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Abstract

We show an application of the spectral theorem in constructing ap-
proximate solutions of mixed boundary value problems for elliptic equa-
tions.
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Introduction

When studying boundary value problems for solutions of an elliptic differential
equation Pu = f, P being of type £ — F' for some vector bundles £ and F,
one uses any left parametrix of P to reduce the problem to the boundary. A
powerful tool for such a reduction is the Green formula for P which brings
together the values of Pu in a domain D and the Cauchy data ¢(u) of u on the
boundary of D to present u in D modulo smoothing operators.

In case P has a left fundamental solution ®, the Green formula reads
u = Pat(u) + PyPu in D, where Pqug and Py f are the double layer and
volume potentials corresponding to ®. If moreover ® is a right fundamental
solution, then the potential Pgug satisfies the homogeneous equation Pu = 0
in D, and so the Green formula provides us with a soft version of the Hodge
decomposition.

However, right fundamental solutions are available only for those P which
are determined, i.e., bear as many scalar equations as the number of unknown
functions. For overdetermined elliptic operators P, the construction of ker-
nels ® with the property that P Pguo = 0 in D, for each density ug, is a
significant problem. In complex analysis such Green formulas are known as
Cauchy-Fantappie formulas. They give rise to explicit solutions of the inhomo-
geneous Cauchy-Riemann system du = f on strongly pseudoconvex manifolds
or domains in CV,

Consider the iterations PY#(u), for N = 1,2,..., in any function space
H invariant under Py. If ® is a right fundamental solution of P, then these
iterations stabilise because P Pgit(u) = 0 in D and so PYt(u) = Pat(u) for
all N. In general, since Py is the identity operator on solutions of Pu = 0,
one may conjecture that the iterations converge to a projection of H onto the
subspace V; of H consisting of u satisfying Pu = 0 in D. Were such the case,
the equality

u=myu+ Y PyPy Pu, (0.1)
v=0
for w € H, would give us a substitute for the Hodge decomposition.

This idea goes back to the work of Romanov [Rom78] who studied the
iterations of the Martinelli-Bochner integral in CV, N > 1. His results were
extended in a beautiful way to arbitrary overdetermined elliptic systems by
Nacinovich and Shlapunov [NS96].

To handle the iterations of Pq, the idea is to present this integral as a
selfadjoint operator on a Hilbert space H. While H is specified within the
Sobolev space H? in D, p being the order of P, the Hermitian structure of
H is different from that induced by H?. If moreover 0 < Py < [, then the
iterations of Py converge, by the spectral theorem, to the projection of H onto
the eigenspace of Pg; corresponding to the eigenvalue 1. This eigenspace in
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turn coincides with the null-space of P, P in H, and hence with the null-space
of P if Py is identified with the adjoint of P in H.

The choice of H is actually suggested by the restriction of ® to the closed
domain D. If P,f meets automatically some conditions on the boundary of
D, for each f € L*(D, F), these should be incorporated in the definition of H.

To introduce the relevant Hermitian structure in H, we choose any domain
D' with C* boundary, such that D C D', and we fix an extension operator
e: H — HP(D',F) with the properties that ¢ (e(u)) = 0 on 9D’, for each
u € H, and e(Pyf) = Pyf, for each f € L*(D,F). In this way we actually
reduce the problem to that on a compact surrounding manifold. As but one
example of e(u) we show the solution of the Dirichlet problem for the Laplacian
A = P*P in D'\ D with data #(u) on 9D and 0 on dD'. Define a scalar product
in H by

b ) = (P (), P e(o)psqon (02)

then the identity A(Py f,v) = (f, Pv)r2(p,my, for every v € H, is immediate. It
in turn implies the selfadjointness of Pg with respect to (0.2).

In [NS96], H is the whole space H?(D, E), and Pyf = GP*(ypf) where
G is the Green function of the Dirichlet problem for A in D" and yp is the
characteristic function of D. In this setting, the orthogonal decomposition (0.1)
applies to constructing approximate solutions for the inhomogeneous equation
Pu = f and the Dirichlet system for the Laplacian A in D.

This work was intended as an attempt to develop the approach of [NS96]
to derive approximate solutions of the generalised Zaremba problem in D. It
consists of finding a function v € H?(D, F) satisfying Au = f in D, whose
‘tangential part’ t(u) takes prescribed values on a part o of 9D while the
‘normal part’ n( Pu) takes prescribed values on the complementary part 9D\ o.
Since the Dirichlet problem in D is elliptic, we may assume without loss of
generality that ¢(u) = 0 on 0. This causes H to be a subspace of H?(D, F)
whose elements satisfy ¢(u) = 0 on 0. Moreover, G should be the Green
function of the Dirichlet problem in the domain with crack D'\ &.

Thus, the study of the Zaremba problem leads to the Dirichlet problem
for the generalised Laplace operator A in a domain with cracks. Note that
both mixed boundary value problems and crack problems can be treated in
the framework of any calculus on manifolds with edges of codimension 1 on
the boundary. At present, several calculi on such singular configurations are
known, namely those by Vishik and Eskin (cf. Section 24 in [Esk73]), Maz’ya
and Plamenevskii (cf. Chapter 8 in [NP91]), Schulze [Sch92], Duduchava and
Wendland [DW95], Rabinovich, Schulze and Tarkhanov [RST98], etc. Either
of these calculi is applicable.

The important point to note here is the function spaces used as domains
for pseudodifferential operators involved. These are scales of weighted Sobolev
spaces H*7(D, E') parametrised by s,v € R, where s specifies the smoothness
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and ~ stands for the weight. While the spaces may differ from each other in
various calculi, they usually coincide with L*(D, E), for s,v = 0. As weight
functions, one uses the powers of the regularised distance to the set of sin-
gularities, here to the edge do. Moreover, we may always specify the weight
exponent v in such a way that admissible operators of order m map H*"(D, F)
to H*=""=" (D, F).

Let us dwell upon the contents of the paper. Section 1 presents generalities
on bounded selfadjoint operators in Hilbert spaces.

In Section 2 we indicate how these results apply to non-necessarily selfad-
joint operators. The idea is to replace the equation Bu = f by B*Bu = B*f
and shrink the domain of f to those which are orthogonal to the null-space of
B*.

Section 3 discusses in detail the construction of the Green function for the
classical Dirichlet problem in a plane domain with a crack along a segment.
We make use of layer potentials to present the Green function, thus showing its
asymptotics near the boundary points of the segment. This section is intended
to motivate our investigation of crack problems.

In Section 4 we formulate the Dirichlet problem for the generalised Lapla-
cian in a domain with a crack along a hypersurface with C'*® boundary. When
compared to general crack problems, the Dirichlet problem has the peculiar-
ity of being formally selfadjoint. Moreover, any solution of the corresponding
homogeneous problem is trivial unless it is rather singular. Hence it follows
that the Dirichlet problem is uniquely solvable provided it is Fredholm. Since
the Dirichlet problem is elliptic in the usual sense on the smooth part of the
boundary, i.e., away from do, the Fredholm property of this problem is equiv-
alent to the bijectivity of an operator-valued symbol called the edge symbol.
This symbol lives in the cotangent bundle to do with the zero section removed.
In fact, the edge symbol is the Dirichlet problem for a differential operator of
special form in the plane with a cut along the non-negative semiaxis. The oper-
ator is obtained from P*P by freezing the coefficients at any point y € do and
substituting the covariable 1 for the derivatives along the edge. It is supplied
by the Dirichlet boundary conditions from both sides of the cut. Using polar
coordinates in the normal plane to the edge at y, we see that the conormal
symbol of the edge symbol is (o?(P))" a?(P), the principal symbol of P being
evaluated at n = 0 and

