
Elliptic Operators in Subspaces and the

Eta Invariant

Bert�Wolfgang Schulze

Potsdam University

e�mail� schulze�math�uni�potsdam�de

�

Anton Savin� and Boris Sternin��

Moscow State University

e�mail� anton�asavin�msk�ru

e�mail� sternin�math�uni�potsdam�de

Juni� �			

Abstract

The paper deals with the calculation of the fractional part of the ��
invariant for elliptic self�adjoint operators in topological terms� The method
used to obtain the corresponding formula is based on the index theorem for
elliptic operators in subspaces obtained in ���� ���� It also utilizes K�theory
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realized by elliptic operators 
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Introduction

The spectral ��invariant of a self�adjoint elliptic operator on a closed manifold was
introduced by Atiyah� Patodi� and Singer ���� It appeared as a nonlocal contribution
to an index formula for manifolds with boundary obtained via the heat equation
technique� From the very moment of its introduction� it was clear that this spectral
invariant in the general case is neither an invariant of the principal symbol of the
operator nor a homotopy invariant of the operator itself� More precisely� for a generic
smooth one�parameter family At of elliptic self�adjoint pseudodi�erential operators�
the function � 
At� is a piecewise smooth function of t with jumps occurring at the
parameter values for which some eigenvalue of the operator in the family changes
its sign�

P� Gilkey ��� observed that for di�erential operators satisfying the parity condi�
tion

ordA� dimM � 	 
mod 
� � 
	�

the ��invariant of a one�parameter family is a piecewise constant function� This
implies� in particular� that in this case the fractional part of the spectral ��invariant
of a self�adjoint elliptic operator is in fact a homotopy invariant depending on the






principal symbol of the operator alone � Thus� we arrive at the problem of computing
the fractional part of the ��invariant� This fractional invariant was successfully
applied in several problems of topology and di�erential geometry 
e�g�� see ��� �� ��
����

Our approach to this problem is based on the following observation �	�� the ��
invariant of an operator A satisfying condition 
	� is completely determined by the
nonnegative spectral subspace bL� 
A� of this operator� The fractional part of the
invariant� in turn� is determined by the so�called symbol of the subspace� This is a
vector bundle on the cospheres S�M over the manifold generated by the positive
eigensubspaces of the self�adjoint symbol � 
A� of the operator A� First� this allows
us to identify the ��invariant of self�adjoint elliptic operators with a dimension�type
functional on the corresponding spectral subspaces introduced in �	�� This implies
that the ��invariant in this case takes only dyadic values�

� 
A� � Z
�
	




�
�

Second� we can apply the index formula for elliptic operators in subspaces �	� 
��
The index formula gives an expression for the fractional part of the ��invariant for
the case in which the operator A de�nes a trivial element in the group K� 
T �M� � In
the general case� however� the index formula in subspaces alone does not compute
the ��invariant� Nevertheless� it reduces the computation of the fractional part
to the �index modulo n� problem for operators in subspaces� The term �modulo
n� here expresses the fact that in this case the index of an elliptic operator in
subspaces� being reduced modulo n� becomes an invariant of the principal symbol of
the operator� It turns out that such elliptic operators on a closed manifold de�ne the
K�theory with coe�cients in Zn� In particular� the index of an operator is computed
modulo n by the direct image in K�theory�

Let us brie�y describe the contents of the paper� In the �rst section we recall the
main results of �	� and �
�� the necessary de�nitions are reproduced� and theorems
on the �dimension�type� functional� as well as index formulas for operators acting
in subspaces are written out� A theorem expressing the dimension type functional
in terms of the ��invariant� is stated� It should be noted that elliptic operators in
subspaces are a generalization of Wiener�Hopf operators 
see� e�g� ����� A di�erent
class of operators in subspaces� the so�called Toeplitz operators� is considered in
�	�� 		��

In the following section� the direct computation of the ��invariant via the index
formula is carried out in a special situation� Examples are given� It is also shown in
this section that the computation of the ��invariant in the general case is reduced
to the index modulo n computation for an elliptic operator acting in subspaces of

�



a special form� This computation is carried out in Section �� where we generalize
a method applied in �	
� to the computation of fractional parts of ��invariants of
operators with coe�cients in �at bundles� In the next section we show that the stable
homotopy classes of elliptic operators modulo n are classi�ed by the K�theory group
K 
T �M�Zn� with coe�cients Zn� Our �nal formula for the fractional parts of the
invariants� obtained in the last section� can be interpreted in the following way 
cf�
�	
���

Theorem � The principal symbol of an elliptic self�adjoint operator A whose order
satis�es 
	� de�nes an element in K�theory with coe�cients

�� 
A�� � K
�
T �M� Z

�
	




��
Z
�
�

The fractional part f� 
A�g of the ��invariant of A is computed by the direct image
homomorphism

f� 
A�g � p� �� 
A�� � K
�
pt� Z

�
	




��
Z
�
� Z

�
	




��
Z�

for the map p � M � pt�

Two appendixes are placed at the end of the paper� In the �rst appendix we give
a description of the odd K�theory group K� 
T �M� in terms of elliptic self�adjoint
operators as well as in terms of subspaces de�ned by pseudodi�erential projections�
In the second appendix� the description of the K�theory with Zn coe�cients is
given� The necessary material from this theory� used in the main part of the paper�
is explained�

The results of the paper were reported at the international conference �Operator
Algebras and Asymptotics on Manifolds with Singularities�� Warsaw� �	���

� Subspaces and the index formulas

�
 Spaces de�ned by pseudodi�erential projections on a smooth closed manifold M
were considered in �	� 
�� More precisely� a subspace

bL � C� 
M�E�

in the space of smooth sections of a vector bundle E on M is said to be admissible
if bL � ImP� P � C� 
M�E�� C� 
M�E�

�



for some pseudodi�erential projection P of order zero� In this case the vector bundle

or� more precisely� the subbundle�

L � Im� 
P � � ��E � Vect 
S�M� 

�

is called the �principal� symbol of the subspace� Here � � S�M �M is the projection
for the cosphere bundle of M�

For a symbol L as in 

�� one can always construct a subspace bL � C� 
M�E��
This statement is based on the construction 
see �	�� for details� of a pseudodi�er�
ential projection P from the principal symbol�projection � 
P � by a Cauchy�type
integral

P � �
	


�i

Z
j���j��


P� � �I��� d��

where P� is a zero order pseudodi�erential operator with principal symbol � 
P � and
� is a small number such that the circle j�� 	j � � does not contain any eigenvalues
of the operator P��

On the total space of the cotangent bundle T �M we consider the antipodal
involution

	 � T �M �� T �M� 	 
x� 
� � 
x��
� �

A subspace bL � C� 
M�E� is said to be even �odd� with respect to the involution
	 if the principal symbol L is invariant 
antiinvariant� under the involution�

