COORDINATE INVARIANCE OF THE CONE ALGEBRA
WITH ASYMPTOTICS
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ABSTRACT. The cone algebra with discrete asymptotics on a manifold with conical singular-
ities is shown to be invariant under natural coordinate changes, where the symbol structure
(i.e., the Fuchsian interior symbol, conormal symbols of all orders) follows a corresponding
transformation rule.
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INTRODUCTION

Pseudo-differential operators on a manifold B with set of conical singularities S form
an algebra of operators acting in weighted Sobolev spaces on B\ S. A conical singularity is
modelled on a cone X2 = (R x X)/({0} x X) with base X (here, X is a closed C*°-manifold)
and the cone axis R,. Operators and spaces are described in terms of a chosen splitting of
coordinates (t,z) € Ry x X with a controlled behaviour as ¢ — 0. Any other admissible
choice (r,y) € Ry x X is connected with (¢,z) by a diffeomorphism ¥ : R, x X — R, x X,
(r,y) = x(t,z). With B we then associate a stretched manifold B which is a C'°*°-manifold
with C*°-boundary 0B = {union of all base manifolds X to points in S} and B\ S = B\ 0B.
In particular, for B = X with S consisting of the tip of the cone, we have B = R, x X.
Thus coordinate changes for B are in general transition diffeomorphisms that are smooth up
to the boundary. A basic property of the operators in the algebra should be their invariance
under such diffeomorphisms. The present paper settles this problem for the cone algebra
of Schulze [17] with asymptotics that consists of Mellin pseudo-differential operators with
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meromorphic Mellin symbols plus so-called Green operators which map into subspaces with
asymptotics as ¢ — 0. The meromorphic structure of the Mellin symbols reflects asymptotic
information in the algebra. Thereby, asymptotics refer to the particular choice of coordinates.
It is by no means evident that the rather fragile asymptotic data are respected under y. The
coarser case of the cone algebra without asymptotics has been treated by Schrohe in [14].

An algebra of pseudo-differential operators on a manifold with conical singularities which
is naturally coordinate-invariant can be generated by the Lie algebra of totally-characteristic
vector fields, cf. Melrose and Mendoza [12]. Relations between the different choices of “cone
algebras” in the literature are expounded by Lauter and Seiler [9]. Let us also mention
that the Mellin pseudo-differential algebra on the half-axis in Eskin’s book [5] (with Hilbert-
Schmidt operators as residual elements) can be subsumed under the concept of cone algebras
on the half-axis.

The smaller the algebra is, for instance, concerning the ideal of residual elements, the more
involved is the question of invariance. Furthermore, it is interesting for various applications
to single out sub-algebras characterised by specific asymptotic information, cf. the discussion
in [17] concerning the transmission property in boundary value problems as an aspect of
cone asymptotics and the investigations of Witt [24]. The boundary symbol calculus for
pseudo-differential operators with the transmission property is a particularly simple example
of a cone algebra on the half-axis. It is known to be invariant under diffeomorphisms of
R,. Another important class of invariant operators on manifolds with conical singularities
is formed by the differential operators of Fuchs type. Parametrices to elliptic differential
operators of Fuchs type, expressed with respect to different coordinate systems (¢,z) and
(r,y), respectively, belong to the cone algebra with asymptotics. Hence also these special
elements in the cone algebra are assumed to be coordinate-invariant. This suggests that the
answer to the invariance question should be positive; finding a precise proof for this, however,
turned out to be much deeper than originally expected.

Operators on manifolds with conical singularities are a basic ingredient for calculi on man-
ifolds with higher (polyhedral) singularities, e.g., on manifolds with edges (especially, bound-
aries) and corners. The approach in the papers of Schulze [16], [19] and in the book of Egorov
and Schulze [4] amounts to pseudo-differential machineries with cone operator-valued sym-
bols. In this context, any change of the ideal of residual elements in the original cone algebra
enormously changes the resulting algebra of operators of the higher singularity order. Such
ideals may be indeed very rich. They can lead to full operator algebras on lower-dimensional
skeleta of polyhedra which are generated by operator-valued symbols taking values in the
residual elements of an algebra of smaller singularity order. For such symbols and associated
operators, there is also the problem of invariance under adequate transition diffeomorphisms.
The coordinate invariance of the cone algebra is then a necessary information.

The plan of the paper is as follows: In Chapter 1 we prove the invariance of the cone algebra
with asymptotics on the half-axis, regarded as a space with conical singularity at the origin.
The typical ideas already arise in this case that is also of independent interest. The cone
algebra on the half-axis contains many interesting invariant sub-algebras, especially algebras
with pseudo-differential symbols that are non-degenerate at the origin, as they occur in mixed
elliptic problems in the calculus transversal to interfaces of the mixed conditions, cf. Schulze
and Seiler [20]. We derive explicit transformation rules for the lower-order conormal symbols
that apply to non-linear differential equations, cf. Liu and Witt [10], [11]. Chapter 2 solves
the invariance problem for the general cone algebra with discrete asymptotics on a manifold
with conical singularities, i.e., for the case of arbitrary base manifolds (of the local cones).
Here, we systematically employ the kernel cut-off method in the higher-dimensional situation,
combined with specific functional-analytic constructions on Fréchet spaces of meromorphic
pseudo-differential operator-valued functions in the complex plane of the Mellin covariable.
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1. CONE OPERATORS ON THE HALF-AXIS

1.1. The cone algebra. Let ( fo t*~tu(t) dt be the Mellin transform on the
half-axis Ry 3 t, first defined for functlons u € CO (R+) The Mellin covariable z € C
varies on I'g = {z € C: Rez = 8} for some B € R. For the inverse, we have (M lg)(t) =
(2m3)~ fr t7?g(z) dz, which is actually independent of § for u € C§°(R;), where g(z) =
(Mu)(z) € A(C). Here A(U) for U C C open denotes the space of all holomorphic functions
on U endowed with the Fréchet topology of uniform convergence on compact subsets. Let
SH(R) for i1 € R be the space of symbols of order p with constants coefficients, i.e., the space
of all f(7) € C*®(R) such that |0% f(7)| < c(r)*~* for all k € N, 7 € R, with certain constants
¢ = ¢(f,k) > 0. Denote by SY(R) the subspace of all classical symbols, i.e., the space of
all symbols which have an asymptotic expgnsion flr) ~ Z;io 7(7) fu—j) (1) with certain
fu—j) (1) € C®(R\A{0}), flu—jy(AT) = M7 f(,_jy(7) for X € Ry, 7 # 0, and any 0-excision
function 7(7). Both S#*(R) and S!(R) are Fréchet spaces in a canonical way. Hence we also
have the spaces S% (R x R) = COO(R+, SE(R)), Sh(R: x R) = C°(R4, S4(R)) etc., and the
same without subscript “cl”.

We also use notation like S%(I's) or S%(Ry x I'g) when the covariable 7 plays the role of
Im z on the line I'3. More generally, if B(R) is a space of distributions on R, then we have the
corresponding space B(I's) for B € R. Further examples are: L*(I's) — the space of square
integrable functions with respect to d7, 7 = Imz, S(I'g) — the Schwartz space.

Let H*7(R;) for s,y € R be the completion of C§°(Ry) with respect to the norm

1(2)* (Mu)(2)|r, 7||L2(F1 Bt where (z) = (1 + |z|2)1/2. Especially, H*7 (R, ) = t'L*(R),
2- 27
with L2(R ) being taken with respect to dt. This definition shows that the weighted Mellin
transform My: u — (Mu)|r, : extends from C{°(R4) to an isomorphism M, : H*7(R;)
1
— (z)_sLZ(I‘%ﬂ).

With each f(z) € S#(I' 1 _), we associate the weighted Mellin pseudo-differential operator

opy; (f) = M7 f(2)My: HY(Ry) — H T (Ry)
that is continuous for all s € R. For v = 0 we also write op,,(f). Similarly, we can form
opy;(f) for Mellin symbols f(t,¢',2) € S*(Ry. x Ry xT'1_ ). For f(t,¢',2) € S*(Ry x Ry x
2
Fl—v)’ the operator
2

wopy(f)aw: HY(Ry) = HTHI(Ry)
is continuous for all s € R, where w(t), ©(t) are arbitrary cut-off functions, i.e., w, @ €
C$°(R4) with w(t) = ©(t) = 1 near t = 0.
We denote by L’CLI(RJF) the space of all classical pseudo-differential operators on Ry, i.e.,
the space of all operators F~'p(t,7)F + C, where p(t,7) € S4(Ry x R) and C € L™°(R})
is an operator with kernel in C*° (R, x R ), with F' = F}_,, being the Fourier transform on

R. Then op},(f) € LY(Ry) for f(¢,t,2) € SH(Ry x Ry x F%—v)‘
Further we denote by S#"(R; x R) the space of all symbols p(¢,7) € S*(Ry x R) which
fulfil the symbol estimates
|07 OFp(t,m)| < ety ()

for all m,k € Nand ¢ > 1, 7 € R, with constants ¢ = ¢(m, k) > 0, cf. [13]. Then L*7(Ry)
denotes the space of all operators of the form F~!p(t,7)F + C, where p(t, 7) € S¥1(Ry x R)
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and C € L™~%(Ry ), i.e,, C € L™>7(Ry ) is an operator with kernel C(t,t') such that
n(t)w(t")C € S(R x R) ‘R+XR+, for any 0-excision function 7.
We now briefly introduce the cone algebra on R, with discrete asymptotics. Roughly
speaking, it is a certain subspace of {t° op,, (f)t ™ 7: f(t,t',2) € SH(Ry xRy xT'1)}, p € R,
2

for some choice of weights v, € R. The weight factors t°, =7 are not always essential, so we
will ignore them for a while. Formulations with the Mellin transform are of interest only near
t = 0. Away from ¢t = 0, we refer to standard pseudo-differential operators with the Fourier
transform and additionally impose an exit behaviour as ¢ — oo in the sense of L*°(IR, ) that
guarantees continuity in Sobolev spaces globally up to infinity. For this reason we employ a
mixture between the spaces %7 (R} ) and H*(R; ), namely we set

(R = {wu+ (1 w)os w € HT(RL), v € H(RL)}

for a fixed cut-off function w(¢). (This definition is, of course, independent of w.) Concerning a
choice of the Hilbert space structure in £%7(R, ) and other simple properties of these spaces,
cf., e.g., [17]. The scalar product in L?(R;) = K%°(R,) gives rise to a non-degenerate
sesquilinear pairing between K£*7(R;) and K™%~7(Ry) for all s, v € R; so we can also talk
about formally adjoint operators.

Subspaces with discrete asymptotics of type P for a finite sequence P = {(pj, mj)}j-vzl C
C x N with N = N(P) and mcP = )L {p;} C {# € C: § =y +9 <Rez < § —} for
a given —oo < ¥ < 0 are defined as follows: First we form the linear span Ep(R; ) of all
functions w(t)t=? logh ¢ for arbitrary (p,k) € C x N, where (p,m) € P, 0 < k < m, with a
fixed cut-off function w(t). We then have Ep(R;) C L7 (R}). Moreover, we set © = (1, 0]
(which is regarded as a weight interval) and Kg"(Ry) = (.50 £*77V75(Ry) in its projective
limit topology and define

(1.1.1) K" (Ry) = Kg'(Ry) + Ep(Ry)

to be the space of all u = uga; + Using, Where ugy € KG7(Ry), using € Ep(Ry). The space
(1.1.1) is independent of w, and it is a Fréchet space. The definition easily extends to the
case of the infinite weight interval © = (—o0,0] and infinite sequences P = {(p;,m;)}72,
with 7cP C {z € C: Rez < % - 7}, Repj — —oo as j — oo, by taking a projective limit
K31 (Ry) = im, IC;’Z(& ), where Py for k € N is a sequence of finite asymptotic types with
Py C{z€C: 3 —y—(k+1) <Rez < 3 —~} and P = J, P,. We call such sequences P
discrete asymptotic types associated with the weight data (v, ©) for © = (¢, 0], —oo <9 < 0.
Define As(y,©) to be the set of all those P. We will also use the Fréchet spaces

SHRy) ={wu+ (1 —w)v:ue KFT(Ry), ve SRy},

where w is a cut-off function.
An operator G € L™ °°(R;) which induces continuous maps

(1.1.2) G: KT(Ry) = Sp(Ry), G KY(Ry) — S, (Ry)

for all s € R, with G* being the formal adjoint to G and discrete asymptotic types P and Q)
associated with the weight data (d,©) and (—v, ©), respectively, is called a Green operator
with discrete asymptotics. The space of all these operators is denoted by Ci(Ry, (7,6, 0)).

Green operators appear as residual elements in the calculus of Mellin pseudo-differential
operators with meromorphic symbols. Consider a sequence R = {(rj,n;)}jez such that
mcRN{z € C: ¢ <Rez < '} is finite for all ¢ < ¢/, where 7cR = ;4 {r;}. Such sequences
will be called discrete asymptotic types for Mellin symbols. The set of all these sequences
R is denoted by As. Then M,> denotes the space of all functions f € A(C\ mcR) which
are meromorphic with poles at r; of multiplicities n; + 1, 7 € Z, and which are such that
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W(z)f(z)‘rﬂ € S(I'g) for each B € R, uniformly in ¢ < g < ¢ for arbitrary ¢ < ¢/. Here, 7 is
a mcR-excision function, i.e., w(z) € C*(C), n(z) = 0 for dist(z, rcR) < ¢p and 7(z) =1 for
dist(z, mcR) > ¢, for certain 0 < ¢y < ¢1.

Let My, for p € R be the space of all h € A(C) such that hlp, € S5 (T's) for each g € R,
uniformly in ¢ < 8 < ¢ for arbitrary ¢ < /. The spaces M3>, M/, and Mb = ME+ ME™
are Fréchet spaces; natural semi-norm systems follow immediately from the definition. The
union of the spaces M‘;z over R € As will be denoted by M

Given 7,9 € R and a weight interval © = (—(k + 1),0] for £ € N, we denote by
Cria(Ry, (7,6,0)) the space of all operators M + G, where G € Ci(R;, (v,6,0)) and

(1.1.3) M = &(t)t0~ VZtﬂ op% (f;)éo(t)

for arbitrary (so-called conormal symbols) f;(z) € MI_{;)O and oj € R, v —j < p; <, where
W(ch N F%*Qj
two operators of the form (1.1.3) with the same fo, ..., fx, but different cut-off functions or
shifts, their difference belongs to Cq(Ry, (7,6,0)), cf. [17]. The cone algebra with discrete
asymptotics is the union of all spaces in the following definition.