& = cospD, — (1/r)singD,,
& = singD, + (1/r)cos oDy,

&1, & standing for the conormal variables. Thus, if supplied by the Dirichlet
conditions at the endpoints of [0,27], the conormal symbol belongs to the
same class of boundary value problems, now on a segment. The condition of
bijectivity of the conormal symbol gives us a discrete set ¥ of “prohibited”
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weights 7, independent of 1. For v & X, the edge symbol is a Fredholm
operator in Sobolev spaces of weight v over R? \ Ry. It is to be expected
that the null-space of the edge symbol is trivial if v > 0 is large enough. By
duality, if —v > 0 is large enough, then the cokernel of the edge symbol is
trivial. It is now the property of P, ¢ and the singular configuration whether
or not, given a v, the edge symbol is an isomorphism for all  # 0. For the
Dirichlet problem in a domain with a smooth edge, the edge symbol is known
to be an isomorphism for 4 in an interval around p (see Sections 6.1.3 and 8.4.2
in [NP91]). It follows that the Dirichlet problem for the Laplacian A = P*P
is solvable in H*?(D, E), D being a domain with smooth edges. Then, we
make use of a familiar classical scheme to construct the Green function of the
problem.

Section 5 contains a construction of a scalar product h(u,v) in the space
HPP(D, E), such that the norm \/h(u,u) is equivalent to the original one. If
restricted to the subspace H of H*?(D, E') which consists of the functions with
vanishing Dirichlet data on o, this scalar product makes selfadjoint the double
layer potential related to the Green function of a larger domain D’ with a crack
along o.

In Section 6 we simplify the construction of h(u,v) in case P is a differential
operator with constant coefficients in R™. If P*P has a fundamental solution
of convolution type G(x) which decreases at infinity fast enough, we may think
of G(x) as a Green function of the one-point compactification of R”. Moreover,
we can solve the Dirichlet problem for G(x — y), y & &, with data on o, thus
arriving at a Green function of R™\ . Hence we have a canonical choice for
D', namely D' = R”. This works, in particular, for first order homogeneous
operators P with constant coefficients.

Section 7 provides a detailed exposition of iteration of the double layer
and volume potentials. Let A be a non-negative selfadjoint bounded operator
in a Hilbert space H, satisfying ||A|| < 1. By the spectral theorem, we
have AN = 01_+0 MV dI(N) for any N = 1,2,..., where I(A) is a resolution
of the identity in H corresponding to A. Hence it follows that the iterations
of A converge to the orthogonal projection of H onto the null-space of the
complementary operator I — A. As but one application of this we show the
orthogonal decomposition

: N v
1= lim A +;A (I — A)
in H (cf. [Sh199]). Obviously, (0.1) is a very particular case of this latter
formula.
In Section 8 we indicate how (0.1) may be used to yield approximate solu-
tions to the Cauchy problem for Pu = f in D with data on o. Write 7y, for
the orthogonal projection of H onto the null-space of A. Consider the operator
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R =>"_,I—A) in H with a domain DomR consisting of those f € H
for which this series converges. If f € DomR, then ARf = f —my f. If
moreover f is orthogonal to the null-space of A, then ARf = f. Conversely, if
f = Au, for some u € H, then f € DomR and f L ker A. On the other hand,
the equation Bu = f, for a non-necessarily selfadjoint operator B € L(H, ]:]),
reduces to B*Bu = B* f under the additional condition f 1 ker B*. Assuming
o # (), we apply this approach to the operator B = P whose adjoint is P,.

In Section 9 we derive in a similar way an interesting formula for solutions
of the generalised Zaremba problem in D, the Dirichlet data being given on
o # 0.

Finally, Section 10 deals with some examples which concern the case where
o 1s an entire component of the boundary surface. The advantage of this situ-
ation is that we need not invoke any weighted Sobolev spaces. Using explicit
formulas for the Green function of D'\ & we are able to construct approximate
solutions for the Cauchy and Zaremba problems in D with data on o, thus
recovering the results of [NS96].

1 Selfadjoint operators

Let H be a Hilbert space with a scalar product (.,.)y and A be a bounded
selfadjoint operator in H.

We also assume that A is non-negative, i.e., (Au,u)y > 0 for every u € H.
It is well known that if H is a complex Hilbert space then any non-negative
operator is selfadjoint.

We can certainly assume that || A|| < 1, since otherwise we replace A by its

multiple A/||A]|.

Problem 1.1 Let f € H be given. Find (if possible) an element v € H
such that Au = f.

Generally speaking, Problem 1.1 is ill-posed, i.e., it may happen that the
image of A is not closed. This means that no solution exists for some data
f € H and the solution, if exists, do not depend continuously on the data.
Hence it follows that the solvability conditions for the problem can not be
described in terms of continuous linear functionals.

Let Idy stand for the identity operator in H. If it causes no confusion we
write simply Id instead of Idy.

As usual we denote ker A the null-space of A. If V' is a closed subspace of
H, we write my for the orthogonal projection of H onto V.
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Theorem 1.2 [n the strong operator topology of the space L(H), the equal-
ities hold

. N
]&I_IE;OA = Tker(I-A),
lim ([ — A)N = TkerA-

N—oo

Proof. Since the operator A is continuous, its kernel ker(/ — A) is a closed
subspace of H. Therefore, when endowed with the Hermitian structure induced
from H, it is a Hilbert space.

Given any N = 1,2, ..., the spectral theorem for bounded selfadjoint op-

erators yields
140

AN = /)\Nd[()\) (1.1)
-0
where (1(A))yc\«; is a resolution of the identity in H, corresponding to the
selfadjoint operator 0 < A < [ (see, for instance, Sections 5, 6 in [Yos65,
Ch. XI]).

Passing to the limit in (1.1) one obtains

lim AY = [(1 +0) — I(1 —0).

N—oo
Since I()) is a spectral function, the operator I(140)—/(1—0)is an orthogonal
projection of H onto a closed subspace V(1) in H.

Obviously,
(I —A)lim ANy =0

N—=0

for every u € H, i.e., V(1) C ker(I — A). Finally, if u € ker (I — A) then

u = Aut+(I—Au
= Au

= ANy,

for every N > 0. Therefore,

u= lim ANu,
N—oo

and so V(1) = ker (I — A) whence

lim AN = 7Tker(I—A)-
N—oo
In order to complete the proof it suffices to observe that since A is a self-
adjoint non-negative operator with ||A|| < 1, the operator I — A has the same
properties.

4
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Corollary 1.3 In the strong operator topology of the space L(H), the equal-
ities hold

o0

I = thAN+ AV (I — A),
e =0 (1.2)
I = lim (I-A)Y 4+ 3 (- A A,
N—=oo v=0

Proof. The equality A + (I — A) = I implies

N-1
I = AN4> AY(I-A)

v=0 N1
— = YAy A
v=0

for every v € N. Using Theorem 1.2 we can pass to the limit, when N — oo,
thus obtaining (1.2).
O
We use Corollary 1.3 in order to obtain a solvability condition for Prob-
lem 1.1.

Theorem 1.4 Problem 1.1 is solvable if and only if the Neumann series

=301 Ay

converges in H. Moreover, if Problem 1.1 is solvable then Au = f.

Proof. Let Problem 1.1 have a solution @ € H. Then Corollary 1.3 implies
that the series

converges in H.
Conversely, let the series u converge in H. Since the operator I — A is
continuous it follows that
u—Au = (I —Au

= Y U-ayf

v=1
= u-—f.
Hence Au = f and Problem 1.1 is solvable.
O

Theorem 1.2 implies that the solution u of Theorem 1.4 is a unique solution
to Problem 1.1 orthogonal to ker A.
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Remark 1.5 Clearly, the elements

N-—

uM =3 "(1-4)f

v=0

—_

can be regarded as approximate solutions to Problem 1.1, even if no real solu-
tion exists.

