
Vladimir Nazaikinskii�

Bert�Wolfgang Schulze� and Boris Sternin

QUANTIZATION METHODS
in

DIFFERENTIAL EQUATIONS

Potsdam ����



Professor Bert�Wolfgang Schulze
Potsdam University
E�mail� schulze�math�uni�potsdam�de

Professor Boris Sternin
Moscow State University
E�mail� sternine�mtu�met�ru

Doctor Vladimir Nazaikinskii
Moscow State University
E�mail� nazaik�mtu�net�ru

This text is a preliminary version of Chapter � of the book �Quantization Methods
in Di�erential Equations� by V� Nazaikinskii� B��W� Schulze� and B� Sternin to be
published by Gordone and Breach Science Publishers�



Chapter �

Quantization of Lagrangian

Modules

Contents

��� Preliminaries � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Auxiliary information � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Properties of oscillation fronts and the wave packet transform � 	
����� Complex pseudocoordinates � � � � � � � � � � � � � � � � � � � � 

����� Functions of noncommuting operators � � � � � � � � � � � � � � � ��

��� Oscillation fronts and Lagrangian manifolds � � � � � � � � � � � � � � � ��
����� Quantization of states by continuous superposition �the adjoint

wave packet transform � � � � � � � � � � � � � � � � � � � � � � � ��
����� Quantization by the inverse wave packet transform � � � � � � � ��

��� Maslov�s special canonical operator � � � � � � � � � � � � � � � � � � � � �

��� Commutation with quantum Hamiltonians � � � � � � � � � � � � � � � � ��
��� Canonical operator with arbitrary measure � � � � � � � � � � � � � � � � ��
Bibliography � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

�



� CHAPTER �� QUANTIZATION OF LAGRANGIAN MODULES

In this chapter we use the wave packet transform described in Chapter �� to quan�
tize extended classical states represented by so�called Lagrangian sumbanifolds of the
phase space� Functions on a Lagrangian manifold form a module over the ring of
classical Hamiltonian functions on the phase space �with respect to pointwise multi�
plication� The quantization procedure intertwines this multiplication with the action
of the corresponding quantum Hamiltonians� hence we speak of quantization of La�
grangian modules� The semiclassical states obtained by this quantization procedure
provide asymptotic solutions to di�erential equations with a small parameter� Locally�
such solutions can be represented by WKB elements� Global solutions are given by
Maslov�s canonical operator ���� also see� e�g�� ��� and the references therein� Here the
canonical operator is obtained in the framework of the universal quantization proce�
dure provided by the wave packet transform� This procedure was suggested in ��� �see
also the references there and further developed in ���� our exposition is in the spirit of
these papers� Some further bibliographical remarks can be found in the beginning of
Chapter ��

��� Preliminaries

The notion of the wave packet transform is based on wave packets�the simplest semi�
classical states whose oscillation front consists of a single point in the phase space�
These wave packets can be treated as the semiclassical quantization of the classical
states represented by points in the phase space� However� it is well known that semi�
classical wave functions are not exhausted by those whose oscillation front is a singleton�
A trivial example� of course� is given by a �discrete� linear combination ��nite or in�
�nite of Gaussian wave packets� let �qk� pk� k � �� �� � � � � be a sequence of distinct
points in the phase space R�n� and let ak be a sequence of numbers su�ciently rapidly
decreasing to zero� Consider the function

��x �
X
k

akG�qk� pk�x� ����

where G�qk� pk�x is the Gaussian wave packet centered at �qk� pk� The terms of the
sum ���� are almost orthogonal in L��Rn in the sense that

�G�qk� pk�x� G�ql� pl�x � O�h� for k �� l� ����

Thus� it is pretty obvious for a �nite sum ���� �and can be proved with little more
e�ort for the case in which there are in�nitely many terms that the oscillation front
of ��x has the form

OF �� � f�qk� pkg� ����

�The preliminary version of Chapter � was published as the preprint ����
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Here the bar stands for the closure �which is� of course� unnecessary for the case of a
�nite sum� Thus� ��x is the simplest example of a pure semiclassical state �i�e�� a
semiclassical state represented by a wave function for which the corresponding classical
state is mixed rather than pure� it is given by the measure � on R�n

�q�p� of the form

� �
X
k

bk��p� pk��q � qk� ����

where the coe�cients bk are

bk �
jakj�P
l
jalj� � ����

However� this example is somewhat arti�cial in that wave functions of that form rarely
occur as physically meaningful solutions of the Schr�odinger equation� In the sim�
plest case� such solutions are represented by the so�called WKB�elements �where WKB
stands for Wentzel� Kramers� and Brillouin of the form

��x� h � e
i
h
S�x���x� ����

where S�x and ��x are smooth functions� S�x real�valued and ��x compactly sup�
ported� As was already mentioned in x ����� of Chapter �� the oscillation front of the
function ���� has the form

OF �� � � � f�p� qg j q � supp�g� ���	

where � is the manifold in the phase space determined by the function S according to
the formula

� �

�
�q� p

��� p �
�S

�q
�q

�
� ���


The manifold ���
 is Lagrangian� that is� it is n�dimensional and the restriction of the
symplectic form

�� � dp � dq �
nX
j��

dpj � dqj ����

vanishes on ��
i��� � �� �����

where i � �� R�n
p�q is the embedding�

Thus� the WKB�element ���� is the simplest example of a pure semiclassical state
for which the corresponding classical state is a mixed state concentrated on a smooth
submanifold of the phase space� More precisely� this state is concentrated on � and is
represented by the measure

