M,J7), r >

max(pt, d) — %, implies w € H¢(M, F) & H*¢(OM, J~).
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In fact, we can argue in a standard manner. Composing Au = f from the left by P we
get PAu = (14+ G)u € H¢(M,E)&® H*¢(OM,J~) and Gu € S(M,E) & S(OM,J™)

which yields the assertion.

Remark 3.12 From Remark 3.11 we easily obtain that the kernel of A is a finite-
dimensional subspace of S(M, E) & S(OM,J~) (and as such independent of s and g).
Moreover, it can easily be shown that there is a finite-dimensional subspace N_ C
S(M,F) & S(OM,JT) such that imA + N_ = H*=He=5(M F) & H*~#e=°(M, J+)
for all s, where imA means the image in the sense of (102). Thus indA (the index of
(102)) is independent of s > max(p, d) — % and of p € R.

Remark 3.13 Let A; € Bgl’d;é(M;vi), v, = (E,F;J7,JF),i = 1,2, be elliptic
operators where Ay has the same upper left corner as As; then there is an analogue
of Agranovich-Dynin formula for the indices indA;, ¢ = 1,2 : There exists an elliptic

operator B € Lgfo(ﬁM; JF @ Jr,Jf @ J7) such that
indA; —indA; = indB.

The idea of the proof is completely analogous to the corresponding result for a
compact, smooth manifold with boundary, cf. Rempel and Schulze [16], Section 3.2.1.3.
The operator B can be evaluated explicitely by applying reductions of orders and
weights (cf., also Theorem 4.13 below) and using a parametrix of As.

3.4 Construction of global elliptic boundary conditions

An essential point in the analysis of elliptic boundary value problems is the question
whether an element

Ae B (M; B, F) (103)

cl

that is elliptic with respect to the interior symbol tuple (oy(A), 0c(A4), 0y (A4)) can
be regarded as the upper left corner of an operator

A€ By (M;v) for v=(E, F;J=,J%) (104)

for a suitable choice of bundles J~, J* € Vect(0M) and additional entries of the block
matrix, such that A is elliptic in the sense of Definition 3.8. We want to give the general
answer and by this extend the well-known Atiyah-Bott condition from [1]. Atiyah
and Bott formulated a topological obstruction for the existence of Shapiro-Lopatinskij
elliptic boundary conditions for elliptic differential operators on a compact smooth
manifold (concerning the corresponding conditions for pseudo-differential boundary
value problems cf. Boutet de Monvel [3]). To formulate the result in our situation,
without loss of generality we consider the case y = d = § = 0. The general case
is then a consequence of a simple reduction of orders, types and weights, applying
Theorem 4.13 and Remark 4.14 below. The constructions for Theorem 2.30 above can
be generalised to a given (oy, 0c, 0y )-elliptic operator A € BSI’O;O(M; E| F) as follows.
Starting point are the boundary symbols

aa(A)(y,n) for (y,n) € T*(OM)\O0,
oer(A)(y,m) for (y,m) € T"(OM)|vy,

co.e(A)(y,n) for (y,m) € (T"(OM)\0)|yz,
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as operator families
By © L*(Ry) — Fy @ L*(Ry),

(in contrast to (98)-(100) we now prefer L?(Ry) instead of S(R,), according to the
considerations in Section 2.6). For points y € M belonging to the infinite exit to
infinity 2 (1 — ¢, 00) X Y it makes sense to talk about |y| > R (this simply means
that the associated axial variable is larger than R). First there is an obvious analogue
of Proposition 2.28 that refers to points (y,n) € T*(0M) for y € (1 — £, 0) X Y.

Proposition 3.14 For every € > 0 there exists an R = R. > 0 such that
llea(A)(y,m) — oo, (A) Y. Mlcimjorz®y) FloLa®y) <€ (105)
for all |y| > R and n # 0,
llea(A) (v, n) — o (A) (Y, Mle(pyor2 @y, Flera®y) <€ (106)
for all |y| > R and |n| > R,
lloe (A)(y,m) — oo, (A) (W, e or2®y), Fror2my)) <€ (107)
forall ly| € (1 —e,00) x Yo and |n| > R.
Corollary 3.15 There is an R = R. > 0 such that
lloa(A)(y,n) — e (A)(y, 77)||£(E;®L2(]R+),F1’1®L2(]R+)) <e¢
for all [y| = || = k.
For € > 0 we set
T. ={(y,n) € T"(OM) : |yl = In| = R}, De =Tz x[0,1]

and
7 ={(y,n) € T*(OM) : y € OM\{|y| > R + j},|nl = R.},
HI ={(y,n) € T*(0M) : |y| = Re,|n| < R + j}

for j = 0,1,00. Moreover, let I = (Z{ Uy HI) Uy D,/ ~, with Uy being the disjoint
union and U, the disjoint union combined with the projection to the quotient space
that is given by natural identifications 7. N ZJ = T, x {0}, T. N HI = T, x {1}. Write
Z. =22 H. = H? L. =12 Furthermore, for 0 < 7 < 1 we set D, , := T. x [0, 7]
and form L. - := Z. Ug H. Uy D; -, 0 < 7 < 1, where U is the disjoint union combined
with the projection from the identification T, N Z, = T, x {0}, T: N H, = T, x {r}.
We now introduce an operator function F'(m), m € L., as follows:

F(y,m) = oo(A)(y,n)  for  m=(yn) € Z, (108)

F(y,m) = o (A)(y,m)  for  m=(y,n) € H, (109)
Fy,n,0) =3d0a(A)(y,n) + (1 = d)oe (A)(y,n)  for  m=(y,nd) € D.. (110)

We then have an operator familiy

F(m): By © L*(Ry) — Fy @ L*(Ry)
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continuously depending on m € IL,, and F' is Fredholm operator-valued, provided € > 0
is sufficiently small. This gives us an index element indy, F' € K(L.). For analogous
reasons as above in connection with (70) we form

indg, {75(A)(y, n), oo (A)(y, 1)} € K(B:), (111)

B. :=1L. o C T*(0M). The canonical projection T*(0M) — 0M induces a projection
m. : B, — B. where
B. :=0M\{y € OM :|y| > R.}.

Given an arbitrary (oy, 0e, 0y o)-elliptic operator (103) we set
Ag = RPTHSTIARY (112)

for any sp > max(p, d)—%, where R € Bf:l”_“’O;O(M; F,F)and R;*° € BC_ISD’O;O(M;
E, E) are order reducing operators in the sence of Remark 4.14, and S% a weight
reducing factor on M of a similar meaning as that in Remark 2.19. Then we have
Ag € BSI’O;O(M; E,F), and A is also (0y, 0e, 0y o)-¢lliptic. In the sequel the choice of
the specific order and weight reducing factors is unessential.

The following theorem is an analogue of the Atiyah-Bott condition, formulated in [1]
for the case of differential operators on a smooth compact manifold with boundary, and
established by Boutet de Monvel [3] for pseudo-differential boundary value problems
with the transmission property.

Theorem 3.16 Let M be a smooth manifold with boundary and conical exits to
infinity, E,F € Vect(M), and let A € B(’fl’d;é(M;E,F) be a (oy, 0, 0y c)-elliptic
operator. Then there exists an elliptic operator (104) having A as the upper left corner
if and only if the operator (112) satisfies the condition

ind]BE{O'a(Ao),O'e/(Ao)} € F:[((Bg), (113)

for a (sufficiently small) € >0, m; : B. — B..
If (113) holds, for any choice of the additional bundles J~,JT € Vect(OM) in the
sense of (104) we have

indg, {75(Ao), oer(A0)} = 2 ([JF]5.] = [J75.]) - (114)

Proof. First note that the criterion of Theorem 3.16 does not depend on the choice of
order reductions. Moreover, such reductions allow us to pass from Ay € BSI’O;O(M; EF)
and an associated Ay € BSI’O;O(M; v) with Ag as upper left corner to the corresponding
operators A € Béfl’d;é (M;E,F)and A € Bgl’d;é(M; v). Thus, without loss of generality
we assume g = d = § = 0 and talk about A and A, respectively. Clearly, the existence
of an elliptic A € BSI’O;O(M; v),v=(E F;J,J%), toagiven ((oy, oe, 0y .)-) elliptic

Ae BSI’O;O(M; E, F) implies
indp, {05(A), 0(A)} = 7 {[JF]B.] - [V |51}, (115)

because the role of the bundles J~, J* in the components of (55(A), ger(A), 75 0/ (A))
is just that they fill up the Fredholm families (05 (A), 0/ (A), 05 e/ (A)) to block matrices
of isomorphisms; combining this with Corollary 3.15 we get the desired index relation.
Conversely assume that (115) holds. Then the construction of an elliptic operator
A in terms of A takes place on the level of boundary symbols. In other words, the

45



Fredholm families have to be first completed to block matrices of isomorphisms. This
can be done when we also include (110) into the construction, in order to deal with
continuous Fredholm families, and then drop the “superfluous” part on D.. Thus the
first step to find A is to fill up F(m), m € L., to a family of isomorphisms