Definition 1.1.1 The space C*(Ry,g) of all cone operators of order p € R on Ry with
discrete asymptotics and weight data g = (7,0,0), v, € R, © = (—(k +1),0], k € N, is
defined as the set of all operators of the form

(1.1.4) A:wt‘s_VopX/[(h)w0+(l—w)Aoo(l—wl)+M+G

= for j =0,...,k. The cut-off functions @&(t), &y(t) are also arbitrary. Given

with cut-off functions w, wy, wy satisfying wwy = w, ww, = wi, and
(1) h(t7 Z) € COO(E+7M‘(LQ)>
(11) M+Ge CM+G(R+79):
(iil) Ae € LE (R ) NLMO(RY).
We have CH(R,,g) C Lfffo(RJr). Setting g, = (7,9, (—(k + 1),0]) it is also clear that
CH(Ry,g9p41) C CH(Ry,gy) for all k € N. For g = (7,6,0), © = (—00,0], we then define

CH(Ry,g) = Ny C*(Ry, gg)-
An operator A € CHRy,g) for g = (v,d,0) induces continuous maps

(1.1.5) A: K (Ry) — KSRy
and
A: KFT(Ry) = K50 (Ry)

for all s € R and any asymptotic type P € As(v,©), with some resulting asymptotic type
Q= Q(P7 A) € AS(67®)

The principal symbol of an operator A € C*(R;,g) that is responsible for the ellipticity
of A is a triple

(1.1.6) o(A) = (6%(A),03;° (A),00(A)).
Here
(1.1.7) LA (t,7) = Vol (A)(t,t71F),

with afZ(A) being the homogeneous principal symbol of A € L’} (R ). The principal conormal

symbol JX/I_‘S(A) of conormal order y — ¢,

(1.1.8) o170 (A)(2) = W0, 2) + fo(2),
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is defined in terms of the Mellin symbols h(¢,z) in (1.1.4) and fy(z) in (1.1.3). It satisfies
(1.1.9) Jgoﬁ/[(A)(z)‘z:%_v_ﬁ 51, (A)(0,7).

Finally, the exit symbol 00(A) is the class of p(¢,7) € SH(R, x R) modulo S#*~L~H(R, xR).
If o(A) vanishes (i.e., all its components are zero), then (1.1.4) is compact for all s € R. In

addition, we have the conormal symbols O'PYM_(S_]' (A) of lower order,

L
gl ou

(1.1.10) o177 (A)(2) h(t,2)|,_y + f(2),
for y = 1,...,k. They belong to M‘;{J_ for certain discrete asymptotic types R; for Mellin

symbols and are crucial in determining the asymptotics of solutions to elliptic equations. Let
us finally recall that the principal symbol behaves multiplicatively under composition, i.e.,
0(AB) = 0(A)o(B) for A € C*(R4,(v,0,0)), B € C"(R+,(B,7,0)) with the component-
wise composition, where the principal conormal symbol is multiplied together with a shift in
the first argument. More generally, the conormal symbols can be computed by the Mellin
translation product

—0—1 PV 65— PV
(1.1.11) o " THAB) = Y (17T 0P (A))oh, T (B)
p+a=l
for{ =0,...,k, where (T?f)(z) = f(z + o).
The main result of Chapter 1 is the invariance of the cone algebra CH(Ry,g) under coor-
dinate diffeomorphisms. Let x: R, — R, be a diffeomorphism. Further we assume that

de 1—j
(1.1.12) W(t)‘ < Cj(1 +t)'
for all j € N with certain constants C; > 0 and
(1.1.13) x(t) > cot

for another constant ¢y > 0. Then we have the well-known push-forward of pseudo-differential
operators x,: LM?(Ry) — LWY(R,) for each pu € R.
Theorem 1.1.2 The operator push-forward under x induces an isomorphism

X+ C*(Ry,g) = C*(Ry, g)

for all p € R and g = (v,9,0). Moreover, x.o(A) = o(x+A) under a canonical push-forward
X« on the symbol algebra.

The precise form of the symbol push-forward will be given below. Furthermore, we express
the transformation rules for the lower-order conormal symbols.

1.2. Spaces with asymptotics and Green operators.
Proposition 1.2.1 Let x: Ry — Ry be a diffeomorphism satisfying (1.1.12), (1.1.13). Then
the pull-back under x induces an isomorphism x*: K7 (Ry) — K*7(Ry) for all s,y € R.

Proof. The invariance of the usual Sobolev spaces is well-known. The same is true for the
spaces H*Y(Ry). O

An asymptotic type P € As(g) for g = (7,0), v € R, ©® = (—00,0] is said to satisfy the
shadow condition if

(1.2.1) (p,m) € P= (p—j,m(j)) € P

for all 7 € N and certain m(j) > m. For © = (¢,0] and ¥ > —oo we talk about the shadow
condition if (1.2.1) holds for all those j € N such that Rep —j > % — v+ 9.
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Proposition 1.2.2 Let P € As(g) for g = (7,09), v € R, © = (9,0] satisfy the shadow
condition. Then the pull-back under x induces an isomorphism

(1.2.2) X KB (Ry) = KT(Ry)
for all s € R.
Proof. It suffices to show the assertion for 9 > —oo, since then it also follows for ¥ = —oo in

view of the projective limit involved in the definition. Moreover, by injectivity and surjectivity
of the pull-back in Proposition 1.2.1, we only have to show that the pull-back x* in (1.2.2)
induces the corresponding continuous operator. By definition we have

KT (Ry) =K' (Ry) + Ep(Ry).

Then it suffices to show that

X' Kg'(Ry) = Kg'(Ry),

X" Ep(Ry) = KpT(Ry).
The first relation follows from Proposition 1.2.1, for the projective limits involved in the
definition of Kg"(Ry). The space Ep(R; ) is spanned by functions of the form
u(r) = w(r)r ?loghr, peC, keN,

where (p,m) € P, 0 < k < m. First let &k = 0 and set r = x(¢). Then (x*u)(t) = u(x(t)) =
w(x(t))(x(t)) P. From the Taylor expansion of x(¢) at 0,

N

X(t) =Y et + NV v (1),
j=0

where ¢y = 0 and x(n1)(t) is smooth up to t = 0, we get
)P =(at)? |1+ i G i1y X () E
X =la P o o

o -p
To calculate (1 + ZN LS X(Nzill)(t) tV ) we employ the well-known formula

J=2 ¢1
2 (2 z (=10 (=2 + j)

1.2.3 1+x2)° = (> 7 (): : , 2 € C,

(123) (1+2) ;0 J J J' I'(=2)

where I'(z) is the I'-function. Then, for every N € N, we obtain a representation
N .

(1.24) u(x(®)) = w1 | S dit + fo o) (1Y
j=0

with certain constants d; and a function f(,1)(¢) smooth up to ¢ = 0. Since the partial sum
on the right of (1.2.4) belongs to K37 (Ry) and the remainder is in g (Ry) when N is large

enough, we get u(x(t)) € K37 (Ry).
The case k£ > 0 follows by differentiating the transformation rule with respect to p. O

Let us now formulate the coordinate invariance of the Green operators.
Theorem 1.2.3 The operator push-forward under x induces an isomorphism

Xx* CG(R—H (77 0, 6)) - CG’(R—H (77 57@))
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Proof. Let G be a Green operator with asymptotic types P € As(4,0), Q@ € As(—vy,0),
cf. the definition in Section 1.1. Without loss of generality we may assume that P and Q
satisfy the shadow condition. Theorem 1.2.2 implies that the pull-back under y induces
isomorphisms of the spaces involved in (1.1.2). Therefore, x.G is again a Green operator
with asymptotic types P and Q. O

1.3. Push-forward of Mellin operators. To prove the invariance of Mellin operators we
need the following results.
Lemma 1.3.1 Let x: Ry — Ry be a diffeomorphism. Then the function

logt — logt'

alt:t) = log x(t) —log x(t')

is well-defined on Ry x Ry and t'kﬁt,a(t t")|yr=¢ is smooth up to t =0 for all k € N.

For the next proposition, cf. [18, Proposition 2.3.81].
Proposition 1.3.2 Let f(t,t',2) € C®(Ry x Ry, M3z™) for some R € As and v € R with
W@RHIH _, = 0. Then we have wop i, (flwo € Crrc(Ry,g) for g = (7,7,0), © = (—00,0],
and arbztmry cut-off functions w, wo.

Theorem 1.3.3 Let x: Ry — Ry be a diffeomorphism and w, wy be cut-off functions.
Furthermore, let R € As with tcRN Ty = 0 and f(z) € Mp™. Then the push-
2

forward under x~' of the operator wopi,(flwy is a smoothing Mellin+Green operator, i.e.,
X;l(w OpL(f)WO) € CM-I—G’(R—H (7777@))7 O = (_0070]'

Proof. We may assume that v = 1; the case for arbitrary weights is completely analogous.

2
Setting r = x(t) we have

X L (w(r) op 2, (f)ewo (r) )t
Xl(tl)tl d_t'

_ b / [ (j: L) et X

S () (BO) o

where w(t) = w(x(t)), @o(t) = wo(x(t')) are cut-off functions. Using Proposition 1.3.2, to
complete the proof we only need to show that

~—

t)

t’X(t)>z X' (Y = = _
1.3.1 p € C®°[R, x R, M7®
(13.) (3) 0 X0 e o=@, xRt
Since x(t) can be rewritten as x(t) = ta(t) with a(t) € C*(R) and «(0) = x'(0) > 0, we
have

tx(t) _ aft)
1.3.2 "= =
( 3 ) (,O(t,t) tX(t/) a(t’)
for all t,#' € Ry and o(t,t') € C®(Ry x K+) Moreover, e 2log?tt) f(z) € (R, x

Ry, M ,>), since f(z) € M. Because of X (( )) € C*®(Ry), we get (1.3.1). O

Theorem 1.3.4 Let x: Ry — Ry be a diffeomorphism and h(r,z) € C°(Ry, Mb), p € R.
Then

>0

X,jl(w opX/[(h)wo) = (I)op'](/f(h)d)o + Gy
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where h(t,z) € C>®(Ry, ME) and Gy € Ca(Ry,(v,7,0)), © = (—0,0]. Here w, wy, @, o
are arbitrary cut-off functions.

Proof. As in the proof of Theorem 1.3.3 we may assume that v = % We may further assume
that h(r,z) is supported close to r = 0.

Let ¢ € Cg°(Ry) be supported in a small neighbourhood of p = 1 with #(p) = 1 for p

close to 1. Then
1
3

(133) onis (#(5) . ) = ok (H @A), 2)

and

(H(L=1)h)(r,z) = h(r,z) — (H()h)(r, 2) € C*(Rs, M5™),
where H (1)) is a kernel cut-off operator, cf. Dorschfeldt [2] and Schulze [17]. Analogously to
the proof of Theorem 1.3.3 we get

(1.3.4) ot (w op]%\/[(h)wo — wop]%\/[ (Q/J (%) h) wo) € Cu+a <R+, (%, %,@)).

1 _
The operator in (1.3.4) can be written as wopj,(h1)wy + G for by € C°(R4, M;>™) and

1
G1 € Ca(Ry,(3,4),0). In fact, let fi(2) € o)) (xi (wop2,(H(1 — )h)(r,2))wp) for all
j € N. It is easily seen that f;(z) € My™ for all j. By Borel'’s summation method, we
find an hyi(t,z) € C®(R4, M,™) such that %G,fhl(o,z) = fj(z) for all j. Then G| =

1 1
x;% (w opi (H(1 —4p)h)(r, z))wo — wopj,(h1)@o € Cra(Ry, (%, %,@)) and, furthermore,
037 (G1) =0 for all j € N. But this implies that G1 € Cq(R, (3,1,0)).

1
Now we consider x; ! (wop},(¢)(5)h)wy). We have
_ L r
X! (w on; (v (5)h) wo> u(t)

o [T (45) o (255 ot X O antatt e

log x(t)—log x(t") log x(t' ),

" 2mi /p/ (t) w(x(tW(X(t)>h(x(t),z)X'(t')t'wo(x(t'))u(t’)dt—’f'dz

x(t) x(#)
=<0 (5o (20 nidonote y2pate ) XD ant eyt -
= Gop;(9)auu(?),
where
/ o X(t) a "2)a No(t). v(t) = X,(t,)t, 00 (T
otttz = (X0 ) Hixe)ate,0)2)ale,p0(0), o) = X € o=(®),
and @(t) = w(x(t)), wo(t') = wo(x(t')) are cu‘g—off functions.
Since % = Lo(t,t') and a(t, ') = log(logw, cf. (1.3.2), we get
ko)t 0) = (M{ | g)(t.t',0)
[ Lt , log © . , log +
—/_OOQ 1/)(5@(75775))h(X(t%m”)v(”mdﬂ

where k(g) is interpreted in the distributional sense.
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Now consider
(1.3.5)

Ro)(t.t'0) = /

oo log(op(t,t/0

o0

i log 0 , / log o
0™ lop(t, /o)) (x (D), o2 iy Jult)

/ 07" oglan(t. 700
Note that the expression pp(t,t/p) is strictly increasing in p € R, since %(ggo(t,t/g)) =
o(t,t/o)v(t/o) > 0. Moreover, lim,_,g09(t,t/0) = 0 and lim, , 0p(t,t/0) = oo, since
di < @(t,t') < dy for some 0 < dy < dy < oo. Thus, p = 1 is the unique solution to the

equation pp(t,t/0) =1 for each t € R, ; in particular is a smooth function of p,

log o
» log(ep(t:t/e))
and ¢ (op(t,t/0)) = 0 except for ¢ in a small neighbourhood of 1 when ¢ is close to 0.

