AN EXCERPT FROM THE INTRODUCTION

Theoretical physics, especially quantum mechanics, has always both
supplied ideas to and used the results of the theory of differential equa-
tions. As a product of the interaction between the two disciplines,
there arose a new and very productive science, known as mathematical
physics. Not only has its development led to new results in the nat-
ural sciences, but it has also given an impetus for new ideas in other
mathematical fields, such as representation theory, algebraic topology,
and differential geometry. Unfortunately, in the last decades the theory
of differential equations has moved ever farther away from its physical
origins. This is already obvious from the names of mathematical dis-
ciplines taught in high school. The traditional course of equations of
mathematical physics changed its name to “partial differential equa-
tions,” and apart from rather isolated derivation of the heat equation
and the equation for the motion of a vibrating string, physically mean-
ingful examples are often missed in such courses.

The present book gives a new systematic mathematically rigorous
exposition of methods for studying linear partial differential equations
on the basis of quantization of appropriate objects in phase space. The
quantization of all three types of classical objects (states, observables,
and canonical transformations) is carried out in a unified way, by means
of a special integral transform. The book covers a wide variety of re-
sults, both old and new, and treats them all within a unified framework.

We also consider a number of applications. The microlocal classifica-
tion of differential equations is described. Some problems of mechanics
and theoretical physics are considered, e.g., the propagation of electro-
magnetic waves in plasma. The relationship between the quantization
of contact structures and the index theory for elliptic pseudodifferential
operators and Fourier integral operators is also discussed. In addition,
the quantization of symplectics structures is applied to the proof of var-
ious generalizations of the Atiyah—Bott—Lefschetz fixed point theorem
that are important in studying the topology of manifolds.

The exposition moves gradually from the simple to the complex.
Numerous examples are included to help the reader understand the
material.



The book is intended for a wide readership, including undergradu-
ates, graduate students, and scientists specializing in differential equa-
tions, applied mathematics, mathematical and theoretical physics, and
differential geometry and topology.
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The applications of quantization methods in the theory of differential
equations are based on the following “experimental fact,” known as the
correspondence principle in quantum mechanics:

As Planck’s constant h tends to zero, the quantum-mechanical
description passes into the classical description of the same
physical system.

Of course, we have to explain what the relation 2 — 0 means when
h is supposedly Planck’s constant. This can be understood as follows.
When considering some physical system, we can use various scales (or
units of measure). As we gradually pass from “micro” units, well suited
to describe quantum phenomena, to “macro” units, suitable for classical
phenomena, the numerical value of h expressed in the corresponding
units tends to zero. At the same time, the quantum nature of the
system becomes less and less apparent, and we continuously pass from
the quantum to the classical description.

The power of the correspondence principle is not actually restricted
to quantum mechanics; it turns out that whenever we deal with phe-
nomena described by linear differential equations, the behavior of solu-
tions is largely determined by an appropriately constructed “classical
mechanics.”

Eventually, the correspondence principle, and, accordingly, quanti-
zation (more precisely, semiclassical, or asymptotic quantization, which
is only dealt with in this book) penetrates throughout the theory of dif-
ferential equations, and in this book we show how the unified quantiza-
tion-based approach helps one solve various problems related to linear
differential equations.

With this objective in mind, in the first chapter we deal with asymp-
totic quantization in Euclidean phase space, which corresponds to the
simplest physical model. Namely, here we describe an integral trans-
form that provides a unified quantization procedure for all objects of
classical mechanics: states, observables, and transformations. This
transform has quite a long history. It was originally introduced in 1961
by V. Bargmann [1] as a transform relating the harmonic oscillator
representation of the creation-annihilation operators to the Fock repre-
sentation by operators acting on holomorphic functions. The Bargmann
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transform enjoys numerous applications in representation theory as well
as mathematical physics. Later, many authors reintroduced or redis-
covered this transform in various contexts, sometimes in a slightly dif-
ferent or a more general form. Let us indicate some of these results.
In 1978 Cordoba and Fefferman [5] defined a wave packet transform
on smooth manifolds and used it to give an alternative construction
of Fourier integral operators; their construction was closely followed
in 1989 by Karasev [7] in his “global description” of Maslov’s canoni-
cal operator. In 1975-6, Bros and lagolnitzer [4] introduced what was
later called the Fourier—Bros—lagolnitzer (FBI) transformation and de-
veloped and generalized to general (nonquadratic) phase functions by
Sjostrand [16] (see also [3], [10], and [17]). The FBI transformation is
used in the context of analytic wave front, microsupport, and related
topics; some details and applications, as well as further references, can
be found, e.g., in [6], [9], [12], and [11]. In the framework of a unified
quantization procedure, this transform was considered by Sternin and
Shatalov in [19], [18] (where it was termed the Fourier-Gauss trans-
form), and by Nazaikinskii and Sternin in [15]. Here we develop the
approach adopted in the last three papers. Of the numerous names as-
signed to Bargmann type transforms since 1961, we prefer “wave packet
transform”. Indeed, in our approach the transform arises from quanti-
zation of states, which gives wave packets as ¢-functions of minimum
uncertainty.

