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Abstract

We show an explicit link between the nature of a singular point
and behaviour of the coefficients of the equation, under which formal
asymptotic expansions are still available.
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4 B.-W. Schulze, N. Tarkhanov

1 Introduction

The paper studies asymptotics of solutions to elliptic differential equations
on a closed manifold M with singular points. Near any singular point such
an equation reduces to an ordinary differential equation on the half-axis r €
R, whose coefficients take their values in a pseudodifferential algebra on a
compact closed manifold X. They have special degenerations at r = 0 which

are determined by the geometry of the singular point.

While the most interesting case is when X itself bears singularities, many
specific features can be observed by ordinary differential equations with scalar-
valued coefficients on R,. The best general reference here is the encyclopaedic
book [Fed93] describing the developments of the last years in the area of asymp-
totic methods for linear ordinary differential equations.

The asymptotics are well understood for solutions of the Fuchs-type equa-
tions near r = 0. These correspond to conical singularities, an equivalent
designation being regular singular points. Topologically each singular point of
the underlying manifold is equivalent to a conical point. However, the cor-
responding homeomorphism does not preserve the (* structure in general,
which results in irregular singular points.

By the “formal asymptotic solution” is understood a function which satis-
fies the equation to some degree of accuracy. The algorithm for the construc-
tion of such solutions is extremely complicated for the case of irregular singular
points. The series obtained this way terminate only in exceptional cases and
usually diverge. Moreover, the existence of formal asymptotic solutions does
not always imply the existence of real solutions having such asymptotic be-

haviour, cf. [Fed93, p. 16].

The recent book [MIKR97] summarises the progress in asymptotic expan-
sions of solutions to elliptic boundary value problems in domains with point
singularities. Roughly speaking, such expansions have been obtained only for
the equations whose coefficients are sufficiently “flat” in a neighbourhood of
the singular point to survive under a singular change of variables blowing up
the singular point to a conical one. In the case of irregular singular points full
asymptotic expansions are known only in a restricted number of cases. De-
termining these expansions is essentially equivalent to solving the differential
equation.

The aim of this paper is to show an explicit link between the nature of a
singular point and behaviour of the coefficients of the equation near this point,
which still ensures transparent formal asymptotic solutions. More precisely, in
a “punctured” neighbourhood of a singular point we choose generalised polar
coordinates (r, ) € (0,¢) x X where r is the distance to the singular point and
X a compact closed manifold called the link. In these coordinates a typical
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differential operator is of the form

m

A= (&))" Z Aj(r) (ﬁa)j

J=0

where §(r) is a C* function on (0,¢), such that d(r) \, —oo as r — 0, and
the coefficients A; are C*° functions on (0, &) with values in U™ ~7(X;w — j),

a pseudodifferential algebra on X, cf. [RST97]. In order to get asymptotic

results, it is necessary to require that A;, 7 = 0,1,...,m, are continuous up
tor =0.
In case ¢'(r) is equal to r=?~! near r = 0, with p = 0,1,..., the above

equality gives typical differential operators on manifolds with power-like cusps.
For the particular value p = 0, we get the general form of linear operators in
a neighbourhood of a conical singularity (so-called Fuchs-type operators).

We restrict ourselves to those operators A which are elliptic up to the sin-
gular points. This implies, in particular, that A,,(r) is an elliptic operator of
order 0 on X, for each r € [0,¢). Hence we may assume without loss of gen-
erality that A,,(r) = 1 modulo operators of order —1 on X. We neglect these
compact remainders and require A,,(r) to be the identity operator. On the
other hand, the multiplicative factor (¢’(r))™ can be traced back to weighted
Sobolev spaces. Using a change of variables ¢ = §(r) suggested by the geome-
try of the singular point, we push forward the equation from a neighbourhood
of r =0 to that of t = —co. We thus arrive at

m—1

D™u(t)+ > Ci(t) Du(t) = f(t), t<T, (1.1)

=0

where C;(¢) = A;(67%(¢)) is a continuous function on [—oo,T') with values in
U= X;w — 7).

By a special change of variables equation (1.1) reduces to a first order
system

DU(t) — C(HU(t) = F(t), t<T, (1.2)

C(t) being an (m x m)-matrix with entries in U (X;w). This operator equa-
tion is a central theme of many research papers and books, cf. Daletskii and
Krein [DK70]. In most cases ¢ C'(¢) is required to be a generator of a semigroup
or a bounded operator in a Banach space, an assumption which is violated for
the differential operators.

For general C'(t) independent of ¢, equation (1.2) was studied in detail by
Agmon and Nirenberg [AN63]. In particular, they derived asymptotic formulas
for solutions of exponential growth under the condition that the spectrum of
the operator C' consists of normal eigenvalues located (except possibly for a
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finite number) in some double angular sector containing the imaginary axis,
the angle being less than m. The asymptotic behaviour is described by

ov—1
Ut~ Y e P 10y as 1 — —co, (1.3)
SA,<—r k=0

where 7 is some number characterising the growth of the solution, g, is a
partial multiplicity of the eigenvalue A, of C, P,gy)(t) are polynomials of degree

k, and CI)E:) are eigen- and associated functions corresponding to A,. Returning
to (1.1) we obtain an asymptotic formula (1.3) for solutions in the case of
constant coefficients C;(1), CI)E:) being eigen- and associated functions of the
operator pencil

m—1
a(A)=A" 4> CN.
7=0

These results were extended by Pazy [Paz67] to equations whose coefficients
differ from constants by exponentially decreasing terms.

For solutions of parabolic boundary problems in domains with a smooth
boundary which is characteristic at isolated points, similar asymptotic formulas
were obtained by Kondrat’ev [Kon66]. He extended these results also to elliptic
boundary value problems in domains with conical points on the boundary,
cf. [Kon67].

Evgrafov [Evg6l] treated the asymptotic behaviour for ¢ — —oo of the
solution of (1.2) in the case when the operator C(¢) tends to an operator C' in
some weak sense as t — —oo. His formula reads

U(t) =e (c®(t) + o(1))

where A(t) is an eigenvalue of the operator pencil C(?) tending to a simple
eigenvalue of the operator C as t — —oo, ®(1) is the corresponding eigenfunc-
tion of C'(t), and ¢ is a constant. In [Evg61] it is assumed that the resolvent
(A = C)7! of the operator C' is completely continuous and has at most a finite
number of poles outside of a double angular sector containing the imaginary
axis; away from this sector ||(A — C)7Y|| < ¢(1 4 |A])™" provided that || is
large enough.

Maz’ya and Plamenevskii [MP72] extended the theorem of [Evg61] to equa-
tions of an arbitrary order. Their results can also be interpreted as a general-
isation of the asymptotic formula of [AN63] to the case of equation (1.1) with
variable coefficients. For a further progress, we refer the reader to [Pla73];
applications in elliptic theory on manifolds with singularities are elaborated
by Grisvard [Gri85], Schulze [Sch88|, Nazarov and Plamenevskii [NP91], Re-
bahi [Reba00], and others.
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Let us comment on the main results of this paper. The operators of
U”(X;w) act in weighted Sobolev spaces H*"“(X) on X, s € R being a
smoothness and w € R? a tuple of weights. If s’ > s and w’ > w, the lat-
ter inequality being understood component-wise, then H* "' (X) — H*"(X);
moreover, this embedding is compact provided s’ > s and w’ > w. An operator
U € U™ (X;w) extends to a continuous mapping H**(X) — H*~"™"="(X),
for each s € R, where w —m = (w; —m,...,wg —m).

Consider the operator pencil o()) defined on a space H*"“(X). By the
above, it can thought of as a family in L(H*" (X)), H*~™"~"™(X)) parametrised
by XA € C, for any s € R. We assume that, for some integer s > p, the operator
o(A) has a bounded inverse o~!(\) everywhere in the complex plane, with the
exception of a discrete set, and this inverse is a meromorphic function of the
parameter A. All the poles of c7!()\), except possibly for a finite number, are
required to lie in some double angular sector containing the imaginary axis,
the angle being less than 7. If moreover outside of this angular region we have
an estimate

S5—

S A lellesesry < €D AP o) ullmemsmrmomsmx)
7=0

J

3

Il
=]

for all w € H**(X) and |)| large enough, the operator pencil o()) is said to
be elliptic.

Our standing assumption on o(X) is that o(0) = Cy is an invertible op-
erator H*"(X) — H*=™"“="(X). Were the Z-graded algebra U'(X;w) spec-
tral invariant, it would follow that the inverse of o(0) actually belongs to
U= (X;w —m), and thus o(0) is invertible for all s.

Recall that a number Ay € C is said to be an eigenvalue of o(A) if there
exists a non-zero function ¢o € H*"(X), such that o(Ag)pe = 0. The function
wo is called an eigenfunction of o(A) at Ag. If 1,..., 0,01 € H*"(X) satisfy

the equations
K

> e e =0 (14

k=0

for K =1,...,0—1, then the system (@0, ¢1,...,9,-1) is said to be a Jordan
chain of length p corresponding to the eigenvalue Ag. The elements py,..., ¢4
are called associated functions. The maximal length of the Jordan chains
corresponding to an eigenfunction g is called the rank of ¢y. If moreover the

chains
<99§f), PR 99(5,)_1>Z:1 .

form a complete set of Jordan chains corresponding to Ay, then the integer
n=p; + ...+ o5 is called the algebraic multiplicity of X.
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Theorem 1.1 Let C;(t) — C; in L(H*79"=I(X), H*=™"=™(X)) when
t — —o0, for each j = 0,...,m—1. Assume that in the strip —p < I\ < —v
there lie N eigenvalues of o(X) (counting the multiplicities), and that there are
no eigenvalues of this pencil on the lines SA = —p and SN = —~. Then the
solution uw € H*V(—o0,T) of equation (1.1) with f € H*=™*(—o00,T) has the
form

u(t) =crs1(t)+ ...+ ensn(t) + R(t)

where s1,...,s8ny are solutions of the homogeneous equation which do depend
on u; ci,...,cn constants; and R € H*"(—o0,T).

Thus, any solution u € H*Y(—o0,T') of (1.1) with a “good” right-hand side
f can be written as the sum of several singular functions and a “remainder”
which behaves better at infinity. Of course, this meets our definition of asymp-
totics but unfortunately the singular functions are in general not explicit.

Theorem 1.1 goes back at least as far as [MP72]. As but one consequence
of this result we mention a so-called Relative Index Theorem which reads as
follows.

Corollary 1.2 Let A be an elliptic differential operator of order m on a
manifold M with a corner v, acting as H>"7 (M) — H*="W="3=" (M) where
the weight v € R is related to v. Suppose in the strip —p < SA < —~ there
lie N eigenvalues of the conormal symbol of A at v (counting the multiplici-
ties), and there are no eigenvalues of this symbol on the lines A = —pu and
A = —v. Then the difference of the indices of A evaluated on H*"7V(M) and
H>"# (M) is equal to N.

Consider the equation (1.1) for ¢ < T and associate with it the operator
pencil o(t,A) = A" —I—E;n:_ol C;(t)N. We say that o(t, \) stabilises to the pencil
o(A) as t — —oo if the following conditions are satisfied:

1) C;(t) — C; in the norm of L(H*=/"=I(X), H*=™*="(X)) as t — —o0,
for each y =0,...,m—1.

2) D*C;(t) — 0 in the norm of L(H*=*=/(X), H*=™*=™ (X)) as t — —oo0,
foreach k=1,...;sand yj=0,...,m—1.

For equations with abstract operator-valued coefficients, it is required that
also formal adjoints C'7(¢) and C7 meet conditions 1) and 2), cf. [MP72]. In
our case the formal adjoints inherit the properties of C;(t) and C;, for these
latter are bounded.

Note that condition 2) just amounts to saying that the coefficients of (1.1)
are slowly varying as t — —oo (cf. [RSTI7]). Under this condition, a Fredholm
theory for the equation (1.1) is available. However, this theory falls short of
providing explicit asymptotic solutions in full generality.
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One may ask whether the continuity condition 1) makes it possible to
show useful asymptotic expansions of solutions to (1.1). If the derivatives
D*C;(t), k = 1,...,s + 1, are bounded in a neighbourhood of t = —co, then
1) implies 2). Theorem 1.1 shows that if 1) is fulfilled then the singularity
at t = —oo gives rise to a finite number of singular solutions. However, an
irregular singular point is a complicated conglomeration of singularities. For
example, the equation

t(p+1) tp+1)

has solutions u; = (—¢)? and uy = e¢~'. The first of these bears a singularity of
the same type as in the case of a regular singular point, for the second t = —co
is an essential singular point (see [Fed93]).