Since k(g)(¢,t', %) = k(g)(t, t', %), we get

i@t = [ ko). Sty = | Fo.t. ) G = vl @t

where g(t,t',2) = (M1 g%zk(g))(t,t',z). Thus §(¢,t',z) = go(t, z)v(t'), where

z2—1T IOgQ . 10gQ dQ
(1.3.6) g°“’z):/o /oog Plewtt/ D (x(0) o) ot ) 2

and go(t,z) € C°(Ry, A(C)). We want to show that go(t,8 + io) € C®(Ry, S4(R,)),
uniformly in ¢; < 8 < ¢o for arbitrary ¢; < co. We have

(1.3.7)  go(t,B +i0)

—1+i(oc—7) ,8+1 logg ir logg @ -
- oottt/ DR (x(0): TG ) gt 72 ¢
i B4 _ loge ... logo  do
/ / Vlep(t:t/e)h ( (®) log(op(t,t/0)) o+ )> log(op(t,t/0)) o
Z/_ /0 —1 —iT)‘NQ‘l‘”(—Qag)N{gﬁ“iﬁ(aw(t,t/a))

lO#ia T __oee__lde T
e T R e e et

The latter integral converges for N € N large enough. Note that

(=00, {gﬂ“w(w(t, eN(x(0), i + 7)) lyi}

log(ep(t,t/0)) op(t,t/0))
N
*h 10¢ia 7)) (o + 1)k
kz_: b ) (orh <X(t)’10g(gso(t,t/g))( " ))( )

with certain coefficients c(t, 0) € C®°(Ry, C§°(R,)). In order to show the symbol estimates
for go we first look at the derivatives of h under the integral, i.e.,

opol {(afm (M0, ol —ito 7)o+ 1)
< Z < > e { (95h) (X(t), bg(;&%i(a + 7')) } O (o +7)F

< J(t, 0)(o + )" < d(t, o) (o) ()
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with certain d(t, o) € C*®°(R; x Ry). Thus from (1.3.7) we get
d
pobantt, 5+ io)] < (0! [ [ s an|Vipte, o)) 1%

with p(t, 0) € C®(Ry, C§°(Ry)), where p is a polynomial of derivatives of gf3+1¢(g<,0(t, t/0)).
If N is chosen sufficiently large, then the integral on the right-hand side converges absolutely.
In view of the fact that 8§{Qﬂ+1¢(g<p(t, t/0))} depends continuously on f for arbitrary k € N,
we conclude that

(1.3.8) go(t, B +io) € CP°(Ry, S*(Ry))

uniformly in ¢; < 8 < ¢y for arbitrary ¢; < co.
In a similar manner, we obtain that

139 (- (Z00)" HO ) (x(0),i7)) (1,6 + i0) € (e 54 (Ro),

holds uniformly in ¢; < 8 < ¢y for arbitrary ¢; < ¢, where 7(7) is a 0-excision function and
huy(r,i7) is the leading homogeneous component of h(r, z). In fact, we especially have

h(r,it) = m(T)hg) (r,iT) + hy1(r,i7),

where h,_1(r,iT) € COO(EJF,Sﬁfl(RT)). Denoting the function in (1.3.9) by ¢1(¢,z), where
z = [ + 10, we have

e log o i log o
nits) = [~ [T (vt (0, B i)

~v0(X)" wmte.in ) Lar

/ / e (<1og(gt(o)(gtgt/g)))#+l_ (ti((’(g)>#+1>W(7)h(“)(X(t) ”)dgng

v e et e (xR i)

log o do
58 d’l‘ mod C® (R, ; M5,
log(op(t,t/0)) R+ Mo™)

— (klt, 2+ 1)~ kit ) + [ / &0 (X0 o i)

" log o do
log(op(t,t/0)) o

The second summand is of the same quality as (1.3.6) with u — 1 substituted for y, hence
it is analytic in z and belongs to C*°(R,, S*~!(R,)) uniformly in ¢; < 8 < ¢y for arbitrary
c1 < ¢z, by (1.3.8). The function k(¢, z) in the first summand equals

(1.3.10) k(t, 2) // o= p(o)mlt, )()h(u)(x(t),iT)d—;dT,

where

—dr mod C™(R4; M5™).

_logo  ymH_ox() et
<log(g<,o(t,t/g>)) <tx’(t)> (e = 1)m(t, o).

X0 hence m(t, o) is a smooth function. From (1.3.10)

log(w(t t/@)) ‘gzl W

For that note that ;
it follows that k(t,2) € C*®(Ry, M) by the kernel cut-off technique. Now both k(t, z) and
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k(t,z + 1) have the same principal symbol, hence
k(ta Z+ ]-) - k(ta Z) € COO(K-H M‘éil)'

A repeated application of this argument eventually yields go(t, z) € C™°(Ry, M%).
Thus we have found that g(t,t',2) = go(t, 2)v(t') € C®(R; x Ry, M%) and

_ 1 r . - N AP
i (wonk (5 (5) W) an) = ok 01 = sovd @3
In view of the next lemma the proof is complete. O

Lemma 1.3.5 Let g(t,t',2) € C®°(Ry x Ry, M%), p € R Then there exists an h(t,z) €
C®(Ry, M%) such that

wopl,(g)wy = wopy,(h)wy + G
with some G € Cg(Ry,g) for g = (v,7,0), © = (—o0,0].

Proof. First there is an hy € S4(Ry x ['1_ ) such that Go, Gj: K7 (Ry) — K7 (Ry)
2

for all s € R, where Gy = wopY,(g)wy — wopy,(ho)wp. This is a consequence of the fact
that Mellin actions with (¢,t¢')-dependent symbols can be turned into Mellin actions with
t-dependent symbols modulo smoothing remainders in the cone algebra without asymptotics,
cf. [18, Theorem 2.2.31]. Applying kernel cut-off, we get hy = H(1))hy € C®(Ry, ML),
where G1 = wopY, ((H(1 —9)ho))wo + Gy is so that Gy, G}: K7(Ry) — K®7(Ry) for all
s € R, since (H(1 —)ho)(t,z) € S™(R, x F%Jy). We have both G; € CH(Ry,g) and G

is smoothing, i.e., G; € Cyrra(R+,g). Moreover, a];[j(Gl)(z) € My,™ for all j € N, since
the conormal symbols of the operators wop},(g)wy, wop),(h1)wy are holomorphic. As in the
beginning of the proof of Theorem 1.3.4, we can construct an hy(t, z) € C® (R4, M5™) such
that G = G1 — wopY, (h2)wy € Ci(Ry,g). It remains to set h(t,z) = hi(t,z) + ha(t,2) €
C®(Ry, ME). O

1.4. Invariance of the cone algebra. Let x: R, — R, be a C*-diffeomorphism as above
satisfying (1.1.12), (1.1.13).
Theorem 1.4.1 The operator push-forward under x induces an isomorphism

X+ : C'(Ry,g) — CH(Ry,g)

for all p € R and g = (v, 9,0). Moreover, we have
B~ h ~ _ (X)) \y—d ~h ~
(1) O—w(X*A)(Ta QHT:X(t)é:t:’(Z)% - (T)’Y O'w(A) (ta 7_)7
(ii) 037 (e A) () = X (0) 037" (A)(=),
(iii) oe(x+A)(r, Q)|r:x(t),g:x’(t)_17' = 0e(A)(t,7) mod S*H7H(R, x R).

Proof. In view of the well-known fact that the (interior) pseudo-differential calculus is coor-
dinate invariant and also that the factor =7 in (1.1.3), (1.1.4) can be ignored, for it causes a
contribution likewise known to be invariant, the results of Sections 1.2, 1.3 immediately give
the coordinate invariance of the cone algebra with asymptotics.

Further, (i), (iii) are well-known; (i) follows from the transformation rule for afZ(A) and
the compatibility condition (1.1.7), while (iii) can be found, e.g., in [13]. Finally, since

a(t,t')|y—t—o = 1, cf. Lemma 1.3.1, and X;(((t;,))t, l#—o = 1, (ii) can be easily derived from the

proofs of Theorem 1.3.3 and Theorem 1.3.4. (Cf. also the proof of Theorem 2.4.1 in a more
general situation below.) g

The following facts are used in the derivation of the transformation rules for the conormal

symbols UX/I_‘S_j (x+A)(z) in Subsection 1.5.
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Lemma 1.4.2 Let A € C*(Ry,g) for g = (7,6,0), © = (=(k+1),0], k € NU{oo}, be such
that o}, TOI(A)(z) =0 forallj =0,1,...,k. Then 07M_6_](X*A)(z) =0 forallj=0,1,... k.

Proof. If o}, I (A)(z) =0 for Ae CH(Ry,g) and all j =0,1,...,k, then A can be written
as an operator in C*(Ry, g) without the smoothing Mellin part M and with a certain holo-
morphic Mellin symbol, say h(r,z), such that &A(0,2z) =0 for all j = 0,1,...,k. Applying
formula (1.5.29) below to the resultlng holomorphic Mellin symbol g of x, 1A cf. the proof

of Theorem 1.3.4, we obtaln“,,(éﬂé‘t’,g)(o 0,z—j)=0forall 7/ e Nwithj+j' <k O

Lemma 1.4.3 Let A € C*(Ry,g) for g = (7,6,0), © = (—(k +1)70]7 k € NU {oo}, be
such that 0M6 1(A)(z) € M, for all j =0,1,...,k. Then UX/[_&_] (x+A)(z) € MY for all
J=0,1,... k.

Proof. This follows from Theorem 1.3.4, since an operator A € C*(R,, g) with holomorphic
conormal symbols can be written as a cone operator without the smoothing Mellin part. 0O

Remark 1.4.4 For 0(z) € Mhs, j = 0,1,...,k, with og(z) € M’ for a certain P € As,

rcP Ny =0, there is an operator A € C*(Ry,g), where g = (7,6,0), © = (—(k +1),0],
2

such that

o1 " (A)(2) = 05(2)
for all 5 =0,1,...,k, cf. [17, Remark 1.2.9].

Appendiz to Section 1.5. An intrinsic interpretation of the principal symbol. We shall in-
terpret the various components of the principal symbol o(4) = (5/(4),0}, °(4), o2(A)),
cf. (1.1.6), as a single, naturally defined continuous section of a line bundle EY=% on a
certain topological space T. Thereby, in contrast to the rest of the paper, we consider
operators in C*(R, ,g) exhibiting classical exit behaviour as ¢ — co. That means that in-
stead of the space C*(Ry,g), as defined in Definition 1.1.1, we solely consider the space
CH(Ry,g) N LY°(Ry). Equivalently, the requirement A, € L (R;) N L#O(Ry) in (iii) is
strengthened to Ao, € LM’ (R, ). (For details see [18].)

In coordinates (¢,7) € Ry x (R {0}), afZ(A)(t,T) is then a classical symbol of order 0
in ¢ as well. Furthermore, the exit symbol ¢0(A4) € SHO(Ry x R)/S# L 1Ry x R) can be
represented by a function o0(A)(t,7) in (t,7) € Ry x R which is homogeneous of degree 0 in
t and a classical symbol of order x4 in 7. The basic relations (1.1.7), (1.1.9), i.e

ot (A)(tyT) = 5 (4,7,
-5 _ _
oot (AR sy = FHANE )]y
leading to the invariance discussion, are completed by the compatibility condition
(1.4.1) JfZUS(A)(t,T) = Jgag(A) (t,7).

The diffeomorphism y: Ry — R, is now assumed to satisfy y € S&l(ﬁ+) instead of y €
S1(Ry). That means that x(t) possesses an asymptotic expansion () ~ 250 Y Ox -5 (t)
as t — oo, with t(t) an excision function, into homogeneous components x(;_j(t), i.e.,
X(lfj)O‘t) = AlfJX(lfj)(t) for A > 0.

In complete analogy to Theorem 1.1.2 we have:

Theorem 1.4.5 The operator push-forward under x induces an isomorphism

(1.4.2) Xei CM(Ry,g) N L (R ) = CH(Ry,g) N LI (R)
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for all p € R and g = (v,6,0). Moreover, x.o(A) = o(x.A) as before, where o17°(A),

61’;(A) are transformed according to (i), (ii) of Theorem 1.4.1 and

(14.3) o (A ), — 2(A)(t,7).

Here x(1)(t) is the homogeneous principal part of x(t).

Note that x(1)(t) = at for some a > 0 and then r = at(1 + o(1)), p = a~'7(1 +
as t — oo when (r,p) = (x(t),x'(t)~'7), i.e., in the limit ¢ — oo, (t,7) ~ (7,p) in (
transforms like a cotangent vector.

The basic difficulty is the circumstance that there are two principal symbols, namely afZ(A)
and 61’;(14), both providing the same kind of information. Thereby, the behaviour of 61’;(A)
as t — 0 gives a description at ¢ = 0, while UZ(A) reflects the behaviour as ¢t — oo. Thus
both symbols must be taken into account.

We comprise the information provided by oy,(4), 5} (A) in (1.4.4) and (1.4.5), respectively,
into a single inclusion in (1.4.9) below. The cotangent bundle 7R, is canonically trivial,
ie, T"Ry = R, x R, with global coordinates (t,7) € Ry x R, 7 being the covariable to ¢.
Thus it may be extended to a vector bundle 7% (R U{oo}) = (R} U{oco}) X R on the half-line
R, (partially) compactified by one point at ¢ = co. Then we have

(1.4.4) o’ (A) € S (T*(Ry U{oo}) \ 0;C),

for afZ(A)(t, T) = aSafZ(A)(l,T) as t — oo in SW(R, \ 0).

On the other hand, recall that the compressed cotangent bundle T*E+ is defined via the
transition functions UNV 3 u +— rt_lJX_ 1 where U, V C R, are open, t and r are coordinates
of w in U and V, respectively, which are connected by the diffeomorphism r = x(¢), and J,,
is the Jacobian of x at u. Let 7: T*R, — R, be the projection.

For o € R, let £* — R be the line bundle defined by the transition functions U NV 3
u — (r/t)®, where U, V, t, and r = x(t) have the same meaning as above. Then 7*£7~° is
a line bundle on T*R, . By the compatibility condition (1.1.7) and (1.4.4), we see that

(1.4.5) 51(A) € SW (TR \ 0377 £777).

We now introduce a new line bundle, E"% — T*(R, U {o0}), by glueing the bundles
7 L770 — T*Ry and T*(Ry U {o0}) x C — T*(Ry U {occ}) on R,.

Lemma 1.4.6 There is a natural bundle isomorphism

L9 2R C
TR, Ry x

(1.4.6) l l

T*R, —— T*Ry
(%)

defined in local coordinates by ®V0(t,7,a) = (t,t 17,19 7a).

Proof. Under a coordinate change, i.e., r = x(t) as above, we get the diagram

)
(t, 7,a) 2 ()

! |

(7, rtingl%,W*‘st‘S”V&) — (r,tileflﬁt‘s”yd)
-
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which commutes. Here the vertical lines are the isomorphisms induced by x on £77°

T=(UNV)
and T*(U N'V) x C, respectively. Therefore, the definition of ®7~° is compatible with coor-
dinate changes. 0
Definition 1.4.7 Set T*(R; U {oo}) = T*R, U, T*(R; U {o0}),

(1.4.7) E" 0 = 7, L7770 Ugros (T*(Ry x {o0}) x C).

On T* (R, U{oo}), there are global coordinates (t,7), where t € [0,00] and 7 = 7/(1+1t) =
7/(1+t"1), with (¢,7) the global coordinates on T*(Ry U {co}) mentioned above and 7 and
T are related by 7 = ¢t7. Accordingly, there is a metric on 7%(R4 U {oo0}) in which |7| =1 if
|7| = 1 +t~! or, equivalently, |7| = 1 +¢. Note that 7 =7 at t =0 and 7 = 7 at t = co.
Definition 1.4.8 For A € C*(R;,g) N LY (R,), we define

5l (A)(t,T) ift <
(1.4.8) o (A)(t,7) = { T DBT) <o,

op(A)(t,T) ift>0.
Lemma 1.4.9 For A € C*(Ry,g) N Lé‘fo(ﬂh), 6$(A)(t, 7) is a well-defined section of the
bundle EY=% on T*(Ry U {oo})\ 0, i.c.,

(1.4.9) ol(A) € SW(T*(Ry U {oo}) \ 0; E777).