1.1 Classical and Quantum Descriptions
of a Physical System

Suppose that we intend to describe a physical system. Regardless of
whether our description will be classical or quantum, it must necessar-
ily contain certain basic elements. Indeed, at each instant of time the
system resides in some state, and so we must explain how states are
described and what the overall supply of states is—that is, we must
define what is called the state space. Next, all our knowledge about a
specific system comes from observation, or measurement. So we must
explain what and how can be measured and how the measurement re-
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sults can be interpreted. Thus, we arrive at the notion of an observable.
Our system develops in time, and so we must explain how to specify
the dynamics (the evolution law) of states and how to describe it in
terms of states themselves and in terms of what can be measured, i.e.
observables. Last, but not least, we must indicate admissible trans-
formations of our objects, i.e., transformations that do not affect the
form of the model and hence provide equivalent representations of the
same physical system. (Note that the dynamic flow specified by the
evolution law will then give particular cases of such transformations.)

Summarizing, we see that any description of a physical system must
necessarily include the following elements:

1. States;
2. Observables;
3. Dynamics (evolution law);

4. Transformations.

Now let us see how all these elements are described in the framework
of classical and quantum mechanics.

By way of example, we consider the simplest physical system S with
n degrees of freedom and flat configuration space R". If n = 3k, this
may be a system of k particles, possibly interacting and acted upon by
an external field; points © € R”™ represent the coordinates of particles
in three-dimensional space: ¥ = (¥, ¥, ..., k), 4; € R?, j =1, ..., k.

1.1.1 Classical mechanics

The phase space. According to the principles of classical Newtonian
mechanics, the state of such a system will be uniquely determined if
we specify the position vector and the momentum of each of the par-
ticles. Thus, every state s of S is depicted by some point (¢, p) € R**,
where ¢ = (q1,...,¢,) is the vector of coordinates of all particles’ and

Essentially, ¢ denotes the same object as  above; however, we shall see later
on that using distinct letters for the coordinate variables in the configuration space
and the phase space is convenient.
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p = (p1, ..., pn) is the vector of the corresponding momenta. The space
R = Rgzj is called the phase space of the system S.

For a more complicated physical system, whose configuration space is some
manifold M, the phase space is the cotangent bundle 7™M . This case will be dis-

cussed in the forthcoming chapters; here we only deal with the simplest situation.

Observables. Now let f be an observable in the system S. In classical
mechanics, observables are functions of state: once the system is in a
given state s, the measurement of f will invariably give the same value.
If s is represented® by a point (g,p), then we denote this value by
f(g,p). Thus an observable is none other than a function f : R** — R
(there is of course no law against considering, say, complex-valued or
matrix observables, etc.). The simplest observables are the coordinates
q and the momenta p themselves; they are represented by the functions

flg,p) = g and f(q,p) = p, respectively.

The evolution law. One of the most important observables is the
energy h, represented in classical mechanics by a function H(q, p), also
referred to as the Hamiltonian of the system. The system dynamics
is uniquely determined by the Hamiltonian. Namely, the evolution of
the phase point (¢, p) is described by the Hamilton system of ordinary
differential equations

q=Hy(q,p),  p=—Hyqp). (1.1)

(the dot stands for the derivative with respect to time).
Accordingly, the value of any observable evolves in time according
to the equation®

/

SN

f(Q(t)vp(t)) =plrtdafy =Hpfy — Hyfp (1'2)

2In what follows we sometimes do not distinguish between objects and their
representatives in a model provided this cannot lead to a misunderstanding.

3In expressions like those on the right-hand in (1.2), summation from 1 to n is
assumed: H,f, = Z;zl Hy . fq;, ete.
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The right-hand side of (1.2) is denoted by {H, f} and is called the
Poisson bracket of H and f. Thus, f satisfies the Liouville equation

f={H,f}. (1.3)

Under appropriate assumptions on the Hamiltonian, system (1.1) de-
termines a one-parameter group

g : R*™ — R*™ (1.4)

of diffeomorphisms of the state space. Moreover, these diffeomorphisms
are canonical, that is, they prefer the symplectic 2-form w* = dpAdq =
2= dpj N dg;:

giw? =t (1.5)

Transformations. [t is also useful to consider general transforma-
tions ¢ satisfying (1.5). They preserve the form of the Hamilton sys-
tem (1.1) and the Liouville equation (1.3) (the Hamiltonian itself is, of
course, transformed according to the law H +— ¢*H), and so they can
be viewed just as admissible coordinate transformations of the state
space R*" of classical mechanics.