L � 	�L� or L� 	�L � ��E� 
��

We point out that both equalities in this formula are equalities of subbundles in the
ambient bundle ��E� Denote the semigroups of even
odd� subspaces by dEven 
M�� dOdd 
M�

�
� The symbols of even 
odd� subspaces will be referred to as even 
odd�

bundles for brevity�
It turns out that if the parities of the subspaces and of the dimension of M

are opposite� then the subspaces have a homotopy invariant that is an analog of
the notion of dimension of a �nite�dimensional vector space� More precisely� the
following theorem holds �	� 
��

Theorem � There is a unique additive functional

d � dEven �Modd
�
� Z

�
	




�
� or d � dOdd 
M ev�� Z

�
	




�
with the following properties�

�



	� �invariance� d
�
U bL� � d

�bL� for all invertible pseudodi	erential operators U

with even principal symbol� 	�� 
U� � � 
U� �


� �relative index� d
�bL�

�
� d

�bL�

�
� ind

�bL�� bL�

�
for two subspaces with equal

principal symbols
�

�� �complement� d
�bL� � d

�bL�� � �� where bL� denotes the orthogonal com�

plement of bL�
Corollary � The functional d is a homotopy invariant of the subspace� while its
fractional part is an invariant of the principal symbol of the subspace�

Indeed� the homotopy invariance follows from the invariance property� Moreover�
it follows from the relative index property that the fractional part is determined by
the principal symbol of the subspace�

Remark � Roughly speaking� the functional d measures the deviation of the sub�
space bL from a space of sections of a vector bundle� since the third property implies

d 
C� 
M�E�� � ��

�
 Let bL��� � C� 
M�E���� be two subspaces� Consider a pseudodi�erential operator

D � C� 
M�E�� �� C� 
M�E��

in the ambient spaces� Suppose that this operator preserves the subspaces� D bL� �bL�� The restriction
D � bL� �� bL� 
��

is called an operator acting in subspaces� In this case the principal symbol � 
D�
can also be restricted to a homomorphism

� 
D� � L� �� L� 
��

of vector bundles on S�M � The homomorphism 
�� is called the principal symbol
of the operator in subspaces� Conversely� it is easily seen that for any symbol 
��

�The relative index of subspaces ind
�bL�� bL�

�
is computed in terms of the projections by the

formula 
	��

ind
�bL�� bL�

�
� ind �P� � ImP�� ImP�� � bL��� � ImP����

One can check that the operator on the right�hand side of the formula is Fredholm�

�



it is always possible to construct an operator in subspaces� Indeed� let us take an
arbitrary pseudodi�erential operator D� � C�
M�E��� C�
M�E�� with principal
symbol � 
D�� 
on the complement of L� we can specify the principal symbol in
arbitrary way�� then the operator

D � P�D��

where P� is a pseudodi�erential projection on the subspace bL�� acts in the pair of
subspaces bL�� bL� and has the principal symbol 
���

It is proved in �	�� that the closure

D � Hs 
M�E�� � bL� �� bL� � Hs�m 
M�E�� � m � ordD�

of the operator 
�� in Sobolev spaces is a Fredholm operator if and only if the
principal symbol 
�� is elliptic� i�e�� an isomorphism of vector bundles�

For elliptic operators in subspaces the following index formulas were obtained in
�	� 
��

Theorem � Let D � bL� �� bL�� bL��� � C� 
M�E���� be an elliptic operator in
subspaces of the same parity

bL��� � dEven �Modd
�

or dOdd 
M ev� �

Then the index of D is equal to

ind
�
D� bL�� bL�

�
�

	



indfD � d

�bL�

�
� d

�bL�

�
� 
��

where fD � C� 
M�E�� �� C� 
M�E��

is an elliptic operator with principal symbol

�
�fD� � � 
D� � 	�� 
D� � L� � 	�L� �� L� � 	�L�

for odd subspaces� In the case of even subspaces� the operator is

fD � C� 
M�E�� �� C� 
M�E�� �

�
�fD� � �	�� 
D���� � 
D� � 	 � L� � L�� �� L� � L�� �

�



�
 The functional d of subspaces� occurring in this theory� can be expressed in terms
of the ��invariant of Atiyah�Patodi�Singer�

Namely� for an elliptic self�adjoint operator

A � C� 
M�E� �� C� 
M�E� �

consider the subspace bL� 
A� � C� 
M�E� � generated by the eigenvectors of A
corresponding to nonnegative eigenvalues� It is well�known 
e�g�� see ���� that the
spectral projection P� 
A� on this subspace is a pseudodi�erential operator of order
zero� Thus� the subspace bL� 
A� is admissible� The symbol L� 
A� of the subspace
can be calculated explicitly 
see Appendix A��

Moreover� if A is a di�erential operator� then the subspace bL� 
A� is even or odd�
according to the order of the operator A� The same property holds for a class of
pseudodi�erential operators introduced in ���� these are pseudodi�erential operators
with classical complete symbols such that the homogeneous terms in the asymptotic
expansion of the symbol possess the R��invariance 
cf� �	����

� 
A� 
x� 
� �
�X
j�o

ad�j 
x� 
� � ak 
x��
� � 
�	�k ak 
x� 
� � for all k 	 d� 
��

For this class of operators the functional d of the spectral subspace is equal to the
��invariant �	� 
�� Namely� the following theorem is valid�

Theorem � The nonnegative spectral subspace bL of a self�adjoint elliptic operator
A under the condition 
�� satis�es

d
�bL� � � 
A� 
��

provided that the order of A and the dimension of the manifold have opposite parities�

Remark � It was shown in �	� that an even subspace can be realized as a spectral
subspace of this kind if and only if the orthogonal projection on it satis�es 
��� In
the odd situation there is a similar restriction �
�� the orthogonal projection must
satisfy 
�� with 
�	�

k
replaced by 
�	�

k��
for k � ��

Equation 
�� makes two computations equivalent� one of the fractional part of
the functional d in terms of the principal symbol of the subspace and the other of
the ��invariant via the principal symbol of a self�adjoint operator� In the present
paper we use the terminology of subspaces and the corresponding index theory�

�



� The fractional part via an index formula

�
 On a smooth manifold M consider an admissible subspace bL � C� 
M�E� � In
this section we compute the fractional part of d
bL� for the case in which the principal
symbol

L � ��E � Vect 
S�M� � � � S�M �M�

of bL on the cosphere bundle S�M is lifted from the base manifold M � i�e�� for some
vector bundle F � Vect 
M� there is an isomorphism of vector bundles

� � L �� ��F� 
��

Consider an elliptic operator in subspaces with principal symbol 
��� The index
formula 
�� for this operator gives

ind
�b�� bL�C� 
M�F �

�
�

	



ind be� � d

�bL� � 
	��

e� � �
fD�� It is clear from this formula that the fractional part of d
bL� is either 	�

or �� Furthermore� it can be computed by the formula

fd
�bL�g �

	
	



indbe�
 � 
		�

Let us consider two applications of this formula� In the �rst application formula 
		�
implies an integrality theorem for the functional d� while the second example presents
a nontrivial fractional part of the functional d�
�
 Examples
 On a smooth oriented closed Riemannian manifold M we consider
an elliptic self�adjoint di�erential operator of the second order