2 Bounded operators

Consider now a more general situation. Let H, H be Hilbert spaces, and
B € L(H, H) a bounded operator. Without loss of generality we again restrict
our attention to those B which satisfy || B|| < 1.

Problem 2.1 Let f € H be given. Find an element v € H such that
Bu=f.

Let B*: H — H be the adjoint of B: H — I in the sense of Hilbert

spaces.

Lemma 2.2 Problem 2.1 is solvable if and only if

1) there is a uw € H such that B"Bu = B*f;
2) (f,9)5 =0 for all g € ker B*.

Proof. Indeed, from Bu = f it follows readily that B*Bu = B*f. Con-
versely, if
B*Bu = B*f,
f L ker B*,

then B* (Bu — f) = 0 whence

(Bu— f,Bu—f)g = (Bu,Bu—f)g—(f,Bu—f)g
— 0,

ie., Bu=f.
O
It is easy to see that A = B*B is a bounded non-negative self-adjoint
operator in H satisfying ||A]| < 1. Therefore Problem 2.1 is equivalent to
Problem 1.1, with f replaced by B*f, f being orthogonal to the null-space of
B*.
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Theorem 2.3 In the strong operator topology of the space ,C([:[), the equal-
ity holds

Therst = 3 B(I—B*B)" B,

v=0
Proof. It is easy to see that
(Idg — BB")B = B(ldg — B*B)
whence
(Idg — BB*)" BB* = B(ldy — B*B)" B*

for all v > 0. )
Note that BB* is a bounded selfadjoint non-negative operator in H satis-
fying [|BB*|| < 1. According to Theorem 1.2 and Corollary 1.3, we get

o0

Tyt = Y (Idg— BB*) BB
v=0
= Y B(ldg - B*B)" B,

v=0

as desired.

Corollary 2.4 Problem 2.1 is solvable if and only if

1) the seriesu =73 " (I — B*B)" B*f converges in H;
2) (f.9)5 =0 for all g € ker B*.

Moreover, if Problem 2.1 is solvable then the series u is one of its solutions.

Proof. This follows immediately from Lemma 2.2 and Theorems 1.4 and
2.3.

O

In the sequel we will discuss some applications of this approach to elliptic

equations (cf. also [Sh199]).

3 Green function

Fix an interval o = (a,b) in the real axis. Consider the following Dirichlet
problem in the plane with a crack along o. Given any ug € Cloc(0), find a
harmonic function v in R?\ &, such that u extends continuously to o from
both the upper and lower half-planes and u* = uy on o.
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We look for a solution of this problem by the layer potentials method. To
this end, denote by

1
Gx) = Gy log ||

the standard fundamental solution of convolution type to the Laplace operator
in the plane. Assuming u to have at @ and b poles of at most finite order, we
conclude that u extends to a distribution on R? whence

u(z) = uc(z) + / ((9/9y2)G(x — y) Uoly) — G(e —y) Ur(y)) dyr,  (3.1)

for v € &, where u, is a harmonic function on all of R? and Uy, U; € &'(R) are
supported on &.

When crossing the interval o, the double layer potential has the jump
Us(2°) at each Lebesgue point 2° € o of Uy. Since we require u to be continuous
up to o, it follows that Uy should vanish on o. Hence Uy is a finite linear
combination of the derivatives of the Dirac delta-functions supported at a and
b. Substituting this into (3.1) gives

u(w) = ue(z)

1) 8 i 1 — T2 7¢) 8 i 1 — T2
+ ;cj(a) (8:1;1) %(ml—a)z + a2 + ; i(b) (8—:1;1> %(ml—b)Q + a2

- /G(l' —y) Uir(y) dyy,
for x & &.

The second term on the right hand side of this formula is a harmonic
function in R?\ {a}, vanishing both on ¢ and at the point at infinity. The
third term bears the same properties, with a replaced by b. Hence, to achieve
the uniqueness in our problem, we need to impose additional conditions on
the behaviour of u near the boundary of . They can be formulated in terms
of belonging of u to weighted Sobolev spaces near the singular points, namely
u € H*(B\ 7o),y > 0. Here, B is any disk in the plane containing &, and
H*Y(B\ o), for s € Z, is the space of all functions u € H;'/(B\ &) with finite
norm

1/2

ey = | [ 3 i —al, e 6D ()

7 al<s

Further, the function w. is not uniquely determined by the data of the
problem, too. Indeed, u.(x) = x5 is harmonic on all of R* and vanishes on &.
To specify u. we impose on u the condition that u(z) has a limit as |¢| — oo.
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Denoting this limit by ¢, we see at once u.(x) = ¢, for the limit of the integral
[ G(x —-)Updyy, as |z| — oo, coincides with that of a constant multiple of
G/(x). To show this, observe that the difference G(a — y) — G(x) tends to 0,
when || — oo, the limit being uniform in y € o.

The simple layer potential of a continuous density on ¢ is a continuous
function away from the endpoints of ¢ in R% From what has already been
proved it follows that a function u of the form (3.1) is a solution to our crack
problem if and only if u.(z) = ¢, Up(x) = 0 and the density U; satisfies the
equation

b
1
t):c—/ 2—10g|t—3|U1(3)d5, t € (a,b). (3.2)
. 2w

Note that (3.2) is a Fredholm equation of the first kind, whose kernel has

a weak singularity on the diagonal. It was Carleman [C22] who first solved

the equation (3.2) in a closed form. Assume that ug is a C'! function on (a,b)

and the derivative of ug is of the form f(¢)/(t —a)*~%(b —¢)*~%, with ¢ > 0, f

satisfying a Holder condition on (a,b). We look for a solution to (3.2) of the

form U(s)/(s —a)'==(b — s5)'7¢, where ¢ > 0 and U meets a Holder condition
n (a,b). Then, the result of Carleman [C22] reads as follows.

Lemma 3.1

1) Ifb—a# 4, then, for each ug, the equation (3.2) has a unique solution
given by
2 1
a0
V(t—a)(b—1) b
/ a( i+ — cull) )
—1 t)

log 5 Jo /(t—a)(b—

2) Ifb—a = 4, then in order that (3.2) be solvable it is necessary and
sufficient that [0 —=29_ gt = 0. Under this latter condition, we have
ficint that [} =8t

sy = 2 (/ Vit=a)(b—1) dt—|—0>

where C' is an arbitrary constant.

Proof. See ibid. and Section 55 in Gakhov [GT77].
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By the very construction of reducing (3.2) to a singular integral equation
with the Cauchy kernel on o, the solution is obtained in the form U;(s) = U'(s),
with U(a) = U(b) = 0 (cf. (55.24) in [G77]). Hence it follows that the integral

/G(l‘—y) Ur(y) dys = G —(y1,0))U (y1) [ 2o+ /(9/91‘1) Gz —y) Uly) dy,
tends to zero, when |z| — co. Thus, if b — a # 4, then the unique solution to
the Dirichlet problem in R*\ & with the data uy on o and ¢ at the point at
infinity is given by

u(w) = e — / Gz —y) Un(y) dys, =€ R\ & (3.3)

the density U; being defined in Lemma 3.1. As explained above, this solution
is the best of many other possible solutions.