Asymptotic formulas are first of all necessarily conjectured and up to this
point it is difficult to formulate general principles. After a formula has been
guessed its proof breaks into two stages. By using a suitable change of variables
and unknown functions the equation is reduced to the form (7' + P)u = f,
where the equation Tw = f is solvable in an explicit form, and the operator
P can be regarded as a small perturbation. The equation Tu = f — Pu is
then solved as an inhomogeneous equation with right-hand side f — Pu, and
one studies the resulting integral equation. As 7" one might take the operator
with coefficients frozen at the singular point, here t = —oco. Indeed, equations
with constant coefficients meet the Euler theory, as is described by (1.3). By
the above, the stabilisation given by 1)-3) falls outside the limits of “small
perturbations.” To meet this heuristic concept, we need some restrictions on
the speed, at which D*(;(t) tend to zero when ¢t — —co. For this purpose, we
set

€x(t) =  max HDk(Cj(t)—

ool
=0,0m—1 i) L(Hs=3w=3(X),Hs—mw=—m(X))’

for k=0,...,s.

A solution of (1.1) is defined to be a function u(t) with values in H*"(X)
which possesses strong derivatives D7u(t) in H*=>*=/(X), j = 1,...,m, for
almost all t < T, and which satisfies the equation (1.1).

For any s € Z, and v € R, we introduce H*"(—o0,T') to be the space of
all functions on the interval (—oo,T) with values in H*"(X), such that the

norm
T s 1/2
ety = ( | oy HDJu(t)H%IS_J,w_J(X)dt)
L

is finite. In particular, H°7(—oo,T') consists of all square integrable functions
on (—oo,T) with values in H%*(X) with respect to the measure e*"d¢.
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Let SA = —~;, 1= 0,%£1,..., be all horizontal lines every of which contains
at least one eigenvalue of the operator pencil o()), and v;_1 < ;. Assume that
on a line SA = —~, there lies only one eigenvalue Ag of the limit pencil o ().

Let moreover o(t, A) stabilise to o(A) as t — —oo, and let only one eigenvalue
A(t) of the pencil o(t, A) tend to Ag as t — —oo. We write

<99(02)(t)7 99(12)(t)7 R SQ(Qll)_l(t)>2:1 I

for the corresponding eigenchains, where the numbers g, and I do not depend
onté€ (—oo,T).

Theorem 1.3 Suppose

to

/ {2(2e=1) (ex(t))* dt < oo,

— 00

for k= 1,...,s, where o is the maximum of p,. Let u(t) be a solution of
the homogeneous equation (1.1) for t < T, such that w € H*"(—o0,T) with
Yo—1 <Y <. Then,

aty=c 17" (Z SR L0 e0 + R(t)) (15)

1=1 k=0
where Pél)(t) are polynomials of degree k and R € H*°(—oo,T).

Were A(s) independent of s, we would deduce under the assumptions of
Theorem 1.3 that

eZ!A(S)dSR(t) _ e(%"'im)(t_T)R(t)

€ H*"(—o0,T)

which belongs to H*7(—o0,T). Hence, the remainder in formula (1.5) behaves
better than wu(t) itself, as ¢t — —o0, showing the asymptotic character of this
formula.

If the coefficients C;(t) bear a transparent structure in a neighbourhood
of t = —oo, then asymptotic behaviour of solutions can be described more
precisely. Suppose
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on the interval (—oc, T'), where C;, € U™~ (X;w —7), for « < J, and C; j41(1)
is a O function on (—oo,T) with values in U™ ~7(X;w — j). Moreover, we
require the derivatives D*C; 7, (¢) to be bounded on (—oo,T') in the norm of
L(H* == (X)), H=m™w=m (X)), for k=0,...,s

Were C;(z) holomorphic functions in a punctured neighbourhood of the
point at infinity, the structure (1.6) would correspond to a removable singu-
larity at z = oo. Let n; be the largest number with the property that C;, =0
for ¢ < nj, so that the sum in (1.6) in fact starts with « = n;. In the notation
of [Fed93, p. 16] the quantity ¢ = max(—n;/(m—7)) + 1 is called the rank
of the singular point z = oo. Then, z = co is a regular or irregular singular
point according to whether o = 0 or p > 1. The analytic theory of differential
equations says that if o is an integer, then the homogeneous equation (1.1)
admits formal solutions of the form u(z) = Zpep(zl/N)\I/(z_l/Q) where P(() is a
polynomial, ¥(() a formal power series, and N, ) natural numbers. As men-
tioned, such series are usually divergent. Moreover, there are other solutions
to (1.1) besides the series of the above form (cf. ibid., p. 18).

Suppose on the line SA = —~, there is a single eigenvalue Ag of the limit
pencil o()), to which there corresponds only one eigenchain (¢o, @1, ..., @o-1)-
This condition does not arise in any essential way and is introduced only to
simplify the description.

Theorem 1.4 Under certain algebraic assumptions, any solution u(t) of
the homogeneous equation (1.1), which belongs to the space H*Y(—oo,T) with
Vo1 <Y < Yy, has the form

u(t) = 17 eikEOAkt < ( (20: ank‘rok 4 Z ¢> T R( )) (1.7)

where ¢ is a constant depending on the solution u(t); the constants p, A\ and
e,k and the functions v, do not depend on the solution; and R € H*°(—oo,T).

The constants p, A\, and ¢, and the functions ¢, are computed by means of
a finite number of algebraic operations. It is worth emphasising that the ad-
ditional conditions are of purely algebraic character because the algorithm for
the construction of formal solutions is extremely cumbersome for the general
case.

Changing the coordinate along the corner axis by t = d(r), for r € (0,¢),
we may trace back Theorems 1.3 and 1.4 to solutions of the homogeneous
equation Au = 0 near the singular point. As

(D"Cj)(8(r)) = D A4(r)

for any k € Z,, where
1

b=50

D,,
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the stabilisation of the coefficients at r = 0 turns out to be specified by the
quantities

éx(r) = max HDk (Aj(r)— A

P SODM gremsems o) ey

for k=0,...,s.
For any s € Z; and v € R, we introduce H*7(0,¢) to be the space of all
functions on the interval (0,¢) with values in H*"(X), such that the norm

. s 1/2
HuHHs,w(076) —_= (/ 6_2’75(7’) Z HDJU(T)H?—IS_JV'W_J(X)d(S(T)>
0 ico

is finite.
Let Sz = —v;, 2 =0,4%1, ..., be all horizontal lines every of which contains
at least one eigenvalue of the operator pencil o(A)(z) = o(A)(0, z), where

Az =3 Ayl 2,

J=0

and let v;,_; < 7;. Suppose on a line Iz = —~, there is only one eigenvalue
zo of the limit pencil o(A)(z). Let moreover o(A)(r, z) stabilise to o(A)(z) as
r — 0, in the sense that é(r) tends to 0 as r — 0, for £ = 0,...,s, and let
only one eigenvalue z(r) of the pencil o(A)(r, z) tend to zy as r — 0. We write

<‘Pg)(r)a 99(12)(7“)7 e 799(;@)—10))2:1 I

for the corresponding eigenchains, where the numbers g, and I do not depend
onr € (0,¢).
Theorem 1.5 Suppose

70

[ ) dstr) < o

0

fork =1,...,s, where p is the maximum of p,. Let u(r) be a solution of the
homogeneous equation Au = 0 for r € (0,e), such that w € H*7(0,¢) with
Yo—1 <Y <. Then,

u(ry =1 (Z S PY L))+ R<r>) (1.8)

=1 k=0

where 77,?)(7“) are polynomials of degree k and R € H*°(0,¢).
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Assuming the coefficients A;(r) to be of class C* up to r = 0, we look
for a restriction on the geometry of the singular point at » = 0 under which
Theorem 1.5 is applicable. To this end, let ¢'(r) = r~ 2! close to r = 0, where
p > 0. Then, the stabilisation condition of Theorem 1.5 is fulfilled provided

that
dr
§(r))H2e=1) < 00,
[ty <

which is equivalent to p < 1/(2¢0 — 3/2). In the case of simple eigenvalues this
becomes p < 2.

If the coefficients A;(r) have a transparent structure close to r = 0, then the
asymptotic behaviour of solutions can be described more precisely. Namely,
suppose

J
1 1 .
AJ(T) :ZA‘?LW—I_A‘?’J-I—I(T) W’ i :O,...,m—l, (19)

=0

on the interval (0,¢), where A;, € U™ /(X;w—j), for e < J,and A; j,4(r) is a
C* function on (0, &) with values in U™~/ (X;w—j). We also require the deriva-
tives D*A; 741(r) to be bounded on (0,¢) in L(H*™9V=I(X), H=™Y=™ (X)),
for k=0,...,s.

Suppose on the line Iz = —~, there is a single eigenvalue zy of the pencil
o(A)(z), to which there corresponds only one eigenchain (g, @1, ..., ¢—1).

Theorem 1.6 Under certain algebraic assumptions, any solution u(r) of
the equation Au = 0, which belongs to the space H*V(0,¢) with v,-1 < v < 7,
has the form

S asn T 1 | 1
u(r) = d(r)” e r=0 (C< - D Gkt T @/a) + R(T))
ZO: (S(T‘)Q kz:; ; (S(T‘)Q (S(T)J
(1.10)
where ¢ is a constant depending on the solution u(r); the constants p, zp and
e, and the functions v, do not depend on the solution; and R € H*°(0,¢).

Note that Schulze [Sch94] considers algebras of pseudodifferential operators
acting in weighted Sobolev spaces with asymptotics. As the operators of order
zero include those of multiplication by functions, it follows that the coefficients
should meet asymptotic expansions at r = 0 like asymptotics of functions
under consideration. Thus, it is to be expected that the expansions (1.10) in
turn survive under more general conditions on the coefficients than (1.9) (cf.

[ST99b]).
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2 Operator pencils

Let X be a compact closed manifold with singularities. On X there live
Z-graded algebras U™~ (X;w — j) of pseudodifferential operators acting in
weighted Sobolev spaces H*"~7(X). These latter are parametrised by s € R, a
smoothness, and w € R%, a tuple of weights. By the very definition, H**~/(X)
are the completions of '™ functions with a compact support on the smooth
part of X under certain weight norms.

For fixed s € R and w € R%, we apply the approach of [MP72] in the
context of Hilbert spaces

H] — Hs—m—l—j,w—m—l—j (X),

where j = 0,1,...,m. We give the proofs only for s = m. For the general
case, the reader may consult [Pla73].

Suppose the coefficients C; = C;(¢) in (1.1) are independent of ¢. For
every j = 0,1,...,m — 1, we have C; € U"~/(X;w — j), hence C; induces a
continuous mapping H,,_; — Hy. We assume that Cy: H,, — Hj is invertible.
Thus, the inverse Cj" is defined on all of Hy and maps it continuously onto
H,,.

If C; € U™~/ (X;w — m), then C; is a closable operator in H,. Moreover,
the domain of the minimal operator associated with C; contains H,,_;. The
operator Cy with the domain H,, in Hy is closed anyway, for it is continuously
invertible.

We introduce an operator pencil o(A) = > 7", C; N, with C,, = Id, which
is also known as the conormal symbol of (1.1). It is regarded as a mapping

from H,, to Hp.

Lemma 2.1 For each A € C with the possible exception of a discrete set
Y, there exists an inverse o~'(\) mapping continuously Hy onto H,,.

Proof. Indeed, we have

ICs " Culln,, ¢ |Culla

<
< Cllulla,.,

for all w € H,,, with ¢ and C constants independent of w. Since H,, is com-
pactly imbedded into H,,_;, it follows that Cj'C; is a compact operator in
H,  forj=1,...,m. By atheorem on holomorphic operator-valued functions,

cf. [GK69], the operator

Colo(N)=1d+ ) Cy'CN

i=1
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has a bounded inverse in H,, for all complex A except for a set of isolated
points. This is equivalent to the desired assertion.
O
Assume that the operator pencil o(\) satisfies the following additional con-
ditions:

1) There is an angular sector S = {A € C: |arg(£A)] <V, |A| > R}
around the real axis, with ¥ € (0,7/2) and R > 0, which does not meet
X,

2) Forall A € S, an estimate

m

> W lula,-, < e lo(Nula, (2.1)

=0
holds whenever u € H,,, with ¢ a constant independent of A and w.