A � d
 � 
d � C�
�
M��� 
M�

�
�� C�

�
M��� 
M�

�
in the spaces of complexi�ed smooth sections of the bundle of exterior 	�forms�
here d is the exterior derivative d and 
 is the adjoint operator with respect to the
Riemannian metric� Let us calculate the fractional part of the functional d on the
nonnegative spectral subspace bL of the operator A� The principal symbol of A is

� 
A� 

� � 
 
 
c � 
c

 � ���� 
M� �� ���� 
M� �

where 

 is the exterior product by a covector 
 and 
c is the inner product by
the same covector with respect to the Riemannian metric 
e�g�� see �	���� For an
arbitrary point 
x� 
� � S�xM of the cosphere bundle� the symbol L of the spectral

�



subspace coincides with the line spanned by the covector 
� Hence� L � ���� 
M�
is an even subbundle� The line bundle L is trivial� We choose the trivialization

� � L � ��C�
� 
x� 
� � � h
� �ix

� 
x� 
� � S�xM� � � L� 
	
�

where h
� �ix denotes the Hermitian inner product of two covectors with respect
to the Riemannian metric at the point x� For the corresponding pseudodi�erential
operator b� � bL �� C� 
M�

in the subspaces� the index formula 
�� implies

ind
�b�� bL�C� 
M�

�
�

	



indbe� � d

�bL� �
It follows from 
	
� that the symbol e� is constant�

e� � ���� 
M�� ���� 
M� �e� 

� � ��� 
�
� � 

�� 	 � �	� 	 � L� L� � L� L��

Hence� we obtain the integrality result for the functional d�

d
�bL� � ind

�b�� bL�C� 
M�
�
� Z�

The corresponding statement about the ��invariant was proved in ����
The example just described can be generalized to the case of operators A with

coe�cients in a vector bundle E � Vect 
M�� To this end� one must replace the
exterior derivative d and its adjoint by a covariant di�erential r and the corre�
sponding adjoint operator for the vector bundle E� In this case one also obtains the
integrality result�

Moreover� the operator d
�
d can be considered for exterior forms of arbitrary
degree� For such a generalization the integrality of the functional d remains valid�

This result can be obtained along similar lines�
In the second example� following �	��� we construct a self�adjoint elliptic operator

of order 	 on the 
nonorientable� projective space RP�n with a nontrivial fractional
part of the ��invariant�

On the even�dimensional sphere S�n we consider the self�adjoint elliptic operator

d � 
 � C�
�
S�n��

�
S�n

��
�� C�

�
S�n��

�
S�n

��
�

acting on exterior di�erential forms� The vector bundle � 
S�n� is trivial� Let us
choose the following trivialization

�
�
S�n

�
�
�� �ev

�
R�n��

�
�

	�



where �ev 
R�n��� is the restriction to the sphere of even�degree exterior forms on
the space R�n��� given by the following formula with respect to the decomposition
of � 
S�n��

�� 
�
e� �o� � �e � d� 
 �o�

where � � S�n and �e�o � �ev�odd 
S�n� � The isomorphism � takes the operator d� 

to the operator

A � � 
d� 
� ��� � C�
�
S�n��ev

�
R�n��

��
�� C�

�
S�n��ev

�
R�n��

��
in the bundle �ev 
R�n���� This operator is known as the tangential operator of the
de Rham complex 
see �	���� It can be shown that its principal symbol is equal to

� 
A� 
�� 
� � ie 
�� e 

� � ���ev
�
R�n��

�
� ���ev

�
R�n��

�
� 
	��

where the coordinates 
�� 
� on the cosphere bundle S�S�n are given by


�� 
� � T �S�n �
n

�� 
� � S�n �R�n��

��� 
 � �
o

and we use the notation

e 
v� � i 
v 
 �vc� � �ev
�
R�n��

�
� �odd

�
R�n��

�
�

Formula 
	�� has the following merit� the bundles where the operator A acts� as well
as the expression for the operator itself� are invariant under the antipodal involution
of the sphere�

	 � S�n � S�n� 	 
�� � ���

Thus� A is actually the pull�back of an elliptic self�adjoint operator

A� � C
�
�
RP�n��ev

�
R�n��

��
�� C�

�
RP�n��ev

�
R�n��

��
on the quotient space S�n�	 � RP�n� Let us compute the fractional parts of the
��invariants of the operators A and A��

Consider the nonnegative spectral subspaces bL� 
A� and bL� 
A�� for both oper�
ators� It follows from 
	�� that the projections �� and ���� for the symbols L� 
A�
and L� 
A�� of these subspaces have the form

�� 
�� 
� �
	 � ie 
�� e 

�



� �ev

�
R�n��

�
� �ev

�
R�n��

�
on S�n�

���� 
�� 
� �
	 � ie 
�� e 

�



� �ev

�
R�n��

�
� �ev

�
R�n��

�
on RP�n

		




this follows from the skew�commutativity e 
�� e 

� � �e 

� e 
�� and the equal�
ity e 
v� e 
v� � jvj��� The operator e 
�� contains the multiplication by the unit
normal vector �� It follows that the projections �� and ���� establish isomorphisms
between the bundle of even exterior forms on the sphere and on the projective space�
respectively� and the subbundles L� 
A� and L� 
A�� �

�� � ���ev
�
S�n

�
�� L� 
A� � ���� � �

��ev
�
RP�n

�
�� L� 
A�� � 
	��

Thus� we obtain two elliptic operators in subspaces� namely�

b�� � C�
�
S�n��ev

�
S�n

��
�� bL� 
A� �

b���� � C�
�
RP�n��ev

�
RP�n

��
�� bL� 
A�� �

Let us apply the index formula for operators in subspaces� It gives

indb�� �
	



indbe�� � � 
A� � indb���� � 	



indbe���� � � 
A�� � 
	��

where the principal symbols of elliptic operators

be�� � C�
�
S�n��ev

�
S�n

�
� �ev

�
S�n

��
� C�

�
S�n��ev

�
R�n��

��
�be���� � C�

�
RP�n��ev

�
RP�n

�
� �ev

�
RP�n

��
� C�

�
RP�n��ev

�
R�n��

��
are given by the formula

e�� 
��� ��� �
	




�� � �� � ie 
�� e 

� 
�� � ���� at 
�� 
� � S�S�n� 
	��

and the same expression holds for e���� on S�
�
RP�n

�
� Since the pull�back of the

symbol e���� to S�S�n is equal to e��� from the locality of the index of elliptic operators
we obtain

indbe���� �
	



indbe���

Let us compute the index of be�� on the sphere� It is clear from 
	�� that the
symbol of this operator is equivalent to the direct sum of the identity operator