Using the explicit solution of the Dirichlet problem in R*\ &, we can con-
struct the Green function of this domain. To this end, fix any point y € R?\ &
and denote by R(-,y) the unique harmonic function in R?\ &, such that
R(x,y) = G(x —y) on o and R(z,y) — 0 as || — oo. From (3.3) we deduce
that R(z,y) is a O™ function of the parameter y with values in C2(R?\ 7).
The difference G(x,y) = G(x —y) — R(x,y) is the desired Green function of
R?\ 7. For x # y, G(x,y) is C* up to o from both sides of this interval, hence
the only singularities of G(x, y) away from the diagonal lie at the corner points
do. In fact, we have

Gla,y) = Gz —y) + /ab Gz — s)ai (22(3) /ab 55(’5);1—:) ds, (3.4)

for z,y € R?\ &, where any point s € (a,b) is identified with the point
(s,0) € R* and

2(s) = V(s —a)lb=s),

S(tyy) = G(t—y)_%l‘)ﬁg;—aﬂ/ G(ZS(;)y)dS'

By (3.4), it is possible to get an explicit estimate of G(x, y) near the corner
points a and b. However, for our purposes it will be sufficient to know that
G(x,y) belongs to the space H>°( B\ &) with respect to either of the variables
x and y while the other variable lies away from B, B being a disk containing

g.

Remark 3.2 The Green function G(x,y) allows one to construct the solu-
tion to the Dirichlet problem in R*\ & by

ormen ([ gt i [ Lo as).
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+

where u™ are the prescribed limit values of u on o from the upper and lower

half-planes, respectively, and ¢ is the prescribed limit of u(x) when |x| — oo.

4 A crack problem

Let X be an open set in R™ and P € Diff?(X; E, F') an elliptic differential
operator of order p on X, where £ = X x C¥, FF = X x C'.

Having fixed Hermitian metrics on £ and F, denote by P* € Dift?(X; F| F)
the formal adjoint for P. Then, A = P*P is an elliptic differential operator of
order 2p and type F — F.

Assume that A bears the uniqueness property for the Cauchy problem in
the small on X. Then it has a two-sided fundamental solution G on X.

Let D be a relatively compact domain in X. We emphasise that the bound-
ary of D need not be smooth. Denote by Sp(D) the space of all solutions of
the system Pu =0 in D.

In Section 5 we construct a special scalar product h(-,-) on the weighted
Sobolev space H??(D, E'). This is obtained by using a fundamental solution of
A having special properties at the boundary of a larger domain O € X with
singular boundary.

Throughout this section we will assume that the boundary of D consists of
two smooth pieces, namely 0D = o U (0D \ o) where o is an open connected
subset of 0D with smooth boundary. Fix a domain D’ with "> boundary,
such that D e D' € X.

Let we be given a Dirichlet system {Bj}f;é of order (p — 1) on the smooth
part of 9D U 9D’, with B; being of type £ — F; and order m;. Denote by
{C; }f;é the Dirichlet system adjoint to { B;} with respect to the Green formula
for P (cf. [Tar95, 9.2.1]). As is well-known, C; is of type I'* — F* and order
p—1—m;. The only singularities of the coefficients of {C;} lie on the interface
do C ID.

By the above, there is a Green operator G'p for P whose restriction to the
smooth part of DU ID" is Gp(*pg,u) = (t(u),n(g)), ds, where ds is the area
form of (D' \ D) and

p—1
tu) = @ Bju,
J=0
p—1 .
n(g) = @*FJCJ *F g,
=0

for w € C*°(FE) and g € C*(F'). Moreover, g and *p, are sesquilinear bundle
isomorphisms F' — [ and F; — F7 induced by the Hermitian metrics on ¥
and [}, respectively.
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Recall that H*Y(D, E) stands for the weighted Sobolev space of sections of
E over D of smoothness s and weight v, both s and 7 being real numbers. For
s € Zy, it coincides with the completion of the > sections of F vanishing
near do, with respect to the norm

1/2

oo = | [ 37 distCa 0D Do s
D

|| <s

We denote by HS_%”_%(QD, E) the space consisting of the traces of func-
tions u € H*7(D, E) on the smooth part of 9D. As usual, we endow this space
by the quotient norm; an inner description is available, too.

In his edge calculus, Schulze [Sch98] uses another scale of weighted Sobolev
spaces, denoted by W*7(D, E). While H*7(D, E) and W*7(D, E) are quite
different from each other, for arbitrary s and v, they coincide on the diagonal
s =7, ie, H**(D,E) = W**(D, E) for all s € Z, (cf. Proposition 3.1.5 in
Schulze [Sch99]). This is just the case in the present paper where we deal, for
the most part, with the spaces H*?(D, F).

Lemma 4.1 Let v € R. For each v € H?(D,E) and g € H?*= (D, I),
we have

/81) (t(u),n(g))x ds = / ((Pu,g)x — (u, P*g)x) dz.

D

Proof. Indeed, if ¢ = ¢, vanishes near do, then the equality is simply a
Green formula for P (cf. [Tar95, 9.2.1]). Since

S C HuHHp_lﬁ_%(alD,E) ngHHp—l,p—v—%(asz)

/8 () ().

and

< ¢ HUHHm(D,E) HglIHHOvP—V(D,F)v

‘/ (Pu,g,), dx
D
/(u,P*gy)l,d:Jc
D

< ¢ HUHHOW(D,E) HglIHHPvP—V(D,F)v

with ¢ a constant independent of u and g¢,,, the proof is completed by a passage

to the limit in the formula for ¢, vanishing near do and approximating an
arbitrary g € H?*=(D, F).

O

Consider the following Dirichlet problem for the Laplacian A = P*P in

the domain O = D’ \ ¢ having a crack along a. Let s € Z, satisfy s > p, and
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let v € R. Given any ug € @Hs_mﬂ_%”_mﬂ_%(a(’),Fj), find a v € H*7(O, F)
such that
{ Au = 0 in O,
t

(u) = wuy on 00. (4.1)

Since {Bj}f;é is a Dirichlet system of order (p — 1), we may solve (4.1)
first in the class of weighted Sobolev spaces, thus reducing the problem to that
of finding a @ € H>Y(O, F) satisfying Aa = f in O and t(a) = 0 on 90, for
given f € H*=*7=2 (0O, F). The advantage of using this reduction lies in the
fact that the latter problem can be posed as a variational one. Namely, given
any f € H?P7=2(O, E), v > p, find a u € H*7(O, E) such that ¢(4) = 0 on
00 and

/O(Pﬁ,Pv)xd:z;:/O(f,v)xdx (4.2)

for all v € H*Y(O, F) satisfying t(v) = 0 on dO. Note that the restriction
v > p is necessary because otherwise the pairings in (4.2) are not defined.

If s = v = p, then (4.2) is uniquely solvable for all f € H™»7?(O, F).
Indeed, denote by H the subspace of H??(O, F) consisting of all u satisfying
t(u) = 0 on JO. The sesqui-linear form (u,v)y = [, (Pu, Pv), dz is easily
seen to define a scalar product on H. Moreover, the norm u +— /(u,u)g on
H is equivalent to that induced by H??(O, E), hence H is Hilbert. For every
f € H™P7?(O, E), the functional v — [, (f,v), dx is continuous on H. By
the Riesz theorem, this functional can be written in the form (4.2) with some
u € H, as desired.

That we have chosen s = p is not important at all, for the Dirichlet problem
meets the Lopatinskii condition on the smooth part of dO. However, the
exponent v = p is of exceptional character. More precisely, the following is
true.

Lemma 4.2 There is a closed set ¥ C R with the property that, if v & ¥,
then the Dirichlet problem (4.1) has a unique solution w € H*7V(O, F), for each
data ug € @Hs_mﬂ_%”_mﬂ_%(a(’), F;). Moreover, p & 3.

Proof. Indeed, (4.1) is an elliptic boundary value problem in the domain D’
with a crack along the smooth surface o. It can be treated in the framework
of analysis on manifolds with boundary and edges of codimension 1 on the
boundary (cf. Nazarov and Plamenevskii [NP91], Schulze [Sch92], Duduchava
and Wendland [DW95], Rabinovich, Schulze and Tarkhanov [RST98], etc.).
Either of these calculi is applicable. The fact that p € X is a consequence
of the formal selfadjointness of the Dirichlet problem (see Sections 6.1.3 and
8.4.2 in [NPI1]).