Proof. This is an immediate consequence of (1.1.7) and the construction of the bundle
E9. ]

By (1.4.9), 61’2(A) can likewise be considered as being defined on the sphere bundle S* (R U
{oo}) = {(t,7) € T*(Ry U {oo}); |7] = 1}, ie.,
(1.4.10) ol (A) € C(S*(Ry U{oc}); B7).

Remark 1.4.10 The choice of the metric on T*(R.U{oo}) is the only non-canonical part in
the construction. For =0, however, we can choose S*(R, U {oo}) to be the sphere bundle
of T*(Ry U {oo}) to get all canonically defined.

Note that S*((R+U{oo}) has two connected components both diffeomorphic to the interval
[0, 00], i.e., S*((Ry U{oo}) =S, US| defined by 7 > 0 and 7 < 0, respectively.
Definition 1.4.11 The topological space T assigned to C*(R4,g) N L’C‘l;o(&) is

(1.4.11) T=(: ,US;UR-US )/ ~,

where f%_7 =[5 —y—ico,t — v+ ioo]z, Sy = [0,00]; x {#o0};, and R, = [~00,0],.
Moreover, the points T'1
2
are identified. B
A basis for the topology of T is given by all sets of the form U UV, where U C Py is
— _ 2
open, V C T\Flfv is open (here T\T'1 _
2 o 2
and if U # 0 then V. =T\I'1 .
2
We write 7 = +o00 on Si having in mind that

afj}(A) (t,£1) = fE]fjgoo(%)‘“(rfj,(A) (t,7)

M %_ryj:ioom((),:l:oo) E:’;’¥ and Sy > (oo,:l:oo)w:i:ooE@T

y is equipped with the topology of an open interval),

due to homogeneity.

Definition 1.4.12 The space EY0 is defined by glueing (wz’t@out torsion in the fibres) the

trivial bundle I's_ x C, the bundle E779 on S*(RyU{oo}) = S, US_, and the trivial bundle
2

R, x C, according to the identification ~ of points in Definition 1.4.11. EY=9 is then equipped
with the weakest topology converting it into a complex line bundle on T, i.e., with the weakest
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topology such that the canonical projection EY=0 — T is continuous and, moreover, the fibre
over each point of T is homeomorphic to C.
Theorem 1.4.13 The triple (61’2(A) UX/[‘S(A),ag(A)) of principal symbols for an operator

A e CHRy,g)N LZ;O(RJF) give rise to a continuous section o(A) of the line bundle B9,
i.e.,

(1.4.12) o(A) € CO(T,E"°).

Proof. We define

(z) 1o (A)(2) if(=zely_,
(1.4.13) o(A)(¢) = 6:;(A)(<) if¢eS,US_,
(1) Hod(A)(1,7) if(=7€ER,.

Then o(A) is a well-defined continuous section of the bundle EY=% on T. In fact, it is quite

obvious that o(A) is well-defined and continuous on T\I'1 _. Moreover, changing coordinates
2

locally at t = 0, i.e., r = x(t), in view of rt~!|;—9 = x'(0), the compressed principal symbol

61‘2(A)(t, 7) is multiplied by x/(0)?~% at ¢ = 0. Therefore, due to the definition of the topology

of T and the compatibility condition (1.1.9), the Mellin symbol JX/I_‘S(A)(,Z) is also multiplied
by x'(0)779, while 7 at t = 0, ie., z € F1 _.» remains fixed. But x'(0)779 is the factor
appearing in the transformation formula (11) of Theorem 1.4.1. O

We conclude with the following observation: Let Ty be the space T equipped with the
topology of the circle S! and i: Ty; — T be the identity map which is continuous. Further
let E;Yt_d = i*EY~% be the pull-back of B~ under i. Then

2 CV(T,BY %) — C (T, B %)
and

(1.4.14) B’ =5 x C.

In particular, having fixed the trivialisation in (1.4.14), sections of the bundle ]ngé can be
identified with functions on S'.

Now let A € C*(R;,g) N L’C‘l;o(&) be elliptic, i.e., its symbol o(A), as defined in Theo-
rem 1.4.13, is everywhere invertible. Then i*c(A) can be viewed as a map

i*o(A): S' — C\ 0.

Theorem 1.4.14 For an elliptic operator A € C*(Ry,g) N Lfffo(&), the index of the cor-
responding Fredholm operator (1.1.5) is given by

(1.4.15) ind 4= deg (ﬁ:g” ’

where deg denotes the mapping degree (the winding number) of maps S* — S*.

1.5. Symbolic rules. Here we provide formulas describing the behaviour of the conormal
symbols under coordinate changes. Thereby, we restrict ourselves to the case that y—d = p
Throughout, let a diffeomorphism x: Ry — Ry, x(0) =0, x'(0) > 0, be fixed.
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Theorem 1.5.1 There are universal polynomials q;(yi,vy2,...,yj), 7 = 1,2,..., such that,
for each operator A € CH*(Ry;g,), where g, = (’y,’y —p, (—k — 1,0]),

1
(1.5.1) oh 7 (xsA) = X' (0) {qu(A) + JZ

r=0
] =2 —Qj—p
q1 492" ---4;° _
Z C”'—J.T'A[u—r;al,ag,...,ajT]U“MT(A)}
- . 1.0,2....@],7«.
a1+2a2+-+(j—r)aj_,=j—r
for 7 =0,1,... k. Here
" 3) (j+1)
_ X"(0) x®0)  xUtH(0)
(1'5'2) q](X) :q] ! 7,77"'7,7 *
x'(0) " x'(0) x'(0)

The linear operators Alu;ai,as,...,a;], acting on meromorphic functions, are defined in

(1.5.15) below.
Remark 1.5.2 (a) The first few of the polynomials q;(y1,y2,...,y;) are

1 1 2+1 141 +1

Q1—2y1, q2 = 4y1 6y2’ Q3—8y1 6y1y2 24y3,

_ 3 Lo L, L, 1

U= T3g YL T o P T L2 T o V2 T o0 Y

_los T 5, Lo, 1o 11
Q5—16y1 4891342 7224192 24y1y3 48y2y3 120y1y4 720y5.

For a possibility to calculate these polynomials, see (1.5.41).
(b) In general, the polynomial q;(yi,y2,...,y;) fulfills the homogeneity relation

(1.5.3) i (M1, Nya, . Xyi) = Ny, vz, -, y5), AeC.

Moreover, it is seen from (1.5.41) that the factor in front of y; equals ﬁ Consequently,
q1, G2, qs,--. can be any sequences of real numbers, by an appropriate choice of the diffeomor-
phism x.
Remark 1.5.3 To unify notation, we set qo =1 and
a1 =02 =i
B 92 -9 . _
> mA[%al,am---,%]—l

a1+2az+-+ja;=j

when j = 0.
Theorem 1.5.1 is proved in a series of lemmas.

Lemma 1.5.4 Forj,r € N, j > r, there are linear operators T,j(,u, X), acting on meromorphic
Mellin symbols, such that, for each A € C*(Ry,g;), where g, = (’y,’y — p, (—k — 1, 0]),

J
(1.5.4) oI (e A) = X (04773 T (u, x) oy " (A)
r=0

for 7 =0,1,... k. In particular, the operators Tﬂ(,u,x) are independent of k.

Proof. Consider the composition of linear maps
A oA e (08, (0 A), oh G A), o (. A)).

By Lemma 1.4.2, this map only depends on o'y, (A), o""H(A),...,0"7*(A). Thus it descends
to a linear map

(0% (A), b (A), ..., ohT (A)) = (05 (e A), b7 (A, - . b (3. 4)),
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and (1.5.4) follows. The independence of the operators T,nj(u, x) from k follows from the

embedding C*(R;,g,1,) C C*(Ry,gy)- =
Notice that
(1.5.5) T (1, x): Ml — MU

Moreover, Lemma 1.4.3 gives us that Tﬂ(,u,x): My — M.
Lemma 1.5.5 For j,r € N, 7 > r, we have
(1.5.6) Ty x) = T3~ (1 =7, %)

Proof. This is a consequence of the embedding C*~" (R4, g}, ,) C C*(Ry,gy), whereg), =

(v,y—(p—r),(=(k—r) —1,0]), which holds modulo Green operators and the fact that this
embedding is compatible with coordinate changes. 0

In particular, by (ii) of Theorem 1.4.1,
J _
(1.5.7) T (s x) =1

for all j € N. By Lemma 1.5.5, it remains to calculate the operators Tj (1, x) for j > 0.
We first employ the invariance of the Mellin translation product (1.1.11) under the operator
push-forward with respect to x.

Lemma 1.5.6 The operators Tj (i, x) satisfy the relations

(158)  Tiu+pod{oolz+ o)} = S (T x)00) (= + p— B)TE (0, ) (2)
Jj+k=l
for all o¢(z) € Mbhs, o1(2) € Mbs.
Proof. The Mellin translation product gives
o (AB) (=) = Y oh T (A (= + p = K)ol (6B) (2)-
k=l

Inserting (1.5.4) into this equation yields

l
ZTi(u+p,x){ > UKJT(A)(Z+p—S)U§ZS(B)(Z)} =
u=0

r+s=u
J
= > {ZTX(M,X)UXIT(A)} z+p—k) {ZT’“ p.X B)(Z)}-
j+k=t Lr=0

Since the functions o, " (A4)(z), of,*(B)(z) for 0 < r <, 0 < s < can be chosen indepen-
dently of each other, ¢f. Remark 1.4.4, we set o, (A4)(z) = o, *(B)(z) =0 for 0 < r <,
0 < s <, and find

Th (e + p, x) {04 (A) (2 + p)ot, (B)(2)} =

[
1\

T (1, )% (A) b (= + p = B) T (0, X)rf (B) (2).

This is relation (1.5.8). O

Note that all the other relations, i.e., these for (r,s) # (0,0), which also follow from the
latter proof are consequences of (1.5.6), (1.5.8).

Next we are going to define the operators A[u; a1, az,...,a;] appearing in Theorem 1.5.1.
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For j € N, we first define
(1.5.9) Ajo(z) = z(o(2) — oz — ),
where o(z) is an arbitrary meromorphic function on C. Note that
(1.5.10) Aj: MY — MY
since 0(z),0(z — j) possess the same parameter-dependent principal symbol, cf. the remark

before Lemma 1.5.13 below.
Lemma 1.5.7 For j €N, 5 > 1, we have

(15.11) (A +p+p){oo(z +por(2)} =
= (&) + Wo0) (2 £ P)or(2) + 00z + p— )(A; + p)en(2)

for all meromorphic functions oy(z),01(2) on C.

Proof. Indeed,

—~

(Aj + p+ p){oo(z + p)oi(z)} =

= (2 4+ p+p)oo(z + p)oi(z) — zoo(z + p — j)oi(z — j)
= (z+p+ploo(z + p)oi(z) — (z + p)oo(z + p — j)o1(2)
+ (2 + p)oo(z + p — j)oi1(z) — zoo(z + p — j)o1(z — j)

= ((Aj 4+ p)oo) (z + p)oi(z) + ao(z + p — §)(Aj + p)or(2)

for all meromorphic functions oy(z), 01 (2). O
Then, for j1,72,..,im €N, J1,752,...,7m > 1, we define

(1.5.12)  A(uijijos---rdm) = (Bjy +p— (o +Js+ -+ jm))
(Aj2+ﬂ_(j3+"'+an))" (AJm T )(AJm"i_/‘)

and A(u;71,792,--+,Jm) = 1 if m = 0. (Notice the particular use of parentheses instead of
brackets as in (1.5.1).) As an immediate consequence of (1.5.11) we get:
Lemma 1.5.8 For all j1,72,---,9m €N, 71,72, Jm = 1, we have

(15.13) Alut pidi . rdmd on(z + p)or(2)} = )
{117 7Z7‘}U{k1; 7ks} {la am}y

{1,1, :“}n 1yeeskis }=0,
1 <<y, k1 <o <ksg

(A3 Jiys- - Jin)oo) (2 + p — Z e )03 G s - -+ > Ty )01 (2).
1<h<s

Proof. We proceed by induction on m. Relation (1.5.13) for m = 1 is nothing but (1.5.11).
The inductive step m — m + 1 then follows from the following calculation:

Ap+ 05500415 0m) = (Djo +p+p—Gr+ -+ Jm)) Al + 05515, Jm)
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and

(Ajotp+p— G+ +Jjm)) ((A(H;jm---7jiT)00)(Z+P— Z Ty ) %
1<h<s

Apifigs- g (2)) =

= ((Ajo+ﬂ— Z ji,;)A(u;jilv"'uju)a[])(z"‘ﬂ_ Z jkh)x

1<h<r 1<h<s
AP; Jiys- -2 dk)01(2) + (A5 i - - Jir )oo) (2 + p — o — Z Tk, ) %
1<h<s
(Ajo +p - Z Jkn) A Jkys - -+ dka)01(2)
1<h<s
= (A3 Jos Jir» - -+ Jir )o0) (2 + p — Z Tk ) D5 ks - -+ Jka )01 (2) +
1<h<s
+ (A3 Jiys - - Jir)oo) (2 + p — jo — Z Thn ) (05 505 Gkr > - - - 5 Gk ) o1 (2),
1<h<s
where the latter holds by (1.5.11). O
With >, ) sk, = k in (1.5.13), this relation is basically (1.5.8). However, we still have
to take into account that the operators A(u;41,...,7m) are not linearly independent.
Lemma 1.5.9 For j,k €N, j,k > 1, we have
(1.5.14) (B + 1= B) (B + 1) — (Bt 1= ) (A + ) = (G — B) (B + ).

Proof. We have
(Aj +p—k)(Ap +p)o(z) = (Bp + 1 —5) (A + p)o(z)

= (8 +p—k)[(z + p)o(z) — z0(z — k)]
— Bk + 1 —9) [(z + p)o(z) — z0(z —j)]

= (24 p— k) [(z + p)o(z) — z0(z — k)
—z((z+p—Jlo(z—j) —(z=jlo(z —j — k)]
—(z+p =) (2 + p)o(z) — zo(z — j)]
+z[(z+p—ko(z—k) = (z—k)o(z — j — k)]

= -k (z+p)oz) —o(z—j—k)] = —k) (Djrx + p)o(z)

for any meromorphic function o(z). O
Lemma 1.5.9 allows us to change freely the order of the parameters ji, jo, ..., Jn in defining

the operators A(u; j1,j2,---,Jm), up to linear combinations of operators of exactly the same
kind. In particular, we can assume that j; < jo < --- < 4. Accordingly, we finally introduce
(1.5.15) Alpsar,a,...,05) = A 1,...0,1,2,00.,2,000,4,..., 7).