��
�

�� ��

and an elliptic symbol

e 

� � ���ev
�
S�n

�
� ���odd

�
S�n

�
�

	




which is equal to the symbol of the de Rham operator on the sphere� The index
of the de Rham operator is equal to the Euler characteristic� Hence� on an even�
dimensional sphere we have

indbe�� � 
�

Thus indbe���� � 	�
The fractional parts of the ��invariants are now obtained from 
	��� Namely�

f� 
A�g � �� f� 
A��g �
	



�

�
 In the general situation the pull�back of the form 
�� for the subspaces considered
always exists provided that we take su�ciently many copies of the original subspacebL� More precisely� the following theorem is valid�

Theorem � For a subspace bL � dEven �Modd
�

or dOdd 
M ev� with principal symbol

L� there exists a positive integer N such that the vector bundle 
NL on S�M can be
lifted from the base M� That is� for some vector bundle F � Vect 
M� there exists
an isomorphism

� � 
NL �� ��F� 
NL � L � � � �� L� 
z �
�Ncopies

� 
	��

Remark � In terms of the di�erence construction 
see Appendix A�� this theorem
states that the subspaces under consideration de�ne torsion elements of order a
power of 
 in the group K� 
T �M� � In the following these elements will be called

�torsion elements for short�

Proof� The �rst part of the theorem� concerning even subspaces� follows from ����
where it is shown that for an odd�dimensional manifold M the bundle

P �M � S�M� f
x� 
� � 
x��
�g

of projective spaces has the same K�theory groups as M except for the 
�torsion�
This isomorphism modulo 
�torsion is established by the natural projection

��P � K 
M� �� K 
P �M� � �P � P �M �M� 
	��

More precisely� ker��P � �� and coker��P is a 
�torsion group�
On the other hand� it is shown in �
�� where odd subspaces are studied� that

for an odd vector bundle L on S�M there exists a positive integer N such that the
bundle 
NL and its complement 
N	�L are isomorphic�

�� � 

NL �� 
N	�L�

	�



This follows from the observation that the projection S�M � P �M for even�
dimensional manifolds induces an isomorphism

K 
P �M�� K 
S�M�

in K�theory modulo 
�torsion� Using this isomorphism� we can construct the re�
quired pull�back 
	�� by the formula

� � 
N��L
������ 
NL � 
N	�L � 
N��E�

This completes the proof of the theorem�
Let us consider an elliptic operator in subspaces

b� � 
N bL �� C� 
M�F �

with principal symbol 
	��� Just as above� we write out the index formula for this
operator�

ind
�b�� 
N bL�C� 
M�F �

�
�

	



inde� � 
Nd

�bL� � 
	��

This formula� along with the integrality of the index� implies that the functional d
is dyadic rational and has at most 
N�� as the denominator� However� there is an
essential di�erence between formulas 
	�� and 
	��� While the left� and right�hand
sides of 
	�� are determined by the principal symbol of the operator in subspaces
only modulo Z�� both sides of 
	�� are determined by the principal symbol of the
operator modulo a multiple of 
N � To show this� let us consider another operator in
subspaces with the same principal symbol�

b�� � 
N bL� �� C� 
M�F � � where �� � � and L� � L�

By the multiplicative property of the index� we obtain

ind
�b�� 
N bL�C� 
M�F �

�
� ind

�b��� 
N bL�� C� 
M�F �
�
� 
N ind

�bL� bL�� � � 
mod
N ��

Moreover� to calculate the fractional part of the functional d
�bL� � one just has to

calculate the right�hand side of 
	�� modulo 
N �
Thus� the computation of the fractional part of the functional d is reduced to

the modulo 
N index problem for the elliptic operator in subspaces

b� � 
N bL �� C� 
M�F � �

This problem is solved in the next section�

�In other words� for operators in subspaces with the same principal symbol both sides of the
formula can take arbitrary integer values�

	�



� Index theory modulo n

For a given positive integer n � 
� we consider elliptic operators in subspaces of a
special form�

D � nbL �� C� 
M�F � � 

��

We point out that here the subspace bL need not satisfy any parity conditions� as
was assumed in the preceding section� The mod n�indD � index of D modulo n is
determined by the principal symbol of the operator

� 
D� � nL �� ��F�

as a residue�
mod n�indD � f 
� 
D�� � Zn�

We recall now that in the usual elliptic theory the integer index is determined and
computed by the di�erence construction for the principal symbol of the operator�

indD � Z� �� 
D�� � K 
T �M� � K 
T �M�Z� �

where the K�theory is the usual one� namely� with integer coe�cients 
e�g�� see �
����
Hence� it is natural to expect that to compute the index with values in Zn� one has
to obtain a di�erence construction with values in K�theory with Zn coe�cients�

mod n�indD � Zn� �� 
D�� � K 
T �M�Zn� �

The necessary information about this theory is provided for the reader�s convenience
in Appendix B�

Let us de�ne this di�erence construction� First of all� we rewrite the group
K 
T �M�Zn� in terms of the usual K�theory� We have

K 
T �M�Zn� � K 
T �M �Mn� T
�M � pt� � 

	�

where Mn is the so�called Moore space 
see Appendix B�� It readily follows from


	� that the elements of the group K 
T �M�Zn� can be represented as families of
elliptic symbols� on the manifoldM� where the Moore space serves as the parameter

�Here we utilize the natural construction 
�	� that assigns an element


�� � K �T �M �X�

of the K�theory group to each family � �x� � x � X� of elliptic symbols on the manifold M with
the parameter space X�

� �x� � ��E �� ��F� E� F � Vect �M �X� � � � S�M �X �M �X�

	�



space for the family� We construct the corresponding family of elliptic symbols as
the following composition of elliptic families in subspaces�

�� 
D�� ��
��F

����D	
�� nL

	����L�� �n � nL
�����D	
�� �n � ��F

�
� K 
T �M �Mn� T

�M � pt� �




�
where �n is the one�dimensional vector bundle generating the reduced K�group
K 
Mn� pt� of the Moore space and � is the trivialization

� � n�n �� Cn�

In terms of this di�erence construction� we can state a formula for the index
modulo n�

Theorem � For an elliptic operator D in subspaces�

D � nbL �� C� 
M�F � �

the index modulo n is computed by the formula

mod n�indD � p� �� 
D�� 

��

for the direct image

p� � K 
T �M�Zn� �� K 
pt�Zn� � Zn�

in K�theory �with coe�cients� corresponding to the map p � M �� pt�

Proof� We consider three families of elliptic operators in subspaces� parametrized
by the Moore space Mn� These families correspond to the symbols in the formula