O
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In particular, we are able to invoke the classical scheme of constructing the
Green function of an elliptic boundary value problem by improving a two-sided
fundamental solution, the domain being O = D'\ &.

Proposition 4.3 Suppose 1 & 3. Then, there exvists a Green function
G(x,y) of problem (4.1), i.e., a two-sided fundamental solution of A in O,
such that

1) G extends to a smooth matriz-valued function away from the diagonal
in (D'\ do) x (D'\ Jo), the smoothness near o x o being understood
sidewise;

2) t(G(-,y)) =0 on D' Uo, for each y € O, the operator t acting in the
variable x.

Proof. It is easy to verify that, given any fixed y € O, the function
up =t (G(-,y)) belongs to @Hmvw—mﬂ—%(ap’u@ F;@ Ey) for all v < 1. Denote
by R(-,y) the unique solution of problem (4.1) corresponding to this ug. Then
G(x,y) = G(x,y) — R(x,y) bears all the desired properties.

O

If multiplied by an excision function of y, the Green function G(-, y) actually
belongs to H*?(O,FE © Ey), for each y € O, as is seen from the proof of
Proposition 4.3. For more details we refer the reader to Section 6 of [NPI1,
Ch. 8].

When compared to the explicit formula (3.4), the proof highlights the struc-
ture of G. Indeed, G can be constructed within the pseudodifferential calculus
on O developed in Schulze [Sch98], where O is thought of as a manifold with
edge do on the boundary. Thus, G inherits the structure of operators in this
calculus, cf. Section 3.4 ibid..

Remark 4.4 Since the problem (4.1) is formally selfadjoint, the Green
function G actually satisfies G(x,y)* = G(y,x) on O x O. However, we will
not use this symmetry.

5 Adjoint operator

Let Sa(D'\ D) be the set of all solutions to the equation Au = 0 in D'\ D,
such that v has finite order of growth near 90" and ¢(u) = 0 on 9D'.

Using Lemma 4.2 for D' \ D instead of D'\ &, we obtain readily a linear
isomorphism

HPY(D'\ D, E)N Sa(D'\ D) =55 @ HP="™~27~"=3(9D, F)
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given by u ~ t(u)]sp. Finally, composing the inverse ¢;' with the trace
operator

HPY(D,E) -= @ HP~™~57~™~3(9D, F})

yields a continuous linear mapping
HPY(D,E) -5 H?(D'\ D, E) N Sa(D'\ D). (5.1)

Suppose v > p. Then we have Pu € L*(D, I') and P&(u) € L*(D'\ D, E)
for each u € H?(D, F). Consider the Hermitian form

h(u,v) = /D(Pu,Pv)x d:z;—l—/D/\D(PE(u),PE(U))x dx

defined for u,v € H*Y(D, F).

Proposition 5.1 The Hermitian form h(-,-) defines a scalar product in
HP (D, E).

Proof. It suffices to prove that hA(u,u) = 0 implies v = 0 in D. To
do this, pick a v € H?Y(D, FE) with h(u,u) = 0. Then, u € Sp(D) and
E(u) € Sp(D'\ D). By the construction of &, we have t(u) = ¢(£(u)) on the
smooth part of the boundary of D. According to Theorem 1.3.3 in [Tar97]
there is a solution @ € Sp(D'\ do) such that @ = v in D and @ = E(u) in
D'\ ¢D. In particular, ¢(%t) = 0 on D'. Since the uniqueness property holds
true for the Cauchy problem in the small for the Laplacian P*P. it does so
for P. This gives @ = 0 on all of D'\ do (cf., for instance, [Tar95, 10.3.1]). In
particular, u = 0 in D, as desired.

0

Set

®(x,y) = *p Py, D) +5" G(z,y),

for (z,y) € (D'\ o) x(D'\a). Moreover, introduce the double layer and volume
potentials by

— Pau(z) = [ (H(u),n(>"10(x, )))y ds, x €D\ JD;

oD
Pof(z) = [(f,*10(x, ), dy, reD,
D
for v € H?Y(D,FE) and f € H*?(D, F). By the above, the integrals make
sense provided v > p.
Since Pau does depend only on the Cauchy data t(u) of v on 9D, the
designation Pgug still makes sense for any ug € @ Hp—mr%vp—mr%(ap, F;).
Let (Pyf)~ and (P, f)T be the restrictions of P, f to D and D'\ D, respec-
tively.
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Lemma 5.2 There exists a constant ¢ > 0 with the property that, for every
f e H (D, F), we have

[(Pe )~ 1e 0,y
1Py ) e (onD,2)

c HfHHOW—P(D,F)v
c || fllzom-v(D.F)-

VAIVAN

Proof. This follows from the boundedness of edge pseudodifferential op-
erators in the weighted Sobolev spaces, [Sch98].
O
This lemma gives us a hint that the proper choice of the weight exponent
~ should be v = p.

Lemma 5.3 For every u € H?"(D, E),

x €D,
x), v €D\D.

—

/(Pu,*_lq)(x,-))ydy—l— /(Pg(u),*—1q>(x7.))ydy _ { 28

D DA\D

Proof. Since G(z,y) differs from G(x,y) by a kernel R(x, y) which satisfies
A'(y, D)R(z,y) = 0 over O x O, it follows that

oP = GP*P
(G — R)A
= 1d

on compactly supported sections of F |p. In other words, ® is a left funda-
mental solution of P on O. By the Green formula,

[ (e ), ds
5(D\D)

» (o, veD,
_|_/D/\D (Pg(u),* (I)(xv'»ydy - { E(u)(x), €D \D.

We now make use of the fact that ¢(€(w)) = t(u) on D and t(E(u)) = 0 on
OD'. Hence we deduce that the integral over (D' \ D) on the left hand side
is equal to —Pqu(x), for all # € D'\ 9D. This latter potential can in turn be
expressed from the Green formula for u over the domain D, thus implying the
desired equality.
O
If ¥ > 1, then the elements of H*7(D, ) vanish on the boundary of o,
to which refers the weight exponent +. Denote by HE;’?(D, E) the closure in
H? (D, E) of the C* sections of £ vanishing near .
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Proposition 5.4 Suppose v € HPY'(D,E) and f € H*""P(D,F). For
each v € Hf;’]zp_w(D, E), it follows that

h(Pyf,v) = g(f,Pv)xd:Jc,
h (Pau,v) = D/{D(Pg(u),PE(v))wdx.

Proof. Indeed, if f € H?7"~?(D, F) and v € HP?’~7(D, E), then integra-
tion by parts gives

/D(f, Pv)xd:z;—/D(P*f,v)ggdx = /QD(n(f),t(v))l,ds. (5.2)

Analogously,

/D/\D(Pg(u),PE(v))xdx = — /QD(n(PE(u)),t(v))de (5.3)

for all w € H*" (D, E) and v € HP?"~7(D, E), because t(E(v)) = ¢(v) on 9D
and t(E(v)) =0 on 9D,

Fix v € H*7(D,E) and v € H?*7(D, E), and apply formula (5.2) for
f = Pu. Using (5.2) and (5.3), we get

h(u,v) = /ap (n(Pu) —n(PE(u)),t(v)), ds + /D (Au,v), dx.