1.1.2 Quantum mechanics

First, let us recall some general principles of quantum mechanics with-
out referring to the specific nature of the system S.

The state space. In quantum mechanics, the states of S are de-
scribed by elements ¢ € H of a Hilbert space H, called the state space
of the system. More precisely, the elements ¢ corresponding to states
have unit norm, |[¢/|] = 1, and any two elements ¢, ¢ differing by a
unimodular complex factor, 1 = @e'®, correspond to the same state.
(Putting this other way round, we can say that the set of states of a
system in quantum mechanics is the projective space P(H).) The inner
product on H will be denoted by (-,-). We adopt the convention, usual
in quantum mechanics, that the inner product is linear in the second
argument and antilinear in the first argument.
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Observables. Observables are not functions of state in quantum me-
chanics: the measurement of an observable in some state is not uniquely
determined by the state but can produce different values obeying some
probability distribution law. Specifically, any observable f is repre-
sented by a linear (in general, unbounded) operator

f:?—[—>7-[

in the state space; for physically meaningful observables, this operator
is usually self-adjoint. This operator is related to measurements as fol-
lows. Any measurement of f yields some number A belonging to the

o~

spectrum o(f). For simplicity, let us consider the case in which the
spectrum is discrete, o(f) = {Ar},—,. Let {¢1}32, be the correspond-
ing orthonormal basis of eigenfunctions of f. Then the probability of

obtaining the value A; when measuring f in a state ¢ is given by

Py(d =) = |(vn, )" (1.6)

This is none other than the squared absolute value of the kth coefficient
in the expansion of ¢ with respect to the basis {tx}. Since ||| = 1, we
see that these probabilities sum to 1, and moreover, the expectation of
the value produced by the measurement of f in a state ¢ (also referred
to as the expectation of f) is given by

7= i_o: AP (A = X)) = (@b,i(mw»m) = (¥, [9). (1.7)

When the spectrum of f is not purely discrete, the above formulas undergo
obvious modifications: sums are supplemented by integrals over the continuous
spectrum, where instead of probabilities we have probability measures like 1y, ()\) =
|(¢A7 L/)) |2 dX, where 1)) is the “generalized eigenfunction” corresponding to a point
A of the continuous spectrum.

Since the expectations are the only entities that can be measured,
this explains why vectors ¢, ¥y differing by a unimodular complex factor
describe the same state: the factor does not affect the value of the
expectation (1.7).
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Mixed states and the density matrix. The above quantum-me-
chanical description of states of the physical system S by vectors of the
Hilbert space H is perfectly valid if the system is closed or at least if
the environment is purely classical (say, if S is a system of interacting
quantum particles in a classical field). If, however, S is part of a larger
system S; whose remaining part also displays quantum properties, then
the situation is different. A simple analysis shows that if we wish to
describe the states of S in terms of ‘H, then we have to admit states more
complicated than those described by separate elements of H. Indeed, let
S1 =SUT, where T is another system, whose quantum state space will
be denoted by G. Then the quantum state space of S; is Hi = H® G,
where @ stands for the tensor product of Hilbert spaces. Now suppose
that the system S, is in a state y € H;. By the definition of the tensor
product, we have

X=2a;0;@¢;, o;€C, eH, ¢ eqG, |l =gl =1,

where the sum may be infinite. We can assume without loss of gener-
ality that the ¢; form an orthonormal system. Then

> ==

Let ]? be a quantum observable in the system S. The expectation of f
can be calculated as follows:

? = (folx)= (Za1¢y®¢yaf®1zak¢k®¢k)
= Za;ak Gis ) (b5, 00) = S oy [2(45, Tiby). (1.8)

By comparing (1.8) with (1.7), we arrive at the following interpretation
of the expectation (1.8): our system is in the state ¢; with probability
lai|?, in the state 1, with probability |as|?, and so on. Such com-
plicated states are referred to as mizved states, in contrast with pure
states, described by elements of H. To describe mixed states more
conveniently, note that Eq. (1.8) can be rewritten in the form

= ~

T = trace(p]).
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where
p=2_lagl"ei(¥y,) (1.9)
is an operator in H, which is called the density matriz corresponding

to our mixed state. Density matrices are characterized by the following
properties.

1. p=p* >0, that is, p is self-adjoint and nonnegative;
2. tracep = 1.

In the sequel we shall sometimes use the description of states via the
density matrix. However, we almost invariably deal with pure states.
We can readily see that the density matrix corresponding to a pure
state b € ‘H 1s the rank one orthogonal projection

p=Py =0, (1.10)

on the subspace generated by .