. B oL’(By)  Fyo LRy
C(Fm) Km) ) D v
“m)‘(t(m) Q(m)) A T

m € IL.. Here we employ the fact that the additional finite-dimensional vector spaces
corresponding to the entries F(m);; for ¢ + j > 1 are fibres in some bundles J~ and
J* on B., using the hypothesis on F(m), further local representations with respect to
y € B and the invariance under the transition maps. Similarly to the local theory we
find F(m) (locally) in form of D®%(Ry;k, k; N_, Ny)-valued families (here, k is the
fibre dimension both of E and F, and Ny are the fibre dimensions J*, and we employ
a corresponding generalisation of the notation of Section 2.1 to k x k-matrices in the
upper left corners), smoothly dependent on (y,7) on Z. or H.. In this construction
€ > 0 1s chosen sufficiently small, i.e., R = R, large enough. The construction so
far gives us o5(A)|z. and oo/ (A)|g,. Extending o5(A)|z. (by xi-homogeneity) for all
n # 0 and oo/ (A)| g, (by usual homogeneity) for all |y| > R. we get 05(A) and oo/ (A)
everywhere. Next we form g (A) = e (05(A)) = 05(0er(A)). Thus we have an
elliptic symbol tuple o(A) 1= (0y(A), 0e(A), 0y .(A);0a(A), 0er(A), 05 e/ (A)), where
the first three components equal the given ones, namely (oy(A), oc(A), 0y (A)). By

,0;0

virtue of o(A) € symb[)’gl (M;v) we can apply an operator convention

op: symngl’O;O(M; v) — BSI’O;O(M; v)
to get A itself. O

Remark 3.17 As is well-known for compact smooth manifolds with boundary there
are in general elliptic differential operators that violate the Atiyah-Bott condition. An
example is the Cauchy-Riemann operator 0, in a disk in the complex plane. One
may ask what happens for 9., say, in a half-plane {z € C : Imz > 0}. In this case
the Atiyah-Bott condition is, of course, violated, too, but the operator 0, is worse.
In fact, there is no constant ¢ € C such that ¢ + 9, is (0y, 0e, 0y ) -elliptic, such
that also for that reason there are no global elliptic operators A in the half-plane with

oyp(A) = 0y (9:).

4 Parameter-dependent operators and applications

4.1 Basic observations

As noted in the beginning the theory of pseudo-differential boundary value problems
on a manifold with exits is motivated by a number of interesting applications. In this
connection boundary value problems appear as parameter-dependent operator families,
where parameters A € R are involved like additional covariables in the symbols. All
essential notions and results have reasonable analogues in the parameter-dependent
case, though there are some specific new aspects. The parameter-dependent ellipticity
that we formulate below in also of interest for the (non-parameter-dependent) algebras
themselves, insofar, as we shall see, they provide a tool to construct order reducing
elements within the algebras in a transparent way.
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First we have a direct analogue of the symbol classes with the transmission property
SE(Q x Ry x Rg‘;l)tr, cf. Section 1.2, where £ is to be replaced by (£, A). Concerning
symbol estimates, the parameter-dependent case is not a new situation; in estimate
(1) we admitted independent dimensions of #— and £—variables, anyway. Similarly,
we can talk about weighted symbol classes S#9 (R? x jol), where £ in the estimates
(7) is replaced by (£, A). The material of Section 1.3 on weighted symbols that are
classical in  and & has an evident parameter-dependent analogue, in other words, we
have the symbol classes

SHO(RE x RETH (116)

clexe

including the (A-dependent) principal symbols

O'(Cl) = (0-1# (a)(x,&’, /\)’ Ue(a)($’€’ /\)’ 0'¢7e(a)(l‘,€, /\))

for all a(z, &, A) belonging to (116), with oy (a)(x,&, X) being given on R™ x (R"+\0),
oe(a)(z,&,A) on (R™\0) x R and oy (a)(z,&,A) on (R™\0) x (R*H\0). We set
Lgl’é(R”;]Rl) ={O0p,(a)(A) : a(x,&,N) € Séll;j,x;z (R" x R"*)} where Op, is a bijection
between the parameter-dependent symbol and operator spaces for all y,d € R. Then,
in particular,

L—oo;—oo(Rn;Rl) — S(Rl’L—oo;—oo(Rn))’

where L7°%7°°(R") is identified with S(R" x R").

If M is a manifold with exits to infinity in the sense of Section 1.3, we also have
the global spaces of (classical) parameter-dependent operators Lgfé(M; E, F;RY for
E,F € Vect(M). (Clearly, there is also the non-classical context, but we want to em-
ploy homogeneous principal symbols; thus we content ourselves with the classical case).
The parameter-dependent homogeneous principal symbols for A € Lgfé(M; E, F;RY
are bundle homomorphisms

oy(A) T E — L F, my (T°M x RY\0 — M, (117)
Oo(A): mE — i F, me: T"M|x., x RN — X, (118)
oy e(A) 1wy B —my JF, omy e ((T7M x RN |x.. — Xoo, (119)

here, 0 means (£, ) = 0.