—— —— —

a1 times a2 times aj times
Proposition 1.5.10 For any sequence qi,q2,qs3, ... of complex numbers, the operators

qal qa2 qal
l _ 1 42 -4 .

(]‘516) T (/“L) - Z a1!a2!...al! A[,U«,al,a/Q,---,a/l],

a1+2a2+-+la;=l

where | € N, p € R, solve the functional equation (1.5.8), with the operators Tt(u, x) replaced
with T'(1).



COORDINATE INVARIANCE OF THE CONE ALGEBRA 21

Proof. This is a reformulation of Lemma 1.5.8. O

Now we are going to show that the solutions to (1.5.8) supplied in Proposition 1.5.10 are
the only ones within a certain class of operators to which the operators Té(,u, X) belong.
Definition 1.5.11 For [ € N, the class 9 consists of all linear operators T, acting on
meromorphic functions o(z) on C, having the form

(1.5.17) To(z) = pr(2)a(z —r),

where the p.(z) are certain polynomials in z of degree [, 0 < r <, such that
(1.5.18) T: Mbs — MY

holds for all € R.
Remark 1.5.12 For an operator T of the form (1.5.17) to belong to MMy it is sufficient to
demand T: MY, — MY, for some p € R instead of (1.5.18) for all p € R, cf. the proof of
Lemma 1.5.15.

In the following lemma, a generalisation of the well-known fact that the principal pseudo-
differential symbol of h‘rﬁ for h € Mk is independent of 3 € R is stated. We shall write

(1.5.19) ol I(h)(B +i1) = o 7 (k] ) (),

where ai_j (h‘rﬂ) is the jth homogeneous component of h‘rg‘ Thereby, the meaning of

the right-hand side of (1.5.19) is obvious if h € M%,, while for general h € Mhs we write
h = hg + hy with hy € M‘é, hy € M3 and define the right-hand side of (1.5.19) to be

UZ*J' (ho‘l—‘g). Notice that aiij(h) € C®(Rg; SW=I(R, \ {0}).
Lemma 1.5.13 Let h € Mks. Further let hy(it) = Uffk(h‘ro) € SUH®R\{0}), k =
0,1,2,... Then

) J w—g+r
1.5.2 y (h i) =
(1.5.20) oy " (R)(B +i7) Z( r

r=0

) (e7)" " hj_(iT) B".

In particular, afZ*j(h) (B +i7) is a polynomial in B of degree j with coefficients belonging to
SW=I)(R, \ {0}).

Proof. We may assume that h € M/,. From the Cauchy-Riemann equation, we inductively
infer that 0/h/0B7 = (—i)/0'h/01I for any j = 0,1,2,..., for 9,0/h = 0, while Euler’s
homogeneity relation yields that

% 857’3.’“ (ir) = (“ ; ’“) (i7)™ hy(ir).

Now, employing Taylor’s formula, we get

K prorh, gt ot .
(1.5.21) h(B +iT) = ; % G (iT) + Bj! /0 (1—o0) W(Uﬂ +i7) do.
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For fixed 3, the integral on the right-hand side of (1.5.21) belongs to S(’fl_j_l(RT). Thus we
obtain

B J 1 _ Th J ~r (O"h .
(h‘rg) - ;ﬁ oy <8IBT > TE: _ ¢ - <8T’° (W)) B
! 10 r ! p—=g+ry,. —r ; r
- Z i BT’" )8 = Z ( " )(ZT) hj_(iT) B". O
r=0 r=0

Remark 1.5.14 If functions hy € SWF(R\ {0}) for k = 0,1,2,... are given, then there
exists an h € Mhs such that

(1.5.22) hi(im) = oty (] 1,)

holds for all k. In fact, let g € SH(Do) be such that g(it) ~ Y_2° hi(iT) in the sense of
asymptotic summation in S%(To). Then h(z) = H(1)g € MY, where H(y)) is the kernel cut-
off operator, cf. (1.3.3), possesses property (1.5.22), since h‘FO —g € S™®(y). In particular,
(1.5.20) holds for such an h.

For an operator T of the form (1.5.17), we write

l -1
pr(2) = aop? + a2 a2 ooy

with uniquely determined coefficients oy, € C, 0 < k < [.
Lemma 1.5.15 An operator T of the form (1.5.17) belongs to My if and only if, for each k,
0<k<l,

1 1 PN 1 (€901} 0
2 . I+1 Qg1 0
(1.5.23) , _ ' _ S I
L2k 0+ )R oy 0

Proof. Condition (1.5.23) is obviously equivalent to
l

(1.5.24) > (B—r)a =0
r=0
forall eR seN 0<s<—k.
Now let h € Mas,

]~

ol Tl (h) =D b(iT)B%, §=10,1,2,...
s§=

with b, € SW=ID(R\ {0}), bjs(iT) =
Sw=s)(R\ {0}), according to Lemma 1.

— ©

H*Z+5) “9dj_s(iT), 0 < s < 4, for certain dy €
.13.

ot

en dlrect computation gives

max{j,l} j—k j—k—s

Thi
A wn = Y Y Y s [Z

k=0 s=0 v=0 0

- T)sakr:| bjfkfv,s(iT) (iT)likiv

8
S (6 - r)sakr] 0y pyair) (i)

max{j,l} j—k j—k—s
=3 2 Gl
= s=0 v=0 r=0

where .
Cro(B) = (l B k)ﬁv, 6jk5v(5) = (M TItktuds

v

) Cio (B)-

S
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By Remark 1.5.14, affl_j(Th) vanishes for all 0 < j <[ and all h € Mk, i.e., Th € M&; for
all h € Mbs, if and only if (1.5.24) is valid for all 0 < k < [. O

Lemma 1.5.16 For a fized k, 0 < k <[, the general solution to the system (1.5.23) is

-k
-k
(1.5.25) g = (1) Z ( s >7k,rsa 0<r<i,
s=0

where Ygo, Vi1, - - - » Vet € C are arbitrary numbers. Thereby, in (1.5.25) we have set g, = 0

ifr¢ {0,1,...,k}.

Proof. First of all, observe that

(1.5.26) Xl:(—l)r(a—i-r)h (i) =0

r=0
foralla € Z, h € N, and 0 < h <. Indeed, since
l I h l / h
h _ h—
e ()£ [For(]()
it suffices to prove (1.5.26) for ¢ =0 and all h, 0 < h < [. For h =0, (1.5.26) holds, for

l

> =1y (i) =1-1)'=0.

r=0
For h > 0, there are integers ds, s = 0,...,h — 1, such that
[

So-art() +hza [g—w (l)] Yy

r=0 r=0

h—1
. Th + sz:; 5srs] (i)
. l
_ ;(_1)TT(T _ 1) - (7” —h+ 1) (7{) = Z(_l)r (T_7'h)| (7{)

r=h

N o (l—h
=0 2(_1) h(r—h) -0

Thus (1.5.26) follows by induction on h.

Now choosing, for some s € {0,1,...,k}, Y& = dpsYks, where d,5 is the Kronecker symbol,
(1.5.26) shows that (1.5.25) is the superposition of £ + 1 linearly independent solutions to
(1.5.23), i.e., (1.5.25) is a solution to (1.5.23) in which the k + 1 parameters Yio, V1, - - - » Yk
enter freely.

But (1.5.23) is an under-determined linear system in the unknowns ayg, a1, - - . , g whose
coefficient matrix has rank | — k (Vandermond’s determinant). Thus its general solution
contains k + 1 free parameters. ]

Theorem 1.5.17 For j,r € N, j > r, the operators T (u, x) belong to My

Beginning of proof of Theorem 1.5.17. Since we already know 77 (1, x): Mbhs — Mbs,
it suffices to prove that T (u, k) possesses the form (1.5.17). We proceed formally and consider
an operator of the form ¢t~#op},(f), where f = f(t,z). A strict justification can be given by
repeating the arguments in the proofs of Theorem 1.3.3 and Theorem 1.3.4.
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The operator push-forward of the operator t=#op},(f) under x is r—# opX/[(f) with the
double symbol

Ty at) \? a(t')
(1.5.27) flr,r' z) = alt)” (a(t’)) f(t,z) @) tixj(r),’
t'=x""(r")
where x(t) = ta(t). In particular, xU)(t) = jalP=D(t) + tal)(t), j > 1, and
. G+1)(0)
1.5.28 ()
(15.29 (o) = X
for  =0,1,2,... The Ith Mellin symbol of r—# op;{/[(fN) equals
_ ~ 1 gitkf
p=lg — v _
(1.5.29) o (r~*op),(f)) = Z T Do 0,0,z — k).
Jt+k= l
We evaluate (1.5.27), (1.5.29) in a series of additional lemmas and remarks. O

Definition 1.5.18 (a) Let R denote the ring of all polynomials with rational coefficients in
the commuting variables xo, T1,T2,...,Y1,Y2,-... The group of variables xg,x1,Ta,... is also
denoted by x, i.e., © = (xg,T1,T2,...), while the group of variables yi,ya, ... is denoted by
Y, B.e., ¥y = (y1,Y2,...). R is equipped with a grading defined as follows: q(z,y) € R; for
7 =0,1,2,... if and only if q(z,y) is a finite sum of monomials
ari’ ]t .. :va’ yll’1 . y?j,

where o € Q and (a1 +b1) +2(a2 +b2) +--- +j(aj +b;) = j. The graded derivation 0 on R,
0: Rj = Rjy1, is defined on generators by

Tj = Tj+1 — ZjY1, j:071727"'7
Yj Hy]-l-l_x]yla ]:1727

(b) R', that is now a ring of polynomials in the variables ¥’ = (z(,z},xh,...), vy =

(Y1, 9h,...), is a second copy of R. It is equipped with the graded derivation O'. Further we
consider the tensor product R =R @R’ which is a bi-graded ring with the natural bi-grading
ﬁjk :Rj®'R,;€, 7, k=0,1,2,...

The reader should keep in mind that in the following computations the variable z; stands

@) . (G+1) . . . . .
for O‘X],—(t(;), while yj stands for %(t)(t) The consideration of R’ is necessary, since in the

f ])(t’) X(j+1)(t'
computation of -2 7o L= (r, 1, z) quotients T )

with respect to the bi-grading of R the derivation 9 is of type (1,0), while &' is of type (0,1).
Lemma 1.5.19 For any q(z,y) € R,

are also encountered. Notice that

(150 2 (a(t) IR <R U

a\ X0 TXE XD K@)
(9g) [ 2 (1) x"(t) XU
X)) X)X ()] X' (t)

A similar statement holds for polynomials in R', the derivation ', and derivatives with respect
to t.
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Proof. This follows from
d o9 (t) B D@ o ()X (t)
dt \ X'(t) ] X(t) X'(t)?
d [ xUtO(t) XUt XU @)y (1)
a\ X ) X X'(1)2
and the definition of 0. O
Lemma 1.5.20 We have
i a(t) \**
1.5.31) ———(r,r', 2 ) ) X
( ) 8r]ar,k( ) = aft) alt)
a(t) ”(t) a(t') X"t ) of
Z ijr<z+,u'727 ). ) P ) —r(tVZ)
R X)) ) o
for certain polynomials gk, (p, 233, y,2',y') € Z[p, 2] @Ry s, wheret = x1(r), t' = x1(r")
Moreover, qjrr(1,2) is of degree j in p and of degree k in z.
Proof. Define gooo(p, z) = ),
(1 — J) m1q580(1, 2) + 0 (Ogjk0) (14, 2) if r =0,
w0 (0qjkr) (1, 2) + To Gigr—1(p,2) I 1 <7 < g,
ifr=7+1,

(1 —J) w1qjkr (1, 2) +

j+1kr (14, 2) =

Lo 4jkj (/1'7 Z)

and
qjk;+1r(:u‘7 Z) = (Z + k) $I1ijr(ﬂa Z) + x6(8Iijr)(ua Z)
The polynomials g, (1, z) are well-defined, since the operators
(1 —5)m1 + 100, — (2 + k)2 + 20’
and
zg, — (2 +k)z| + z(0

commute. Moreover, g;r-(it,2) € Z[p, 2] @ ﬁj,r,k, and g, (1, 2) is of degree j in p and of
nd its validity for general j, k follows from an inductive

degree k in z.
Then (1.5.31) holds for j =k =0, a
argument: we have 5. = X'l(t) %, % = m % as well as
1 0 i (o) \ T o f
X' () ot <a(t)“ ! (a(t’)) Qjkr (2 + 1, 2) = otr (t,2)
! z+k r
(i pej—k-1 () (o) . If
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‘A

a otk o
a((;))) X,(:) Gikr(2 + 11, 2) ?%f (t,2)

a ko "
Fap (20 S @) e ) S 02

+ a(t)”_j_k_l(z + k) (

eyt

— afpim! (2‘((f,)))z+k {(ern-0%

0 ate+02)) S

+

(t,2) + qjkr(z + 1, 2)

><\
=
D
o~
=
+
—

and

0 . « z+k o
X'%t') o (a(t)uyk <a((:,))> Qikr (2 + 1, 2) a—t{(t, z))

o z+k+1 o (¢ T
I [P (a((tt’))) % Gike(2 + 1, 2) ?%{ (t, )

z+k+1 1 r
-+ Oz(t)“ij*k*1 <a(t) > Ot(t ) (8Iijr)(Z + U:Z) 0 f(tvz)

a(t') X' () ot
o z+k+1 o (¢
—alp e n (2) (SRS e )
a(t) o f
+ X/(t/) (a ijr)(z+/1'vz)) ot (t7 Z)?
which concludes the proof. ]

End of proof of Theorem 1.5.17. As a consequence of the foregoing lemma we obtain
that

1 3j+kf
1.5.32) — =
(1532) ot 0.0.2)
" j+k—r+1) r
vk X"(0) XU 0 10f
:XONJ Pjkr\ 2 + 1, 2; RN - 07Z7
( ) 0<zr:<] J T< M X/(O) X/(O) 7”! 8t7-( )
where
7!
(1533) pjkr(uaz;y) = '—k' ijr(ﬂaz;xayaxlay,) $0:$6:1, )
K wp=al,=YP p>1,

P
y;:yp

regarding (1.5.28). In particular, pjr, (1, 2;y) € Z[p, 2] @ Rj—_r1k, Pjkr(it, 23 y) is of degree j
in 1 and of degree k in z, and pjgo is independent of z, i.e.,

(1.5.34) pjoo(: 2 y) = pjoo(1s; y)-

Furthermore, by (1.5.29)

" (j+k—r+1)
(1535) Tnre) = 3 pier (2 +n ke -k 50 2O o )
2 (0) )
Jjzr
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showing that T!(u, x) actually possesses the form (1.5.17). O

We still need the following facts.
Lemma 1.5.21 Let T'(u) € My, u € R, be a solution to the functional equation

(1.5.36)  T(u+p){oo(z+ p)oi(z)} = (T()oo)(z + p)or(z) + oo(z + p — 1) (T (p)o1) (2),

which should hold for all meromorphic oo(z),01(2) and all p,p € R. Then there are uniquely
determined constants v, 5 € C such that

(1.5.37) T(p) =7 (A +p) + S(B)

for all p € R, where S(B)o(z) = B(o(z) —o(z —1)).