Both 1) and 2) are mere parts of the concept of ellipticity on a manifold
with corners.
Consider the equation

oOu = f, 22)
for a given f € Hy. Applying a trick used by Calderén in studying a Cauchy

problem [Cal58], we reduce (2.2) to a first order system linear in A\. Namely,
set

ur = Aug + Citg,,
Um-1 = )\um + Cm—lum7
Uy = U,

then the equation (2.2) reduces to Auy + Cou,y, = f.
Denote by H the direct sum of m copies of Hy, i.e., H = &7 Hy. In 'H
define the operator

0 ... 0 —=Cy
O = 1 ... 0 —=C (2.3)
0 ... 1 —=C,h

with the domain Dom C' = (G Hy) & H,,. Given any F = (fi,..., fn) in
‘H, consider the system

AU —CU=F (2.4)

for an unknown vector-valued function U = (uy, ..., u,,) of Dom C. Obviously,
equation (2.2) is equivalent to the system (2.4) for the particular right-hand
side F'=(f,0,...,0).

The connection between the operators o(A) and AId — C' is explained in
the following lemma. We write the latter operator A — C' for short.
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Lemma 2.2

1) The operators c=Y(X) and (A — C)7! exist for the same values of A,
o~ (A) being defined on Hy and (A — C)~' on H.

2) A number Ay € C is an eigenvalue of the pencil o(X) if and only if it is
an eigenvalue of C'. Moreover, the multiplicities of Ao with respect to o=1()\)
and C' are identical.

3) For any solution U = (uy,...,un) of the equation (2.4), an estimate
holds

m m—1 m
Pl + > sl < e P (2.5)

i=0 i=1 i=1

whenever A € S, the constant ¢ being independent of A and U.

Proof. It suffices to express the components uy,...,u,,_; by means of u,,
and the components of F'. The estimate (2.5) is equivalent to (2.1).
O
From this lemma it follows that A = 0 does not belong to the spectrum of
the operator C', and therefore ' is closed. Moreover, the resolvent (A — C')~!
is a meromorphic operator-valued function whose poles are located outside of
the set S. Let (vi),c, be the increasing sequence of real numbers such that
every line

F_%. :{)\E(Ci %)\:—%’}

contains at least one pole of the resolvent (A — C')~!, and the latter is holo-
morphic away from these lines.
An immediate verification shows that the inverse operator C'~! has the

form
~-Cyogt 1 L0
¢ = —Cp G0 1]
~Cy' 0 ... 0

all the operators C;C" being bounded in Hy. Indeed, as H,, — H,,_;, we
obtain
1C5C5 " f Lo c 1€l

<
< C HfHHo
for all f € Hy, with ¢ and C' constants independent of f.

Before identifying the adjoint of ' in the sense of Hilbert spaces, we make
some comments on the algebras U”(X;w). For any A € U™ (X;w), the for-
mal adjoint A* is available in the space W™ (X;—w + m). While A operates
as H*Y(X) — H*=™w="(X), for any s € R, the formal adjoint A* does as
H=stm-wtm (X — H=5"%(X). On the other hand, we may think of A as
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an unbounded operator in the Hilbert space H*~"™"~"(X), the domain of A
being dense. Then we define A*Y, the adjoint of A in the sense of Hilbert
spaces, as usual, so that A*Y is an unbounded operator in H*~"™*="(X).
Hence, A* differs from A*Y. However, these operators are linked through an
isomorphism of Banach spaces x: H*=™¥=™ (X)) — H—stm=wtm( X) ojven by
(u,%v)goo(x)y = (U, V) gs—muw-mx) for all u € H*7™*~"(X). Under this iso-
morphism, we have A* = xA*¥x~1 and the domain of A*¥ consists precisely
of those g € H*~™¥~™(X) which satisfly A*% g € H~*T™~w+m(X). This al-
lows one to substitute A* for A*Y in many contexts. Our basic assumption
here is that the coefficient Cy € U (X;w) extends to an invertible mapping
H>"(X) — H*=™*="(X). It would then be a fine property of the algebra
U™ (X;w), called the spectral invariance, guaranteeing that the inverse Cj!
be still induced by an operator in W= (X;w —m). While many known pseu-
dodifferential algebras on singular spaces are spectral invariant, this property
has nothing to do with asymptotics. We avoid this additional assumption,
thus choosing to work with adjoints in the sense of Hilbert spaces. However,
since the definition of the formal adjoint relies only on the scalar product in
H*°(X), we shall occasionally substitute C* for C;dj, keeping in mind the
relation (% = *C;dj*_l.

From what has already been proved, it follows that the bounded operator
(C~Had = (C2d)~L defined on H has the form

—(CLCT L —(C O (Ot
e I v (26)
0 1 0

Our next goal is to specify the inverse of operator (2.6). Let

G = (glv"'vgm)v
Vo= (v1,...,0m)

be arbitrary elements of H. The equality (C*¥)~1V = & means that

m—1

— T (OG5 iy — (G, = g,
]:
1 = 9,
Um—1 = Jm
whence
m—1
0= (OG5 g = (G5,
7=1

€ Dom 3
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and .
Cpd <—91 - Z(Cjcgl)adjng) = U

Thus, the domain of C?¥ is
m—1
Dom C* = {G e H: g1+ Y (C;C5")*gjs1 € Dom €5V}
7=1
where () is regarded as acting in Hy with domain H,,, and the adjoint itself
has the form

1 ... 0 0 0 1 e 0
adj _ ... ... ... .. P P P P
=10 1 o 0 0 1
0 ... 0 —Cad L (CLCOy L (Cpm O )
The equation for an eigenfunction W = (3, ...,1,,) of C* can be written
as

Yo = Aoth,
¢m = 5‘0¢m—17 (27)
m_l(CjCJI)adj)\é> by = AT,

J=1

—Ca4 (1 +

where Xy # 0 and we require

m—1
(1 + Z(CjCJI)adeé> W1 € Dom C3%Y,
j=1

Let us consider the adjoint operator pencil o®¥()), X € C, defined by the
equality

(N, 9)g, = (u, 0™ (N)g) .
for all u € H,, and g € Dom o®¥()).

It is a property of Hilbert structures in the Sobolev spaces under study that
the operator « maps H*~*~/(X) onto H~*T2m=5=w+2m=i( X') continuously, for
each 7 = 0,1,...,m. Hence we deduce that the space H,,_; = H*79"=I(X)
belongs to the domain of C;dj. Moreover, from the equality C;dj = *_10]** we
get

1C2Yg] 1, |CF % gl r—stm,—wtmx)
¢ || x gllm=-sts—wts(x)

c H * gHH_S+2m—],—w+2m—] (X)

IA A A

C gl rs-sw-s(x)
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whenever ¢ € H,,_;, the constants ¢ and C' do not depend on g.

For 5 = 0 we even claim that Dom CadJ = H,,. Indeed, since Cj is an
invertible operator H**(X) — H*7""“~™(X), it is elliptic. Therefore, the
formal adjoint ('} is an elliptic operator, too, thus inducing a Fredholm map-
ping H=stm—wtm(X) — H=*~*(X). By duality, this mapping is actually an
isomorphism. We make a purely technical additional assumption on Cy that
C§ restricts to an isomorphism H ¥ w2 (X)) — fstm—wtm (X)) Tt fol-
lows that ngJ = x~ 1% is an invertible operator H,, — Hy, which gives our
assertion.

Lemma 2.3 The domain Dom a®¥()\) of o®U(\) is equal to H,,, and for
g€ Htny

o*V(A)g =) N g, (2.8)

Proof. Since (C;dj(ngj)_l)adj is a closure of C;*(C;, this closure is bounded
in Hy, for 0 < j < m. Thus, also the closure of Cj'c()\) is bounded in Hy
whence

o*I(\) = (Co (C5ta (M) (2.9)
the right-hand side being the closure of (Cj (X)) C2Y,

Further,
(Clo())™ = zm: O IR
— - Cadj Cadj 15\]'7
der(a)

and so substituting this expression to (2.9) enables us to conclude that o>%())
is the closure of ) 7" C;dj)\j.
Let u, € H,,, v € N, and f, = E;n:o C?djjxj u,, where

u, — u,
v =7
in Hy. By the above,
1G5 s = wllmty <N fu = Follitg +C Y N = woll, -, |AF
7=1

for all u,v e N.
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Since the space H,, is compactly embedded in H,,_;, for 5 > 0, to any
e > 0 there corresponds a constant ¢(¢) such that
[l e,y < & llullm,, + cle) |lull g,

whenever u € H,, Thus

len = vl < e(l[fu = Follmo + [lwn = wllm)

with ¢ a constant independent of y and v, whence v € H,,. Therefore, the
equality (2.8) holds.
O
In order to dispense with the assumption on the behaviour of Cj on the
space H—st2m—wtim (X it suffices to argue as above, with C;dj replaced by
Cr.
Let Ag be a simple eigenvalue of o(A). Then A is a simple eigenvalue of
the pencil o2¥()). Denote by 1y the corresponding eigenfunction in H,,, i.e.,

O'adj(j\o)ﬂ)o =0. Set
¢1 = 77!)07
77Z)2 - )\0 77Z)17 (210)
¢m = 5\0 77Z)m—17

then the equation o®¥(Ag)1o = 0 reduces to

m—1
=) O = Aot (2.11)

=0

Since ¥, € H,,, we get

1 m—1
e (1 n Z(Cjco—l)adj)\é> T (1 + Z(ngj)_lcfdj)\é> i

i=1 i=1

m—1
= =) i,
7=0
and so comparing (2.7) and (2.11) shows that ¥ = (¢1,...,%,,) is an eigen-

function of the operator C®4. By (2.10), all the components of ¥ belong to
H,,.

3 Equations with constant coefficients

Consider the equation

D™ u(t) +ﬂ§cj Diu(t) = f(1), tE€R, (3.1)
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where D = —id/0t and the coefficients C; satisfy the conditions of the pre-
ceding section.

For v € R, let us introduce a space H™7(R) to be the completion of C'*
functions with a compact support in R and values in H™"(X) with respect to

the norm
[wll zma ey = (/R ey HDju(t)H%Im—va—J(X)dt>
7=0

As mentioned in Section 1, by D7u(t) are meant the strong derivatives in
the corresponding norms.

Given any f € H*7(R), we look for a solution of (3.1) in the space H™"(R).
By means of the substitution

1/2

up = Dug + Chuy,,
Ump—1 = Dum + Cm—lum7
Uy, = U

the equation (3.1) is reduced to the system
DU(t)—CU(t)=F(t), teR, (3.2)

where U = (uy,...,uy), ' = (f,0,...,0) and C is the operator defined by
(23).

We now introduce the spaces H;;"" and Hp~ "7 of vector-valued functions
with the norms

m m—1 1 %
Ul = (/ (ZHD% Ol + 3 S 0wt HHO)dt) ,

=1 j=0

m 1—1
P l-ie = ( [ (Z 1D 5 HHO) dt)

=1 7=0

N

It is easily verified that the operator D — ' induces a continuous mapping
of Hj;™ into 7—[?_1’7.

Lemma 3.1 Let v # ~;, for @ € Z, (v;) being defined after Lemma 2.2.
Then, the equation (3.2) has a unique solution U € H;" for each right-hand
side F' € H?_l’w. Moreover, there exists a constant ¢ independent of F', such
that

10l < ¢ N s



22 B.-W. Schulze, N. Tarkhanov

Proof. It suffices to apply the Fourier transform to both sides of (3.2),
thus reducing this equation to the equation AU — C'U = F for the Fourier
images,

+oo
—w\tF dt.
\/ 27 / (£)dt

By assumption, the line A = —~ is free from the poles of the resolvent

(A — )~ Moreover, the inequality (2.5) is fulfilled for all A on the line I'_,

whence
+oo—1y

Ult
\/27T/oo Ty

eM (A=) E(N) d), (3.3)

and the lemma follows.
O
This lemma implies that equation (3.1) with a right-hand side f in H%7(R)
has a unique solution v € H™7(R), provided that there are no eigenvalues of
the pencil o(A) on the line I'_.,.

Lemma 3.2 Assume the line I'_, is free from the poles of the resolvent
(A = C)~t. Let moreover 0(t) be a real-valued function of class C™™* on R,
such that

1((D = iv) = C)7HO®) = Nl gpgmoy < L. (3.4)

Then, for any right-hand side F(t) satisfying exp(— fot s)ds)F(t) € HyE ™",
there is a unique solution U(1) of (3.2) satisfying exp(— fo (s)ds)U(t) € H. o

Note that (3.4) is fulfilled if the derivatives of 6(¢) — v up to order m — 1
are small enough.
Proof. In equation (3.2) put

v = e

S

F(t) = exp (
thus reducing this equation to
(D —iy)U—CU—i(0(t)—~)U = F.