Notice that A € Lgfé(M; E, F;R') implies A(X\g) € Lgfé(M; E, F) for every fixed
Ao € RL Clearly, the associated principal symbols oy (A(Ao)), oy «(A(Xo)) do not
depend on Ag. In this connection we also call (117), (118) and (119) the parameter-
dependent principal symbols of A(A). Every A(X) € Lgfé(M; E, F;RY) gives tise to
families of continuous operators

AN) - HY¢(M,E) — H*~"¢ (M, F) (120)
for all s, 0 € R. Let v > p and set

(M- for v > 0,

oW ={ Wt 20 (121)

We then have the following result:
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Theorem 4.1 Let A(\) € Lgfé(M; E, F;RY be regarded as a family of continuous
operators

AN HS(M, E) — H*7V¢ (M, F)

for every v > p. Then there is a constant m > 0 such that the operator norm fulfils
the estimate

||A(/\)||£(HS;9(M,E),HS—W9—5(M,F)) < mbu,l/(/\) (122)
for all X € R

We have no explicit reference for this result, though the proof is not really difficult; so
the details are left to the reader.

An operator A(A) € Lgfé(M;E,F;}Rl) is called parameter-dependent elliptic if
(117), (118) and (119) are isomorphisms.

Theorem 4.2 Let A(\) € Lgfé(M; E, F;RY) be parameter-dependent elliptic. Then
there is a parameter-dependent parametriz P(\) € L;“;_é(M; F, E;RY, e,

PNAN) =T € L™7°(M; E,E;R"), ANP(\) —1€ L7 (M;F, F;R.

Moreover, there is a C' > 0 such that (120) are isomorphisms for all |A| > C' and all
s,0 € R.

The proof of the first part of the theorem 1s straightforward, the second assertion is a
direct consequence.

Next let M be a smooth manifold with smooth boundary, not necessarily compact.
There is then a direct parameter-dependent analogue of the class of pseudo-differential
boundary value problems B#%(M;wv), cf. Definition 3.1, namely

B (M;v;RY. (123)

To define (123) we simply have to replace the ingredients of (84) by the correspond-
ing parameter-dependent versions r"’fl(/\)e"' and G(A), respectively. Here, 121(/\) €
LE(2M; E,F: RY)¢, with obvious meaning of notation (recall that “cl” here only means
“classical” in the covariables, though M may be non-compact) and G(\) € Bé’d(M; v;
RY), also being defined along the lines of the class without parameters (all symbols
simply contain A as extra covariable, i.e., (£, A) instead of & in the interior and (7, A)
instead of 7 near the boundary), and the parameter-dependent smoothing operators
are given by

B~ (M v RY) = S(R!, B~°(M; ), (124)

where B=°>4(M;v) is equipped with its standard Fréchet topology.
For A € B*4(M;wv;R') we have parameter-dependent homogeneous principal sym-
bols, namely

oy(A) T B — whF, my (T M x RNY\0 — M, (125)

co(A) : ThE — 13 F, 7o (T*(0M) x RH\0 — 9M. (126)

A € BH4(M;v;RY) implies A(Xo) € B*4(M;wv) for every fixed Ay € R/, and we
call (125), (126) the parameter-dependent principal symbols of A(A) if we want to
distinguish them from the usual ones of A(Ag) that are independent of Ag.

An element A € B*4(M;v;R!) is called parameter-dependent elliptic if (125),
(126) are isomorphisms.
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Theorem 4.3 Let A € B44(M;v;RY) be parameter-dependent elliptic. Then there
1s a parameter-dependent parametriz P € B_Oo’(d_“)Jr(M;v_l;Rl) m a similar sense
as in Remark 3.4; here, the remainders are smoothing in the sense of (124).

The proof 1s similar to that of Theorem 3.10 above.

Theorem 4.4 Let M be a compact smooth manifold with boundary, and let A €
B4 (M;v;RY) be parameter-dependent elliptic. Then there is a C' > 0 such that

H* (M, E) Ho=#(M, F)
A(A) - G — &
HS(OM,J™) HS=H(OM, JT)

are isomorphisms for all |A\| > C and all s > max(u,d) — %

Theorem 4.4 is a direct corollary of Theorem 4.3.

Remark 4.5 In the cases that we discussed so far in the parameter-dependent set-
up (i.e., “closed” manifolds with exits to infinity or smooth compact manifolds with
boundary), where elliptic operators induce isomorphisms between the Sobolev spaces
Jor large |\|, we can easily conclude that the inverse maps belong A-wise to the corre-
sponding algebras in the non-parameter-dependent sense (as such they are reductions
of orders in the algebras). It suffices to observe that when 1 + {smoothing operator}
mn one of our algebras is invertible, the inverse is of analogous structure and can be
composed with the parametriz. This can even be done in the parameter-dependent
framework for large |A|, such that, in fact, the inverses for large |A| are also in the
corresponding parameter-dependendent class.