� � j��qj��
�
p � �S

�q
�q

�
dq � j��qj�����dq��q� p� �����
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where ����dq� is the Dirac delta function on � corresponding to the measure dq� the
action of this function on an arbitrary test function 	�q� p is given by


 ����dq�� 	 �
def
�
Z
�

	�q� pj�dq� �����

To obtain ������ it su�ces to recall that� by de�nition�


 ��H �� lim
h��

���  H� �����

for an arbitrary classical Hamiltonian H�q� p� rewrite the right�hand side of ����� in
the form of an oscillatory integral� and apply the stationary phase method�

We point out that the oscillation front of the state ���� is Lagrangian� This is
in fact a very deep phenomenon� and we shall shortly see that� indeed� the oscillation
front of a �nice� semiclassical state � cannot be arbitrary�

For now� our aim is to learn how to obtain semiclassical states with oscillation front
a given submanifold M � R�n

q�p in the phase space �satisfying certain restrictions� To
this end� we shall try to generalize the idea underlying the �discrete� example �����
that is� construct the desired state as a superposition of states with one�point oscillation
fronts� i�e�� Gaussian wave packets� Let us show how this can be done for the WKB�
element ����� Since the oscillation front � is a manifold� instead of a discrete sum we
have an integral over the manifold� To obtain the desired decomposition� we proceed
as follows� First� we use the �approximate ��function�

�h�x �
�

�

��h

�n
�

e�
x�

�h � h� �� �����

We have
�h�x� ��x� h� �� �����

�weak convergence� since
�Z

��

�h�x dx � � �����

and �h�x � O�h� on any closed set that does not contain the point x � �� We use
identity ����� and write

��x� h �
�

�

��h

�n
�
Z
e

i
h �S�x��

i
�
�x�y�����x dy� ����	

Our subsequent computations will be carried out modulo O�
p
h and are somewhat

heuristic in that we do not �ll in all the details� note that all this serves only as a
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motivation for our subsequent constructions� We would like to replace the argument
x in ��x and S�x on the right�hand side in ����	 by y� making only a small error
as h � �� Since ��x is independent of h� this is possible for ��x in view of ������
However� we must be much more careful with the exponent� which contains h in the
denominator� Here the following assertion proves to be of use�

Proposition � 	
e

i
h
at� � �



e�

t�

�h � O�
p
h� h� �� ����


uniformly for real a from any compact set�

Indeed� ���e i
h
at� � �

��� �
������it

	

h

aZ
�

e
i
h
at�vdv

������ 	 jat	j
h

� �����

it remains to note that ����t	e� t�

�h

���� 	 Ch
�

� � �����

where the constant C is independent of h�

Exercise� Prove the estimate ������

Hint� Find the maximum over t of the left�hand side�

It follows from this proposition that it su�ces to expand S�x in the Taylor series
around x � y and reject all terms of order 
 �� Then we obtain

��x� h �
�

�

��h

�n
�
Z
e

i
h �S�y��p�y��x�y��

�

�
��Q�y��iE��x�y��x�y����y dy� �����

where � is congruence modulo O�
p
h� p�y � �S

�y
�y� and Q�y is the matrix of the

second derivatives of S at the point y�
The representation ����� can be viewed as an integral over the Lagrangian manifold

��
��x� h �

Z
�

�� eG�S�� Q�� q�� p��x dq�� �����

where eG is the modi	ed Gaussian wave packet

eG�S�Q� q� p�x �
�

�

��h

�n
�

e
i
h �S�p�x�q��

�

�
��Q�iE��x�q��x�q��� �����

di�ering from the �standard� wave packet by the additional phase factor e
i
h
S and the

additional quadratic form �
� 
 Q�x� q� x� q � with real matrix Q in the exponent�
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q� and p� are the equations of � in some local coordinate system� and ��� S��
and Q� are the expressions of �� S� and Q in that coordinate system��

Although the expression ����� uses modi�ed wave packets� it can be reduced to a
form containing the usual wave packets	

G�q� p�x �
�

�

��h

�n
�

e
i
h �p�x�q��

i
�
�x�q���� �����

Indeed� the factor e
i
h
S is independent of x and can be incorporated in the coe�cients in

the expansion ������ �Or otherwise� somebody may prefer to retain it in the de�nition
of the Gaussian wave packet� for it is a unimodular constant factor� quite natural
in quantum mechanics� More interestingly� we can get rid of the quadratic term
�
�

 Q�x� q� x� q � in the exponent at the expense of altering the coe�cients ���

Namely� along with ������ let us consider the integral

���x� h �
Z
�

e
i
h
S������G�q�� p��x dq�� �����

We claim that one can choose the amplitude ��� so that the integral ������ as well
as ������ will represent the function ����� For clarity� let us explicitly write out both
integrals as oscillatory integrals�

��x� h �
�

�

��h

�n
�
Z
e

i
h �S�q��p�q��x�q��

�

�
��Q�q��iE��x�q���x�q�����q dq� �����

���x� h �
�

�

��h

�n
�
Z
e

i
h �S�q��p�q��x�q��

i
�
�x�q������q dq� ����	

The integral ����� is reduced to ���� by the stationary phase method� the stationary
point of the phase satisfy the equations

q � x ����


for each x� Since the additional term �
� 
 Q�q�x� q� x� q � has a second�order zero

at q � x� it follows that the integral ����	 has the same stationary points and the
same values of the phase function at these points as the integral ������ In both cases
the stationary points are nondegenerate owing to the presence of the positive de�nite
imaginary part i