It suffices to prove the existence of a unique solution U e HT[}L’O to this
latter equation, for an arbitrary right-hand side Fe Hy~ "% By Lemma 3.1

we have

=i ((D—in) = O (0t) =) U = (D —iy) = C) ' P,
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the right-hand side ((D — iy) — C')~'F belonging to H;°. This equation can
be solved in a unique way in view of (3.4), as desired.
O

For a real number 7', let y7(t) be a non-negative C'* function on R, such
that xr(t) =1, for t <T — 1, and yr(t) =0, for t > T

Lemma 3.3 Let U(t) satisfy
DU(t)—-CU(t)=F(t), t<T,

and x7U € HY™" where v,y < v < v, If xoF' € HE™Y with v < p < v,
then actually xoU € H™".

Proof. Set U/ = ypU, then U € H;7, and the equation for U(t) reduces
to

DU —-CU = xr(DU-CU)+ (Dxr)U
= xrF'+ (Dxr)U
= I,
I being supported on the semiaxis (—o0, T1.
The Fourier transform FF(A) of the function F(¢) is an analytic function
in the half-plane A > —pu. According to (3.3),

+oo—1y

NN = C)Y P FE(N) dX
\/%/oozw ) ()

for t € R.

In the strip —p < A < —~ the integrand is analytic. Taking into account
the estimate (2.5) for the resolvent (A — C)~! and the fact that FF()) is
rapidly decreasing at RA = £oo, we readily deduce that the integration path
I'_, can be changed to I'_,, i.e.,

+oo—ip

\/2_/ M= C)TPFE(N) dA.

Using once again Lemma 3.1 we conclude that the latter formula defines a
unique solution U € H* to the equation DU — CU = F, which proves the
lemma.

4
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4 Strong perturbations

Consider the equation with variable coefficients

m—1

D™u(t)+ > Ci(t) Diu(t) = f(t), tER, (4.1)

7=0

where C;() is a continuous function on R with values in ¥~ (X;w — j), for
J=0,1,....m—1.

For every fixed t € R, the operator C;(¢) induces a continuous mapping
H.,—; — Hy. We think of C;(t) as an unbounded operator in Hy whose
domain does contain H,,_;. The minimal closure of C;(t), if exists, coincides
with Cj(t) on H,,_;. Moreover, we assume that Cy(?) is a closed operator in
Hy with domain H,,.

Our basic assumption is the following. For each 7 = 0,1,...,m — 1, the
function C;(t) has bounded derivatives up to order j in the strong topology of
L(H,,_;, Hy). This amounts to saying that ||D*C;(t)ul|n, < c |u||,,_, for all
u € H,,_; and k < j, with ¢ a constant independent of u and ¢ *.

We shall reduce equation (4.1) to a first order system. To this end, write
this equation in the form

where
B]‘(t) = C]‘(t) —|— cj,j-l-l DC]‘_H(ZL) —|— [ —|— C]‘7m_1 Dm_l_j Cm_l(t) (43)

and ¢j; are some combinatorial integers. From the conditions on C;(¢) and
(4.3) we see that
1Bj()ullr, < e lullm,, (4.4)

forallw € H,,_; and 7 =0,1,...,m — 1, the constant ¢ being independent of
u and .
Put u,, = u and introduce new functions by

wy = Duy + Bi(t) u,
Ump—1 = Dum + Bm—l(t) Uy

then (4.2) is equivalent to this system enlarged by the additional equation

'In fact, a weaker assumption is sufficient, namely that the norm of DkC'j+k(t) n
L(Hm—j, Ho) is uniformly bounded in ¢t € R, for each k <m —1— j.
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Consider the operator

0 0 —Bolt)
co=| T (49
0 ... 1 —Bu(l)

acting in H. The domain of this operator is Dom C'(t) = (@T_IHO) ¢ H,. By

the above, the equation (4.1) is equivalent to the system
DUt)—-CHU(t)=F(t), teR, (4.6)

if = (f,0,...,0).

Moreover, a solution U = (uy,...,u,,) of (4.6) belongs to H/;” if and only
if the solution u = w,, of (4.1) belongs to H™7(R).

Let C' be the matrix-valued operator defined by formula (2.3). As usual,
we write

1Ulle = NUllu + [|CU]l%, U € DomC, (4.7)

for the graph norm of C'. Completeness of the space Dom C' under this norm
is equivalent to the closedness of the operator C'. Since Cy: H,, — Hp is

m—1
Ul ~ (Z H%‘Hm) + [l || 1o

i=1

invertible, we get

for U = (ug,...,Up).

Following Gokhberg and Krein [GK57], we call an operator T" acting in H
C-bounded if Dom C' C DomT and |[|[TU||yx < ¢||U]|¢ for all U € Dom C'. The
smallest constant ¢ for which the last inequality holds is said to be the C'-norm
of the operator T'.

In view of (4.4) it is clear that the operator C'(t) is C-bounded uniformly
inteR.

Suppose

1Bi(t) = Cill ety ) = 0

as t — —oo, for j = 0,1,...,m — 1. Then the C'-norm of the difference
C(t) — C tends to zero when t — —oo. If A is a simple eigenvalue of the
operator C' then for ¢ small enough, there exists a simple eigenvalue Ag(¢) of
the operator C(t) (cf. [GK57]). Let ®(¢) be the eigenfunction corresponding
to this eigenvalue, and let ® be the eigenfunction of €' corresponding to A.

Then
Ao(t) — )\07
o(t) — @

as t — —oo, cf. ibid.
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Lemma 4.1 Let

|B;(t) = Cille(t, H) < € | (48)
| DB (Ol ety iy < €6 k=1,...,],

where ¢ is a sufficiently small positive constant. Then, given any F € H?_l’w

with v,_1 <y < ¥, the equation (4.6) has a unique solution U € H[;".
Proof. The equation (4.6) can be written in the form
U—(D-C)yYCHt)—OW =(D—-C)'F, (4.9)

where (D — C)~! is defined by (3.3). By choosing € > 0 small enough we may
guarantee that

I(D = C)7HEW) = Ol

< D = )l gaem=r e IC () = Cll g =17y
<1,

hence (4.9) has a unique solution in H;;"", as desired.
0
It is worth pointing out that the norm of C(t) — C in L(H}", Hp ") is
majorised by the norms |[D*(B;(t) — )|z, im0y, for 5 = 0,1,...,m —1
and k=0,1,...,7.

Lemma 4.2 Let

|B;(t) = Cill e, ey — 0 as t— —oo,

1D Bi(t)| e, i) — 0 as t — —oo, (4.10)

fork=1,...,7. Suppose U(t) satisfies
DUt)—-CHU(t)=F(t), t<T,

and xtU € H7 where v, < v < 7,. If xoF € H?_l’“, with v < p < 7y,
then x7U € H ™.

Proof. Fix an arbitrary © < 7 — 1 and set U = yoU. It is easy to verify
that

DU(t) — C()U(t) = F(t), (4.11)
where I' = yo I + (Dxe)U. We define I to be equal to zero on the interval
(0, 00) and rewrite (4.11) in the form

DU(t) = CT(t) = x2(t) (C(H) = C) + F()
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on the entire real axis. Since U € H7", the right-hand side of the latter
equation belongs to 7—[?_1”. Thus this equation is equivalent to

U—-K,U=R,F, (4.12)

where R., denotes the inverse of D — (' acting from 7—[?_1’7 to H;;", and
K, = R xr (1) — C).

As ' € HE™"" we may look for a solution of (4.12) in the space Hj". To
this end, we rewrite (4.12) in the form

U~ K,U=R,F (4.13)

where R, and K, are operators defined in the same way as R., and K., the
only difference being in replacing v by w. By the above, conditions (4.10)
ensure that

K5 ey <1,

Kl eepry < 1

for a sufficiently small 7" depending on v and p. Therefore, both equations
(4.12) and (4.13) can be solved by the method of successive approximations,
namely
U = Y K'RJF
v=0
= Y K!R,F.

v=0

Since F' € Hy* and I vanishes for ¢ > T, the corresponding terms of these
series are identical by Lemma 3.3. This finishes the proof.

4

5 Structure of solutions

The following Structure Theorem for solutions of the inhomogeneous equation
can also be regarded as a Regularity Theorem.

Theorem 5.1 Let (4.10) be fulfilled. Suppose N eigenvalues of C' (counting
the multiplicities) are located in the strip —p < SN < —v, and there are no
eigenvalues of C' on the lines SA = —p and SN\ = —~. Then any solution to

DU(t) = C(O)U(t) = F(t), t < T, such that xyU € H;" and xrF € 7—[?_1’“}

has the form
U(t) = (Z cyw)) +R(1),

v=1
where S, are linearly independent solutions of the homogeneous equation which
do not depend on U; ¢, constants; and xR € H[;™".
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Proof. We prove this theorem under the assumption that there is only one
simple eigenvalue of C' in the strip —p < IA < —v. The proof in the general
case is analogous.

Consider the equation with a constant operator (3.2) where F'(¢) is a func-
tion with a support on the semiaxis ¢t < 0, belonging to 7—[?_1’“ (and therefore
to the space 7—[?_1’”). This equation has a unique solution in each of the spaces
H7 and H7", cf. Lemma 3.1. As above, we denote R, the inverse of D —C
acting from 7—[?_1’7 to H;7, and R, the inverse of D — ' acting from H?_l’“
to H{*.

The Fourier transform F'()) of F(t) is analytic in the strip —u < S\ < —7.
Therefore,

+oo—1y

RoF(E) = m/m .

eM(N =) E(N) dr

+oo—ip
eM A=) EN) dA + €™ (F(X), ) B
V2 /oo n < >H

(5.1)

where @ is the eigenvector of the operator C' corresponding to the eigenvalue A,
and W is the eigenvector of the operator C'*Y corresponding to the eigenvalue
Ao

In evaluating the residue of the integrand in (5.1) we made use of the
representation

(=" (Ao qi);l + H(N)

in a neighbourhood of Ao, H(A) being an analytic operator-valued function (cf.
Keldysh [Kel51]). Furthermore,

(Foww) | = m o U]

e~ ot tut (e_“tF(t), \II>H dt |

+oo
I
< ¢ /0 SR~ (1) ||y dlt
< C NIl
the constants ¢ and C' being independent of F'. Thus, (5.1) implies
R =R F 4 ¢(F) e (5.2)

where the functional ¢(F') satisfies the estimate

()] < C [ Flyn-i
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Now consider the equation DU(t) — C(t)U(t) = F(1), for t < T. Introduce
the function U = y7U. It will cause no confusion if we use the same letter U to
designate U, for the previous function U no longer appears. Substituting this
new function into the equation, we obtain DU — C(t)U = xoF + (Dxr) U, the
right-hand side I = yrF' + (Dxr) U being supported on the interval (—oo, T1.
Furthermore, let us denote A = C(¢) — C and rewrite the latter equation in
the form

DU —CU =AU + F
Suppose that U € H}”7. The equation yields

U=R,AU+R,F

on all of R. Taking into account that the support of U belongs to (—oo, 7],
we get

U=xR,AU + xR, F (5.3)
where y = yr41. To solve this equation by the method of successive approxi-
mations, we put

Uy = xR,F,
Usi = XR,AU, + xR F, v=0,1,....

Along with (5.3) we shall consider the equation
T =xR,AYT + xR,F (5.4)
and, accordingly,

TO == XRMF7
Ty = XRAT, + xR F, v=01,....

In view of (4.10) we can assume, by decreasing T' if necessary, that the
norms of the operators R,A and R, A acting in H;;"" and H[;", respectively,
are less than 1. Therefore, both equations (5.3) and (5.4) can be solved by the
method of successive approximations. Moreover, we invoke (5.2) to conclude
that

Uy = xR I+ ¢(F) x e
= To+ Qb(ﬁ) A
where A = y €@,
From now on we write R, instead of xR, and R, instead of Y R,. We
claim that
Ul/ = Tl/ + qb(ATu—l + F) A + Qb(ATu—z + F) RWAA
+ .+ AT+ F) (RA)Y A+ ¢(F) (R,A)A
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for all v = 0,1,.... To prove this by induction, we note that the equality
is true for v = 0. We assume that it holds for all v < N, and show it for
v=N-+1. We have
Uvyi = RyAUy+ R F
= R,AUN+ R F+ &(F)A
and
RyAUy = RyATN 4+ A(ATy_y + FYRAA+ G(ATy_y + F)(R,A)A
+ o AT+ F) (RAAYNA+ G(F) (R,APNTLA
As
Ry AT =R, ATN + ¢(ATN) A,
we arrive at the equality
Uvyi = Tngr+o(ATN + F) A+ o(ATnor + F) R,AA
b AT+ F)(RA A+ 6 F) (R, A)VH.A,

(5.5)
as required.
Further,
ATy, = AR,F,
ATy = (AR*F+AR,F,
Nt1 )
ATy = Y (AR
v=1
and so the formula (5.5) can be written as
N+1N+1—n .
Unir=Trn+ 3 3 o((AR) F) (RA) A (5.6)
n=0 v=0

The double series

330 (AR F) (R,A) A

n=0 v=0

is easily verified to converge absolutely. Therefore, we may take the limit in
(5.6), as N — oo, thus obtaining

o0

Ul = r<t>+i¢(z<m>vﬁ) (R,A)" A

= Y(t)+cS()
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where T € HZL’“ and

c = ¢ Oo(ARQ”F).

v

=

Note that S() is independent of
solution.