4.2 Boundary value problems for the case with exits to infinity

In the preceding section we extended some “standard” pseudo-differential algebras to
the parameter-dependent variant, namely the algebra on a “closed” smooth manifold
M with (conical) exits to infinity and the algebra of boundary value problems with
the transmission property on a smooth manifold M with boundary (compact or non-
compact). Now we formulate the calculus on a smooth manifold M with boundary
and (conical) exits to infinity. In other words, we extend the material of Sections 2.2,
2.3, 2.4, 2.5, 2.6, 3.2 and 3.3 to the parameter-dependent case. This is to a large
extent straightforward; so we content ourselves with the basic definitions and crucial
points. Let us consider the parameter-dependent variant of symbol and operator spaces
of Section 1.4 that is an operator-valued generalisation of the corresponding scalar
symbols and operator spaces, respectively, as they are studied in Section 1.3. Similarly
to the remarks in the beginning of the preceding section the essential constructions
for the operator-valued symbols with parameters are practically the same as those
without parameters. In particular, we have the parameter-dependent spaces of symbols

Séic;f) (R x R E, E) = Sélc;lé) (RIxR%E, E; ') based on strongly continuous groups

of isomorphisms {#; },;er, on E, {k-},ex, on E, and the parameter-dependent spaces
of pseudo-differential operators Lfc;f) (R E, E; R') or Lfc;f)(M; E.E; RY). In the latter
operator space M is, of course, a “closed” manifold with conical exits to infinity. Let
us examine the behaviour of the operator norm with respect to the parameter A. In
the present situation the corresponding analogues of estimates (122) refer to global

weighted Sobolev spaces
W*e(M, E) (127)
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(on a closed manifold M with conical exits to infinity) that are defined as subspaces of
Wi (M, E) locally modelled by (y)~¢W?*(RY, E)|r for ¢ = dimM and suitable open
subsets T' C R? that are conical in the large (recall that the global weighted spaces
H#2(M) in Section 1.3 have been introduced by a similar scheme). Recall that for
strongly continuous groups of isomorphisms {«; },er, on E and {£; };er, on E there
are constants K and K, respectively, such that

e llecm) < e(rV, [lille s < &n)F
for all 7 € R and certain constants ¢,¢ > 0; (r) = (14 72)2.

Theorem 4.6 Let A(A) € Lfc;f)(M; E, E;}Rl) be regarded as a family of continuous
operators

AN : WH(M,E) — W™V (M, E)

for some v > pu. Then there is a constant m > 0 such that the operator norm fulfils
the estimate

A 2w se (a1, By we-vie=s (a1, B)) < M0y k4 waic+ i (V)
for all X € R!, cf. (121).

For the case of compact M (and spaces W*(M, E) = W*°(M, E)) a similar theo-
rem is proved in Behm [2]. This extends to the non-compact case with conical exits and
weighted spaces in a similar manner as in the scalar situation; for the corresponding
technique, cf. Dorschfeldt, Grieme, and Schulze [5] and Seiler [32].

Let us now return to the case of a smooth manifold M with boundary and conical
exits to infinity. First, there is the space

B (M) 1= S(R B0 (M) (128)

for v = (E,F;J~,J*") of parameter-dependent smoothing operators on M, using
B~=°:4=°°(M; v) in its canonical Fréchet topology.
Another simple ingredient of the class

B4 (M 0; RY) (129)
that will be defined below is the space of all operator families r"’fl(/\)e"', where
A(N) € LY (2M; B, F;RY,.. (130)

Here, “cl” means classical in covariables and variables in the local representations
on conical subsets of M; the transmission property including parameters with re-
spect to M has been defined in Section 4.1; the interpretation of the weight § at
infinity is the same as in Section 1.3. Furthermore, we have a direct analogue of
Bgl’d;é (@j_, k,m; N_, Ny), cf. the m x k block matrix-version of Definition 2.14 in the
parameter-dependent case, namely

Bgl’d;é (@j_, k,m; N_, Ny RY.

An inspection of all ingredients shows that (except for P and C in equality (38) that
we already defined above) the only new point is to replace the amplitude function
a(y,n) in (38) by a(y,n, A) from the space Rgl’d;é (R~ x R4k m; N_ | N,), the
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parameter-dependent m x k-block matrix version of the corresponding space in Defini-
tion 2.13. Finally, we get (129) by a straightforward generalisation of the constructions
for Definition 3.5. In fact, only the above-mentioned ingredients are involved, except
for evident invariance properties (under transition maps) of corresponding subspaces
of parameter-dependent Green operators and localisation by admissible cut-off func-
tions (those are the same as for the case without parameters). Summing up we have
introduced all data of the following definition.