�
�x � q� of the phase function� However� the Hessians of the phase

are not the same� we obtain �� as the product of � by the square root of the ratio of
these Hessians �with an appropriately chosen sign� The reader is encouraged to �ll in
the missing details�

�We avoid the more rigorous but awkward notation ����q��� S���q��� etc�
�We use a normalization of wave packets di	erent from that in Chapter ��
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We can now rewrite the representation ����	 of the function � � �� in the form

��x� h �
Z Z
R�n

G�q� p�xe
i
h
S�q����q����dq�dq dp

� ��hn�
U�
h
e

i
h
S����������dq�

i
� �����

where U� is the adjoint of the wave packet transform U introduced in Chapter ��
We see that the function � is obtained by an application of the adjoint transform

U� to a distribution �in fact� a measure concentrated on the manifold � � WF ���
In our example� � was the simplest WKB�element in that the corresponding La�

grangian manifold is covered by the nonsingular chart �only the coordinate represen�
tation is needed� and there are no charts involving the mixed coordinate�momenta
representation� However� the expression ����� is not dependent on the existence of
the nonsingular coordinates� so that we can expect that this representation remains
valid even in singular charts� that is� on the entire manifold� This will be studied in x
�� while in x � we introduce and recall some auxiliary material�

��� Auxiliary information

����� Properties of oscillation fronts and the wave packet
transform

Both the notion of the oscillation front and the wave packet transform were introduced
in Chapter �� For the reader�s convenience� here we recall some of these properties�
We start from the de�nitions of oscillation support and oscillation front� Consider the
space

H�Rn
x �

�
s

Hs�Rn
x �����

of semiclassical states� where Hs�Rn
x is the quantum Sobolev space of functions ��x� h

with �nite norm

jj�jjs � sup
h������

������
������
�
� ! x� � h�

��

�x�

�s��
�

������
������
L��Rn

x �

� �����

Let � � Hs�Rn
x� We say that a point x� belongs to the oscillation support of � and

write
x� � osc�supp�

if ��x� � � for every function � � C�� �Rn
x such that �� � O�h�� Next� we say that

a point �q�� p� � R�n belongs to the oscillation front of � and write

�q�� p� � OF ��




 CHAPTER �� QUANTIZATION OF LAGRANGIAN MODULES

if H�q�� p� � � for every function H � C�� �R�n such that  H� � O�h� �here  H is
the quantum Hamiltonian operator corresponding to the symbol H� Then

��OF �� � osc�supp ��

where
� � R�n � Rn� �q� p �� q�

is the natural projection� Moreover� for any Hamiltonian function H�q� p� one has

OF �  Hu � OF �u � OF �  Hu � f�q� p jH�q� p � �g� �����

and if H�q� p � � in a neighborhood of the point �q�� p�� then �q�� p� �� OF �  Hu�
The property that is possibly most important to us is the behavior of the oscillation

front under the wave packet transform� We state this property in the form of a theorem�

Theorem � The wave packet transform has the following properties


�i OF �� � osc�supp �U� for every � � H�Rn
x�

�ii OF �U�f � osc�supp f for every f � H�R�n
q�p�

Remark � The inclusion �ii becomes an equality whenever f � FH�R�n
q�p� where

FH�R�n
q�p is the range of U in H�R�n

q�p� This follows from assertion �i of the theorem�

The rather technical proof of both assertions is based on the stationary phase
method� and we omit it�

����� Complex pseudocoordinates

In what follows we shall frequently use complex pseudocoordinates on the phase space
and on submanifolds of it� Let us give the corresponding de�nitions� Let M be a real
manifold of dimension k� A k�tuple �z�� � � � � zk of smooth complex�valued functions
de�ned in a neighborhood of a point � � M is called a pseudocoordinate system on
M near � if det �z

��
�� � in this neighborhood� where  � ��� � � � � k is an arbitrary

coordinate system on M near �� If z � �z�� � � � � zk is a pseudocoordinate system on
M � then we introduce the derivatives

�f

�z
�

�
�f

�z�
� � � � �

�f

�zk

�

of an arbitrary function f � C��M by the formula

�f

�z
�

�
�f

�

���
�f

�
� �����
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where  � ��� � � � � n is an arbitrary coordinate system on M � One can readily see
that this is well�de�ned �i�e� independent of the choice of � and it follows that if
z � ���� � � � � �n is a system of real�valued functions� then

�f

�z
�

�
��

�

���
�f

�
�
�f

��
� �����

that is� we obtain the usual partial derivatives� The derivatives ����� possess most of
the properties of usual partial derivatives� In particular� we have

��

�zk�zl
�

��

�zl�zk
� �����

the usual expression

df �
�f

�z
dz �

kX
j��

�f

�zj
dzj �����

for the di�erential holds� and similarly� if

� �
X

�i� ���ikdzi� � � � � � dzik � ����	

then

d� �
X ��i����ik

�zs
dzs � dzi� � � � � � dzik � ����


Next� one has an analogue of the Taylor series expansion�

f� � f�� �
N��X
j	j��

�z�� z��	

�"