� and are as follows�

C� 
M�F �
D��

�� nbL�
nbL 	����bL�� �n � nbL�

�n � nbL ���D
�� �n � C� 
M�F �


here by D�� we denote an almost inverse� i�e� inverse up to compact operators� of
D�� The �rst family is constant� and hence� its index is just a number� The second
family consists of isomorphisms� and consequently� it has trivial index� The third
family is merely the tensor product of the original operator D in subspaces by the

	�



vector bundle �n over the parameter space� Hence� the index of the composition of
these three families is equal to

ind
�
�	� �D� �

h
��� � 	bLi �D��

�
� ��n� indD � �� indD � K 
Mn� � 

��

On the other hand� the index of the family of elliptic operators

�	� �D� �
h
��� � 	bLi �D�� � C� 
M�F � �� �n � C� 
M�F �

is calculated by the Atiyah�Singer index formula for families 
see �
	��� Thus� in the
notation of 


� this gives

ind
�
�	� �D� �

h
��� � 	bLi �D��

�
� p� �� 
D�� � K 
Mn� � 

��

On the other hand� taking into account the isomorphism

K 
Mn� � Z� Zn with ��n�� 	 as generator of the torsion part Zn�

we obtain� by comparing the expression 

�� with formula 

���

mod n�indD � p� �� 
D�� �

The index formula is thereby proved�

Remark � A similar technique yields the so�called �mod n� index formula for
boundary value problems �

�� �
���

� Elliptic theory with Zn coe�cients

The di�erence construction 


� is not an entirely computational trick involved in the
modulo n�index calculation above� In the present section we show that� by analogy
with the usual di�erence construction� the map 


� establishes an isomorphism
between the K�theory K 
T �M�Zn� with Zn coe�cients and the group of stable
homotopy classes of elliptic operators in subspaces of the form 

���

We consider elliptic operators of the form

D � nbL� �C� 
M�E��� nbL� �C� 
M�F�� � bL� � C� 
M�E� � bL� � C� 
M�F � �


��

This is slightly di�erent from 

��� the di�erence is motivated by the requirement
that the inverse operator be of the same structure� Let us state the stable homotopy
classi�cation problem for such operators� First� we introduce trivial operators� These
are

	�



	� Operators of multiplication by an isomorphism g � E� � F� of vector bundles

C� 
M�E��
g��� C� 
M�F�� � 

��


� Direct sums of n copies of an elliptic operator in subspaces

n
�bL� � C� 
M�E��

�
nD
�� n

�bL� � C� 
M�F��
�
� 

��

We identify operators of the form 

�� that di�er by isomorphisms of the corre�
sponding vector bundles E�F�E�� F�� Two elliptic operators D� and D� are stably
homotopic if they become homotopic after we add some trivial operators to each of
them� The abelian group formed by the classes of stably homotopic elliptic operators
is denoted by Ell 
M�Zn� �

Lemma � The operator 

�� is equivalent to an operator of the form

nbL D
�� C� 
M�F � � 

��

discussed in the previous section 

���

Proof� The space C� 
M�E�� can be eliminated in 

�� by adding the trivial operator


n� 	�
�
C� 
M�E��

�
�� C� 
M�E��

�
�

The subspace bL� on the right�hand side of the formula can be eliminated in the
following way� Let us add the trivial operator

n
�bL�� �

�� bL�� �
to the operator D� Then we obtain an operator of the form

n
�bL� � bL�� � �� n

�bL� � bL�� �� C� 
M�F�� �

To complete the proof of the lemma� it su�ces to show that the resulting subspace

bL� � bL�� � C� 
M�F��� C� 
M�F��

is homotopic to the subspace

C� 
M�F��� � � C� 
M�F���C� 
M�F�� �

	�



since a homotopy of subspaces can be lifted to a homotopy of elliptic operators in
subspaces� The required homotopy of subspaces is given in terms of the projection
P on the subspace bL� by the formula

bL
 � ImP
� P
 �

�
P �
� �

�
� 
	� P �

�
sin� � cos� sin�

cos� sin� cos� �

�
�

Here bL
 � C� 
M�F�� � C� 
M�F�� and � varies from � to ��
� The proof is
complete�

Elliptic theory with coe�cients Zn� realized as the group Ell 
M�Zn� � is related
to the usual group Ell 
M� of classes of stably homotopic elliptic operators and
the group Ell� 
M� of stably homotopic subspaces 
concerning the latter group� see
Appendix A at the end of the paper�� More precisely� there is an exact sequence

Ell 
M�
�n
�� Ell 
M�

i
�� Ell 
M�Zn�

j
�� Ell� 
M�

�n
�� Ell� 
M� � 
���

where by �n we denote multiplication by n� the map i is induced by the inclu�
sion of the set of elliptic operators into elliptic operators of the form 

��� and the
homomorphism j is given by the formula

j
h
nbL� � C� 
M�E��

D
�� nbL� � C� 
M�F��

i
�
hbL�

i
�
hbL�

i
�

Proposition � The sequence 
��� is exact�

Proof� It is straightforward to check that 
��� is a complex� Let us verify the
exactness�

Let �D� � ker j� By Lemma 	 we can suppose that the operator D has the form



��� Since
hbL�

i
� � � Ell� 
M� � it follows that the subspace bL is homotopic
 to

the space of sections of a subbundle E� � E� Hence� the operator D is homotopic
to an elliptic operator in the spaces of sections of bundles E� and F � Consequently�
we obtain

�D� � Im i�

Let
hbLi � kerf�ng

T
Ell� 
M� � This implies that the subspace nbL is homotopic

to the space of sections of a vector bundle� Consequently� there exists an elliptic
operator in subspaces

nbL D
�� C� 
M�F � �

�Here and in what follows we omit the standard considerations concerning the stabilization of
elements in the Grothendieck group�

	�



Hence hbLi � j �D� �

as desired� The remaining case �D� � ker i can be treated along similar lines and is
left to the reader�

The di�erence construction

D 
�� �� 
D�� � K 
T �M�Zn� 
�	�

from the preceding section 
see 


�� extends to a homomorphism of groups

Ell 
M�Zn� �� K 
T �M�Zn� �

since the map 


� sends the trivial operators 

�� and 

�� to zero in K�theory�
The di�erence constructions in Zn�theory and the one in the usual elliptic theory

are related by the diagram

Ell 
M�
�n
� Ell 
M�

i
� Ell 
M�Zn�

j
� Ell� 
M�

�n
� Ell� 
M�

� �� � �� � �n � �� � ��

K 
T �M�
�n
� K 
T �M�

i�
� K 
T �M�Zn�

j�
� K� 
T �M�

�n
� K� 
T �M� �


�
�
Here the symbol � with subscripts denotes di�erence constructions� and the lower
row in the diagram is part of the exact coe�cient sequence in K�theory 
see Ap�
pendix B�� i� is the reduction modulo n and j � is the Bokstein homomorphism�

Theorem 
 The diagram 
�
� is commutative�

Corollary � The di	erence homomorphism

Ell 
M�Zn�
�n
�� K 
T �M�Zn�

is an isomorphism of groups�

The usual di�erence homomorphisms

Ell 
M�
��� K 
T �M� and Ell� 
M�

��� K� 
T �M�

are isomorphisms� so the corollary follows by applying the ��lemma to the commu�
tative diagram 
�
��


�



Proof of Theorem �� The commutativity of the leftmost and rightmost squares of the
diagram is clear 
since the di�erence homomorphism is� at least� a homomorphism
of groups�� Let us consider the second square of the diagram�

Ell 
M�
i

�� Ell 
M�Zn�
� �� � �n

K 
T �M�
i�
�� K 
T �M�Zn� �

For an elliptic operator �D� � Ell 
M��

D � C� 
M�E� �� C� 
M�F � �

an explicit calculation shows that by passing through the upper right corner of the
square we obtain

�ni �D� � �� 
D�� 
��n�� 	� � K 
T �M �Mn� T
�M � pt� �

here �� 
D�� � �� �D� � K 
T �M� is the usual di�erence homomorphism� On the
other hand� the reduction modulo n map i� is exactly the multiplication by the
element ��n�� 	� Thus� the second square is commutative�

Finally� let us check the commutativity of the remaining third square

Ell 
M�Zn�
j
�� Ell� 
M�

� �n � ��

K 
T �M�Zn�
j�
�� K� 
T �M� �

For an elliptic operator

nbL D
�� C� 
M�F � � �D� � Ell 
M�Zn� �

on the one hand� we obtain

�� 
j �D�� � �L� � K� 
T �M� �

On the other hand� the di�erence construction for the operator D gives

�n �D� �
�
��F

����D	
�� nL

	����L�� �n � nL
�����D	
�� �n � ��F

�
� K 
T �M�Zn� � 
���

The Bokstein map j�

j� � K 
T �M�Zn� �� K� 
T �M�


	



with respect to the identi�cations

K 
T �M�Zn� � K 
T �M �Mn� T
�M � pt� �

K� 
T �M� � K 
T �M � S�� T
�M � pt� �

is induced by the inclusion

S� i�
�Mn�

so that
j� � 
	T �M � i��

� �

Let us compute the family of elliptic symbols 
��� on the circle S� �Mn� By choosing
a polar coordinate ��

S� �
n
� j � � ei
� � 	 � � 
�

o
�

we represent the family 
��� in the form

��F
���
�� nL

���
�� nL

�
�� ��F 
���

with respect to the natural trivialization of the bundle �n on S� 
here for brevity
the principal symbol of the operator D is denoted by ��� The diagonal operator
� � 	 acts according to the formula


� � 	� 
u�� u�� � � � � un� � 
�u�� u�� � � � � un� �

Let us rewrite the symbol � also in block matrix form�

� � 
��� � � � � �n� � �i � L �� ��F�

It follows from the ellipticity of the symbol � that the components �i are monomor�
phic� Consider also the inverse symbol ���

��� �

�BB�
��

���
�n

�CCA � �i � ��F �� L�

We readily obtain the identities

nX
i��

�i�
i � 	� �i�j � 
ij








which are the component representations of the formulas ���� � 	 and ���� � 	��
This implies� in particular� that the operator ���� is a projection onto a subbundle
isomorphic to the original bundle L

Im���
� ���� L�

Hence� the family 
���� after we multiply the matrices in 
���� acquires the form

� � 
� � 	� � ��� � ����
� �

�
	� ���

�
�
�

This completes the proof of the theorem� since the family of elliptic symbols

����
� �

�
	 � ���

�
�
� K

�
T �M � S�� T �M � pt

�
� K� 
T �M� �

parametrized by the circle� coincides with the di�erence construction for the sub�
space bL 
see Appendix A��

� A formula for the fractional part

Let us return to the original object of our study� the fractional part of the functional
d� Namely� for an admissible subspace bL � C� 
M�E� and the pull�back of the
principal symbol from the manifold M by means of an isomorphism ��


NL
�
�� ��F� F � Vect 
M� � � � S�M �M� 
���

in Section 
 the following formula was obtained for the functional d�

d
�bL� �

	


N

�
ind

�b�� 
N bL�C� 
M�F �
�
�

	



ind be�� � Z

�
	




�
�

For the fractional part of d this formula gives

fd
�bL�g � 	


N

�
mod 
N �ind

�b�� 
N bL�C� 
M�F �
�
�

	




�
mod 
N���indbe��� �

In addition� the �rst term can be computed by the modulo 
N �index formula� and
the second one by the Atiyah�Singer formula� The two terms� in fact� can be com�
posed� Namely� a straightforward computation shows that in the even 
odd� cases
the resulting formulas are� respectively�

fd
�bL�g �

�
�N��mod 
N���ind

�

N�� bL b��d
��

�� C� 
M�F � F �
�
� bL � dEven�Modd

�
�

�
�N��mod 
N���ind

�

N�� bL �� d
������b�

�� C�
�
M� 
NE

��
� bL � dOdd 
M ev� �


���


�



Concerning the di�erence construction of Section �� the two formulas show that the
fractional part of the functional d is computed by the direct image in K�theory�


N��fd
bL�g � p� �L� � Z�N��� �L� � K 
T �M�Z�N��� �

where the element �L� is equal to the di�erence construction for the operators in

���

�L� �
�

N��L

��
��
�� ��F � ��F

�
or

�

N��L

��
�������
�� 
N��E

�
� 
���

In the remaining part of the section we shall show that even though the construction
of the element �L� depends on the number N and the isomorphism �� in the limit
as N �� the result becomes in a certain sense unique� that is� independent of ��
Let us proceed to precise statements�

As the number N grows� consider an increasing sequence of groups

Z� � Z
 � � � � � Z
�N

� � � � �

with the fractional parts of dyadic numbers as its injective limit�

lim
������
N

�

��

Z
�N

�� Z
�
	




��
Z�

Consider also the corresponding sequence in K�theory�

K
�
T �M� Z

�
	




��
Z
�
� lim������
N � ��

K
�
T �M�Z

�N
�

�
� 
���

In this notation� we prove the following theorem� which shows the uniqueness of the
element �L� �

Theorem � The element �L� given by 
��� and viewed as an element in the injective
limit 
��� is well de�ned

�L� � K
�
T �M� Z

�
	




��
Z
�
�

i�e� independent of the choice of the isomorphism ��

Proof� For two isomorphisms


NL
�
�� ��F� and 
NL

��
�� ��F �


�



let us compute the di�erence of the corresponding K�theory elements in 
���� An
explicit computation shows that the di�erence is equal to

����� � 	�
h
�����

i
on an odd�dimensional manifold M�

����� � 	�
h
�����

i
on an even�dimensional M�

From these formulas we see that the di�erence in question is equal to

����� �	���� � K 
T �M�

for the elliptic symbol �� � ������ where the sign � is opposite to the parity of the
dimension of the manifold M�

In order to prove the theorem� it su�ces to show that this elliptic symbol de�nes
a 
�torsion element in the group K 
T �M� � since for the increasing numbers N � 
see
formula 
���� we take a direct sum of 
N

�

copies of this operator� Let us prove the
corresponding statement�

Theorem � The involution

	� � K 
T �M� �� K 
T �M�

induced in K�theory of the spaces by the antipodal involution 	 � T �M �� T �M
is equal to 
�	�dimM modulo 
�torsion� More precisely� for an arbitrary element
x � K 
T �M� and for su�ciently large positive integer N we have

	�
�

Nx

�
� 
�	�dimM 
Nx� 
���

Proof� The idea is to apply the Mayer�Vietoris principle� We shall prove the equality
for the entire K�theory 
both even and odd��

Let us �rst check 
��� over a point� For x �M � we have

K� 
T �xM� � K�
�
RdimM

�
� Z�

An explicit formula for the generator of this group shows that the involution 	� is
equal to 
�	�dimM in this case� as desired�

To apply the Mayer�Vietoris principle� we have to show the following� Given two
open subsets

U� V �M

and the fact that property 
��� is valid for U� V � and their intersection U
T
V� we

must check that the same property holds for the union U
S
V� Let us write out a part


�



of the Mayer�Vietoris exact sequence 
for brevity� we consider here the property for
the even K�group��

K� 
T � 
U
T
V �� � K 
T � 
U

S
V �� � K 
T �U��K 
T �V �

� 	� � 	� �	��	�

K� 
T � 
U
T
V �� � K 
T � 
U

S
V �� � K 
T �U��K 
T �V � �

Let us take an element w � K 
T � 
U
S
V �� � For this element we must show that

the di�erence
	�w � w

is a 
�torsion element� The remaining of the proof is a standard diagram search
argument and is omitted�

Now by applying the Mayer�Vietoris principle 
see �
���� we prove 
��� in general�
Thus� we have established the following theorem� which implies Theorem 	 of

the introduction� concerning the formula for the ��invariant�

Theorem �� The principal symbol of the subspace bL � dEven �Modd
�
or dOdd 
M ev�

de�nes an element �see formula 
����

�L� � K
�
T �M� Z

�
	




��
Z
�
�

such that the fractional part of the functional d is expressed via the direct image in
K�theory as follows�

fd
�bL�g � p� �L� � K

�
pt� Z

�
	




��
Z
�
� Z

�
	




��
Z

for the map p � M � pt�

Appendixes

A Subspaces and K� �T�M�

It is well�known in elliptic theory on closed manifolds that the group of stably
homotopic elliptic operators can be described in terms of K�theory of the total
space of the cotangent bundle T �M �

Ell 
M� � K 
T �M� � 
���


�



For an elliptic operator

D � C� 
M�E� �� C� 
M�F �

there is a di�erence construction de�ned in terms of the principal symbol of the
operator�

� 
D� � ��E � ��F� �� 
D�� � K 
T �M� � � � S�M �M� 
�	�

The isomorphism 
��� can be interpreted from a rather di�erent point of view� For�
mula 
��� expresses the topological group K 
T �M� via elliptic operators in analytic
terms� There is a question as to whether a similar analytic realization is possible for
the remaining group K� 
T �M� of the 
�periodic complexK�theory� This realization
was established in the paper �	
� in terms of self�adjoint elliptic operators� Let us
state this result more precisely�

On a smooth manifold M we consider self�adjoint elliptic operators of a certain
nonnegative order� Operators having only �nitely many eigenvalues on one of the
half�lines 
��� �� or 
����� are called trivial� Two operators A� and A� are said
to be stably homotopic if they become homotopic after the addition of some trivial
operators to each of them� The abelian group of classes of stably homotopic opera�
tors is denoted by Ell� 
M� � The analog of the di�erence construction� establishing
an isomorphism

Ell� 
M� � K� 
T �M� �

is de�ned as follows�
For an elliptic self�adjoint operator

A � C� 
M�E� �� C� 
M�E� �

consider the subspace bL� 
A� � C� 
M�E� generated by the eigenspaces corre�
sponding to nonnegative eigenvalues� It can be shown 
e�g�� see� ���� that the spec�
tral projection P� 
A� on this subspace is a pseudodi�erential operator of order
zero� while the principal symbol � 
P� 
A�� of the projection is equal to the spectral
projection for the principal symbol � 
A� of the original operator A

� 
P� 
A�� � P� 
� 
A�� � ��E �� ��E�

In particular� the range of this projection is a smooth vector bundle� denoted by

L� 
A� � Im� 
P� 
A�� � ��E � Vect 
S�M� �

An analog of the di�erence construction 
�	� obtained in this situation by Atiyah�
Patodi� and Singer can be written in the form

A �� �L� 
A�� � K 
S�M��K 
M�
�
� K� 
T �M� � 
�
�


�



where the isomorphism 
 is induced by the coboundary operator in the exact se�
quence of the pair 
B�M�S�M� 


� � �� K 
M�� K 
S�M�
�
� K� 
T �M�� � � �

In �	
� it is proved that the map 
�
� induces the desired isomorphism

Ell� 
M� �� K� 
T �M� �

From this construction it becomes clear that the basis for this isomorphism is� ac�
tually� a more simple object � the subspace� determined by a pseudodi�erential
operator� Let us recall the corresponding de�nition 
see �	����

A linear subspace bL � C� 
M�E� is called admissible if it can be de�ned as the
range of a pseudodi�erential projection of order zero

bL � ImP� P � C� 
M�E�� C� 
M�E� �

The subbundle L � Im� 
P � � ��E is called the 
principal� symbol of the subspacebL�
Let us restate the de�nition of the group Ell� 
M� introduced above in terms

of subspaces� More precisely� of all admissible subspaces� the spaces of sections
C� 
M�E�� as well as the �nite dimensional subspaces� are called trivial� Fur�
thermore� two subspaces bL� and bL� are called stably homotopic if they become
homotopic�� after we add some trivial subspaces to each of them� Let us show that
the resulting group Ell

�

� 
M� of classes of equivalent subspaces is naturally isomor�
phic to the group Ell� 
M� de�ned previously� To this end� to each self�adjoint
elliptic operator we assign its spectral subspace

A
j

�� bL� 
A� �

and� conversely� to each subspace we assign a self�adjoint elliptic operator by the
formula bL j��


�� P � 
	� P � � for bL � ImP� 
���

Let us verify that the two mutually inverse maps

Ell� 
M�
j
�� Ell

�

� 
M� and Ell
�

� 
M�
j��
�� Ell� 
M�

are well�de�ned� i�e�� they preserve the equivalence relations for both groups�

�Here B�M denotes the unit ball bundle of the manifoldM � S�M � � �B�M � �
�By a homotopy of subspaces bLt we mean a family such that the corresponding family of

orthogonal pseudodi�erential projections Pt is smooth in the operator L� norm�


�



The operator j�� preserves the equivalences� since a homotopy of subspaces
implies the homotopy of the corresponding self�adjoint operators in formula 
����

The transformation j also preserves the equivalence relation� The check of this
fact meets the following obstacle� for a smooth homotopy of self�adjoint operators
At the corresponding family of spectral subspaces bL� 
At� varies in a discontinuous
way� In the case of general position� the corresponding discontinuities arise for those
values of the parameter t at which an eigenvalue of the operator At changes its sign

��
In particular� when passing through the point of discontinuity� the subspaces bL� 
At�
change by a �nite�dimensional subspace� and in this way the equivalence class of the
subspace bL� 
At� does not change during the homotopy�

Hence� we have established the equivalence of the groups Ell� 
M� and Ell
�

� 
M� �
That is why in the following the two groups will be denoted for brevity by Ell� 
M� �

Corollary � Two subspaces bL��� are stably homotopic if and only if their symbols
de�ne equal elements in the group K 
S�M� �K 
M� �

To conclude the section� let us present an explicit formula for the element of
the di�erence construction 
�
� in the elliptic theory Ell� 
M� � Namely� to each
subspace bL � ImP with symbol denoted by L � Im� 
P � we assign an elliptic
family of symbols on the manifold M with parameter space S� � z�

z� 
P � � 
	� � 
P �� � ��E �� ��E�

By the usual di�erence construction for elliptic families� this de�nes an element

�z� 
P � � 
	� � 
P ��� � K
�
T �M � S�� T �M � pt

�
� K� 
T �M� �

which� by the explicit Bott periodicity formula written out in �	
�� coincides with
the construction 
�
��

B K�theory with Zn coe�cients

In this section we de�ne the K�theory with Zn coe�cients and obtain its main
properties that are used in the present paper� We use the results of the paper �
���

Let us choose a positive integer n � 
� To de�ne the K�theory with coe��
cients Zn� we introduce the 
�dimensional complex Mn obtained from the unit 
�
dimensional disk D� by the identi�cation of the points on its boundary under the
action of the group Zn �

Mn �
n
D� � C

��� jzj 	 	
o�	

ei
 � ei

�
��k
n �



�

�This is the well�known phenomenon of the spectral �ow�


�



The space Mn is called the Moore space� For n � 
 it is exactly the real projective
plane

M� � RP��

This is the only case in which the Moore space is a smooth manifold�
For a topological space X� the K�theory with coe�cients Zn is de�ned in terms

of the usual 
integral� K�theory by the formula

K� 
X�Zn� � K� 
X �Mn�X � pt� � 
���

the grading � here stands for � or 	� as usual in K�theory� The resulting groups
form a generalized cohomology theory�

Let us compute the corresponding groups for the point�

K� 
pt�Zn� and K� 
pt�Zn� �

It follows from de�nition 
��� that these groups are isomorphic to the usualK�theory
of the Moore space Mn�

K� 
pt�Zn� � K� 
Mn� pt� �

Thus� let us compute the usual K�groups for the Moore space� The computation
relies upon the following embedding of S� in this space�

S� �
	
ei

��� � 	 � 	


�

n



�Mn�

so that the quotient space is homeomorphic to the 
�sphere�

Mn�S
� � S��

Hence� the exact sequence of the pair 
Mn� S
�� in K�theory is

� � ��fK 
Mn�� fK 
S�� � K� 
S�� �K� 
Mn�� K� 
S��
�
� fK 
S�� �� � �

k k k k
� � Z Z�

Here the tilde sign  means that all groups are reduced� i�e� formed by vector bundles
of 
virtual� dimension zero and the coboundary map 


K�
�
S�
�

�
� fK �

S�
�

is simply the multiplication by n in the groups K� 
S�� � fK 
S�� � Z� We obtain

K� 
Mn� � ��K 
Mn� � Z� Zn�

��



where the generator of the torsion part Zn is

��n�� 	 � K 
Mn�

for a line bundle �n � Vect 
Mn� � Let us construct this bundle from the trivial line
bundles on the elements of the partition of the Moore space

Mn � D���

�

Mn n f�g�


here D��� denotes the disk with radius equal to 	�
� by the transition function z�
The Whitney sum n�n is a trivial vector bundle� In fact� its transition function

is equal to 
z� z� ���� z�� This transition function is homotopic to 
zn� 	� ���� 	� � Hence�
it is easy to produce a trivialization for the corresponding bundle

n�n
	
�� Cn�

Namely� the trivialization � is identity on the disk D���� while on the second ele�
ment of the partition Mn n f�g it is the multiplication by the transition function

zn� 	� ���� 	� �

Now we construct the exact coe�cient sequence in K�theory corresponding to
the groups Z and Zn�

Proposition � The short exact sequence of groups

�� Z
�n
� Z� Zn � �

induces an exact sequence in K�theory with coe�cients

�K 
X�
�n
�K 
X��K 
X�Zn��K� 
X�

�n
�K� 
X��K� 
X�Zn�� 
���

Proof� The sequence 
��� is in fact a corollary of the formula for the Moore space

S� �Mn � Mn�S
� � S��

Namely� the sequence of the pair 
X �Mn�X � S�� implies the exact sequence

K
�
X � S��X � pt

�
� K 
X �Mn�X � pt�� K

�
X � S��X � pt

�
�

K�
�
X � S��X � pt

�
� K� 
X �Mn�X � pt�� K�

�
X � S��X � pt

�
��

Using Bott periodicity� we rewrite the corresponding terms in the sequence� obtain�
ing the desired formula 
����

� K 
X�� K 
X�Zn�� K� 
X�
�n
� K� 
X�� K� 
X�Zn�� K 
X�

�n
� �

�	



Remark � The geometric construction of the exact sequence 
��� makes it possible
to say that the �reduction modulo n� maps

K 
X�� K 
X�Zn� and K� 
X� � K� 
X�Zn�

are actually tensor products with the element ��n� � 	 � K 
Mn� pt� � while the
Bokstein maps

K 
X�Zn�� K� 
X� and K� 
X�Zn�� K 
X�

are merely the induced maps for the inclusion

S� �Mn�

The direct image in K�theory with coe�cients enjoys the same properties as in
the usual theory� since for a smooth map of manifolds

f � X� �� X�

there is a usual direct image map �with parameters� 
see �
	��

f� � K 
T �X� �Mn� �� K 
T �X� �Mn�

that restricts to the map in K�theory with Zn coe�cients

f� � K 
T �X��Zn� �� K 
T �X��Zn� �

In the �trivial� case� when f is a constant map to a point pt� we obtain a residue�
valued direct image

f� � K 
T �X��Zn� �� K 
pt�Zn� � Zn�
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