The evolution law. Just as in classical mechanics, the evolution
of the system in quantum mechanics is determined by a distinguished
observable, the energy h. Here it is represented by the energy operator
(Hamiltonian) H. The state 1 = iy evolves in time according to the
Schrodinger equation

iy = Hy, (1.11)
where h is Planck’s constant. The solution of (1.11) is given by

Uy = Ustho, (1.12)

where

U, = ¢ #Ht (1.13)

is the one-parameter group of unitary operators generated by H.

We recall that the wave function ¢ itself cannot be measured; only
expectations (1.7) can be observed. Let us calculate the expectation of
an observable ]? in the state ¥;. We have

(e, Fo) = (Ustbo, FUb0) = (o, U FUG) = (o, fitbo),
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where

fe=UTFU, (1.14)

satisfies the Heisenberg equation

df
dt

(Here [f-[\, f] = Hf— fH is the commutator of the operators H and f)
Thus, without changing the expectations, we can replace the Schrodin-
ger picture, in which observables are independent of time and states
evolve according to (1.12), by the Heisenberg picture, in which states
are independent of time and observables evolve according to the rule
(1.14).

Let us also write out the equation that governs the evolution of the
density matrix in the Schrodinger picture. We derive it for the density
matrix (1.10) corresponding to a pure state 1o (this is just the case in

which we shall need it). We have
pr = Upbo(Ubo, -) = UrpoU 1

by differentiating this with respect to ¢, we find that p; satisfies the
Wigner equation

—[H, f]. (1.15)

dp;
dt
Note the difference between the Wigner and the Heisenberg equation.
Although very similar in the appearance (they differ only in the sign
of the commutator), they describe two opposite points of view: the

ih="L = [H, py). (1.16)

Wigner equation shows how the density matrix (i.e. the state) evolves,
whereas the Heisenberg equation describes the evolution of observables
in the different picture where the states are “frozen.”

Transformations. Just as in classical mechanics, it is useful to con-
sider general unitary transformations U : H — H that do not neces-
sarily have the form (1.13). These transformations preserve the form
of the Schrodinger equation (1.11) and the Heisenberg equation (1. 15)
(the Hamiltonian is transformed according to the rule H— UHU- b,
and so they can be viewed as admissible transformations of the state
space ‘H of quantum mechanics.



14 CHAPTER 1. WAVE PACKET TRANSFORM

Quantum mechanics of the simplest system. Now let us proceed
to what is specific to the quantum description of our simplest physical
system S.

In this system, we have the fundamental observables q and p (the
coordinates and the momenta). Quantum mechanics postulates that
these observables must be represented by self-adjoint operators

((?7}3) = (@17 "'7@17}317 7ﬁn)

in the Hilbert state space H such that the commutation relations

[p;,pr] = G5, ax] = 0, [Piy @x] = —ihdn, gk =1,..,n, (L.17)

are valid, where d,; is the Kronecker delta. (We shall recall the moti-
vation for this later on in the discussion of quantization and the corre-
spondence principle.) Moreover, this representation must be irreducible
in the sense that there is no proper subspace of H invariant under all
the operators (g, p).

Technically, things are a bit more complicated. Relations (1.17) mean that
the 2n 4+ 1 self-adjoint operators ((?1, s Qs D1y oees Prs 1) (where 1 is the identity
operator) form a representation of a specific Lie algebra, known as the Heisenberg
algebra and denoted by h,. The Heisenberg algebra is the real Lie algebra with
2n + 1 basis elements €1, ..., €,, f1, ..., [n, € with the Lie brackets

lejed] = [fis il = [, 8] = 15,61 =0, [fj,e] = o, (1.18)
7.k = 1,...n.

The term “representation” means that there is a mapping of h,, into the set of

self-adjoint operators on H such that

e]'_>§j7 fj = ﬁjv 5'_>h7 and
(Lie bracket) —— —ih x (commutator)

(the factor —2/ has been introduced for convenience, so that all operators in the
representation be self-adjoint rather than skew-self-adjoint and Planck’s constant i
occur in convenient places in all formulas.) However, since the representation oper-
ators are unbounded, we must take extreme care with their domains. The standard
way of handling this difficulty is to assume, as is customary in representation the-

ory of Lie algebras and Lie groups, that our representation of the Lie algebra h,
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comes from an irreducible unitary representation of the corresponding Lie group
H,,, which is called the Heisenberg group. Further details can be found in standard
textbooks on Lie groups and representation theory.

The celebrated Stone—von Neumann theorem says that these condi-
tions uniquely determine the representation up to a unitary equivalence
(an isometric isomorphism). The standard coordinate representation
is the one in which the state space H is just L?(R%), where R” is the
configuration space of the system, and the operators p, ¢ have the form

g = x (the operator of multiplication); (1.19)
d

p = —ith—. 1.20

p tho (1.20)

Thus, the states are represented by square integrable functions ¢ (x) on
the configuration space R”. The squared absolute value [¢/(x)|* has the
meaning of the probability density of the system at the point x. (If the
system is in a state ¢(x), then the probability of finding the system in
a small cube (21,21 + Axy) X - -+ X (2, 2, + Ax,,) of the configuration
space is [ (z)[*Axy ... Axz,.)