�	f

�z	
�� !O�j � �jN � �����

Here � � ���� � � � � � is a multiindex� instead of O�j � �jN one can safely write
O�jz� z�jN� We encourage the reader to prove all these properties by way of exercise�
We shall use special pseudocoordinates on the phase space R�n

q�p and on Lagrangian
submanifolds � � R�n

q�p� Let

zj � qj ! ipj � zj � qj � ipj� j � �� � � � � n� �����

Thus� in e�ect we have equipped the phase space R�n with a complex structure�

Lemma � The �n�tuple

�z� z � �z�� � � � � zn� z�� � � � � zn �����

is a pseudocoordinate system on R�n
q�p�
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Proof � One has
��z� z

��q� p
�

�
E iE

E �iE

�
�

By subtracting the �rst row from the second� we obtain the matrix�
E iE

� ��iE

�
�

which is obviously nondegenerate�

Lemma � Let � � R�n be a Lagrangian manifold� Then the restrictions of the func�
tions z � �z�� � � � � zn to � �which will be denoted by the same letters� form a pseudo�
coordinate system on ��

Proof � We must prove that

D�q ! ip

D
� det

��q ! ip

�
�� �� �����

For brevity� we write

A �
�q

�
� B �

�p

�
�

Since � is a submanifold� it follows that the mapping

 �� �q�� p�

is an embedding� Consequently� the matrix�
A
B

�

is full rank� whence
det �A�A!B�B �� �� �����

Next� we use the Lagrangian property of �� We have dp � dqj� � �� or

�Bd � �Ad � �� �����

In more detail�

� �
nX

j�m�s��

BjmAjsdm � ds �
nX
j��

X
��m�s�n

�BjmAjs �BjsAjm� dm � ds �����



���� AUXILIARY INFORMATION ��

�we have used the antisymmetry of the exterior product� Since the products dm�ds
with m 
 s form a basis in ����� it follows that

BjmAjs �BjsAjm � � �����

for � 	 m 
 s 	 n� But then ����� is true for s � m by antisymmetry� while for
s � m it is valid automatically� All in all� ����� holds for any s and m� so that in the
matrix notation we have

B�A�A�B � �� ����	

It remains to note that

�A� � iB��A! iB � A�A!B�B ! i�A�B �B�A � A�A!B�B� ����


whence it follows from ����� that ����� holds� The proof is complete�
Let us present the expressions of some useful quantities in complex pseudocoordi�

nates�
We start from the expressions for partial derivatives in R�n

p�q� It obviously follows
from ����� that

�

�q
�

�

�z
!

�

�z
�

�

�p
� i

�
�

�z
� �

�z

�
� �����

and consequently�

�

�z
�

�

�

�
�

�q
� i

�

�p

�
�

�

�z
�

�

�

�
�

�q
! i

�

�p

�
� �����

Next� we proceed to di�erential forms� We have

dz � dq ! idp� dz � dq � idp� �����

and accordingly�

dq �
�

�
�dz ! dz� dp �

�

�i
�dz � dz� �����

Now the fundamental ��form p dq in the complex pseudocoordinates has the expression

�� � p dq �
�

�i
�z � z�dz ! dz� �����

and the symplectic form is given by the expression

�� � dp � dq �
�

�i
dz � dz� �����
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Now let us write out the expression for the Hamiltonian vector �eld� The Hamiltonian
vector �eld V �H of a Hamiltonian function H has the characteristic property

V �Hc�� � �dH� �����

�Here c stands for inner multiplication� Let

V �H � a
�

�z
! b

�

�z
� �����

Substituting this into the left�hand side of ������ we obtain� with regard to �����

�dH �
�

�i
a dz � �

�i
b dz�

whence

a � ��i
�H

�z
� b � �i

�H

�z
�

Finally� we see that

V �H � �i

�
�H

�z

�

�z
� �H

�z

�

�z

�
� ����	

Now suppose that we are given a Lagrangian manifold � � R�n and a Hamiltonian
vector �eld V �H� We are especially interested in the case in which � is invariant with
respect to V �H� that is� V �H is tangent to �� The following lemma gives necessary
and su�cient conditions for this�

Lemma � The Lagrangian manifold � is invariant with respect to the Hamiltonian
vector 	eld V �H if and only if Hj� � const�

Proof � Necessity� Suppose that � is invariant� Then

dH�� � ����V �H� � � �

for any tangent vector � � T�� since � is Lagrangian� It follows that H is �locally
constant on ��

Suciency� Let H be �locally constant on �� Then

���V �H�� � � �dH�� � �

for any tangent vector � � T��� that is� V �H� belongs to the skew�orthogonal comple�
ment of T��� which coincides with T��� since T�� is Lagrangian� The proof of Lemma
� is complete�

Now let V �H be tangent to �� and let � be a smooth function on �� Let us compute
V �H� at an arbitrary point � � �� It su�ces to assume that � is a plane passing
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through the point � � ��� � and that � is linear� ��z � bz in the pseudocoordinates
z on �� We extend � to the entire phase space by the same formula� Now� to compute
V �H�� we can apply formula ����	� Then we obtain

V �H� � ��i
�H

�z

��

�z
� ����


or

V �Hj� � ��i
�H

�z

�

�z
� �����

Note the di�erence between the expressions ����	 and ������ the former gives the
Hamiltonian vector �eld in the phase space� while the latter gives the restriction of
V �H to the invariant manifold ��

The formulas obtained here will be used in the sequel�

����� Functions of noncommuting operators

Throughout the chapter� we shall freely use the notation and techniques of noncom�
mutative analysis �functions of noncommuting operators� which can be found in the
books ��� 	� as well as in Appendix
 of the present book� We recall that while var�
ious precautions and assumptions are needed when one deals with general functions
of noncommuting operators� everything is almost automatic as long as only polyno�
mial symbols are considered� Then virtually no functional�analytic assumptions on
the operators �like self�adjointness� normality� etc� are necessary� and the theory is
essentially algebraic�

��� Oscillation fronts and Lagrangian manifolds

The example considered in x � suggests a method for constructing a function with a
prescribed wave front M � R�n

q�p� where M is a manifold� we take the distribution

	 � e
i
h
S�������M�d
�� �����

where ��M�d
� is the ��function on M with some measure d� on M and S� � are some
smooth functions on M � and set

� � U�	� �����

where U� is the adjoint of the wave packet transform� then one can expect that

OF �� � f �M j�� �� �g �����

�To be written yet�
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if the phase S� is chosen appropriately� Actually� the inclusion

OF �� � f �M j�� �� �g �����

is easy to establish� �We leave this to the reader as an exercise� But the opposite inclu�
sion cannot be achieved in general� This will be explained in detail in Subsection ����
We also note that along with ������ there is another natural method of constructing
a function whose oscillation front is a given manifold M � Namely� we take a function
	 � FH�R�n

q�p such that osc�supp 	 � M and then set

� � U��	� �����

by Theorem �� �i we then have OF �� � M � so it might seem that this method
would provide a wider supply of possible oscillation fronts� However� this is not the
case� we shall see in Subsection ��� that the inclusion 	 � FH�R�n

q�p imposes serious
restrictions on the possible oscillation support of 	� at least in the class of WKB�type
semiclassical functions� That is why in subsequent sections we only use the �rst method
of quantization of states� related to formula ������

����� Quantization of states by continuous superposition
�the adjoint wave packet transform�

Thus� we seek quantum states corresponding to classical states concentrated on a sub�
manifold M in the form ������ assuming that S and � are smooth functions� � is
compactly supported� the imaginary part of S is nonnegative� and d� is some smooth
measure �volume form on M �possibly� with complex coe�cients� Let us rewrite the
function ����� explicitly in the form of an oscillatory integral�

��x� h �
�

�

��h

�n
�
Z
M

e
i
h
��x����� d��� �����

where

#�x�  � S� ! p��x � q� !
i

�
�x� q��� �����

Let us study the oscillation front of the function ������ We take an arbitrary point
�q�� p� � R�n

q�p� The question is� when does �q�� p� belong to the oscillation front on
�$ Let us take a smooth function H�q� p supported in a small neighborhood of the
point �q�� p�� We compute H��

H� � H�x� p� ����	

�
�

�

��h

� �n
�
ZZZ

e
i
h
p�x�y����y����H�x� p�� d�� dy dp�
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The stationary point equations for the phase function

%�p� x� y�  � p�x� y ! #�y�  ����


of the integral ����	 read���

�%
�p � x� y � ��

�%
�y � �p! p� ! i�y � q� � ��

�%
�

� �p
�

�y � q� !
�S�
�

� p�
�q�
�

! i
�q�
�

�q�� y � ��

�����

Thus� for given x� at the stationary points one has

q� � y � x�

p � p��
���	�

dS� � p� dq�� ���	�

Suppose that �q�� p� ��M � Then the equations

x � q� � q� and p � p� � p� ���	�

are inconsistent� and one of the �rst two equations in ���	� is necessary violated on
supp H�x� p �provided that the support is su�ciently small� so that  H� � O�h��
If �q�� p� �M � then let � be the coordinate tuple on M such that

q�� � q�� p�� � p�� ���	�

We see that again  H� � O�h� unless

dS�� � p�� dq��� ���	�

We have thereby proved the following assertion�

Lemma � If a point �q�� p� belongs to OF ��� then �q�� p� � M � �q�� p� � supp��
and relation ���	� holds�

Exercise� Prove that the assumptions of the lemma are not only necessary� but also
su�cient for the inclusion �q�� p� � OF ���

Now if we wish that
OF �� � M � supp� ���	�
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for any completely supported amplitude function �� then we must require ���	� for
any � �M � that is�

dS � p dqjM � ���	�

In particular� it follows by applying the exterior di�erential to both sides of ���	� that

��jM � dp � dqjM � �� ���		

that is� M is isotropic� In particular� the dimension of M does not exceed n� Indeed�
Eq� ���		 just means that M is contained in the skew�orthogonal complement M�

of itself with respect to the form �� � M � M�� Since the symplectic form �� is
nondegenerate� it follows that dim M� � �n� dimM � Hence

dimM 	 �n� dimM� ���	


or dim M 	 n� as desired�
In this book we shall only consider the simplest case in which M is of maximal

dimension M � In this case� M is called a Lagrangian manifold�

����� Quantization by the inverse wave packet transform

Now we try a di�erent possibility� namely� formula ������ In this case� 	 must be a
function from FH�R�n

q�p with osc�supp�	 � M � We shall consider the simplest case
in which the function 	 itself has the WKB form