(t). Only the constant ¢ depends on the

O

As is seen from the proof, we tacitly assume that the number T' is small

enough. However, it is completely controlled by the norms (4.10) and may be
chosen independently of U and F'.

Corollary 5.2 Let the assumptions of Theorem 5.1 be fulfilled. Then any
solution w € H™(—o00,T) of equation (1.1) with f € H%*(—o00,T) has the
form

u(t) =crs1(t)+ ...+ ensn(t) + R(t)

where s1,...,s8ny are solutions of the homogeneous equation which do depend
on u; ci,...,cn constants; and R € H™*(—o0,T).

In the proof of Theorem 5.1 the conditions (4.10) are needed only to guar-
antee the smallness of the norms of operators R,A and R, A, for T small
enough. We did not really have to use the special form of the matrix C().
Therefore, to prove Corollary 5.2 we could have applied the usual way of re-
ducing the equation (1.1) to a first order system, namely taking derivatives of
u(t) as new unknown functions. In order to make the norms of the resulting
operators R,A and R,A small, the following conditions are sufficient instead
of (4.10):

HC](t) — Cj"ﬁ(Hm_],Ho) —0 as t— —00, (57)

for y = 0,1,...,m — 1. Thus, we arrive at Theorem 1.1 stated in the Intro-
duction.

6 Smoothness of the spectrum

In what follows it will be assumed that the eigenvalues and eigenfunctions of
operators are differentiable a sufficient number of times. In this section we show
conditions on the operators under which their eigenvalues and eigenfunctions
are as smooth as needed.
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Let C be a closed operator acting in ‘H. We shall denote H¢ the complete
space obtained by introducing the graph norm || - ||¢ in the domain of C, cf.
(4.7).

Suppose C(t), t < T, is a family of operators with domains Dom C'(t)
containing Dom C', such that

HC(t) — CHL‘(Hc,H) —0 as {— —oc. (61)

Note that if A is a regular point of the limiting operator €', then A is a
regular point for C'(t), too, if ¢ is sufficiently small (see, e.g., [GK5T7]).

Lemma 6.1 Let (6.1) be fulfilled and C(t) have a strong derivative in
L(He, H), for anyt < T. Then the resolvent Rey(X) = (C(t) — X))~ also has
a derivative in L(H,Hce), and

DRe(o(N) = —Re(3) (DC(1) Reg(). (6.2
Proof. We have
Alt (Beqran(A) = Bo(N) = E Bow (M) (Ct) = C(t + At)) Rograr ((2)3)

provided At is small enough. By choosing At sufficiently small we may actually
assume that [[(C(1) — C(t + Al)) Ro@y(M)|[ey < 1. Then, we invoke the
equality

Roran() = (1= (C10) = Clt+ 20) Rero() (C) =)~

_ (1 + Z C(t+ At)) Rc<t>(A)>y>

to see that Regyan(A) is continuous in At in the norm of L(H,H¢ ). Taking
into account the differentiability of C'(¢), we can pass to the limit in (6.3), as
At — 0. This gives (6.2).

By (6.2), we get
1D Bowy (M ey < e DO e n)

where ¢ = || Re (A )H,C(H,HC)' Note that this constant is majorised uniformly
in ¢, for ¢ small enough.

Corollary 6.2 Suppose (6.1) is fulfilled and C(t) has strong derivatives up
to order K in L(Hc,H), for any t <T. Then the resolvent Rowy()) also has
the derivatives up to order K in L(H,Hc), and

1D* Reo (Ml ey < _MDCW 0y - - 1D C W Zpg 0

P14t
(6.4)
forallk=1,..., K.
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Proof. Indeed, we apply (6.2) k times to conclude that the derivative
Dch(t)()\) is a linear combination of operators of the form

Rew(A) (DM C(1) Row(N) - . Row(X) (D™ C (1)) Rowy(A)

where ky,...,ky > 0 and k1 + ...+ ky = k. Hence the estimate (6.4) follows
immediately. O

Let A be a simple eigenvalue of C'; and ® the corresponding eigenvector.
If (6.1) is fulfilled, then there is a simple eigenvalue A(t) of C(¢), for ¢ small
enough, and A(¢) — X as t — —oo (cf. [GK57]). We write ®(¢) for the

corresponding eigenvector of C(t).

Lemma 6.3 Suppose the condition (6.1) is satisfied and, moreover,

T2 NDCO o dt < oo,

6.5
DA CWepny < et),  k=1,....m, (6.5)

€(t) being bounded int < T. Then, both A(t) and ®(t) possess the derivatives
up to order m, and the following estimates hold:

A
)
™
N
o~
S—’

[ IDAt)|dt < oo, max |DFA(1)]

0 kem B (6.6)
S NDe(t)|ledt < oo, %1<aXHD O(t)e < celt).

Proof. Introduce the operator

1 -1

Pl = 5 [ (€ =2 an

where the path ¢ is chosen so that all its points are regular for C'(¢) and a

unique eigenvalue A(t) of C'(t) is located inside ¢ for all t < T'. It is known, cf.

[GK5HT], that P(t) is a projection onto the eigenspace of C'(t) corresponding to

A(t). Since the resolvent R (y)(A) is differentiable in ¢, so is the operator P(1),
and

1PV ¢ |[Ula;

= (6.7)
IDPWOUlc < e | DCD cireo |Vl |

Denote by W the eigenvector of C*¥ corresponding to the eigenvalue A.
The norm of ¥ can be determined by (®, W)y = 1.

We now observe that (P(¢)®, W)y — 1 when t - —oc. Hence it follows
that (P(t)®, W)y # 0 for all ¢ < T small enough. As C(¢)P(t)® = A(t)P(t)9P,
we get
(COPL)®, W)y

(P()®, W)y

A1) =
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Since both C'(t) and P(t) are differentiable, we deduce that A(¢) has a first
derivative. Moreover, applying (6.7) yields

[DA@)] < e DO ey, (6.8)

the constant ¢ being independent of ¢ < T
Further, the normalised eigenfunction ®(¢) can be expressed as

_ bP@)o
Y= el
whence
[1DO(t)|lc < e [[DCWH)] e, (6.9)

with ¢ a constant independent of t < T'.

From the inequalities (6.8) and (6.8) the estimates (6.6) for the derivatives
of order k < 1 follow. The higher order derivatives can be estimated in a
similar way.

O

Now we clarify under what conditions on the coefficients of the differential
equation (4.1) the operator C(t) arising by reduction of this equation to a first
order system has properties (6.5). Let us recall that the reduction leads to the
operator (4.5), the entries B;(t) being given by (4.3). Obviously, conditions
(6.5) are fulfilled if

T NDBi () et a1y dt < o0,
| DB ()| ety i) < €(t), k=1,...,m,

for each 7 = 0,1,....,m — 1. These latter are in turn consequences of the
conditions

S NDRCi ()] ettty 10y At < 0, k=1,...,+1;

. 6.10
D COlcmmy < €t) k=lioojtm, (010

€(t) being bounded in ¢t < T.

Lemma 6.4 Assume that the coefficients C;(t) satisfy conditions (6.10).
Then (6.6) holds.

As mentioned after (4.7), the norm in the space H¢ is equivalent to the
norm U <E;n:_11 HUJHH0> + ||tm]|m,,, for U = (uyg,...,un). Therefore, (6.6)

implies, in particular, that

max ((Z HD%@)HHO) ¥ HD’“som(t)HHm) < celt),

i=1
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where ¢;(t), 7 = 1,...,m, are the components of ®(¢).
An easy computation shows that o, () is actually an eigenfunction of the
operator pencil

F(t,\) = zm: B;(t)N,

J=0

where B,, = Id.

Assume that the adjoints C;dj(t) of C;(t) in Hy satisfy conditions similar to
(6.10). The arguments of Section 2 still apply to the adjoint operator Cdi(¢)
and the adjoint bundle 524(¢, X). As a result we obtain that 52¥(¢, \) has the
form

5*U(t, g =Y BN g,
7=0
with the domain Dom&®¥(¢,\) = H,,. Moreover, the components of the

eigenvector W(t) = (¥y1(2),...,1n(t)) of C2di(¢) corresponding to the eigenvalue
A(t) are related by
hi(t) = ¢

Yn(t) = M) Ymoa(t),
where (1) is the eigenfunction of the operator pencil 524(¢, \) corresponding
to A(?).
Since the coefficients of 524(¢, \) are assumed to behave similarly to those
of a(t, \), we get

valt), (6.11)

S DDl dt < oo,
max | DFn (1), < e elh)

the constant ¢ being independent of ¢ small enough. Thus, combining the
equalities (6.11) with the estimates for the derivatives of A(t) given in (6.6),
we obtain
o DEs Bt < oo,
ko (6.12)
x| D6 (0l < e ()

for every y = 1,...,m. This proves

Lemma 6.5 Let (6.10) be fulfilled, with C;(t) replaced by C?dj(t). Then the
estimates (6.12) hold for the components ;(t), j = 1,...,m, of the eigenvector
W(t) of C2(1).



36 B.-W. Schulze, N. Tarkhanov

7 Splitting of a first order system

Lemma 7.1 Let A\ be a simple pole of the resolvent Re(N) = (€ —X)"! of
a closed operator € with a domain dense in a Hilbert space H, so that

(F,Uo)n

Re(MF = =5

Oo+ H(A)F

for all F € H, where ®y (resp. Wo) is the eigenvector of € (resp. €>Y)
corresponding to the eigenvalue Ao (resp. o), with (®, W)y = 1, and H(N) is
holomorphic near Xg. Then the resolvent of the operator €, = € —k (-, Wo)uPo
has the form

Re, (A F = (£ Wo)u

= et HE (7.1)

Proof. Consider the equation (€, — \)U = F or, which is the same,
(€ =N — & (U, W), & = F, (7.2)
the latter being equivalent to
U= Re(MNF + £ (U, W)y Re(N)Po,
for A # Xo. As Re(A)®o = (Ao — A) ™' D, we get

Mq)o—l—f]()\)F—l-/i

(U7 \IIO)H
®q. .
Ao — A ’ (7:3)

U= o= A

Multiplying (7.2) by W, yields
(Ao = A) (U, Wo)yy — 1 (U, Wo)y = (I, Wo)y,
whence
(F7 \IIO)H
)\0 — A= li‘
Substituting this into (7.3) gives (7.1), as desired.

(Uv \IIO)H =

0
Suppose || B;(t) — Cj|lc(H_;H) — 0 as t — —oo. Let only one simple
eigenvalue Ay of C' be located on a line SA = —~,. As the C-norm of C'(¢t) — C
tends to zero as t — —oo, there exists a simple eigenvalue A(t) of C(t), for ¢
large enough. Denote by ®(¢) the eigenvector of C'(t) corresponding to A(t),
and by W(t) the eigenvector of C24(¢) corresponding to A(t). We normalise
them by requiring
(@), ¥(t)n = 1,

[®()lx = 1. (7.4)
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As is shown in Section 6, if the derivatives DB;(t) and DB?dj(t) exist, so
do the derivatives D®(¢) and DW(¢) in ‘H. Put

T(t) U(t) = (1) ®(1),

o) = (U0, (1) ()
then the normalisation conditions on ®(¢) and W(t) imply
(Y(t),¥(t))nx = 0. (7.6)

If U(%) is a solution of the equation DU — C'(1)U = 0 on the semiaxist < T,
then

DY(t) + De(t) ®(t) + c(t) DB(t) — C()Y () — c(HAH)D(t) = 0. (7.7)

Let us multiply both sides of this equality by W(¢). In view of (7.4) we
obtain

(DY (L), W(1)) A+ De(t) (1) (D), W (1)) — (C()T (1), W (L)) —e(t)AE) = 0.