We shall study a number of other representations in Section 1.2.

1.1.3 Classical vs. quantum

For convenience, let us bring together all main elements of the classical
and quantum descriptions of the simplest physical system S. They are
shown in Table 1.1, where the first column displays classical objects
and the second contains their quantum counterparts.

1.1.4 Quantization problem and the correspon-
dence principle

So far, we have described the main elements of the classical and quan-
tum descriptions of a physical system. However, nothing has been said
as to how the classical and the quantum descriptions are related to
each other. The quantum description involves Planck’s fundamental
constant h, and one of the basic postulates of quantum mechanics is
the correspondence principle, already discussed in the beginning of this
chapter. Now we state it in the following form.
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Main objects

Classical Mechanics

Quantum Mechanics

points (g, p) of the

Elements ¢ € H

States phase space of the Hilbert state
2n __ n n _ 72 n
R = Rq fas Rp space H = L*(R?)
functions f(q,p) Linear operators
Observables on the phase space f+ H—H
(usually self-adjoint
and unbounded)
Hamilton system Schrodinger equation
for states: for states:
p=—H,, 9= H, ih = Hy
Dynamics Liouville equation Heisenberg equation
for observables for observables
. R .
j={H. f} kY = —[H.]
H is the Hamiltonian H is the energy operator
canonical transformations Unitary transformations
of the phase space: U:H—->H
Transformations g: R — R* = Ut
(p,q) = 9(p, q) [ UfU

f(p,q) = (g F)p,q) = flg(p,q))

Table 1.1: Classical and quantum objects
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As Planck’s constant h tends to zero, the solutions of quantum-
mechanical equations result in the solutions of the corre-
sponding equations of classical mechanics for the same phys-
ical system.

More precisely, the evolution of the mean values f = (;/),f;/}) of
quantum observables is described in the limit as i — 0 by the classical
equations of notion (1.3), where f and H are the classical observables
corresponding to the quantum observables ]? and 17-[\, respectively (of
course, the latter correspondence must also be described). The passage

( quantum )M( classical ) (1.21)

description description

is known as the (semi)classical limit.

Now we are faced with the following problem: Suppose that we
know the classical description of some objects related to the system
S. What can we say then about the quantum description of the same
objects? The passage

classical quantum
( description ) — ( description )

is known as quantization. The quantum description of a physical system
is much richer than the classical one, and so quantization is by no means
unique. One obvious restriction is that the quantization procedure
must be the right inverse of the semiclassical limit (by passing from
the classical description to a quantum description and then back we
obtain the original classical description). However, this requirement
alone gives us insufficient information on how to quantize. Thus we
must add some extra requirements.

Suppose that we have already constructed the quantum state space
H. (This is just the first step of the quantization procedure in the
wide sense. For our simplest model system, as the Stone-von Neumann
theorem guarantees, this step is unique). Then we must do quantization
in the narrow sense (which will be referred to as simply quantization
in what follows): to each classical observable f(q,p) we must assign
a quantum observable f . Apparently the oldest quantization recipe
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going back to the creators of quantum mechanics and incorporated by
them in the correspondence principle says that we must have

[7,49] = —ih{f.g}. (1.22)

(On the left-hand side, [-, -] is the commutator, and {-, -} on the
right-hand side is the Poisson bracket). Later Dirac indicated that
(1.22) cannot be achieved exactly for arbitrary f, g, and so the actual
requirement will be*

[f,4] = —ih{f,3} + O(h?). (1.23)

Moreover, we require that
1=1 (the identity operator in H) (1.24)

and
fi=fg+0(h). (1.25)

There is extensive literature devoted to the quantization problem
(see Bibliographic remarks in the end of the book). Here we do not con-
sider the problem in its full generality and restrict ourselves to the sim-
plest physical system. The phase space RSZ? of this system is linear, and
the space COO(RZ;) of classical observables contains the subspace h,
of linear functions, spanned by the functions {q1,...,¢u,p1,--,Pn, 1}
This subspace is just the Heisenberg Lie algebra of coordinates and
momenta with respect to the Poisson bracket:

{pisqiy =i, Api»1} =1q;, 1} = 0.

By virtue of the above description of the simplest physical system,
regardless of what quantization we take, the following must be satisfied:

1. quantization takes any element [ € h, to a self-adjoint operator

[:H — H;

2. relation (1.22) is satisfied exactly if f, ¢ € h,,.