Proof. By Lemma 1.5.7, ¥ (A; + p) is a solution to (1.5.36). Then adding Bog(z + p)o1(z) —
Boo(z + p — 1)o1(z — 1) to both sides of (1.5.11), we see that also (1.5.37) is a solution to
(1.5.36).

We show the reverse direction. By (1.5.17), we may write

l

T(po(z) =Y pr(p,2)o(z =),

r=0
where p,(u, z) are certain polynomials in z of degree [ depending on the additional parameter
p. Therefore, (1.5.36) gives

l

> o+ p,2)o0(z+p—r)oi(z —r) =
r=0
l [

=Y prpsz+ p)oo(z +p—r)o1(z) + Y prlp, 2)o0(z + p = Dor(z = 7).
r=0 r=0

Comparison of coefficients immediately yields that in the sums in this equality all summands
with 0 < r <[ disappear. Thus

po(p + p,z)oo(z + p)or(z) + pi(p + p, 2)oo(z + p — o1 (z — 1) =
= po(, 2z + p)oo(z + p)oi(z) + pi(p, z + p)oo(z + p — l)or(2)+
+po(p, 2)o0(z + p —1)or(z) + pip, z)o0(z + p = D)o (z — 1)

and

po(p + py2) = po(p, 2 + p),

i+ p,2) = pip; 2),

pi(p, 2+ p) = —po(p, 2).
We infer that p;(u, z) is actually independent of p, i.e.,

(1.5.38) po(p, 2) = p(z + ), pi(p,z) = —p(2)
with a uniquely determined polynomial p(z) of degree at most /. The aim is to show that
p(z) =z + [ with uniquely determined constants 7, 5 € C.

By Lemma 1.5.16, there are constants yoo (1), Y10 (1), Y11 (1), - - - Yi—1,0(8)5 - - -, Yi—1,1—1(12) €
C and counstants Sy(p), ..., B(p) € C such that

-1 I—k
Pl 2) = (—1)" (Z (’ N ’“) vk,rs(m) Ak 4 B (),
k=0

s=0
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where again ys(p) =0 if s ¢ {0,1,...,k}. But p,(p,2) =0 for 1 <r <[ —1, therefore,

-k
l—k
Z( )%,rs(u) =0, 1<r<i—1,

s
5=0
for 0 < k < [. This, however, is a linear system in the unknowns ~yxo(g), Ye1 (), - - - Yer(14),
with its coefficient matrix having rank min{k + 1,/ — 1}. Thus we conclude that
Yoo (k) = k() = -+ = yrr(p) =0
if kK <[ —1 and, moreover,

V-1, () = (=1)"y(p), 0<r<1-1,
for a certain y(p) € C. In particular,

po(, z) = ()2 + Bo(n), pulp,z) = =)z + Bi(p).
By (1.5.38), ¥(1) = ¥ and SB;(p) = —B are independent of i, and Bo(u) = yu + B, i.e.,
po(p,2) = (2 + ) + B, pi(p,2) = =3z — B,

and T() = 7(A + ) + S(B). O

Remark 1.5.22 For T(u), p € R, as in Lemma 1.5.21, we have T(u) = 5 (A; + p), i.e.,
S(B) = 0, if and only if, for some p € R, T(u)z is a polynomial in z of degree 1 without
constant term.

Lemma 1.5.23 Let p € N. Then, for the operator w(t)t " € CHRy,g), g = (v,7 —
i,y (—00,0]), we have

(1.5.39) o3 (e (@) ) me[)( X"(0) x®(0) x(j“)(O))

B0 X))
for j = 0,1,2,..., where pjoo(p;y1,--.,y;) € Rj is the polynomial defined in (1.5.33),
(1.5.34).

Proof. We use the calculations leading to the proof of Theorem 1.5.17. The operator
X (w(t)t™#) equals w(t)r~Ha(t)*, where r = x(t), x(t) = ta(t). Hence

, j
ot (X*(w(t)t_“)) = ‘% % (a(t)“) o
But (—1) ()
i o o) a9V X' XV
a7 (@) = ) gjo0 <“’ XX KT K@) )
for any j = 0,1,2,.... Indeed, this is true for 7 = 0. Moreover,
B oo ey QI X' KD
X'(t) dt (a(t)u e (% X'@)7T XK@ TX®)TTT K@) ))
(4= a1 20 alt)  dITNE N X9
= (p — J)a(t) () 19 (“’ X)) X X)) x’(t)>
O OO I CARI O]

and (1.5.39) follows. O
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Lemma 1.5.24 For -0, € C'(Ry,g), g = (7,7 — 1,(~0,0]), i.e.,

(1.5.40) L) () = { =0

0 otherwise,

we have that, for each j € N, a}\/;j (X*(—at))(z) is a polynomial in z of degree 1 without
constant term.

Proof. We simply have x.(—8;) = —x/(¢)0, = r~*(x/(t)(—r0,)), where r = x(t). Hence

o (e (-0) () = 155 (VD)

forall  =0,1,2,... U

Proof of Theorem 1.5.1. First we show that there are uniquely determined coefficients
d1,92,q3, - .- such that (1.5.1), with j replaced by [, holds for all [ € N. The dependence of
g; on x is determined afterwards.
We proceed by induction on [. For [ = 0, we are already done by (ii) of Theorem 1.4.1.
Assume that the proof has been supplied up to [ — 1, for some [ > 1. Especially, the

coefficients ¢1, g2, ..., q_1 have been calculated. We then consider the operators
a1 ~a2
i ! 4 Gy - qz 1
TO(N’aX) :TO(N’7X) - Z A[uaalua% . 7al—1]7

lao! .
a1:a9. . a 1
ar1+2a2+-+(l—-1)a;—1 =l =

© € R, ie., we subtract from T} (u X) the operators corresponding to the choice ¢ = 0 in
Proposmon 1.5.10. In particular, TO(,u X) € M and

T+ p,x){o0(z + p)or(2)} = Y (T§ (1 x)00) (2 + p — k) (T§ (p, X)o1 ) (2)

J+k=l
—a1 =02
q, 49" - q]
S SR S SRR S L SN PR S
. arlag!. . ay!
J+k=l | a1+2a2++ja;j=j,
a;=0 if j=I
—b1 b _by,
aqy - 4;
X Z |7A[pablab27---abk]ol(z)
bylby! ... by
b1+2b2---+kby =k,
by =0 if k=l

by Lemma 1.5.6 and Proposition 1.5.10, respectively,
= (T§(1, x)00) (2 + p)o1(2) + 00(z + p = 1) (T (p, X)o1(2)

by the inductive hypothesis. Thus Té(g, x) solves (1.5.36) and, therefore, there exist uniquely
determined constants q; = q;(x) € C, 5, = Bi(x) € C, such that

Ty x) = @A+ 1) + S(B)

by Lemma 1.5.21. By Lemma 1.5.24 and Remark 1.5.22, however, 8;(x) = 0 showing that
Té(1, x) = qi(A; + p). This proves (1.5.1).
In order to conclude the general form of g;(x) we invoke Lemma 1.5.23. This yields

o7 Oew(®)E) (2) = To(p, )1,
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since

) ) 1 ifj=0

B=T(o(t)tH = 7

O (W( ) )(z) {0 otherwise,
ie.,
X' 0) X(Hl) _
1.5.41 ) -
( ) Pioo (% X' (0)" 7 ' (0) wai(x)
_ al 7, @ g -t
+ > 000" @00 - 100 Alp; ar,a2,- -5 a1

lao! |
a1:ag....ap_1.
a1+2a2+~~~+(l71)al,1:l !

showing that ¢;(x) has the desired form, i.e.,

200 = a (X"(O) XW))

X'(0) 7 x'(0)
for a certain q;(y1,...,y) € Ry, for (1.5.2) is known to be true for gi(x),...,q—1(x). Note

that Alu;a1,a9,...,a;—1]1 is a constant depending on p, but g(x) is independent of p.
This completes the proof of Theorem 1.5.1. U

2. OPERATORS ON HIGHER-DIMENSIONAL CONES

2.1. The cone algebra. The cone algebra with discrete asymptotics on the stretched cone
X" =R, x X with base X of dimension n, where X is a closed C'°*°-manifold, is motivated
as follows: Let

I o J
(2.1.1) A=177>"a;(t)  —t

be a differential operator of Fuchs type, where a;(t) € C* (R, Diff*~/(X)). Here Diff*~/(X)
is the space of all differential operators of order y — 7 on X with smooth coefficients. Assume
that A is elliptic (with respect to the symbols that are defined below). The pseudodifferential
cone algebra in the sense of Definition 2.1.1 below solves the problem of expressing a para-
metrix of A and the asymptotics of solutions as an element of elliptic regularity, cf. [17]. The
answer in terms of an operator algebra on X" is also necessary for applications to analogous
problems on manifolds with edges and higher corners. In this context the cone algebra is
the range of operator-valued symbols, where compositions and inverses are controlled within
the calculus, cf. [16], [18]. Global constructions require coordinate changes that preserve the
piecewise smooth geometry.

For the cone we consider diffeomorphisms of the form x : Ry x X — R, x X. The
asymptotic data that are generated by operators A refer to a chosen splitting (¢, ) of variables
and depend on the global “spectral” behaviour along X of the so-called conormal symbols.
These structures turn out to be rather sensitive under changes of coordinates. It is an
important point to characterise the transformation rules for the ingredients of the cone algebra
that govern asymptotics.

Asymptotics of solutions u(t,z) to an equation Au = f, with f having asymptotics in a
weighted Sobolev space, cf. the definitions below, and u belonging to a space with weight
v € R, have the form

(2.1.2) u(t,z) ~ > > cjp(z)t P loght

Jj k=0
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as t — 0, with a sequence
(2.1.3) P = {(pj,mj, Lj) bo<j<n
foran N = N(P) < oo, ncP = U0<j<N{pj} C C, Repj < n"'l -7, Repj = —oc0 as j — o0
if N(P) = oo, mj € N, and finite-dimensional subspaces L; C C*>(X) with ¢j, € Lj for all
0 < k < mj. Given a weight interval © = (¢,0], —oo < 19 < 0, we denote by As(X,g) for
g = (7,0) the set of all P with ncP C {z: ”—‘H v+ 9 <Rez< n"'l — v}

Asymptotics of solutions to elliptic dlfferentlal operators of Fuchs type are characterised

in Kondrat’ev [8] (for boundary value problems). In this case the expansions (2.1.2) can be
derived directly in terms of the non—bijectivity points of the principal conormal symbol

(2.1.4) Za] 0)z/: H*(X) — H* *(X),

with z varying in C and H*(X) belng the standard Sobolev space on X of smoothness s € R.
Denote by L’C‘l(X ) the space of all classical pseudo-differential operators on X of order .
Further let Lffl(X :RY) be the space of all classical parameter-dependent pseudo-differential
operators on X of order i, with parameter A € R', I € N. We also write LY(X;T3) when R is
replaced by I's. The spaces L (X), L (X;R') are endowed with natural Fréchet topologies.
Let M{(X) be the space of all h(z) € A(C, L% (X)) such that h|r, € LE(X;Tg) for all
8 € R, uniformly for 8 in compact intervals. Inverses to elliptic elements in Mb(X), cf. the
definition below, are meromorphic, where poles, multiplicities, and Laurent coefficients are
described by sequences
R = {(rj,nj, Hj)}jez
with mcR = U;ez{rj} C C, Rer; — Foo as j — =*oo, nj € N, and finite-dimensional
subspaces H; C L~°°(X) of finite-rank operators. The set of all such R is denoted by As(X)
and the elements are called discrete asymptotic types of Mellin symbols.

Given an R € As(X), we define M, (X) to be the space of all meromorphic operator-
valued functions f(z) € A(C\ ncR,L™%°(X)) with poles in r; of multiplicities n; + 1 and
Laurent coefficients at (z — r;)~#*1) in H; for all j € Z, 0 < k < nj, and W(z)h(z)‘rﬁ €
L=>°(X;I'g) for all B € R uniformly for 8 in compact intervals, and any 7c R-excision function
7(z). Furthermore, we set

Mp(X) = Mp(X) + M~ (X).

All these spaces are Fréchet spaces in a natural way, cf. [18].

Choose a parameter-dependent elliptic element R*(7) € L% (X;R), s € R, which in-
duces isomorphisms R*(7): H"(X) — H"7%(X) for all r,7 € R. Then the weighted space
HS’V(X/\) for s,7 € R is defined as the completion of C§°(X") with respect to the norm

{@mri)~ an . | R? (Im z)(Mu)(z)H%Z(X) dz}l/Q, where the Mellin transform M refers to

t e Ry and u is regarded as an element in C§°(Ry, C*(X)).
For each f(t,¢',2) € C°(Ry x Ry, LE (X; ['wt1 ) we can pass to continuous operators
2

woply ¥ (F)o: HOI(X7) = M),
s € R, with cut-off functions w(t), w(t). Set
KEV(XM) = wHSY (XM + (1 — w)H

cone

(x™),
(X"), away from ¢ = 0, is modelled on the standard Sobolev spaces
cone(R-l— xS") = (1- W)HS(RR-H) for any cut-off

w)
function w(t), where t = |Z|, z = ‘% The straightforward extension of this definition for

where the space H

Ey1+1 h- cone !
n R2™", such that, in particular, (1 —
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arbitrary X can be found in [18]. We are mainly interested in the behaviour of operators
near zero. However, to have a convenient algebra with ellipticity up to infinity we take
a class L¥"(X") with exit behaviour as ¢ — oo which is defined similarly to that in the
one-dimensional case treated above, with u € R being the order and n € R being a power
weight at infinity. The precise definition can be found in Schrohe [13], cf. also Dorschfeldt,
Grieme, and Schulze [3]. Operators A € L#(X") give rise to continuous maps (1 —w)A(1 —
@): K5 (XN) — K5~#9(X M) for arbitrary cut-off functions w, @, and 5,7, € R.