Definition 4.7 The space B”’d;é(M;v;}Rl) for p € Z,d € NJ§ € R and v =

cl

(E,F;J~,J7%) is defined to be the set of all operator families

A(N) = ( r+14gk)e+ 8 ) a0, (131)

A € RY for arbitrary fl(/\) € Lgfé(QM;E,F;Rl)tr (with E|M = E,F|M = F) and
G(\) € Bé’if(M;v;Rl).

Remark 4.8 By definition we have Bgl’d;é(M;v;Rl) C BH4(M;v;RY) where the
right hand side is understood in the sense of (123).

Applying the definition of global parameter-dependent symbols (117), (118), (119)
to A on 2M and restricting them to M (similarly to (95),(96),(97)) we get the parameter-
dependent principal interior symbols

oy(A) 1w E — ahF, my o (T°M x RO\0 — M, (132)
oe(A): miE — miF, we i T*M|xa x RN — X1, (133)
oy e(A) 1wy B —my JF, omy e ((T7M x }Rl)\O)b(Q0 — X0 (134)

A direct generalisation of (98), (99), (100) to the parameter-dependent case gives us
the parameter-dependent principal boundary symbols

E'® S(Ry) F'o S(Ry)
oa(A) 7} ® — 7 ® (135)
J~ Jt

for mp : (T*(OM) x RH\O — OM,

E'® S(Ry) F'o S(Ry)
oo (A) 1wk & — & (136)
J~ Jt

for mer : T*(OM)|ys x R - Y2 and

E' ©S(Ey) F' o S(Ey)
7,01 (A) 1 75 o P — T e P (137)
J- J+

for my e+ ((T7(OM) x BH\O)|ys — YZ. Further explanation to the latter bundle
homomorphisms is unnecessery, because the only novelty are the additional covariables
A eR
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Remark 4.9 A ¢ Bgl’d;é(M; v; RY) implies A(No) € Bgl’d(M; v) for every fired Ay €
R!, and the symbols oy (A(No)), 0y e(A(Xo)), 05(A(No)), 7o e (A(Xo)) do not depend
on Ag. If necessary we point out that (132),(133),(134), (135), (136), (137) are the
parameter-dependent principal symbols of A(X).

Remark 4.10 There is an obvious analogue of the composition result of Theo-
rem 3.7 for the parameter-dependent case, wncluding the symbol rule, where in the
present case o(A) is the tuple of parameter-dependent principal symbols (132)-(137),
similarly to (101).

Definition 4.11 An operator A € Bgl’d;é(M;v;}Rl) is called parameter-dependent
elliptic if all principal symbol homomorphisms (132)-(137) are isomorphisms. An op-

erator P(A) € Bc_lu’e;_é(M;v_l;Rl) for some e € N s called a parameter-dependent
parametriz if

PAAN) =T € B~ =(M;v;RY, ANP\) = € B4~ (M;v,; R
for certain d;,d, € N, and v, = (E, E;J~,J7),v, = (F, F; Jt Jt).
Theorem 4.12 Let M be a smooth manifold with boundary and (conical) exits to

infinity, and A(X) € Bgl’d;é(M; v;RY, v = (B, F;J,J%), be parameter-dependent el-

(de )t -
liptic. Then there exists a parameter-dependent parametriz P(\) € Bd“’(d A 6(M;
v~ L RY), where the types in the remainders are d; = max(y,d), d, = (d — ). More-
over,

H%¢(M, E) He=we=d (M F)
AN - ® — @ (138)
H*e(9M, J™) He=1e=5(9M, J+)

is a family of Fredholm operators of index 0 for every s > max(u, d) — %, and there 1s
a constant C' > 0 such that (138) are isomorphisms for all |\| > C.

The basic idea of proving results of this type has been briefly discussed in Remark 4.5
above. Also in the present situation of Theorem 4.12 we first construct a parameter-
dependent parametrix P(A) by inverting the parameter-dependent principal symbol
of A(A) and get P(M)AN) —Z = CG(N), ANP(N) — T = C-(N), with smoothing op-
erators in Boutet de Monvel’s algebra. By virtue of (128) it is fairly obvious that
7 4 {smoothing operator} is invertible in the same class, such that it can be composed

with P()).