Let us take f € C25,, (D, F). In this case integrating by parts shows readily
that

Pvf(:zﬁ):/D<P*f,>|<;g(:z;7.)>ydy

for all « ¢ 9D. From Proposition 4.3 we deduce that Py f is a €' section of
E over D'\ &, such that ¢ (P, f) vanishes on both o and dD’. Moreover, it
satisfies AP, f = 0 on D'\ D. Hence it follows that € (P, f)” is simply equal
to the restriction of Py f to D'\ D, for t (P, f)* =t (Pyf)” on 9D\ &. Now

we can substitute (P, f)~ for u in the formula above, to obtain

(0(P(PL)) = (PP )t(0), ds + [ (APf.0), do.

D

h(Pvf,v):/

oD
Since Py f is smooth away from ¢ in D', the jump of n(P P, f) across 0D\ o
is zero. On the other hand, this jump has nothing to do on the rest part of

the boundary of D, provided that ¢(v) = 0 on o. Thus, the first summand
on the right hand side of the last equality is equal to zero, if v varies over
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H[pg,fp—W(D7 FE). Taking into account that AP, f(x) = P*f(x) for all x € D, we
get

(P fiv) = /D(P*f,v)xdx
_ /D(f,Pv)xdx.

Since C22 (D, F) is dense in H*"?(D, F'), this formula holds for every

comp

fe HY (D F)and v € H[pg’]zp_w(D, E), as desired.
Finally, we can express the double layer potential Pgu from the Green

formula for P in D as Pgqu = u — P, Pu. Hence
h (Pau,v) = h(u,v)—h(PyPu,v)
= [ (P pe)ie

DP\D
forany u € H?"(D,u) and v € Hf;’]zp_w(D, E), as is clear from what has already
been proved. This establishes the formula.

O
Not only does Proposition 5.4 specify the adjoint operator for P under the

scalar product h(u,v), but does also show the self-adjointness of the double
layer potential.

Lemma 5.5 The mappings t_, t1 induce topological isomorphisms of Hil-
bert spaces, namely

HP(D,E)NSa(D) ~ & Hr=™=57=m=5(9D, F}),
HP(D'\D,E)NSA(D'\ D) 5 @ HP=™=30-"™=3(9D, F}).

Proof. This follows from Lemma 4.2 as is explained at the very beginning
of this section.

4

Proposition 5.6 The topologies induced in H*?(D, E) by h(-,-) and by
the original scalar product are equivalent.

Proof. Asthe mapping (5.1) is continuous, we see, for any u € H??(D, F),
that

h(u,u)

1 Pull2p,p) + "Pg(u)"i2(D’\ﬁ,F)

IA

¢ (Il iy + 1€ oo )
< (14 ) ellfma.m,
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the constants ¢ and ¢ being independent of «. Here, we use the identification
L*(D, F) = H*°(D, F') and the fact that P acts continuously from H*7(D, F)
to H*=P7=P(D, F).

Conversely, Lemmas 5.2 and 5.3 imply that

1
5 HUH%IPJ’(D,E) < [Py PuH%Ip,p(DE) + [Py PE(u)H%Ip,p(DE)

IA

¢ HPUH%?(D,F) t+c Hpg(u)Hi?(D/\ﬁ,F)
= ch(u,u),

with ¢ a constant independent of u. This completes the proof.
O
As mentioned above, Proposition 5.4 allows one to specify the adjoint op-
erator of P with respect to the scalar product h(u,v) on Hf;’f(D, FE) as the
volume potential P,.

Theorem 5.7 In the Hilbert space Hf;’f(D, E) endowed with the scalar

product h(-,-), we have |P]| <1 and P* = P.

Proof. This is an immediate consequence of Propositions 5.1, 5.4 and 5.6.

4

6 The case of constant coefficients

Note that we may use similar arguments for the case where P is a first order
elliptic homogeneous differential operator with constant coefficientsin X = R",
n > 2, and D' is taken to be the whole X. To this end, however, we need to
correct the scalar product h(-,-).

As A = P*P is a second order elliptic homogeneous differential operator
with constant coefficients, it has a fundamental solution of convolution type

6= ) = G (2L ) o= 4 G o — ) o e — 1,
where (G1(z) is a (k x k)-matrix of real analytic functions near the unit sphere
in R”, and G3(z) is a (k x k)-matrix of homogeneous polynomials of degree
2 — n. In particular, Gi3(z) =0 for n > 2.

For example, if P is the gradient operator in R”, then P*P is the —1
multiple of the Laplace operator in R™. If P is the Cauchy-Riemann system
in CV (= R?Y), then P*P is the —{ multiple of the Laplace operator in R*".
These examples extend to various matrix factorisations of the Laplace operator
in R”™.

Let K be a compact set in R”. Denote by SA(R”\K) the set of all functions
u on R™\ K with values in C*, such that
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1) Au=0in R"\ K;

2) there exists a limit limyyje u(x) = 0, for n > 2, or limjye u(z) € Cr,
for n = 2.

Let moreover Sp(R™\ K) be the closed subspace of Sa(R™\ K) consisting
of those functions Sp(R™\ K') which satisfy limj,|_e u(z) = 0.

Fix a point 2° in the domain D. Then Theorem 3.2.15 from [Tar95] implies
that every function u € SA(R” \ K) can be expanded into a Laurent series

u(z) = e(u, 2°) + Z DGz — 2°) eq(u, 2°)

aEZﬁ

in the complement of a closed ball B with centre z° and a radius R depending
on P and K. The series converges absolutely and uniformly in R™\ B, and the
coefficients ¢(u, 2°) and c¢,(u,z°) are uniquely defined. In fact, c(u,z%) = 0,
for n > 2, and ¢o(u,2%) =0, for n = 2.

Mention that the conditions at the point at infinity imposed on the elements
of SA(R” \ K) are necessary for the well-posedness of the Dirichlet problem
for A in a domain with compact complement. Thus, instead of Lemma 4.2 we
need the following one.

Lemma 6.1 Let n > 2 and v be close to 1. For each ug € HS_%”_%(U, E),
there exists a unique function u € H*V(R™\ o, E)NSA(R™\ ) satisfying u = ug
on o.

Proof. The proof is just in the same framework as that of Lemma 4.2
because the ellipticity at the point at infinity is fulfilled.
O
The lemma is still true for n = 2 if we slightly modify the formulation by
requiring u € H*Y(B \ &, F), for each ball B containing &.
Since the Dirichlet problem for A in R”\ & is elliptic, the solution u can
be represented by

u(x) = / (u,n(P *50 G(a, )T —n(P 3" G(x, -))‘)y ds,

where G(x,y) is what is usually called the Green function of the problem and
n(P*~1G(x,-))* are the limit values of n(P *~' G(z,)) on o from R"\ D and
D, respectively.

Proposition 6.2 There is a Green function G(x,y) of the Dirichlet prob-
lem for A in R™\ &, i.e., a two-sided fundamental solution of A in R™\ &,
such that
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1) G extends to a smooth matriz-valued function away from the diagonal
in (R™\ do) x (R™\ dc), the smoothness near o x o being understood
sidewise;

2) G(-,y) vanishes on o and the difference G(-,y) — G(-,y) behaves at the
point at infinity as an element of SA(R™\ &), for each y € R"\ &.

Proof. In view of Lemma 6.1, this is a very particular case of Proposi-
tion 4.3.

O

Solving the Dirichlet problem for A in R™\ D instead of R™\ 7, we get a

linear isomorphism
HY(B\D,E)NSa(R"\ D) =X H>"~3(9D, E)

by u + u |sp, where B is any ball containing D Then, composing the inverse
t_T_l with the trace operator

HY(D,E) == H*~3(dD, E)
we arrive at a continuous linear mapping
HY(D,E) -5 HY/(B\D,E)NSa(R"\ D)
(cf. (5.1)).

Theorem 6.3 The Hermitian form
u) = [ (PucPo), dy+ [ PE).PEW, dy 5 (Eec). £0)(e0)

is a scalar product on the space HY*(D, E) inducing the topology equivalent to
the original one.