Let us now describe the asymptotic contribution in the cone algebra on X Set g7 (X") =
Hm o K7 =0=5(XM) for © = (89,0], —oo < ¥ < 0. Especially, IC(’:Y ](X/\) = K5°(X").
Moreover, for finite © and P € As(X,g), g = (v, 0), we define EP(X/\) to be the linear span
of all functions of the form w(t)cy(x)t™s loght for j = 0,...,N, 0 <k < mj, and cjk € Lj
for all 4, k, cf. (2.1.3), and a fixed cut-off function w. The space Ep(X") is finite-dimensional.
Set

KB (X") = Kg"(X") + Ep(X7)
and equip this space with its natural Fréchet topology. This definition extends to P €

As(X,g) for infinite ® in a manner analogous to the one-dimensional case treated above.
Furthermore, we set

SHXM) = {wu+ (1 —w)v; ue Kp7(X"),v € S(Ry,C™(X))}

which is also a Fréchet space.
An element G € L °°(X") is called a Green operator with discrete asymptotics if it induces
continuous operators

(2.1.5) G: K37(X") = S (XM, G*: K% (X/\)—>S§7(X/\)

for arbitrary s € R and certain asymptotic types P € As(X, (4,0)), Q € As(X,(—,0))
depending on G, with G* being the formal adjoint with respect to the chosen scalar product
in KO9(X") = t2L%(R, x X). The space of all operators of this form is denoted by
Ca(X", (7,4,0)). Moreover, given 7, € R and a weight interval © = (—(k+1),0], k € N, we
denote by Crri(X”, (7, 6,0)) the space of all operators M +G, where G € Cq (X", (7,9, 0))
and

(2.1.6) = o0~ Z top%7 7 (f;)

for arbitrary f;(z) € M;{;’o(X) and g; € R, y—j < p; <, with WCijFnT-H_gj = () for all j.
Given two operators of the form (2.1.6) with the same conormal symbols f;, 0 < j <k, but
different cut-off functions @, @y or shifts g;, their difference belongs to C(X", (v,6,0)). The
cone algebra with discrete asymptotics is the union of all spaces in the following definition.

Definition 2.1.1 The space C*(X",g) of all cone operators of order p € R on X" =R, x X
with discrete asymptotics and weight data g = (y,0,0) for v, € R, © = (—(k+1),0], k € N,
is defined to be the set of all operators of the form

(2.1.7) A=uwt® opyf(h)wg +(1-wdle(l—w)+M+G
with cut-off functions w, wy, wy satisfying wwy = w, ww, = wi, and
(i) h(t,z) € COO(RF,M’(‘Q(X)),

(i) M + G € Cuia(X", g),
(iil) Aoo € LE(Ry x X) N LHO(Ry x X).

The extension of this definition to the infinite weight interval © is analogous to the case
of the half-line R, .
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An operator A € C*(X",g) for g = (v, d,0) induces continuous maps
A: K37(XN) = K5 HO(XM)
and
) - 76
A KT (XN = Ko 0 (XM
for all s € R and P € As(X, (y,0)) with some resulting @ € As(X, (9, 0)).

The principal symbol structure of operators A € C*(X",g) is given by triples o(A) =
(&:Z(A),UAV(S(A),U(Q(A)). Here 61’2(A)(t,:v,7~',§) = t7_‘5ag(A)(t,x,t_17~',§), with 0171(’4) being
the homogeneous principal symbol of A € Lé‘l(X ). The principal conormal symbol of conor-
mal order y— ¢ is defined as above, cf. (1.1.8). The exit symbol o0 (A) stems from the calculus
in LMO(R x X) as t — oo, similarly to the one-dimensional case.

There are also lower order conormal symbols, given by the same expressions as in (1.1.10).
Compositions of operators A, B in the cone algebra belong to the cone algebra again, where
0(AB) = 0(A)o(B), with component-wise composition of symbols. The lower order conormal

symbols of compositions are given by (1.1.11).
Let x: Ry x X — R, x X be a diffeomorphism and suppose that

(2.1.8) 0] 0% x(t, 2)| < Cja(l+1)'77
for all j € N, o € N, in local coordinates on x € X, with certain constants Cj, > 0 and
(2.1.9) Ix(t,z)| > cot

for some constant ¢y > 0. Then applying the push-forward under y of standard pseudo-
differential operators on X”, i.e., x,: L*%(X") — L#0(X"), we can ask for the invariance
of the subspace CH(X", g).

Theorem 2.1.2 The operator push-forward under x induces an isomorphism

x«: CHX", g) = CHX",g)

for all p € R and g = (,0,0). Moreover, we have x,0(A) = o(x+A) under a canonical
push-forward x. on the symbol algebra.

2.2. Spaces with asymptotics and Green operators. Let y: R, x X — R, x X be a
diffeomorphism. Write

(2.2.1) (ryy) = x(t,x) = (o(t,x),k(t,z)) = (o(t,x), k1 (t,x), ..., 6, (L, T));

then ¢(0,z) = 0 and 90 (0,2) > 0 for all x € X. Moreover, k: X — X defined by k(z) =
k(0,z) is a diffeomorphism.

Proposition 2.2.1 Let x: Ry x X — Ry x X be a diffeomorphism satisfying (2.1.8), (2.1.9).
Then the pull-back under x induces an isomorphism x*: K57 (X") — K37 (X") for all s,v €
R.

Proof. See the proof of Proposition 1.2.1. O

Proposition 2.2.2 Let P € As(X,g) forg = (7,0), y € R, © = (9,0], —oc0 < 9 < 0.
Then there is a P € As(X,g) such that, for all s € R, the pull-back under x induces an
isomorphism

(2.2.2) X*: KT (XM) = K3(X7)

onto its (finite-codimensional if ¥ > —o00) range.
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Proof. Similarly to the proof of Theorem 1.2.2 we may assume that 9 > —oco. Further we

may assume that P satisfies the shadow condition, i.e., P = {(pj;, mji, Lj;) }o<j<n,, where
0<1<n;
pji = pjo— U, mj <mjp, Ljy € Ly for 0 <1 <" <nj, and n; is the largest integer less than
Repjo — (n"2'1 ). Moreover, pjo — pjio ¢ Z for j # j'. i
Since x*: Kg'(X") — Kg7(X") by Proposition 2.2.1, we still have to construct P €
As(X,g) such that

X' Ep(XN) — IC;’V(X/\).
The space Ep(X") is spanned by functions of the form
u(r,y) = w(r)cw(y)r? logk T|p:pjl= (pji, mji, Lj) € P, 0 <k <mj, ciie(y) € Lj.

Let us assume k& = 0; the assertion for £ > 0 then follows by differentiating the transformation
rule derived below with respect to p. We have

() (t, z) = u(x(t, ) = w(o(t, z))cjo(k(t, x))o(t,z) P
Using Taylor expansion of o at ¢ = 0,
N

(2.2.3) o(t,z) =D cn(@)t" + o)t z)tV T,
h=0

with co(z) = 0(0,7) =0, c1(x) = 040 (0,7) >0, cp(x) € C°(X), 1 < j < N, and o(y41)(t, 7)
is smooth up to t = 0, we get

o(t,z) =c1(x <1+ZZL§ %(;‘T)tN>.

For every N’ € N we find a N € N sufficiently large such that formula (1.2.3) yields

(2.2.4) o(t, ) Pit =¢7Pit <Z dp ()t" + v (t,2)tY +1> ,

with certain dp,(z) € C°°(X) and f(y+11)(t, ) smooth up to ¢ = 0.

Note that w(o(t,z)) can be rewritten as w(o(t,z)) = @(t)wi (¢, ), with a cut-off function
w(t) satisfying @w(t) = 1 for 0 < ¢ < ¢ and a sufficiently large constant ¢ > 0, and wy (¢, x) is
smooth and equals 1 close to ¢t = 0. Using formula (2.2.4) for N’ € N sufficiently large and
Taylor expansion of c;jo(k(t,z)) at t = 0, we obtain the representation

Nll
(2.2.5) u(x(t,z)) = w(t)t Pt (Z e (@)t + g (v (t :E)tN”H)

with certain ¢ (z) € C°°(X) and g(y»41)(¢, z) that is smooth up to t = 0.
From this construction it is seen that the coefficients ¢, (z) belong to a finite-dimensional

subspace f/ﬂ C C*°(X) which can expressed in terms of Ljo,...,Lj;, some first coefficients
dp(z) from (2.2.4), with [ in (2.2.4) varying from 0 up to the [ under consideration, and some
first derivatives of x (¢, ) with respect to ¢ at ¢ = 0. In particular, in case mjo = mj; =--- =0,
we get

(2.2.6) f/jo = Cl(iv)*pjoﬁ*Ljo Lj =ci(z) PI'E* Ljy + ci(z) P°H, ...,

where H = </1 dcjo, Oyk|i= 0> cjo € ng} and c¢1(z) = 0,0(0,2), co(z) =
L 5070(0,),... are as in (2.2.3). Similar statements remain true when logarithms are involved.

Finally, we put P = {(pjl,mjl,f/jl)}ostN,, with the finite-dimensional subspaces f/jl C
0<1<n;
C*°(X) having just been calculated. O
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Remark 2.2.3 (a) In general, P € As(X,g) cannot be chosen such that x* in (2.2.2) is
surjective. For example, the choice of f/jl in (2.2.6) is the best possible one (under the
assumption mji1 = 0), and, given Ljo, Lj1 with dim Ljy > 1, one easily constructs a diffeo-
morphism x such that dimf/jl > dim Lji. This means, in particular, that asymptotic types
as defined above do not have a coordinate-invariant meaning when dim X > 0.

(b) Under the natural assumption that the shadow condition is satisfied, however, weak
asymptotic types, i.e., only sequences {(pj,mj)}jen C C x N are prescribed, cf. Schulze [18],
are coordinate-invariant. The same holds for a refined notion of asymptotic type, where
additionally linear relations between the various coefficients cji(x) € Lj, even for different j,
are taken into account, cf. Liu and Witt [11].

As a consequence of Proposition 2.2.2 we get the coordinate invariance of Green operators
with discrete asymptotics.

Theorem 2.2.4 The operator push-forward under x induces an isomorphism

Xt Cg(X/\, (77 67 9)) - Cg(X/\, (77 67 9))
Proof. The arguments are analogous to those in the proof of Theorem 1.2.3. O

2.3. Push-forward of Mellin operators. To show the invariance of Mellin operators mod-
ulo Green operator it is sufficient to consider coordinates changes in a neighbourhood of
{0} x X. Let € > 0 be small and such that

(2.3.1) 100(t,7)| < ¢

for all (t,z) € U (because of 0(0,z) = 0), where U = [0,¢1) x V for some open coordinate
neighbourhood V' C X and ¢; > 0 is small.

For the following three lemmas, cf. Schrohe [14, Lemma 2.4, Lemma 2.6, Proposition 2.9].
Lemma 2.3.1 The function ‘det Dx(t x)‘ ( L together wzth all its derzvatzves 15 bounded
on U. Moreover, this function is bounded away from zero provided that the constant € > 0 in
(2.3.1) is sufficiently small.

Lemma 2.3.2 We have

— —i(BLT (4,8 ) p+BoT (4,
(U(tvx)) pei(n(t,:c)—n(t’,x'))ﬂ = (£> B ei(x_x,)(B?’p—'—BM),

o(t', ') t

where

By (t,t',z,2") / O(logo)(t' +9(t —t'), 2" + I(x — 2')) dvY,

Bi(t,t' x,x") = / Ot +9(t —t), 2" +9(x — 2')) dv,

Bi(t, ', z,2") = —/ Ox(logo)(t' +9(t —t'),z' +I(z — 2')) dY,

0
1
BL(t,t,x,2") — / Du(t' +9(t — '), 7' + Oz — ') do.
0

Here T(t,t') = ﬁ, By, By, B3, and By are matriz functions of sizes 1 x1, 1 xn, nx1,

and n X n, respectively, and superscript t denotes matriz transposition.
Lemma 2.3.3 Let B be the (n+ 1) x (n + 1) matriz
By(t,t',z, 2" )T (t,t') Bo(t,t',z,x")T (¢, 1)
! n o INNZ R D) ) 2\, 0y &Ly )
B(t7t ' ) N ( B3(t7tla$7$,) B4(t7t,7$7$,)
with the matrices By, By, Bs, By being defined in Lemma 2.3.2. Suppose that |z —z'|, |ti, -1,
t, and t' are sufficiently small. Then B(t,t',x,x') is invertible, and with A(t,t',x,2') =
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B(t,t',z, "), the norm ||t'k8§DgD;‘,,A(t,t’,x,x')]|£(@n+1) is bounded for all k € N and all
multi-indices o, o’ € N, and the matriz function

Ok DEDY At t 1)y —y

s smooth up to t = 0.

For the next proposition, cf. [18, Proposition 2.3.81].
Proposition 2.3.4 Let f(t,t',z) € C®(Ry x Ry, Mz*(X)) for some R € As(X). Let
v € R with rcR N FnTHJY = (0. Then we have

wopy; * (f)@ € Crrra(X7, g)

for g = (v,7,0), © = (—00,0], and arbitrary cut-off functions w,®.

Theorem 2.3.5 Let x: Ry x X — R xX be a diffeomorphism and w, wy be cut-off functions.

Further let R € As(X) with tcRNTwts . =0 and f(z) € MR>™(X). Then the push-forward
2

under x~1 of the operator wop;(/f_f(f)wo 15 a smoothing Mellin + Green operator, i.e.,

w[3

X;l(w Op’](; (f)w[)) € CM-I—G(X/\ag)a

fOT‘ g = (7777 6)7 0= (—O0,0]-

Proof. Analogously to the proof of Theorem 1.3.3 we may assume that v = ”T‘H Let
{V1,...,Vn} be a covering of X by coordinate neighbourhoods. In view of the compactness
of X, we may assume that this covering is chosen in such a way that, for all 1 < 4,57 < N,
Vi U'V; is also a coordinate neighbourhood. Let {¢1,...,¢n} be a subordinate partition of

1 1 1
unity. Then wopj,(f)wo = Z?fj:l wop;,(fij)wo, where fi; = ¢; fp;. The terms wop;, (fij)wo
can be treated separately for all 4, j. Thus, without loss of generality, we can replace f;; by
f which is now localised in the coordinate neighbourhood V; UV}, from now on denoted by
V. Then

x> @opk, (Nwo)u(t,2) =5 /ro/ // o (1, )) D)~ ) (:((tf:i,))>_z

det Dy (t'. z' dt
xfmmeWMMd%wmwwﬂiliLﬁﬂtd%7dz
o(t',x")

We have exp(i(k(t,z) — £(t',z"))n) = exp(i(x(0,z) — £(0,2"))n) exp(i(s(t, z) — £(0,z) —
s, 2') + K(0,27)) = exp(i(z — 2')(a(z, 1)) exp(iB(, £,z,5')y), where a(z,z') =
B4(0,0,z,z') is a smooth non-degenerate n X n matrix function on V' x V and (¢, ¢, z,2") =
k(t,x) — k(0,2) — k(t',2") + k(0,2") is smooth on U x U, i.e., up to t,t' = 0.