4The exact meaning of O(h?) also needs to be further explained. This will be
done in due place.
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However, the quantization of observables that are not linear func-
tions of (p,¢) is not uniquely determined. Since a classical observable
f(p,q) is a function of the coordinates and momenta, we can try to
quantize f(p,q) by substituting p and ¢ for p and ¢, that is, by consid-

~

ering a function f(p,q) of the operators p, ¢:
f =159 (1.26)

The correct definition of functions (1.26) is the subject of noncommu-
tative analysis (see Chapter 8). In few words, we can assign a precise
meaning to the expression (1.26) by specifying the order of action of

the operators (p,q) in this expression. Various orderings are possi-
12 2 1
ble, say, the Feynman orderings f(p,q) and f(p, ¢), the Weyl ordering

1 3

13 12 2 1
/ (HTpan), the Jordan ordering %f ((ﬁ, q) + f(p, @)), and so on.

Further discussion of the quantization problem will be given in the
forthcoming sections and in Chapter 2.

1.2 Representations and Transforms

The Hilbert state space of a given physical system can be described in
many different ways. For example, the quantum-mechanical state space
‘H of the simplest system S was described in the preceding section as
L*(R?), but this is not the only possible choice. We can pass to a
different description as follows. Let H; be another Hilbert space, and
let

be an isometric isomorphism (a unitary operator). Then to each ele-
ment ¢ € H we assign the element

$:U¢EH17

and to each observable R
A:H —-H

we assign the operator
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This procedure takes ;l;/) to E;Z and moreover preserves the mean
values of observables:

(1, Ap) = (¥, BY),
so that the two descriptions are indistinguishable from the viewpoint of
an experimenter. The mapping U and the space H; are said to define
a representation of the quantum-mechanical system in question.®

If we have two representations, (U, H1) and (Us, Hz), of the same
system , then they are obviously related by a transform

U : Hl — Hz,
Namely, U is the transform such that the diagram

H, L H,

T T
H — H

commutes.

An instructive example of two different representations is given by
the Schrodinger picture and the Heisenberg picture (see (1.12) and
(1.14)). Here the operator U relating the two representations depends
on time (and hence the dynamics is described differently in the two
pictures!), and H; = H is the same (abstract) Hilbert space.

Clearly, there are many different quantum-mechanical representa-
tions of the same physical system. In practice, the construction of a
representation often does not start from the unitary operator /. One
constructs ‘H; independently and then tries to find U.

In the remaining part of this section we solely deal with quantum-
mechanical representations of the simplest system S and study the
transforms relating these representations to each other. In this study,
the following consideration will be useful for us. Suppose that we have
two representations of S in Hilbert spaces H; and Hs, and moreover, we
know the coordinate and momenta operators in both representations:

A M — He k=12

% Although this notion of a representation is in some respect close to the notion
of a representation used, say, in representation theory of groups, they must not be
confused.
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Then by the Stone—von Neumann theorem there s a unique unitary
operator

U= H1 — Hz
such that

vput = vgdut =g j=10n (128

Thus, the operator U can be found by solving Eq. (1.28).
Let us now proceed to the description of specific representations.

1.2.1 Coordinate and momentum representations
and the Fourier transform

Mixed representations. The coordinate representation. There
are various methods for obtaining representations; one of these meth-
ods is to take a set of commuting observables and reduce them to a
diagonal form in some basis of H. Then each vector ¢» € H is naturally
represented by the set of its coordinates with respect to this basis. The
coordinate and momentum representations are constructed as follows.
From the set of 2n operators

qis---9qny P15 - -5 Pns

we choose a maximal subset of pairwise commuting operators and re-
duce them to a “diagonal form.” Any such subset can be constructed
as follows: for each j = 1,...,n, we take either ¢; or p;. (Clearly, there
are 2" distinct choices.) Thus we obtain mized coordinate-momentum
representations in general. However, there are two basic cases in which
we make the same choice for all j = 1,...,n. Suppose that we have
chosen all coordinate operators. What does it mean to reduce these
operators to a diagonal form? The spectrum of each of these operators
is purely continuous and fills the entire real axis. Hence there are no
eigenvectors in the usual sense, but there are “generalized eigenvectors,”
which are numbered by points of R”. The corresponding diagonal form
is achieved in the space of square integrable functions of + € R”, where
the coordinate operators become just the multiplication operators

(Y]‘:l']‘, jzl,...,n.
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The generalized eigenfunctions are the Dirac delta functions é(x — ¢),
where ¢ is the parameter numbering the eigenfunctions and, at the same
time, the corresponding n-tuple of eigenvalues:

z;6(x —q) =qié(xr—q);, J=1,...,n.

We can find the form of the momentum operators in this representation
by solving the commutation relations (1.17):

[ﬁjvﬁk] = [@]7§k] = 07 [ﬁ]v@ﬂ] = _ih(sjkv .]7k = 17 ey 1.