Obviously,
(CWOTW, () = (Y1), () ())n
= M) (T(), W(t))x
=0
whence
(DY), W () + De(t) + c(t) (DP(1), V(1)) — c(t)A(t) = 0. (7.8)

Multiplying (7.8) by ®(¢) and subtracting the result from (7.7) leads to the
equality

DY(t) + c(t) (DO(t) — (DO(2), ¥(1))u®(t)) — C()Y(t) — (DY(1), U(1))®(?)
= 0. (7.9)

By (7.6), we have
(DY), U(1))n = (Y(2), DV(t))n,
hence the equations (7.8) and (7.9) can be written in the form

DY(t)
De(t)

C)T(L) + enn(t) Y(t) + crz(t) e(t),
A(t)e(t) + ean(t) T(1) + eaa(t) e(t),

(7.10)
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where
cr(D) () = (T(), DU(E))n®(1),
—c1a(t) = D®(t) — (DP(2), U(t))ud(1),
—en(t) T() = (T(t), DV (1)),
—coa(t) = (D®(2),U(t))n.

Let us extend the functions ®(¢) and ¥(¢) to the whole real axis so that the
differences ®(t) — ®y and ¥(¢) — Wy and the derivatives D¥®(¢) and D*W(¢),
k < m, be sufficiently small in the norm of H¢ for all £ € R. Introduce the
operators

C.Y(t) = CY{)—r(Y(t),¥o)u Do,
Co()T(1) = COYT(E) =k (T(1), U(1))n B(?)

where x is a complex number which we choose so that the line I'y do not
contain eigenvalues of the operator €, — Ag.
By (7.6), we get C.(¢)Y(t) = C(t)Y(t). Therefore, the system (7.10) finally
becomes
DY(t) = Cut)T()+ ern(t) Y(t) + ca2(t) c(t),
De(t) = At)e(t) + ean(t) T(t) + exa(t) e(t).

Thus we have proved

(7.11)

Lemma 7.2 Assume that || B;(t) — Cj|| c(m,,_, 1) — 0 ast — —oo. Let the
derivatives DB;(t) and DB?dj(t) exist and the norms

HDBJ‘S?)H,C(Hm_J,HO)a
DB (O (s, 10)

be bounded uniformly int < 0, for j =0,1,....m—1. IfU(t) is a solution to
DU - C)U =0, t <T, such that xrU € H;", then the functions Y(t) and
c(t) satisfy (7.11) for small t.

8 Asymptotics under weak stabilisation

In this section we derive an asymptotic representation of a solution to the
homogeneous equation (4.1) under the condition that the coefficients tend to
constant operators as ¢ — —oo. This result is an immediate consequence of
an asymptotic formula for solutions U(?) of the system DU — C(t)U = 0, for
t<T.

Lemma 8.1 Let the following conditions be fulfilled:

1) The operators C; and C;dj meet the assumptions of Section 2.
2) The domain of Cy(t) coincides with H,,, for each t <T.
3) "Bj(t)_cj"ﬁ(Hm—]7Ho) —0ast = —o0.
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4) |\DRC () e, ]Ho) <e(t) forall k=1,...,7+m, where e(t) < c.
5) The adjoints CJ '(t) possess properties 2) and 4).

Then, given any Solution U(t) to DU — C(t)U = 0 on the semiaxis t < T,
satisfying xrU € H", and any eigenvector W(t) of the operator C2Y(t), we
have

[ DR (U(1), D (t))a| < Celt (Z 1D (6) | 710 + Z [l (1) \Ho>

forallk=1,...,m—1.
Proof. We have
DM (U(t), D (t))y = D ((DU(t), DU(t)) — (U(1), D*V(1))n)

for all t <T. Since DU = C(t)U, it follows that

—_

3

m

(DU), DU(6))pe = Y (ui(0)s Ddjaa () = Y (Bya () (t), D ().

1 7=1

ECH
Il

We now observe that every component Dw;(t) belongs to H,,, by Lem-
ma 6.5. Hence Di;(t) € Dom B?ihl (), showing

—_

3

m

(DU(), DV () = Y (uj(1), Dioja () = Y (wm(t), BiZ () D;(1)) .

1 7=1

ECH
Il

Applying the estimates of the derivatives D*;(t) given by (6.12), we easily

obtain
| D Z(um(t)vBadJ( JDY; (1)) < Cﬁ(t)z_: D% () | 11 (8.1)

provided that £ < m.
We now turn to the derivative

m—1

D! Z(u](t)v Dpjyr (4))n-
From
Du1 = —Bo(t)um,

Du]‘ = Uj1— Bj—l(t)umv ] = 27 cee T (8‘2)
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it follows that

m—1
DFEN (g, Dby
7=1
'm—1 m—1
:Dk_z (Z(Duj7D¢j+1 Z U],D 77Z)]-I-1 )
Jj=1 7=1

— DH2 (Z(u]‘_la Db )y — Z(Bj—l(t)um, Dby )n — Z(Uj, Dz%ﬂ)ﬁ)-

=2 7=1 7=1

Moving the operators B;_1(t) from u,, to Di;+; enables us to conclude, as in

the proof of (8.1), that

m—1 k=2
| DF=2 Z(Bj—l(t)um, Dipjyi)ul < celt) Z 1D (1) | 11, -
= 5=0

Further, the remaining terms can be rewritten as

m—1 m—1
D (Z(Uj—hD%‘H = (ug, D*j1) )
7=1

J=2

= DH3 (Z(Duj—17D¢j+1)H Z(u] 1 DY)

7=2 7=2

m—1 m—1
(Duj, D*bja )+ Y (g, D*jin)u ) 7

=1 7=1

and so using formulas (8.2) again transforms the right-hand side of the last
equality to

m—1 m—1 m—1
- (Z(Uj_% Dbja ) =2 (ujors D2 )i+ Y (wg, D*j ) + - >7
7=1

i=3 i=2

the dots meaning terms containing operators B;_1(t). These terms are esti-
mated in the same manner as inequality (8.1).
We continue in this fashion to arrive at the desired estimate.
O

Before formulating our next lemma, we recall that the function ¢(t) is

defined by (7.5).

Lemma 8.2 Under the assumptions of Lemma 8.1, let moreover U(t) be
a solution to DU — C(t)U = 0 on the semiazis t < T, such that xoU € H[;",
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for some v,_1 < v < 7v,. Then, for every u < #,, the following estimate is

fulfilled:
/ —MZW (t)2dt < oc.

Proof. Indeed, Lemma 4.2 implies that y7U € H{7". As

e < U@,
(D)l < celt),

€(t) being uniformly bounded in ¢t < T', we get

T T
[ emnpa < o " e

o0 — 00

< Q.

We now proceed by induction. Assume that

/ —MZW (t)2dt < oo,

for some J < m — 1, and prove that this inequality remains valid with J

replaced by J + 1. We have

D*le(t) = DT ((DU(), W(1)w — (U(t), DY(1))%)
D(C(HU(t), W (1)) — D7 (U(t), DU())n.
Further,
(COUM),V(E))n = A1) (U), ¥(t))u
= A1) e(b),
and so in view of the boundedness of the derivatives D*\(¢), for k < m, we
get

/_T e—zm|DJ (C(t)U(t)a\I’(t))HPdt < oo

o0

On the other hand, the expression D7 (U(t), DU(t))y can be estimated by
Lemma 8.1, as desired.

4

Corollary 8.3 Let the hypotheses of Lemma 8.2 be satisfied. Then the
inequalities

/ —2ut Z |diL < o
7=0
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hold, where v;(t), i = 1,...,m, are the components of the vector-valued func-

tion Y (1) defined in (7.5).

Proof. The proof follows immediately from Lemma 8.2, the boundedness
of the norms of D*®(t) (cf. Lemma 6.3), and the fact that yrU € H".
O
Let us go back to system (7.11). Suppose T < 0 is a sufficiently small
number. Put

where

The functions :f(t) and ¢&(t) satisfy the following system on the whole real
axis
DY(t) = CuO)T(t) +cnn(t) T(1) 4 erz(t) €(t) + R(1),
Dé(t) = At)e(t) + ean(t) T(E) + eoalt) &(t) + (1),

where
R(t) = (Dxr(t))Y(t),
r(t) = (Dxr(1))e(?)

are functions with compact supports. By abuse of notation, we write U, T
and ¢ instead of U, T and ¢, respectively. This will not lead to any misunder-
standing, for the old functions U/, T and ¢ no longer appear. Thus, the system
becomes

DY(t) = Cut)T({)+ enn(t) Y(E) + era(t) e(t) + R(1), (8.3)
De(t) = At)e(t) + ean(t) T(E) + eoalt) c(t) + (1), '
the supports of Y(¢) and ¢(¢) being located on the half-axis t < T

Let A(t) be an eigenvalue of the operator C'(t), such that A(t) — A = 17—y,
as t — —oo. Let moreover u < ,.

Denote yn(t) a smooth function mit values in [0, 1], such that xny(?) =1,
for t < N' < N, and yn(t) = 0, for t > N. Choosing N’ < N sufficiently
small, we may arrange that the derivatives of xn(t) be small. Introduce the

function
An(t) = (1 = xn(8)) A(t) + Xn(t) (7 — i) -
Obviously,
S(An(t) = A1) > 0,
An(t) = A(t), for t> N,
SAn(t) = —p, for t< N,
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the first inequality being fulfilled if N is small enough. Put

Y(t) = Y(t)exp (ifA(s)ds),
y(t) = ct) exp (ifA(s)ds).

In the same way, using Ay (?) instead of A(¢), we introduce functions Yy(¢)
and yn(?). In view of (8.3) they satisfy

DYn(t) = (Cult) = An(£)) Yn(t) + cna(t) Yo () + cra(t) yn(t) + B (1),
Dyx(t) = (M) = An(2) yn(t) + caa(t) Yiv(t) + caa(t) yn (1) + rv(?),
(8.4)
where Ry (t) and ry(t) are the functions obtained from R(t) and r(¢) by mul-
tiplication by exp(: ftT An(s)ds).
From the definitions of Ay (%), Yn(?) and yn(?) one obtains, by Corollary 8.3,
that

m—

/ (ZHDWM (Ol + Z 1D Yt HHO)dt < const(N),

- /Z|D]yN )Pdt < const(N),
(8.5)

where Yy ;(t) are the components of Yy (). The task is now to find an estimate
for Yn(t) and yn(¢) with a constant independent of V.

Lemma 8.4 Let the assumptions of Lemma 8.1 hold. Suppose Yn(t), yn(t)
is a solution to (8.4), satisfying (8.5). Then

| D (Yo, DW)y| < Ce(t (Z 1D°YN |0 + Z 1Yol o + Z |D‘°’yN|>

forallk=1,...,m—1.
Proof. Put Uyn(t) = Yn(t) + yn(t)®(¢). Then
(Yn (1), DU(1)) = (Un(t), DU(t))3 — yn (1) (®(1), DU(L))n-

We claim that
DUN(t) = (C(t) = An (1)) Un(t)

for all t <T — 1. Indeed, since Yn(t) and yy(?) satisfy (8.4) and both Ry ()
and ry(t) vanish for all t < T' — 1, a straightforward verification shows that
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the above equality reduces to C.(t)YTn(t) = C(1)Tn(t), which is obviously
fulfilled.

Thus, in much the same way as in the proof of Lemma 8.1 we arrive at an
estimate

[DF (U (1), DY ()] < ce( (Z 1D*Une i ()10 + Z 1Un,(8) Hm) :

On the other hand,

D (yw () (@(1), DV (1))30) | < eelt) Y |D°yw(t)

as 1s easy to check by Lemmas 6.3 and 6.5. Since

k—1
S D U ()] 115 + Z 1Un, ()] 16
s=0 b1
<C (Z DY N (1)| 110 + Z Y (Bl + Y |DSyN(t)|> 7
s=0 7=1 s=0

the lemma follows.
O
Our next objective will be to estimate the function yx(¢) and its deriva-
tives.

Lemma 8.5 Let the hypotheses of Lemma 8.1 be fulfilled, the function e(t)
of 4) tending to zero as t — —oo. Suppose moreover that

to
S NP C ()] ety mdt < o0,

i ad
J2 HDkC] Ol e, Hydt < 00,
forevery 3=0,1,....m—1and k=1,...,5+1, and

A = Sup |D* (A1) = An (1)) |

is sufficiently small. Then, for T small enough, the estimates

D IDFyn(t)] < CAJyn(t)] + €(t) (Z DY () 115 + Z 1Y ;(t) HH0> 7
k=1

sup |yn(t)] < C+¢(T SupZHYN] ) o
t<T 75<T

(8.6)

are true, with C and (T) independent of N, e(T) — 0 as T — —oo.
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Proof. From the second equation of (8.4) it follows that

T
(t) = = [T OO e (D)5 (0) + caa(D)n(9) + () 0,
€

for yn(t) vanishes for t > T. As S(A(s) — An(s)) <0, we get

T

sup [y (1) < /

o (!\021(19)!\ D Il + leaa(@)] lyn (9)] + |7“N(19)|> d
o e
(8.7)

where |[eg1(9)]] and |eg2(?)] are integrable functions, cf. Lemmas 6.4 and 6.5,
and ry(9) vanishes for ¥ < T — 1. For T' < 0, the estimate (8.7) is easily seen
to imply (8.6).