Theorem 4.13 Let M be a smooth manifold with boundary and (conical) exits to
infinity, and let E € Vect(M),u € Z,6 € R. Then there exists a parameter-dependent
elliptic element ngé(/\) € Bgl’O;é(M; E, E;RY) that induces isomorphisms

RES(N) : H* (M, E) —s H*~#¢=3 (M, E) (139)

for all s,0 € R and all A\ € R!, and we have Rjgé(/\)_1 € B;“’O;_é(M;E,E;Rl).
Similarly, for every J € Vect(OM) and v,6 € R there exists a parameter-dependent
elliptic element Rf}’;é(/\) € Lzl;é(ﬁM; J, J;RY) that induces isomorphisms

RYO(N) - HS9(OM, J) — H*~V¢=%(OM, J) (140)

for all s,0 € R and all A € B!, and we have Rf}’;é(/\)_l € L_V;_é(ﬁM; J, J;RY).

cl
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Remark 4.14 Combining the latter theorem with Remark 4.9, by inserting any
fired \g € R! into (139) and (140) we get order reducing operators in the operator
spaces Bgl’O;é(M; E,E) and LV?(OM; J, J), respectively.

Remark 4.15 The concept of algebras of parameter-dependent operators can also
be formulated for more general parameter sets A C RY? that have the property A € A =
cA €A forall ¢ > 1. Examples are

A=1BN0, A=R\{]\<C}

or single rays A in RY. For such A all our operator classes have corresponding vari-
ants, e.g., Lgfé(M;E,F;A), ef. Theorem 4.1, Bgl’d(M;v;A), cf. formula (123), ete.
The behaviour of operators in these spaces for small A € A remains unspecified; we
assume, for instance, smoothness in . The parameter-dependent symbols now refer to
A € A, and we have evident generalisations of the corresponding parameter-dependent
ellipticities and parametrices.

Let us explicitly formulate a corresponding extension of Theorem 4.12 in the version

with A:

Theorem 4.16 Let A(A\) € Bgl’d;é(M;v;A), v = (E,F;J",J%), be parameter-
dependent elliptic. Then there exists a parameter-dependent parametriz P(\) €
B;“’(d_”)Jr;_é(M;v_l;A), with the above-mentioned types d; and d, of remainders.
Furthermore, the operators (138) are Fredholm and of index 0 for all s > max(yu, d)— %,
there is a constant C' > 0 such that (138) are isomorphisms for all |A| > C, and we

have A7 € B;“’(d_“)Jr;_é(M;v_l;Ac) JorAc ={AeA:|\>C}

Remark 4.17 The spaces Bgl’d;é(M;v;A), v = (E,F;J7,J%), (as well as the
other operator spaces, e.g., from Sections 3.1 or 4.1) can easily be generalised to the case
of Douglis-Nirenberg orders (DN-orders) with a corresponding ellipticity; the results
carry over to the variant with DN-orders.

The Douglis-Nirenberg generalisation refers to representations of the bundles as direct
sums B = _\E,, F=a& ' _F, J = @?zlji_, JT = @jzlj‘;". Operators are then
represented as block matrices, composed with diagonal matrices of order reductions
on M and OM, respectively. The constructions are straightforward, so we do not
really discuss the details, but in some cases below we need notation. This concerns
DN-orders for the boundary operators, where

AQ) =RAAN Q' (V)
with .%I(/\) € Bgl’d;é(M; v;A), v = (B, F;ab_J, @;Iljjﬂ'), and

R(A) = ( (1) diag(f%”(A)) ) o = ( (IJ diag(C;)Z»ﬁ’(A)) )

with 1 denoting identity operators referring to #' and F and order reducing operator
families

Q;ﬂz(/\) c Lfl“o(@M'J'_'J'_'A)a t=1,...b,

1Yg Vg

R\ e LOM; I JHA), j=1,... ¢,

J L A
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Bi,v; € R. Such a situation is customary in elliptic boundary value problems for
differential operators with differential boundary conditions. In this particular case all
bundles J;” are of fibre dimension 0, while parametrices refer to the case that the
bundles J;' are of fibre dimension 0. The parameter-dependent ellipticity of A(A) is

defined to be the parameter-dependent ellipticity of A(/\), and we get a parameter-
dependent parametrix of A(X) by P(A) = QA)P(AN)R~(A) when P()) denotes a
parameter-dependent parametrix of A(/\)
In any case the involved orders are known and fixed. Therefore, given (51, ..., )
and (y1,...,7), we set
BYY (Miv;8) = {RAN QT () - AW € BY™ (MiwiA)}. (141)

cl

Parametrices then belong (by notation) to Bc_lu’(d_“)Jr;_é(M; v71A).