With regard to the additional requirement that the p; must be self-
adjoint, we can show that

_ L 0 :
p; = _Zha—xj +®(x), 7=1,...,n, (1.29)

where the ®;(x) are real-valued functions such that

L k=1.....n. 1.30
axk ax] 2 .]7 2 7n ( )
Let S(x) be a real-valued function such that
oS .
a—%(x):q)j(x), j=1,...,n.

(The existence of S(x) follows from condition (1.30).)Then
0

—th—oe¢

al']‘

EIES

S(z) _ e%S(x) 0 (—ihi + (I)j(x)) )
Ox;

whence we see that the multiplication by e#>(®) (which is a unitary
operator in L?(R")) reduces the momentum operators to the simplest
form in which ®;(z) =0, j=1,...,n.

We see that in the representation that we have just constructed, the
state space is H = L?*(R"), and the coordinate and momenta operators
are given by

0
§=u p=—th—. 1.31
g=x, D 5 (1.31)
Thus, this is none other than the coordinate representation, mentioned
in the preceding section.
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The momentum representation and the quantum Fourier trans-
form. Equally important is the momentum representation, H = LQ(R;),
in which the momentum operators are diagonal, that is, are represented
by the multiplication operators,

P = p; (1.32)

(the corresponding generalized eigenfunctions are, of course, the delta
functions d(p — &), where ¢ is the spectral point) and the coordinate
operators are represented by differentiations,
0

= h—. 1.33

] ap] ( )
(Here we are very brief, since the argument is much the same as in the
preceding case.)

Let us derive the well-known transform relating these two rep-
resentations. Let an element ¢» € H be represented by a function
U(z) € L*(R}) and a function ¢(p) € L*(R}) in the coordinate and
momentum representations, respectively.

Then
Ip) = Pl (1.3

where

F: L*(RE) — LA(RY) (1.35)

is the desired unitary transformation. We seek F' in the form of an
integral operator,

(MZ/K@MM@M, (1.36)

where K (x,p) is the Schwartz kernel of F.
According to (1.19) and (1.32), we have

@h/[& ,p

for any ¢(x) € L*(R?) and any p € R, or, after integration by parts,

d:z;— /[&:L'p;/)( ) dx

zh/aA x)dx —p/[& (x,p)(x)de. (1.37)
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Since () is arbitrary, we see that

. OK .
Zha—x(xvp) - p[& (xvp)v

whence it follows that

[((xvp) = e—%pxa(p% pr = Zp]‘l']‘, (138)

where a(p) is so far arbitrary. (However, we must take care that our
operator must be unitary. In particular, a(p) # 0 for any p.) Thus F
has the form

[F0)(p) = alp) [ e Frmp(e) da. (1:39)
Under this transform the operator z; is represented by

o 0 dalp)
T:2ih—— —iha ' (p)——>. 1.40
It is only natural to choose a(p) = const, and then we shall have
(1.33). The specific value of the constant is determined by the normal-

.\ /2
ization condition; the choice a(p) = (2;2) / makes F' unitary. (This

is obvious, since with a(p) = const the mapping F' is just a rescaling of
the ordinary Fourier transform.) Thus

[Fél(p) = (;—h)/ [ ) da (1.41)

The transform defined by (1.41) will be called the quantum Fourier
transform. The inverse F'~! of (1.41) is given by

) = () [ i

Again, this follows from the inversion formula for the usual Fourier
transform.

1.2.2 Fock representations and Bargmann trans-
form

Now we shall describe some other representations of the same quantum-
mechanical system.
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The oscillator representation. To obtain this representation, we
again choose some set of commuting operators and find a basis in which
they all become diagonalized. Namely, let us consider the quantum
oscillator operators

o~

Loy o .
%25@%w% j=1,...,n. (1.42)

Each of these self-adjoint operators has a discrete spectrum consisting
of the eigenvalues

)\k:h<k+%), k=0,1,2,...

In the coordinate representation, the orthonormal basis of joint eigen-
functions corresponding to these eigenvalues has the form

[N

Uk k() = Chyokn Hiy (3—%) oo Hy, (:1;_\/%) e7om,  (1.43)

ki ok, =0,1,2,...,

where the H;(y), y € R', are Hermite polynomials and ¢, x, are nor-
malizing constants. The oscillator representation is the representation
in which every ¥-function is represented by the sequence of coefficients
in its generalized Fourier series expansion with respect to the basis
(1.43). Thus, the space of the oscillator representation is

Hi=0@- 0= ("""
—_———

» times

Let us find the transform
v LQ(RZ) — (l2)®”

relating the coordinate representation to the oscillator representation.
Since (1.43) is an orthonormal basis, the coefficients ag, .k, in the ex-

pansion
o0

V(r) = D hykyVhykn (T)

k1 yeenskn=0
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can be found readily:

Ak .. kpy = /Rn ¢k1...kn(x)¢(x)dx

(recall that the functions ¢y, ., are real-valued, so we omit the complex
conjugation). We conclude that W is the integral transformation with
kernel

This kernel is real-valued, and since the transformation is unitary, it
follows that the inverse transformation W~! has the same kernel (with
the roles of the arguments interchanged).