Proof. This follows by the same method as in the proof Proposition 5.6.
The main ingredient thereof is Lemma 5.3 which still remains valid in the case
D' =R"

O

For v € H'(D, E), we introduce the double layer potential Pgu and, for

f € H*""YD, F), the volume potential P, f on R"\ 9D by the same formulas
as in Section 5.

Proposition 6.4 Suppose v € H'Y(D,E) and f € H*"~YD,F). For
each v € H[l’z_W(D, E), it follows that

ol

h(Pyf,v) = f(f, Pv),dz,

h(Paw,v) = 7Rn\D(P5(U)7P5(U))x d + (£(u)(20), E(v)(00)) .

Proof. The proof is similar to the proof of Proposition 5.4.
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7 Iterations

The following theorem can actually be formulated in the abstract context of
selfadjoint operators in Hilbert spaces, cf. Theorem 1.2.
Theorem 7.1 In the strong operator topology on the space ,C(Hf;’]p(D, E)),

we have

lim PY = my,
N—oo
lim (PVP)N = Ty,

N—=co
where

Vo = {ue H(D,E): PE&(u)=0in D'\ D},

Vi = {uEHf;’]p(D,E): Pu =0 in D}.

Proof. First, Theorem 5.7 implies that the integrals Pgq and Py P define
bounded selfadjoint non-negative operators in the Hilbert space Hf;’f(D, E)

with the scalar product A(-,-). Moreover, their norms do not exceed 1.
By the spectral theorem for bounded selfadjoint operators we conclude
readily that

140
Pﬁ:/ MV dI(N) (7.1)
0—

where ([()‘))0931 is a resolution of the identity in the Hilbert space Hf;’f(D, E)

corresponding to the selfadjoint operator 0 < Py < [ (see, for instance, Sec-
tions 5, 6 in [Yos65, Ch. XI]).
Passing to the limit in (7.1) yields

lim Py = I(1+0)— I(1-0),
N—oo

the operator on the right side being an orthogonal projection of Hf;’f(D, E)
onto a (closed) subspace V(1). Obviously,

([ — Pdl) }Vl{ﬂmpﬁu =0

for all u € H[pg’f(D, E), ie., V(1) C ker (I — Pai). Finally, if u € ker (I — Pa)
then

u = Pgu+ ([ — Pdl)u
= Pau

= Piu,
for every N > 0. Hence it follows that

uw= lim PNu
dl *»
N—=co
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and so V(1) = ker (I — Pa) whence
. N _
Nh_l& Pi = Tkerp, P-
Arguing in the same way we obtain

lim (PVP)N = TMker Pgq; -
N—o0

Now Proposition 5.4 implies that the null-space of P, P in Hf;’f(D, E) co-
incides with Hf;’f(D, E)YNSp(D).

Finally, Proposition 5.4 and Lemma 5.3, if combined with the Green for-
mula for P, imply that Pgu = 0 if and only if PE(u) =0 in D'\ D.

O

Recall that the operator P bears the uniqueness property for the Cauchy
problem in the small on X. Hence, if the boundary of D is connected,
Theorem 10.3.5 of [Tar95] implies that Vg coincides with the space of all
u € HPP(D, F) such that ¢t(u) =0 on 9D.

On the other hand, if & # (J, then the uniqueness theorem for P gives
Vi =0.

Corollary 7.2 In the strong operator topology of the space ,C(Hf;’]p(D, E)),
we have

_ . N v
1_£g%+;mﬁﬂ (7.2)
[::&EJRHN+Z;RPYRH (7.3)

Proof. Indeed, the Green formula Py + P, P = I in D implies
N-1
I = Pa+) PaP.P
v=0 N4
= (PVP)N + Z (PyP)” Pa,
v=0

for every N € N. Now using Theorem 7.1 we can pass to the limit for N — oo,
thus obtaining (7.3) and (7.2).
O
For applications to the Cauchy problem for solutions of Pu = 0 in D with
data on o, we also need the following result.

Corollary 7.3 Suppose o # (). Then, in the strong operator topology of
L(L*(D, F)), we have

I = Tker Py + ZP,Pcll/l,PV

v=0
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Proof. Arguing as in the proof of Corollary 7.2, with Theorem 7.1 replaced
by an abstract Theorem 2.2 of [Sh199], we obtain

1 = lim (I-PP) +;1 PP,)

= TMkerPP, T Z (I — PPy)" PPy,
v=0
I being the identity operator on L*(D, F).

Assume that f € L*(D,F) and PP,f =0 in D. As t(Pyf) = 0 on o, it
follows, by the uniqueness property for the Cauchy problem in the small, that
P.f = 0in D. Consequently, the kernel of PP, on L*(D, F') coincides with
that of Py.

To complete the proof, it suffices to observe that

(I — PP,)'PP, = P(I—P,P)P,
= PPy Py,

for any v € Z,, which establishes the formula.

8 Cauchy problem

Consider the following Cauchy problem, for the operator P and the Dirichlet
system {Bj}f;é Given f € L*(D, F') and uy € GHP™ M= 3P = 2( , ), find
a section u € H?P(D, F) satisfying

{ Pu=f in D, (8.1)

t(u) = ug on o.

This problem is well-known to be ill-posed unless ¢ = dD. Using Corol-
lary 7.2 we obtain easily approximate solutions to the problem. To this end,
set

Patg () = —/ (wo, n(*7"®(x, )))y ds, x€0D. (8.2)

[

Note that the integral on the right hand side of formula (8.2) is well-defined
because of the properties of ®(x,-) and wuy.

Theorem 8.1 The problem (8.1) has at most one solution. It is solvable
if and only if f L ker Py and the series

U = ,Pd]uO + Z ,Pdl f P,Pdluo) (83)

v=0
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converges in H?P(D, E). Moreover, the series, if converges, is the solution to
this problem.

Proof. For the uniqueness theorem for solutions of (8.1) we refer the reader
to [Tar95, 10.3.1].

Lemma 4.2 and Proposition 4.3 imply that the potential Pgug belongs
to H?P(D, E) N Sa(D) and satisfies ¢(Paug) = ug on o. Thus, by setting
u = Paug + @ we reduce the problem (8.1) to the problem of finding a function
o € H?P(D, F) such that

{tpa = f in D, (8.4)

() =0 on o,

where f = f — PPqug. It is a simple matter to see, by Theorem 5.7, that
f L ker P, if and only if f L ker P,.

Let the problem (8.4) be solvable. Then f L kerP,. Moreover, equality
(7.2) implies that the series u = >"°" P}, P, [ converges and gives a solution
to this problem. Therefore, the problem (8.1) is solvable, too, and its solution
is presented by (8.3).

Conversely, let f L ker P, and the series (8.3) converge in H??(D, F).
Then Corollary 7.3 implies that

Pi = Y PPyP.f
v=0

fN - 7Tker77vf~
=/
as desired. O
The theorem gains in interest if we realise that the null-space of Py con-
sists of all ¢ € L*(D, F) satisfying P*¢ = 0 in D and n(g) = 0 on 9D (cf.
Lemma 10.2.20 in [Tar95]). Hence, f L kerP, implies, in particular, that
Py f =0, for each differential operator P, over D satisfying Pi P = 0.