Further, differentiating the second equality (8.4) k times, 0 < k < m — 1,
results in

k

Dttt = 3 (1) e = o) Do

- DF (ear)Yn(1)) + D (enaltyyn(1)) + Dr (1),

for any t € R. The derivatives of cy1(1)Yn(t) = —(Yn(t), DU(t))y are esti-
mated by Lemma 8.4. Estimating the remaining terms is not difficult. Thus,
(8.7) implies the estimates

k
(D yn(t)] < CAY  |[Dyn(t)]

s=0

k-1 m—1 k
+ee(l) (Z 1D* Y ()l + D 1Y)t + D IDSyN(t)|> 7
5=0 7=1 5=0

fork=1,...,m—1.
Summarising these inequalities and taking into account that e(t) — 0 when
t — —oo, we obtain the first estimate (8.6) for sufficiently small 7.
O

Lemma 8.6 Let the eigenvalue A(t) of C(t) have a limit X = 7 — 17, as
t — —oo, and no other eigenvalues of the limiting operator C' be located on
the line I'_., . Assume moreover that U & 7-[?}’0 is supported in (—oo,T] and
satisfies

DU(1) — (Cult) = M) U(1) = F(1), (8.8)

e H?_l’o being a function of compact support. Then, for T small enough,
we have

[Vl < ¢ Fllgmro.
with ¢ a constant independent of N (and F).
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Proof. The functions A(t) and Ay(t) are defined for ¢ < T only, where T

is sufficiently small. Let us define them on the whole real axis in such a way
that A(1) = A =7 —iv, as t — Foo, and

Av(t) = (1= xXn () A) + X (1) (7 = 1p),

the derivatives D¥(A(¢) — An (1)), k < m — 1, being sufficiently small on all of
R. The operator C(t) can be thought of as being defined on the whole axis
and such that the norm ||C\(t) — Cﬁl‘z(ygvo,y’;—lvo) is small. Write the equality

(8.8) as
DU(t) — (C. = NU(t) = (Cu(t) — COU) + (A = An(@)U(t) + F (1),

for t € R. By Lemma 7.1 there are no poles of the resolvent of C,, — A on the
line I'y. Hence the desired estimate follows.

4

Lemma 8.7 Let the assumptions of Lemma 8.5 be satisfied, and, moreover,
f_tio(e(t))zdt < o0. Suppose the eigenvalue (1) of C(t) tends to a simple
eigenvalue T — 17, of C', when t — —oo, and no other eigenvalues of C' are
located on I'_,,. Then

[¥ivllgo < ¢ (5.9)

provided that T < 0 is sufficiently small, the constant ¢ being independent of
N.

Proof. Put F(t) = c11(1)Yn(t)+er2(t)yn(t)+ Rn(t), then the first equation
of (8.4) becomes

DYn(t) = (Cult) = An(1)) Yn(l) + F(1).
By Lemma 8.6, we get
Wallmo < llFllmoro

< ¢ <"011YN"H’£—1’0 + llcraynllym-ro + HRNHH’I?_LO> )

where ¢ is independent of N. The first term on the right is estimated by
Lemma 8.4, for ¢11(1)Yn(t) = (Yn (1), DU(2))%®(t). We thus obtain

HCHYNHi{r}z—l,O

<o ey (2 LREMUTARS SITHIAD S |D’ny<t>|2) i
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whence, by (8.6),

lenYnllymro < €'+ (=(T))* sup > I¥ns ()i,
7=1

Lo / (e(1))? (Z_ D" Yo (DI, + Z HYNM?IO) d,

o0

where C’, C" and ¢(T') do not depend on N, ¢(T) — 0 as T' — —oco. The re-
maining terms HclgyNHng—l,o and HRNHH;@—LO can be estimated in an analogous

manner. Therefore,
HYN”ygﬁ §¢¥+'JW(T)HYNHH$”

where ¢(T') — 0 when T' — —oo. Hence the estimate (8.9) for small T < 0
follows.

4

Theorem 8.8 Let the assumptions of Lemma 8.1 be fulfilled, and let more-
over

/to P2(e(t))dt < oo.

Suppose A(t) is an eigenvalue of C(t) tending to a simple eigenvalue T —iv, of
C, ast — —oo, and there are no other eigenvalues of C' on I'_,, . Then any
solution to DU — C(1)U =0, t < T, such that xoU € H™, v-1 < v < 7,
has the form

t
As)ds

U@ = e P o) + B (8.10)

where ¢ is a constant depending on the solution, and xR € HT[?’O.

Proof. Decomposing the system DU — C(t)U = 0 as above, cf. (7.5), one
obtains

U = e + v ).

The limit of Yy as N — —oo is equal to y7Y. Passing to the limit in (8.9),
we get yrY € HP.
The function y(t) satisfies Dy(t) = ea1(1)Y () + caa(t)y(t) + r(t), for t < T,

whence
)= 0= [ (ealoV () + enloly(s) + 1(5)) .

¢o being a constant. It is easy to see that the latter integral converges as
t — —oo. Therefore,

sty =t [ (enle)(s)+ enloluls) +r(s)) d.

o0
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The conditions of the theorem guarantee that the last integral belongs to
the space H™%(—o0,T). This establishes the desired formula.
O
We are now in a position to prove Theorem 1.3 stated in the Introduction.
To this end, we introduce the operator

0 0 —Cy(t)
G| ! 0 i‘Cl(t)
0 1 —Chusa(t)

Denote by A(t) the eigenvalue of C'(1) tending to the eigenvalue X of C,
as t — —oo, with SA = —~,. Our next goal is to show that the difference
A(t) = A(t) — A(t) meets the estimate

/to PIA)2dt < 0. (8.11)

o0

Put
Pt = L/(é(t) —A)

27

where ¢ is a path containing in its interior only one eigenvalue A(t) of C'(t),

for t < T. We have
(-2 = (11— (C)~ CuYReN) (1) = 1)
= Row(A) (Id +) ((Ct) - CY@))%@)W)”) :
e (8.12)

Let ® be an eigenvector of the limiting operator C'. Then p(t)(I) — ¢ in

H, as t — —oo. The vector

bry= L0
[2(2)®]|5

is a normalised eigenvector of C’(t) By (8.12) it is easy to check that the
difference ®(¢) — ®(¢) belongs to Hy°. Further,

(COPL)P, V)y
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where P(t) is a projection operator into an eigenspace of C(¢) and W is an
eigenvector of C24(¢). Using (8.12) and the properties of C;(¢), we arrive at
(8.11).

If U(t) is a solution to the system DU — C(t)U = 0, t < T, satisfying
xrU € H77, vo—1 < <7, then by Theorem 8.8

Uty = et (c®(t) + R(1))

i [A(s)ds -~

= <c<i>(t) + R(t)> ,

where Y7 R € HT[?’O.

To complete the proof of Theorem 1.3, it suffices to observe that A(?) is an
eigenvalue of the operator pencil o(t,A) = E;n:o C;(t)N and that ¢, (1), the
last component of &)(t), is an eigenvector of this pencil.

4

9 Applications

The Fuchs-type operators of the standard cone theory (cf. [Sch94]) are as-
sumed to have C'* coefficients up to r = 0. This just amounts to saying
that the coefficients bear Taylor asymptotics near r = 0. However, the so-
lutions of homogeneous Fuchs-type equations bear asymptotics spanned by
r (log r)k cup(x), where A, € C, k € Z, and ¢,i(x) are C* functions on the
link. Thus, to organise a cone calculus in spaces with asymptotics, we may
actually allow more general asymptotics of the coefficients, provided that these
latter remain slowly varying at » = 0. More precisely, we demand A;(r) to
satisfy

oo My

Aj(r) ~ A (0) + ) 0> = (logr)* eon(a) (9.1)

v=1 k=0

as r — 0, where (z,),en is a sequence of points in the complex plane with the
property that

0>%212%222

Sz, > —00 as v — o0,

Y

and m, € Zy. This property allows one to give a precise meaning to the
asymptotic sum on the right side of (9.1). Assume that (9.1) can be differen-
tiated in r sufficiently many times. Since

(rD,) <riz (log r)k> = (z —ik/logr) <riz (log r)k> \
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the condition of Theorem 1.5 will be established for all £ > 1 once we prove it
for k = 1. In this particular case it becomes

ki | d i L d
/(log r)2(29—1) |rzzl (log r)ml |2 _7“ — /(log r)2(2@—1-|—m1) r—2\szl _7“
T T
0 0
< o0,

which is obviously fulfilled because of the condition Sz; < 0. Thus, Theo-
rem 1.5 applies to Fuchs-type equations with coefficients as non-smooth, as
are the asymptotics.

10 A refinement of asymptotic formulas

The asymptotic formula for a solution of DU — C(t)U =0, t < T, established
in Theorem 8.8 can be refined if the operator C'(¢) has a special behaviour near
t = —o0.

Suppose C(1) can be written as

C(t) = ; obtl—é +Os(t),
where
0 —Cy
Op = 1 0 —-C
0 .1 —Ch
and
0 0 —By,
0, = 0 ... 0 =By, 7
0 .. 0 B,

for v = 1,...,J + 1, Here, B;,, ¢ < J, are constant operators, and B; 14
depends on ¢, the domains of all entries containing H,,. Moreover, we require
the norms of D*B; j41(t) in L(H,,_;, Hy) to be bounded by ¢/t/*1** for each
k<m.

Let I'_,, contain only one eigenvalue Ag of O, and A be simple. We look for
a solution to DU — C(H)U = 0, t < T, satisfying xoU € H”, vo—1 < v < 7,

of the form
J
: 1
U(t) = P eMot (Co L:EO ULtT + UJ.H(t)) R
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the vectors Uy, Uy, ..., Uy and the number p being determined from the con-
ditions

(Oo—)\o)Uo = 0,

= (10.1)
(OO - )\O)Ua Y —1 (L —1- p) UL—I - E Oa—kUkv
k=0

fore=1,...,J.
From the first equation it follows that Up is an eigenvector of Op. We denote
Wy a corresponding eigenvector of OSdJ and normalise the vectors Uy and Vg

so that ||Up|lx = 1 and (Up, ¥o)y = 1.

Consider the second equation of (10.1), namely
(Oo — )\O)Ul = —V —1pU0 — Oon.
It has a solution if and only if

—/ —1p (Uo, \IIO)H — (01U07 \IIO)H ’

ie., p=+v—1(01Up,Vy),,. If pis chosen in this way, then the equation has a
solution

Ur = Y1 + cl,

where Y] is a particular solution and ¢ an arbitrary constant.
The equation for U, has the form

(Oo — )\0)U2 =V —1 (1 — p) U1 — (02U0 —|— OlUl) 5
the solvability condition being

vV—=1(1—-p) (UlquO)y = (0:Up + O1U17\I’0)H-

This condition can in turn be satisfied by a proper choice of the constant ¢,
namely

c=—v—1 (OQUO + 011/17 \IIO)H - (1 - p) (1/17 \IIO)H :

We continue in this fashion to show that the system (10.1) is solvable. The
vectors Uy, Uy, ..., Uj_y are determined uniquely, and Uy can be written in the
form

UJ = YJ —|— C(t) Uo,

where Y7 is a particular solution of the corresponding inhomogeneous equation
and ¢(t) an arbitrary function of ¢. Therefore, the solution U(#) can be written
as

J
: 1
U(t) = P 62/\075 (CO L:EO ULtT + C(t) UO + YJ_H(t)) R
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with ¢(t) an arbitrary function and Yj41(¢) an unknown vector-valued function,
the meanings of U; and ¢(t) having been changed. Let us define the function

c(t) by
c(t) = (t P el (1) — COZU , U ) ,

then (Yy41(t), Wo)u = 0 for all ¢ < T'. Choose the constant ¢q in such a way
that ¢(t) — 0 when { — —oo. An easy computation shows that ¢(¢) and
Yj41(t) meet the system

De(t) = <<¢—_1 p% — Ao+ C(t)) U, %) e(t)

+a((VFr-n e )ZU )
+ ((\/—_1]9%—)\0—%0@)) YJ+1(t)7q;0> 7

H

DY) = (VT = o €10 Vsl
T

1
—|— Co (\/—1p;—)\0—|—0(t)—D> UL—

=0 tL
+ (VAT = o €Y ) 0l = Dt

Moreover,

J
1 1

=0

|

=V—1(p— J)UJtJJrl + Z Z Ot Ui+ Oy41(t) U—

LJ-l—l k=—J =0
1
:o<tm>,

which is clear from the choice of Uy, Uy, ..., Uy. Thus, the above system reduces

to

De(t) = ((Z o% + 0J+1(t)) U, %) e(t)

=2

1
EUCORD
H
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T ((2;:0% £ 0t ) Yia (1 ) ,
DYy (t) = <\/—_1 e o+ C( t))
o(0 () - (0 <tm> %) )

- ((Z 0.+ om(t)) Vi (t), \D) Uy + R(1),

=0

_|_

(10.2)

where R(t) can be expressed linearly in terms of ¢(t)Uy with coefficients de-
creasing at least as rapidly as 1/¢.