After the change of variables n = a(z, ') ~'¢ we obtain

X; 1(wOpM(f Ywo)u(t, )

/ / // o(t,z)) (z—a")¢ E - M 7zeiﬂ(t,t’,w,w’)a(w,w’)—lf
" 2mi Lo t to(t', z')

X f(ﬁ(t,:r),z,a(x,x')flf) wo(o(t, z"))u(t', z') det |a(z, 2")|~ 1%

_@ > i(x—a')€ i - / / ~ gl oo 13600
=5 /Fo/o //e v g(t,t' z,z',z,£) wo(t)u(t,:r)d:vdf 7 dz,

dt’
t' dx'd¢ m dz
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where

tla(tVT) - Bt xx ) o(z,x )1
(232) g(t,t,7$,$,727€) :(U1(t,$) (W) eﬁ( sv sy ) ( > ) f

- 1| et Dx(t', )| ,
ot z')

and @, wy are cut-off functions, with w(o(t,z)) = @(t)w1(t,x), wo(o(t,z)) = wo(t)wa(t', z")

and wi, wy are equal to 1 close to t = 0 and ¢’ = 0, respectively. By Proposition 2.3.4 we

only have to show that

(2.3.3) g(t, ', 2,2, 2,§) € C([0,¢) x [0,€), Mp™(V))

for a sufficiently small e > 0. (Here, M ;°°(V') means the subspace of all elements of M ;,°°(X)
supported in V' in the above-mentioned sense.) Now o(¢,z) can be rewritten as o(t,z) =
t0,0(0, ) + t25(t, z) (recall o(0,7) = 0 and 9;0(0,z) > 0 for all x), with &(¢,z) smooth up
to t = 0. Since X is compact, we get

to(t,z)  0;0(0,2) +t5(t, )
to(t',z') 0o (0,a") + t'a(t, x')
and (¢, t',x,2") € C*([0,£) x [0,¢) x X x X) for a sufficiently small ¢ > 0. It is also clear
that ¢ is a bounded function in all its arguments for ¢, ¢’ small. Hence

to(t,z)\ °
(m) = exp(—zlog p(t,t',z,z"))

x f(k(t,z), z, oz, z')LE) wo(t', x')| det a(w, ")

(2.3.4) ot t' x,2') = >0 for t,t small,

and because of f € ML (X) we obtain, for any mcR-excision function 7(z),

'o(t,z)\ P
(B +iT) (%) f(B+ir, k(t,z), oz, z')LE)

€ C([0,¢) x [0,¢),S™2(V x V x R¢ ),

uniformly in ¢ < 8 < ¢ for arbitrary ¢ < ¢. This yields (2.3.3), since the other terms in
(2.3.2) are smooth, cf. Lemma 2.3.1, and do not affect the symbol estimates. O

Theorem 2.3.6 Let x: Ry x X — Ry x X be a diffeomorphism and h € C*°(Ry, M5 (X)),
w e R Then

X (wopy; * (Wwo) = Gopyy * () + Go,
where h € C®(Ry, M5 (X)) and Gy € Ca(XM,(7,7,0)), © = (—00,0]; w, wy, @, @y are
cut-off functions.

Proof. We again assume that v = "TH Let {V1,...,Vn} be an open covering of X by

coordinate neighbourhoods and {¢1,...,¢x} be a subordinate partition of unity. As in the
foregoing proof we may assume that for all 1 < 4,5 < N, V; UV is also a coordinate

neighbourhood. We then write w opM(h)wg as the sum of the operators w opM(hU)wg, where
1

hij = pihg;, and treat each of terms wop?w(hij)wo for all ¢, 5 separately. So, without loss of
generality, we replace h;; by an h the kernel of which is localised in Ry xVxV.

Let ¢ € C§°(Ry) be supported in a small neighbourhood of p = 1 with #(p) = 1 for p
close 1. Then

1 1 n+1 n+1
wopfvf(h)wo - wOp?W(i/)(T/’I”I)h)wO € CM+G (X/\J ( 2 2 7®>)7

since h(r,z) — H()h(r,z) € C®(Ry, Mp> (X)), cf. [2], [L7]. By virtue of the invariance

1
of Crrya (X", (24, 2L 9)), that we know from Theorem 2.3.5, we have x; ' (wop3,(h)wo —
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1
wopl,(1h(r/r)h)wy) € Crpa(X", (24, 25 0)), where additionally all conormal symbols

of the latter operator vanish. Therefore as in the proof of Theorem 1.3.4, the operator
1 1

1 1 1
x: HwopZ (h)wy — wopZ (1 (r/r')h)wy) can be given the form @op2,(hi)dy + G, where
hi(t,z) € C®°(Ry, M5 (X)) and Gy € Ce(X", (22, 2L 9)).

Thus we still have to consider the operator x; *(wop M(zp(i)h))wg We have, after the
change of variables (Z) = (ﬁ;)( ) and using Lemmas 2.3.2, 2.3.3, where A = ( ;), Aqp is an
1 x (n+ 1) matrix, and Ay is an n X (n + 1) matrix,

X 1(wOpM( p(r/r)h)wo)ult, z)

R R C =)

det Dx(t', ' dt’
X h(a(t,x), H(tam)aipa TI)WO (U(tlax’))u(tlax’)wt, dfﬂldﬂ—dp
ot o) t’

N £\ ~UBT(6t)p+ BT (t:4))n) P o(t,z)
) t (z—a')(B3zp+Ban) ’
/OO/O //w(g(t,x)) (t’) e ¥ <U(t’,x/))

x h(o(t,z), k(t,x),ip, n)wo(a(t',x'))u(t',x')%t' d:r'd‘ndt—fldp
— Gop2, (9)aou(t, ),
where
ottt in,6) = anlt 0 (25 ) b (o000 m(t.0), i () e ()
|det Dx(t', x

X wo(t',x) )l t'|det A(t,t', z,z")|

o(t',z')
and w(o(t,z)) = w(t)wi(t,z), wo(o(t',z')) = @o(twa(t',z"), with @, @y being cut-off func-
tions and wi, wo are equal to 1 close to t = 0 and ¢ = 0, respectively

Proceeding as in the proof of Theorem 1.3.4 we switch ——dependence to z-dependence.
(The following argument corresponds to the replacement of ¢(¢,¢") in (1.3.5) with ¢(ot’,t')
instead of ¢(t,t/p), which likewise works.) For A = (Al) this technique applies for T'(¢,t')

. . 71
which can be written as T'(¢,t') =t l’;g +. More precisely, let
t/

1
B (t,t, 0,z ") = t'/ 0(log o) (t' +t"9(o—1),2" +I(z — a;')) dd,
0

1
B(t, ¢, 0,z,8") = —t'/ 8t/<v(t' +t"9(o—1),2" +9I(z — x')) dv
0

L - B &l Byl
(multiplication by ¢ and replacement of & by o) and B(t,t',0,z,2") = ( léggg Zézgg ,

A B A
A(t?tla anaxl) = B(tatla Q,waxl) = (A1>
2

where A;, Ay are 1 x (n 4 1) and n x (n + 1) matrices, respectively. Analogously to the
proof of Theorem 1.3.4 we get a new symbol, §(¢,t',z, 2, z,£), which is holomorphic in z and



COORDINATE INVARIANCE OF THE CONE ALGEBRA 39

smooth up to ¢, = 0:
o0 (o0} .
J(t 1 20! 2, €) = / / (¢, 2 )ploplot ' 7, 2'))
0 —00

X h (U(tv .’I)), K’(tv x)a ZANI (ta tla 0, %, xl) (2_) ) A?(ta tla 0, T, x’) (2))

|det D(#,a)|

% tl !
2o )

~ d
t'|det A(t,t, 0, z,2")| (1’7'?9,

cf. (2.3.4). Furthermore, analogously to the proof of Theorem 1.3.4 we can show that
g(t,t,z, 2", f +ir,&) € C([0,¢) x [0,), SL(V x V x RZF)) uniformly for ¢; < 8 < ¢
for arbitrary ¢; < ¢y, where we clearly mean symbols in local coordinates.

Then we get

1 1 1
xX: Hwop2, (Y(r/r')h)wy = &op2,(g9)dn = @op2, (§)do,

where g € C*([0,¢) x [0,¢), Mi5(X)).
Finally, we apply the analogue of Lemma 1.3.5 for the higher-dimensional case. O

2.4. Invariance of the cone algebra. Recall from Section 2.2 that we are considering
diffeomorphisms y: Ry x X — R, x X, where

(Tay) = X(tvx) - (U(tvx)vﬁ(tvx))'

Then o(0,z) = 0, d;o(0,2) > 0 for all z € X, and k: X — X defined by k(z) = k(0,x) is a
C>°-diffeomorphism. Moreover, x fulfils (2.1.8), (2.1.9) so that y.: LF¥?(X") — LHO(XM).
Theorem 2.4.1 The operator push-forward under x induces an isomorphism

X«: CH(X", g) » C*(X",g)
forall p € R and g = (7,6,0), © = (—(k+1),0], k € NU{oo}, and we have

(ry)=x(t,x), - (@)77665 (A) (tv €T, 7~_7 5)7
(@m)=" (Dx(te)) = (7.6)
(i) 037" (e ) (2) = 5, (000,270 (A) (2)Dhr(0, ) ),

(111) Ue(X*A) (7", Y, 0, 77) ‘ (ry)=x(t,x), = Ue(A) (ta T, T, f) mod Suil’il(RF x R) :
(em=(Dx(t,2)") =1 (1,€)
In (ii), 0,0 (0, ) is regarded as multiplication operator on C*(X), 0o (0,z) > 0 forallz € X,
and the expression in parenthesises on the right-hand side is understood as the composition
of three z-dependent pseudo-differential operators on X. Furthermore, k, is the operator
push-forward under k.

(i) &% (s A) (r,y, 6, m)

Proof. As in the proof of Theorem 1.4.1 the results of Sections 2.2, 2.3 immediately give the
coordinate invariance of the cone algebra with asymptotics. Further, (i), (iii) are well-known;
(i) follows from the transformation rule for O’:Z(A) and a compatibility condition between

61’2(A) and JfZ(A) analogously to that in (1.1.9), while (iii) can be found, e.g., in [13].
Thus it remains to prove (ii). Again we assume y = 2. Moreover, 07_6(w(t)t‘5_7)(z) =1
and ax/fd(x*(w(t)t‘s_“y))(z) = &, (8,0(0,2)77?) so that we can further assume that v = ¢
employing the Mellin translation product (1.1.11). Then we have to look at the proofs of
Theorems 2.3.5, 2.3.6.
First let f(z) € Mp™(X) be as in the proof of Theorem 2.3.5. Recall that the kernel

of f(z) is supported in V x V, where V is a coordinate neighbourhood of X. We have
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1

o8, (wops, (Flwn) (2) = f(2) and
(0?\4(X*1(w0p}{4(f)wo ) = [[ 5900,0,2,0', 2, 900" 't

where
9(0,0,2,2",2,€) = <7at ( ,x)) z f(6(x), 2, az,z")1¢)| det a(w, 2")| 1| det Dr(a")|
2 7 ) A (07x,) = ? ? 7 7 =

by (2.3.2). In fact, 72

|deth(0,:r’)|t, et 0o (0, ") 0
o(t' z') =0 0k(0,2")  0yk(0,2)

Thus we get

0
- 3;5(([?,’2:26’) , 80,0, =, :I/J) =0, and

t'=t=0 )

00 (0,2") ! = | det Dr(z")].

(010\4(XI1(w op'ﬂi(f)wo))(z)) ole) = u0(0,0) [ [ 6 (). 2.0 a) )
| det a(z, )| ™| det Dr(2')|(0,0(0, 2')*v(z")) dz'd€

1

— ! (ata(o,x)%ww Opﬁ(f)wo)(Z)ato(O,w)z> o(a),

since !(6@)=s@)n — gilz=a")a(@a)n which entails (i) in this case.
Next let h(t,z) € C®(Ry, M/ (X)) be as in the proof of Theorem 2.3.6. In particular,
the kernel of h(t, z) is supported in in Ry x V x V, where V is a coordinate neighbourhood

1
of X. The transformation rule (ii) for wop;,(H(1 — ¢)h)wo follows analogously to the first
part of the proof. Thus it remains to deal with the operator wop M(¢( ")h)wy. We have
o9 (w opM(z/J( "Yh)wo)(z) = H()h(0, z). Furthermore,

(o8 G ombg S ) 2) ) o) = [ [ e 63(0,0,0,' 2,0l ' at,

where

50.0,2.2" 7. £) :/000/_‘: - wq/)( %)h<O,@($),i'r,1412(0,0,g,$,$,)<7§—>>

x | det Dr(x")| | det A(0,0, 0, z, z')| (1’7'@,
0

since B1(0,0,p,2,2') = 82 B, (0 0,0,2,2') = 0. In particular, A(0,0, o, z,2') is indepen-
dent of p and A, (0,0, g,:lc .’L‘) (1,0,...,0), A5(0,0, 0, x, ') = (—B; ' B3, B;''), where
BL(0,0,z,2")(z — 2') = / 0z (log 0,0)(0, 2" +I(x — ') dV (x — ')

— (log 940 (0, z) — log 9,0 (0, z")),
1
BL0,0, 2,2 ) (5 — &) = /0 Dui(z +9(z — ') d9 (z — 7)

= () — K(2').
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We get
~ 00(0,x) \7° [ ilog( 220z, ,
gmﬁﬂwﬂzf):(aaagj [me (mw“J(M¢ﬂZ—”)
x h (0,k(x),iT,—B, ' B3 + B, '¢) dr | det Dr(a')| | det B4(0,0,z,2")| ™"

and, therefore,

(o b om0 ot = [ [ (22021

3 840 (0,7) o
&2 (GE0E) O (0 (o — i) b (0, 5(a), i, ~ By Byt + By €)
x | det Dr(z")| | det B4(0,0,z,2")| " v(z') drds’ @¢

)
N // /_oo (gttg 85 ) D1(Mp)(z = ip) h(0, £(x), ip, )

x |det Dr(z")| v(z") dpdz’dn

after the change of variables (f]) = (_34—1133 Bg—l ) (7),

4
99(0.2) \ ™ itutw)-sta’))n No(a) da’
e (H(¢)h) (0, £(z), z,m)| det Dr(a")| v(z") da'dn
8t0' 0 37)
that gives us (ii) also in this case. O

Remark 2.4.2 (a) As in Lemmas 1.4.2, 1.4.3 it can be shown that both the “holomorphic”
sub-calculus, i.e., the calculus with o} ](A)(z) € M’(‘Q(X) for all 5 = 0,1,...,k, as well

as the “flat” sub-calculus, i.e., the calculus with o’y 7 (A)(z) =0 for all j = 0,1,...,k, are
coordinate-invariant.

(b) Using an analogue of Lemma 1.4.2 it can further be shown that transformation formulae
for the lower-order conormal symbols are also available, cf. the proof of Lemma 1.5.4. In
the present situation, however, the resulting formulae will be considerably more complicated —
due to inherent non-commutativity, cf. the transformation formula for the principal conormal
symbol in Theorem 2.4.1 (ii).
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