	�q� p � e
i
h
��q�p�a�q� p� h !O�hN � ���	�

where N can be chosen as large as desired� Here

#�q� p � #��q� p ! i#��q� p ���
�

is complex�valued and satis�es #��q� p 
 �� and a is regular in h� Clearly� we have

osc�supp	 � f�q� p j#��q� p � �g � supp a� ���
�

and if we wish to have osc�supp 	 �M � we must require that M be the set of zeros of
#��q� p�

Now we exploit the condition 	 � FH�R�n
q�p�

Lemma 	 On the support of a� one has

�#

�z
�
p

�
!O�#��  ���
�

�here we use the pseudocoordinates �z� z on R�n
q�p introduced in x ��
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Proof � The condition for 	 to belong to FH�R�n
q�p reads

�h
�	

�z
� ip	 � � ���
�

�see Chapter �� Substituting ���	� into ���
� and matching the coe�cients of h�� we
obtain

e
i
h
��q�p�

�
�i
�#

�z
� ip

�
a�q� p� � � O�h� ���
�

whence it follows that
�#

�z
�
p

�
!O�#� ���
�

�see ��� Lemma ���� p� �	��� To obtain arbitrarily high power of #� in the estimate�
one has to consider subsequent terms in the expansion in h� we omit this procedure to
avoid cumbersome calculations�

Lemma 
 The manifold M is isotropic on the support of a�

Proof � We use ���
�� On M we have

#� � �� d#� � �� ���
�

since #� is nonnegative� Consequently�

�#�

�z
�

�

�

�#�

�q
� i

�

�#�

�p
�
p

�
on M� ���
	

whence
�#�

�q

�����
M

� p�
�#�

�p

�����
M

� �� ���



Di�erentiating ���

� we obtain the following equations on the tangent space T�M at
an arbitrary point  �M �

��#�
�p�q

dq ! ��#�

�p�
dp � ��

��#�
�q�p dp !

��#�

�q�
dq � dp�

���
�

It follows that

dp � dq �
��#�

�q�p
dp � dq ! ��#�

�q�
dq � dq

� ��
�#�

�p�
dp � dp �����

� �
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on M � that is� M is isotropic� The proof of the lemma is complete�
We see that the method based on the use of U�� does not provide a wider supply

of oscillation fronts than the method based on the use of U�� In what follows we shall
only use the adjoint transform U�� for this approach results in much simpler formulas�

��� Maslov	s canonical operator� The special con�

struction

We take a Lagrangian submanifold � of the phase space R�n
q�p� Our aim in the present

section is to construct a mapping taking each smooth compactly supported function
� � C�� �� to a semiclassical wave function � with OF �� � � � supp� with the
following properties�

�� The mapping
� �� � � K� � H�Rn

x

is linear�

�� If H�q� p is a Hamiltonian function� then the following diagram commutes mod�
ulo O�h�

C�� ��

H�Rn

H�q�p�j�

�H�H�q��p�

C�� ��

H�Rn�

�

K

�

�

�

K �����

The commutativity of diagram ����� can be interpreted as follows� The space C�� ��
of smooth compactly supported functions on the Lagrangian manifold � is a module
over the ring S��R�n of Hamiltonian functions H�q� p� the multiplication is given by

H  � � H��� �����

where on the right�hand side the usual multiplication of functions is used� The space
C��� equipped with this structure will be referred to as a Lagrangian module�

On the other hand� the space H�Rn has the structure of a left module over quan�
tum observables �h�pseudodi�erential operators� the mapping K �modulo O�h is an
intertwining operator between these two structures� This explains why the title of this
chapter involves the words �quantization of Lagrangian modules�� We try to de�ne the
mapping K by formula ����� with 	 given by ������ where � � C�� �� is the function
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to which the mapping K is applied and the other elements in the formula �namely� S
and d� are yet to be de�ned�

We start from d�� This must be a measure �volume form on �� Although there
are countless possibilities to choose this form� we take advantage of the special pseu�
docoordinates �z�� � � � � zn on M � guaranteed by Lemma �� Namely� we take

d� � sz � dz� � � � � � dznj�� �����

This form will be referred to as the special measure on ��
Next� we must �nd a function S on � such that

dS � p dqj�� �����

The manifold � is Lagrangian� i�e� dp � dqj� � �� Hence the form p dq is locally exact
�Eq� ����� is locally solvable� However� we need a global solution� which does not
necessarily exist� A necessary and su�cient condition for the existence of a global
solution is that the cohomology class of the form p dqj� is zero� that is�

�p dqj�� � O � H����R� �����

Condition ����� is known as the 	rst quantization condition� We shall assume for now
that this condition is satis�ed and �x some solution S of the Pfa� equation ������

�If � is connected� then a solution S can be singled out by choosing a �marked
point� � � � and by requiring S�� � ��

Once we have �xed the function S� our operator K is determined� We introduce
the corresponding de�nition�

De�nition � Maslov�s special canonical operator on � is the operator acting by the
formula

K� � C�� ��� H�Rn
x �����

K�� �
�

�

��h

�n
�
Z
�

e
i
h �S����p����x�q�����

i
�
�x�q�������� dz��

Needless to say� the canonical operator depends on the choice of the marked point
�of the function S� The function S will be referred to as the action on ��

Of course� one must also verify that the operator K� is well�de�ned� that is� K�� �
H�Rn

x whenever � � C�� ��� We leave this easy exercise to the reader�

Remark � In De�nition � �Eq� ������ one might wish to give a wider de�nition by
allowing the amplitude �� depend also on x � � � ��x� � However �at least� in the
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leading term� and actually� modulo an arbitrary power of h this does not change the
class of functions representable in the form K��� Indeed� let us represent ��x�  by
the Taylor series in powers of x� q��

��x�  � ��q��  !
N��X
j	��

F	��x � q�	 ! remainder� ����	

One has
�#�x� 

�
� �i�x� q�

�z�

�
� ����


where #�x�  is the phase function of the integral ������ or

x� q� � i
�#

�
�x� 

�
�z�

�

���
� �����

Thus� we can rewrite ����	 in the form

��x�  � ��q��  !
N��X
j	j��

eF	�
�
�#

�

�	
! remainder� ������

where the new remainder contains products
	
��
��


	
with j�j � N � Thus� all terms

on the right�hand side in ����	 except for the �rst belong to the so�called gradient

ideal J �# generated by the partial derivatives ���x���
��j

� j � �� � � � � n� Substituting the

expression ����	 for � into ������ we see that integration by parts is possible in all
these terms and that the corresponding integrals are O�hN � where N is the number
of integrations by part�

Next� we need to prove that Maslov�s special canonical operator thus de�ned pro�
vides the mod O�h�commutativity of the diagram ������ In doing so� we at the
same time will try to learn how to solve pseudodi�erential equations in the class of
semiclassical wave functions� This will be done in the next section�

��
 Commutation with quantum Hamiltonians

In this section we deal with the following problem� Given a semiclassical wave function
of the form K�� ����� and a quantum Hamiltonian  H� how to compute  HK��$ Once
we know the answer� we shall be able to solve equations of the form

 Hu � H�x�  pu � � ������



���� COMMUTATION WITH QUANTUM HAMILTONIANS ��

modulo high powers of h� As a by�product� we shall also prove the commutativity of
diagram ������ For simplicity� we assume that the operator H�x�  p is di�erential �
that is�

H�q� p �
X
j	j�m

a	�qp
	 ������

is polynomial� �This requirement is actually unessential� The following theorem holds�

Theorem � �the �rst term in the commutation formula with the Hamilto�
nian� Under the above assumptions� one has

 HK�� � K��H�q� pj�� !O�h ������

for any function � � C�� ���

Proof � We have

 pe
i
h
��x��� � e

i
h
��x���

�
 p!

�#

�x
�x� 

�
� ������

where #�x�  is the phase function of the integral ������ Let us use the following
theorem of noncommutative analysis �e�g�� see �	�� if

AC � CB� ������

then
f�AC � Cf�B ������

for any symbol f�y provided that A and B are generators in the relevant symbol class�
In our case� H�q� p is a polynomial in p� so that all operators are generators� and from
������ we obtain

H�x�  pe
i
h
��x��� � e

i
h
��x���H

�BB��
x�

�

 p!
�#

�x
�x� 

�CCA � �����	

�The numbers over the operators on the right�hand side in �����	 are Feynman num�
bers� they indicate the order in which these operators act�

Now we use the following formula �e�g�� see �
��

f

�
 p !

�S

�x

�
� f

�
�

 p !
�S

�x

�
�
x�

	
x
��

� �����


where �S
�x

is the di�erence derivative�

�S

�x
�x� y �

S�x� S�y

x� y
� ������
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Substituting this into �����	 with f � H and S � #� we obtain� by expanding in
Taylor series and commuting�

H

�BB� �
x�

�

 p !
�#

�x

�CCA � H

�
x�
�#

�x

�
� ihHp

�
x�
�#

�x

�
�

�x

�ihHpp

�
x�
�#

�x

�
��#

�x�
!O�h�� ������

Next� we expand H
	
x� ��

�x



in power of x� q��

H

�
x�
�#

�x

�
� H�q�� p� ! �x� q�F �x� � ������

where

F �x�  �
�H

�x
�x� q�� p� ! i

�H

�p

�
x� p��

�#

�x

�
� ������

As was already mentioned in the preceding �see Remark �� terms of the form �x �
q�F �x�  belong to the gradient ideal J �# and hence produce O�h in the integral�
Thus we have

 H�K���x �
�

�

��h

�n
�
Z
�

H�x�  pe
i
h
��x����� d��

�
�

�

��h

�n
�
Z
�

e
i
h
��x����H�q�� p�

!�x� q�F �x� �� d�� !O�h ������

�
�

�

��h

�n
�
Z
�

e
i
h
��x����Hj��� d�� !O�h�

The proof of the theorem is complete�

Remark � The assertion of the theorem remains valid for nonpolynomial symbols
H�x� p� However� the proof is entirely di�erent and is based on stationary phase
computations like that used for the integrals ������ ����	� We omit these cumbersome
computations�

Corollary �� The diagram ����� commutes modulo O�h�
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Now suppose that we intend to �nd an asymptotic solution of the equation

 H� � � ������

in the form
� � K��� ������

It follows from Theorem �� that � must be a Lagrangian manifold lying on the level
surface H � � of the Hamiltonian function� This guarantees us that

 H� � K��Hj�� !O�h � O�h� ������

However� it is well known that the estimate ������ does not guarantee that � is close
to an asymptotic solution even if  H has certain nice properties �i�e�� is self�adjoint� has
discrete spectrum� etc� The minimum meaningful requirement is

 H� � O�h�� �����	

The ensure this� we must �nd the second term in the commutation formula�

Theorem �� �the second term in the commutation formula� Suppose that the
Lagrangian manifold � lies on the zero level of the Hamiltonian function H�q� p


H�q� pj� � �� �����


Then the following commutation formula holds


 HK�� � �ihK��P� !O�h� ������

for every � � C�� ��� where P is the 	rst�order transport operator on �


P � V �H� �

�
tr

��H

�x�p
!