4.3 Relations to the edge pseudo-differential calculus

In this section we want to discuss relations between our calculus of boundary value
problems on non-compact manifolds with exits and the theory of boundary value prob-
lems in domains with edges. Particularly simple edge configurations occur in models of
the crack theory. In local terms the situation can be described by (R#\R ) x 2, where
Q C RY plays the role of a crack boundary (for crack problems in R? we have ¢ = 1),
R?2 is the normal plane to the crack boundary, and R, C R?is a coordinate half-axis
corresponding to the intersection of the crack with R?. This situation is studied in
detail in Kapanadze and Schulze [11]. A special aspect of this approach is that the
crack boundary is regarded as an edge and R?\R as an infinite model cone with the
origin of R? as the tip of the cone. More precisely, the cone consists of a configuration,
where two copies of Ry constitute the slit in R? with separate elliptic boundary condi-
tions on the +-sides. The edge symbol calculus for this situation may be regarded as
a parameter-dependent “infinite” cone theory, consisting of the calculus on a bounded
part of the cone near the tip and that in the exit sense elsewhere. The latter calculus
treats both sides of the slit separately, and its contribution can be formulated in terms
of parameter-dependent boundary value problems in the half-space, together with a
localisation. We now formulate a result that is typical for this theory. Let

A= Z aa@(x,y)Dng
le]+]81<m

be a differential operator in U x Q 3 (x,y), U € R” open, containing the origin, and
{2} C R? open (for simplicity we assume A to be scalar; the considerations for systems
are analogous), with coefficients a,g € C°(U x Q). For the edge symbol calculus the
coefficients are to be frozen at @ = 0. This gives us an operator family

on(A)(y,n) = Z aap(0, y)Dgnﬁ CHY(RY) — HPT™(RY).
lal+|8|=m

Set (kau)(x) = /\%u(/\x), A € Ry. Then we have
an(A)(y, An) = X" ko a (A)(y, 7])/@;1 (142)

for all A € R, and all y, 7.
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Let A be elliptic, and let T = (t'By,...,1'By) be a vector of trace operators,
t'u = u|gn-1, for differential operators

Bi= > b (z.yDiD]
[o|+|B] <my

with cofficients b‘iﬁ € C™(U x Q) and m; < m for all j. Assume that the boundary
value problem
Au=f in UNRY, Tu=g on UNR" ! (143)

is elliptic in the sense that the trace operators satisfy the Shapiro-Lopatinskij condition
with respect to A (clearly, N is known by the problem, e.g., if m is even and n44¢ > 3,

we have N = ). Let us form

on(T)(y,m) = (ea(Ti)(y,m), -, oalTn)(y,m)

where on(T5)(y,m) = ' Xojai41012m, bl (0,y)Dgy’ o HY(RY) — HP 7™ 3 (R,
s >m; + % Then

oA () (y, An) = A" 2o (T5) (y, m)sy ! (144)
for all A € Ry and all (y,7) € @ x (R?\0). We have

or ) = (DT ) e @B E ) (15)

TA (T) (ya 77) el
with the above-mentioned interpretation of the order superscript (and v; = —m+m; +
%,j =1,..., N, while the numbers 3; disappear in this case), d = max;(m; + 1), v =
(1,1;0, N).

Theorem 4.18 Let A = ( ? ) be elliptic in U x Q. Then

H*=m(RY)
oa(A)(y,n) : H (RY) — ® (146)
SR TR

is a family of invertible operators for all (y,n) € Qx (RN0) and all s > max(m,d)— %,
and we have

o (A)7 g, m) € CF(Q B (B0 RN)),
cf. the notation in Remark 4.15 and formula (141).

Proof. By assumption A is elliptic in U x Q, i.e., oy (A)(x,y,&, 1) # 0 for all (z,y) €
UxQand (£,1) # 0. Thus the n-dependent family a(y, n) = Z|a|+|ﬁ|=m aqs(0,y) D7’
of differential operators with respect to @ (smoothly dependent on y) is parameter-
dependent elliptic with parameters n € R"~!\0 with respect to (o, oe, 0y ), uniformly
on compact subsets with respect to y). For similar reasons, the Shapiro-Lopatinskij
condition of the original boundary value problem (143), i.e., the invertibility of

S(Ry)

7o ( ? ) (@ y.&m): SRy) — &
C

55



for all (z',y) € (UNR"Y) x Q,(&,n) # 0, gives us parameter-dependent ellipticity
with parameter € R™\0 with respect to (s, 0er, 05 /) (uniformly on compact subsets
with respect to y). Applying Theorem 4.12 we find for every y € Q a constant C' > 0
(which can obviously be chosen uniformly on compact subsets of £2) such that (146)
is invertible for || > C. Because of the ky-homogeneity of o (A)(y,n) (i.e., relations
(142) and (144)) we get the invertibility of (146) for all § # 0. Concerning the asserted
nature of the inverse we can apply Theorem 4.12. O
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