9 Zaremba problem

Consider the following generalised Zaremba problem. Given f € H™"~?(D, F)
and X X

uy € ©HPT TP (0, F),

w € & H P (9D 5, F),
find a section u € H??(D, F') such that

Au = f in D,
tHu) = ug on o, (9.1)
n(Pu) = uy on dD\o.
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It is worth pointing out that the trace of n(Pu) on 0D\ ¢ is not defined for
any u € H??(D, F), for the order of no P is 2p—1. To cope with this, a familiar
way is to assign an operator L with a dense domain Dom L — H??(D, E) to
(9.1), such that both ¢(u) and n(Pu) are well-defined for all « € Dom L. More
precisely, Dom L is defined to be the completion of Cfgmp(@ \ do, E) with
respect to the graph norm of v — (u,t(u),n(Pu)) in H*?(D,E) & D & N,
where X X

D = GHrTEPT™ (0, Fy),
N = @H rtmts—rtmtz(9D\ 5, F)).

For more details, see Roitberg [Roi96] and elsewhere. Then, (9.1) defines a con-
tinuous operator Dom L. — H™*7?(D, )& D &N by Lu = (Au, t(u), n(Pu)).

If P is the gradient operator in R", then (9.1) is just the classical Zaremba
problem in D.

As the Dirichlet problem is elliptic, it is easy to reduce the mixed problem
(9.1) to that with wg = 0. To this end, set u = Pgug + @, the integral Pauo
being given by (8.2). Then the data in (9.1) transform to f=fand G =0,
iy = uy — n (PPauo).

The advantage of studying the problem (9.1) with ug = 0 lies in the fact
that it can be thought of in the following variational sense. For any f and w,

as above, find a u € H[pg’]p(D, E) such that

Pu, Pv)_dx = v) dr + uy, t(v)) ds .
/D (P, Po), /D (f>0)s /az) (w1, 1(v)). (92
for all v € Hf;’f(D, E).

For Zaremba data f and wu;, we introduce the simple layer and volume
potentials by

Paur (x) = [ (ua,t(+7'G(x,-))), ds, € D;
OP\e (9.3)
Gl o) = [+, )), dy, ¢ eD,

where yp is the characteristic function of D.

Recall, cf. Remark 4.4, that ¢(*+7'G(z,-)) vanishes on o, for each fixed
x € D'\ 7, hence the first integral in (9.3) is actually over all of 9D.

Theorem 9.1 If ¢ # (), then the problem (9.1) has no more than one
solution. It is solvable if and only if the series

u = Paiug + i PG (xpf) + Pa(ur — n(P Pauo))) (9.4)

v=0

converges in H??(D, E). Moreover, the series, when converges, is the solution
to this problem.
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Proof. The uniqueness theorem for the problem (9.1) follows from the
variational setting (9.2) immediately. Indeed, let u € Hf;’f(D, E) be any solu-

tion of the problem corresponding to the zero data. Then fD(Pu, Pv)ydx =0

for all v € Hf;’f(D, E). In particular, substituting v = u we conclude that
u € H[pg’]p(D, EYNSp(D). Since P bears the uniqueness property for the Cauchy

problem in the small on X we see that u = 0, which is our claim.
Since t(x7'G(x,-)) = 0 on o, for each € D, it follows from the Green
formula for P that

Py Pu= G (xpAu) + Pan(Pu)

for all w € H??(D, E). Hence, formula (7.2) shows that any solution @ to the
problem (9.1) with @y = 0 can be presented by the formula

o0

Z G(xpf)+ Paty). (9.5)

v=0

It follows that any solution to the general problem (9.1) can be written by
formula (9.4).

Conversely, let the series (9.4) converge to a function v € HP?(D, F).
Then the series (9.5) converges, too, to the function @ = u — Pyue lying in
Hf;’f(D, E). Since

Py Pu = ([—Pdl)N
= Zpdl (xpf) + Pat) Zpdl (xpf)+ Patiy)

= (XDf) + psl Uy,

we conclude that

/ (Pu, Pv) dx = h(Py Pu,v)
D
- h(g (XDf) —I',]Dslalvv)

for any v € Hf;’f(D, E), the first equality being due to Proposition 5.4.
Set U = G (xpf) + Pa 1. Using the fact that G(x,y) is a two-sided funda-

mental solution for A in D'\ &, we get

AUT =,
E(WU-) = U+,

where U~ and U+ stand for the restrictions of U/ to D and D'\ D, respectively.
Therefore, if v is a '™ section of E vanishing in a neighbourhood of &, we
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have
/D(Pﬂ,Pv)l,d:Jc = /D(f,v)l,d:li—l—/m) (n(PU_)—n(PE(U‘)),t(v))ggdS
_ /D(f,v)l,dx—l—/m) (n(PU") — n(PU*),1(v)). ds.

By a jump theorem for the simple layer potential (cf. Theorem 10.1.5 of
[Tar95]), the difference n(PU~) —n(PUT) is equal to @; on 9D\ . Therefore,

/D(Pﬂ,Pv)xd:z;:/D(f,v)xdx—l-/QD (U1,t(v)), ds,

which gives (9.2) if combined with the fact that the functions v € C2 (X, F)
vanishing near & are dense in Hf;’f(D, E). Thus, the problem (9.1) is solvable,
which completes the proof.

O

Were the problem (9.1) first reduced to the particular case corresponding
to f = 0 and up = 0, we would obtain yet another formula for approximate
solutions of this problem.

Theorem 9.1 just amounts to saying that the operator L. bears the following
two properties: 1) L is injective, and 2) (f,ug,u1) € Ran L is equivalent to
the convergence of the series (9.4) in H??(D, F). Moreover, since the Zaremba
problem is formally selfadjoint with respect to the Green formula for A, it

follows that the range of L is dense in H=»7?(D, E) & © & MN.

Remark 9.2 [f(9.1) is Fredholm, the series (9.4) converges in H*?(D, E),
for each data (f,ug,uy).

10 Examples

Example 10.1 Let o coincide with a connected component of 9D. Then, o
is a U closed hypersurface in D’. In this case the analysis above is carried out
in the framework of usual (non-weighted) Sobolev spaces on X. For simplicity,
we assume that o divides D' into two domains D] and D}. Write Gi(x,y) and
Ga(x,y) for the Green functions of the Dirichlet problem for A in D} and Dj,
respectively. Set

[ Giley) i (e.y) €Dy x DY
G(z,y) = { Go(z,y) if (x,y) € Dé X Di,

then G(x,y), if extended by zero to the whole product (D' \ o) x (D' \ o), is
easily seen to be the Green function of the Dirichlet problem for A in D'\ o.
On the other hand, the domain D belongs either to D] or to D). Since the
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potentials Pq;, Pq and G(xp-) depend only on the restriction of G(x,y) to
D x D, it suffices to make use either of Gi(x,y) or of Gz(x,y) to define all the
potentials. In particular, if 0 = 9D, then we recover the results of Nacinovich
and Shlapunov [NS96].

0

Example 10.2 Let P be the gradient operator in R”. Then —P*P is the
Laplace operator in R™. Denote by G/(z) the standard fundamental solution
of convolution type for —P*P, i.e.,

~f (1/27) log || if n=2;
—Gl2) = { 0102 = mon) [ if > 2

o, being the area of the unit sphere in R”. If D' = R”, n > 2, and o is the
sphere B(0, R) in R”, then the reflection principle yields a Green function of
the Dirichlet problem in either of the domains B(0, R) and R™\ B(0, R) in the

form

G(z,y) = Glz—y)— (R/|z)" G ((R/|z])’z —y)
= Glz—y)— (R/ly))" G (x = (R/ly)*y).

the symmetry being easily verified. Taking By = 1 we have n(Pu) = (9/dn)u,
the derivative of v along the outward normal vector to the boundary. Thus, if
D is a domain in R™, such that dB(0, R) is a component of the boundary of

D, then
—Paw(x) = f(@/@n) (z,)uds,

Pof(z) = gi (0/0y;) G(x,-) f;dy,
)

—_

J=

for x € R™\ 0D, where u € H (D) and f € L*(D,C").
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