We solve the first equation of (10.2) with respect to ¢(¢) and substitute the
resulting expression into the second, thus obtaining

DYy (t) = (Cx = Ao + Q1)) Yipa (1) + F (1),

where the norm HXTQH’C(HZL,O) is sufficiently small, for T' < 0, and F\(¢) is a
vector-valued function satisfying

T
exp (/ 0(3)d$> ok € Hp ',
¢

with 8(¢) = xr(t)(J + A)/(—t) and A € (0,1/2). Applying Lemma 3.2 we

deduce that .
exp (/ 0(3)d$> xrYsi1 € 7-[?}’0
¢

A similar estimate for ¢(¢) follows from the first equation (10.2). Thus, we
have proved

Theorem 10.1 Suppose the line S\ = —~, contains only one eigenvalue
Mo of C, and this eigenvalue is simple. Then any solution to the equation
DU —-Ct)U =0, t < T, satisfying xoU € H", with v,_y <~ <, has the

form
. T
U(t) = ¢P ew\ot (Co Z UL t_‘ + UJ.H(t)) R

=0
where Uy is an ezgenvector of Oy corresponding to the eigenvalue Ao, Yo an
ezgenvector of O correspondmg to Ao, p is given by /—1(01Uy, o)y, and
exp ft (s)ds) xrUss1 € Hy
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11 Relative Index Theorem

Suppose A is an elliptic differential operator of order m on a manifold M with
a corner v, acting as H*"7(M) — H*="w="7=™ (M) where the weight v € R
is related to v. From a Regularity Theorem it follows that the index of the
operator A does not depend on s. In this section we study the dependence of
the index on ~.

Choose a neighbourhood O of v on M such that O\ {v} is diffeomorphic
to (0,¢) x X. Using a change of coordinates ¢ = d(r), we reduce the equation
Au = f near v to (1.1). The operator pencil o(\) associated with the equation
(1.1) is known to be just the conormal symbol of A at v. We write op(A)(v, 2)
for it.

Our basic assumption is that the coefficients of A stabilise at the corner v,
i.e., the coefficients C;(¢) meet the conditions 1)-3) after Corollary 1.2. This
just amounts to saying that the coefficients of A are continuous and slowly
varying at v.

Theorem 11.1 Assume that in the strip —p < Sz < —~ there lie N eigen-
values of the symbol ox(A)(v, z) (counting the multiplicities), and that there are
no eigenvalues of this pencil on the lines SA = —p and S\ = —~. Then any
solution w € H*"7(M) of the equation Au = f with f € H*="™W="H=" (M)
has the form

u=cu +...+teyuy + R

in a neighbourhood of v, where uy,...,uy are elements of the space H*""V(M)
with support near v which satisfy Au = 0 in a smaller neighbourhood of v
and are linearly independent modulo H>""*(M); ¢1,...,en are constants; and

R e H>"H*(M).

Proof. Let w be a C*™ function on M with a support in a sufficiently small
neighbourhood of v, such that w =1 near v. Then wu satisfies the equation

A(wu) = F,

with /' = wf + [A,w]u and [A,w] = Aw — wA denoting the commutator
of A and w. By our assumption on w, the function F' is an element of the
space H*~mwmmak=m (M) with a support in a neighbourhood of v. Passing to
the coordinates (¢,2) € (—oo0,T') x X near v, where t = §(r), we can apply
Theorem 1.1. Thus, we get

wu=cu +...+teyuy + R (11.1)

in a neighbourhood of v, where uy,...,uy are solutions of the homogeneous
equation Aw, = 0, such that d,u, are linearly independent modulo the space
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H**(—o00,T), and 6.R € H**(—o0,T). Without loss of generality we may
assume that the supports of u, and R are contained in a small neighbourhood
of v. Indeed, otherwise we multiply (11.1) by a function @ € Cg;, [0,¢) equal
to 1 on the support of w, to obtain (11.1) with &u, and @R instead of u,
and R. Since 6. (1 — @)u, lies in H**(—o0,T), for each v = 1,..., N, the
functions é, @uy, ..., 0, wuy are also linearly independent modulo the space
H**(—o00,T). This completes the proof.
O
We emphasize that N is the sum of the algebraic multiplicities of all eigen-

values of op(A)(v, z) lying in the strip —p < Sz < —+.

Corollary 11.2 Suppose in the strip —p < S\ < —~ there lie N eigenval-
ues of the conormal symbol of A at v (counting the multiplicities), and there
are no eigenvalues of this symbol on the lines SA = —pu and SA = —~. Then
the equation Au =0 has at most N solutions in H>"" (M) which are linearly
independent modulo H***(M).

Proof. Pick a '™ function w on M with a support in a small neigh-
bourhood of v, such that w = 1 near v. By Theorem 11.1, every solution
u € H>"7(M) of Au =0 admits a decomposition (11.1), where uy, ..., uy sat-
isfy Au, = 0 near v and are linearly independent modulo the space H*"* (M),

while R € H***(M). Hence we obtain
u:clul—l—...—l—cNuN—l—]%,

where R = R+ (1 —w)u is clearly an element of H*"“#(M). This proves our
assertion.

O
Let A, denote A mapping as H*"7Y(M) — H*=™w=77="(M). Further-
more, let Uy, ..., Ug € H**"7(M) be a maximal set of solutions of the homo-

geneous equation Au = 0 which are linearly independent modulo the space
H>"#(M). From Corollary 11.2 we deduce that () < N and every solution
u € H>"7(M) of Au= 0 fulfills

modulo H**“*(M). The set (Uy,...,Ug) is called a basis in ker A, modulo the
space H*""(M).
As was shown in the proof of Corollary 11.2, each element U, of this basis

meets
N

U, = g Cqv Uy

v=1
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modulo H*"#*(M), where uy,...,uy € H*"7(M) satisfy the homogeneous
equation near v, and (¢g,) is a () x N)-matrix of the rank ). There is no
loss of generality in assuming that (¢, ) has the form (7, T3), with T} a non-
degenerate (@ x ())-matrix. Hence, we get

T7'U = (1do, T7 ') u

modulo H***(M), where Idg is the identity (@ x Q)-matrix, and U, u denote
the columns with entries U, and u,, respectively. Thus, we can assume without
loss of generality that

N
U, =u, + Z Cqv Uy (11.2)
v=0Q+1

modulo H*"*(M).

Any basis (Uy,...,Ug) in ker A, modulo the space H*"*(M), which has
the form (11.2) is called canonical. From now on we assume that some canon-
ical basis is given.

Lemma 11.3 Assume that in the strip —p < SA < —v there lie N eigen-
values of ox(A)(v, z) (counting the multiplicities), and there are no eigenvalues
of this symbol on the lines SN = —p and SN = —v. Let ) be the maximal
number of solutions of Au = 0 in H*"“7Y(M) which are linearly independent
modulo the space H*"*(M). Then the equation A*g = 0 has exactly N — Q) so-
lutions in H™=*"m=""=k( M) which are linearly independent modulo the space

Hm—s,m—w,m—w (M) .

Proof. Let Gy,...,G; € H"™*7"7" 4 (M) be a basis in ker A% modulo
the space H™~*™="m=7(M).

We first show that J + ) < N. Obviously, there exists a system fi,..., fs
in the space H*=™“="#=" (M) such that

(fi,G]‘) == 52',]' for all Z,] == 1,...,J;

(fi,G) = 0  forall G €kerAZ,

where (-,-) denotes the scalar product in H*%°(M), and §;; the Kronecker
delta. Since A, is a Fredholm operator, the latter condition implies the exis-
tence of solutions @, € H*"7(M) of the equation A, = f;, for i =1,...,.J.
Suppose there is a linear combination

J Q
UZZEzﬂZ—I- Cqu
q=1

=1
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of dy,...,0y and Uy,...,Ugy, which belongs to the space H*"*(M). Then we
obtain

0 = (U,A*G])
= (Au,G))
J Q
= D a(fnG)+ Y (AU, G))
=1 g=1
= &
for y = 1,...,J. Moreover, we have ¢; = ... = ¢g = 0, for the elements

Gl,...,Gq are linearly independent modulo the space H*"*(M). On the
other hand, Theorem 11.1 shows that any element @,,...,u; and Uy,...,Ug
is a linear combination of uy, ..., ux modulo H*"*(M). Hence it follows that
J 4+ @ < N, as desired.

We now suppose that J < N — ). Since Au,, = 0 in a neighbourhood of
the corner v, we can define the moments

mj, = (Au,, G;),

foryj=1,...,Jand v =Q+1,..., N. Pick a non-zero solution (¢g41,...,cn)
in CV=% of the linear system

N
Z mi,c, =0, g=1,...,J.
v=0Q+1

Then, u = cg41 ug4+1 + - .. + ey uy satisfies
(Au,G;) =10, foreach j=1,...,J,

whence (Au,G) = 0 for all G € ker A%. Since A, is a Fredholm operator, we
conclude that Au belongs to the range of A,. This means that there is an
element @ € H*"*(M) such that Ugy; = u — @ is a solution of the equation
AUgy41 = 0. However, then Uy, ..., Ug4q form a system of ()+1 solutions of the
homogeneous equation on M which are, by (11.2), linearly independent modulo
H>w#(M). This contradicts the maximality of Uy,...,Ug, which completes
the proof.
O
We have used only the fact that the transpose A’ of A acting from H*"*" (M)
to H*=mw=mY=" (M) can be specified as the formal adjoint A* with respect
to the non-degenerate sesquilinear pairing H*"“"(M) x H=>~*~7"(M) — C
induced by the scalar product in H*%°(M). To prove this it suffices to ob-
serve that the spaces H*"7(M) are defined as completions of C'* functions
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with compact supports on the smooth part of M with respect to appropriate
weighted norms.

Lemma 11.3 leads to the following interesting consequence for the index of
the operator A.

Theorem 11.4 Suppose in the strip —p < I\ < —~ there lie N eigenval-
ues of the conormal symbol of A at v (counting the multiplicities), and there
are no eigenvalues of this symbol on the lines SA = —pu and SA = —~. Then
the difference of the indices of A evaluated on H*>"" (M) and H>"*(M) is
equal to N.

Proof. Indeed, denote A, the operator H**“" (M) — H*="™w=m3=" (M)
induced by A. Then

ind A, = dimker A, — dimker A%,
ind A, = dimkerA, —dimker AZ.

Set
) = dimker A, — dimker 4,,,

then from Lemma 11.3 it follows that
dim ker AZ = dim ker A: + (N — Q).
Thus,

ind A, = (dimkerA,+ Q) — (dimker AL — (N — Q))
= ind A, + N

showing the theorem.
O

Theorem 11.4 is actually a direct consequence of the Structure Theorem 11.1
and the following abstract result of functional analysis. Let A: H — H be a
Fredholm mapping of Hilbert spaces which restricts to a Fredholm mapping
Ay : Y — 2, both embeddings ¥ «— H and ¥ — H being continuous. Suppose
there are uy,...,uy € H linearly independent modulo ¥, such that Au, € %,
for v = 1,...,N, and every u € H with Au € ¥ can be written in the
form u = Ei\;l c,u, + R, where ¢;,..., ¢y are constants and R € Y. Then,
ind A=ind Ay + N.

Theorem 11.4 seems to be new even for manifolds with cusps, i.e., when the
link X has no singularities. However, in this case it can be easily derived from
the Relative Index Theorem for manifolds with conical singularities. Indeed,
every elliptic operator on a manifold with cusps can be continuously deformed
through elliptic operators to an operator whose “coefficients” are independent
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of r close to every cuspidal point. They are in fact equal to the “coefficients”
of the original operator, frozen at the singular point. Such operators survive
under arbitrary homeomorphisms of a small neighbourhood of a cusp, which
are C'™ away from the cusp. Hence changing the variables by s = exp(d(r))
reduces the operators to those of the Fuchs type, while the index remains the
same.
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