�

�

LV �H�dz�

dz�
� ������

Here LV �H� is the Lie derivative along the 	eld V �H�

The complete proof can be found in ���� here we only sketch it� To obtain the

desired formula� one has to expand H
	
x� ��

�x



in Taylor series in powers of x � q�

up to the second order �terms of order 
 � produce O�h� in the result and then use
integration by parts to obtain

P � ��i
�H

�z

�

�z
� �tr

�
��H

�z�z

��#

�z�z

�
� itr

��H

�z�z

!
i

�

�
tr

��H

�z�z
! tr

��H

�z�z

�
� ������

Exercise� Verify ����� by straightforward computation�

Now we take advantage of the following fact�
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Lemma ��

LV �H�dz� �

�
�itr

��H

�z�z
� �itr

��H

�z�z
� itr

�
��H

�z�z

��#

�z�z

��
dz�� ������

The proof is by straightforward computation� Substituting ������ into ������ and
using ������ ������ and ������ we obtain the desired result�

Corollary �� Suppose that the Hamiltonian function depends on h in a regular way


H�q� p� h � H��q� p� ihH��q� p ! � � � � ������

If H��q� pj� � �� then the commutation formula

 HK�� � �ihK�P�!O�h� ������

holds� where the transport operator P has the form

P � V �H� !
�

�

LV �H��dz

dz
!Hsub� ������

here

Hsub � H��q� p� �

�
tr
��H�

�x�p
������

is the subprincipal symbol of the operator  H�

��� Solution of the transport equation and

Maslov	s canonical operator with arbitrary

measure� The second quantization condition

It follows from Theorem �� and the subsequent corollary that for the function � � K��
to satisfy the equation  H� � � modulo O�h�� it is necessary and su�cient that H� � �
on � and that the amplitude � satisfy the transport equation

P� �
�
V �H� !Hsub !

�

�

LV �H��dz

dz

�
� � �� �����	

Equation �����	 is a �rst�order linear ordinary di�erential equation on the Lagrangian
manifold �� In the general case� it is hard to say anything about nontrivial solutions
of this equation �for example� little can be said if the trajectories of V �H� behave
badly� say� form an irrational winding of the torus �� However� the situation is much
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simpler if we can reduce our equation to the form V �H�u � �� i�e�� get rid of the
zero�order terms� In this case� there is a nontrivial solution � � const and we obtain
a nontrivial solution of the original equation� When is this possible$ Suppose that  H
is a self�adjoint operator and the functions H� and H� are real�valued� then Hsub � �
and the transport operator acquires the form

P � V �H� !
�

�

LV �H��dz

dz
� �����


Next� let d� be a measure on � invariant with respect to the Hamiltonian vector �eld�

LV �H���d� � �� ������

Then

V �H�

�
d�

dz

�
� LV �H��

�
d�

dz

�

�
LV �H��d�

d�
� LV �H��dz

dz
� �LV �H��dz

dz
� ������

Such measures d� can often be found from certain physical considerations� Set

f� �

vuutd��

dz�
������

�this is always possible locally� Then

V �H�f � �f
�

LV �H��dz

dz
� ������

and if we set � � fu� then we obtain

Pfu � �f
�

LV �H��dz

dz
u! fV �H�u!

f

�

LV �H��dz

dz
u

� fV �H�u� ������

in other words�

f��Pf � V �H�� ������

and we have locally reduced the transport operator to the pure Hamiltonian vector
�eld� This is possible globally only if there is a continuous branch of the function
������ on the entire manifold ��
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De�nition �� A measure d� on the Lagrangian manifold � is said to be quantized if
the function

f� �

vuutd��

dz�

has a continuous �and hence smooth branch on �� This condition is called the second
quantization condition�

De�nition �� Let � be a Lagrangian manifold in R�n satisfying the �rst quantiza�
tion condition ������ Let d� be a measure on � satisfying the second quantization
condition� Maslov�s general canonical operator corresponding to the pair ��� d� is the
mapping
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given by the formula
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Here the branch of the square root is chosen in some way�

The following theorem is obvious from the preceding considerations�

Theorem �	 Suppose that the Hamiltonian function H�q� p� h ������ satis	es

H��q� pj� � ��

Then
 HK���d��� � �ihK���d��P�!O�h��

where

P � V �H� !Hsub !
�

�

LV �H��d��
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For the case in which Hsub � � and the measure is invariant under the Hamiltonian
vector �eld� we obtain P � V �H��

Final Remark We conclude this chapter with the following remark� The canonical
operator was constructed in this chapter �and will be constructed in the next chapter
under the assumption that two quantization conditions are satis�ed� In practical ap�
plications� however� this is almost never the case� Both conditions are usually violated�
but their �sum� is satis�ed for certain discrete energy levels� or �putting this mathe�
matically rather than physically for certain �admissible� values of the parameter h�
This will be discussed in detail in the chapter devoted to the eigenvalue problems�
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