Second quantization method. The oscillator representation can
also be obtained in a completely different way, by applying the so-
called second quantization method due to V. Fock to the phase space
of classical mechanics. (In this context, the oscillator representation
is called the Fock representation.) We shall first recall this method in
its usual context, as it is applied to the Schrodinger equation. Since
we do this for clarity and motivation alone, we shall never treat the
convergence issues there (for the mathematically rigorous treatment of
second quantization in the infinite-dimensional situation, see Berezin
2)).

In fact, we deal with the simplest version of second quantization,
namely, the one that deals with the “one-particle” Schrodinger equation
(so that the many-particle system obtained by second quantization is
a system of noninteracting particles).

Let H be the state space of an “elementary” quantum-mechanical
system (for short, we refer to this system as a “particle,” even though
actually it can be rather complicated. The second quantization method
is a construction that provides a description of the ensemble of a vari-
able number of particles. Any state of the system of k particles is
described by an element of the Hilbert tensor product H; @ ... ® Hy,
where H; is the state space of the ith particle. This assertion pertains to
the case in which all particles are distinct. If all particles are identical,
then they are indistinguishable in quantum mechanics (no one can say
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which particle is the first, which is the second, and so on). Accordingly,
the state described by a vector

VeEHF =Ho...0H

k times

must be invariant under the permutation of any two particles, that is,

Hj”/} = Ajl¢7

where 11;; is the operator of permutation of the jth and /th particle and
Aj; € C. Since H?l = 1, we have )\?l =1, that is,

Nji = £1.

The case A;; = +1 corresponds to the so-called Bose statistics (which
is the only one we consider here). Hence, for bosons (Bose particles)
any k-particle state is described by an element of the symmetric tensor
power

SH(H) € H*

of the main space H. The state of the system with a variable number
of particles is described by an element of the Fock space

F=F(H) = ;é SHH)  (SU(H) = C),

where the infinite orthogonal sum of Hilbert spaces is naturally under-
stood as the completion of the algebraic direct sum with respect to
the corresponding norm. Note that H itself is embedded in F(H) in a
natural way as S'(H).

A natural orthonormal basis in F(H) can be constructed as follows.
Let {ey,...,€g,...} be an orthonormal basis in H. We take an arbitrary
tuple (e, ..., € ), symmetrize the tensor product ¢, @ ... ® e, and
normalize the resulting product to 1. The set of all possible vectors
provided by this procedure is an orthonormal basis in F(H); it will be
called the Fock basis.

It is convenient to describe this procedure in terms of the so-called
occupation numbers. Let

n=(N1,...,Ng...)
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be a sequence of nonnegative integers such that
5 =Y, = k.
7=0

Next, let (f1,..., fx) be the sequence of basis vectors in H such that

(fl,...,fk):(el,...,el,62,...,62, )

n, times n, times

We set

. 1 .

|n> = \/H\/ngk f7r(1) X ... ®f7r(k)7 (1.45)
where the sum is taken over all permutations 7 € S* of k elements.
Then the set of all vectors [n") with |n| = k is an orthonormal basis in
S*(H); the union of all these bases is an orthonormal basis in F(H).
Let 1; be the sequence n such that n; = 1 and ny = 0 for k& # 5. We
introduce the creation-annihilation operators ¥, a;, j = 1,2,..., in the

Fock space F(H) by the formulas

ajln) = y/n;+1n+1;)

e [ ymrlE=1y) i ny >0,
a;|t ) { 0 if n; = 0. (1.46)

Obviously, the operators a; and a7 satisfy the commutation relations
[aj, a%] = &ji;

furthermore, we can readily see that a7 is the adjoint of a; with respect
to the inner product on F(H). Indeed,

(Jm), a |0 )) # 0
if and only if |[m) = |n — 1,); in this case,
(lm), a;|0 ) = /nj = (af|m), 1 )).

In quantum mechanics, the common value of these expressions is usually
denoted by (m |a; |0 ) (the (brajc|ket) notation due to Dirac).
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Now let H be the one-particle energy operator. We assume that
the particles are noninteracting, that is, the energy operator of the
k-particle system has the form

o~

H = Hol®.. 0l+1loHo1l®...01+...
+191®...019H,
j‘]\o — 1

Thus we have defined the Hamiltonian (the energy operator) in the
Fock space:
H}‘: diag(Ho,Hl,...,Hk,...,...).

[t turns out (this explains the term “second quantization”) that the
Schrodinger equation with Hamiltonian Hr in the Fock space can be
obtained in the following simple way. Consider the mean value of the
energy of one particle:

< H>= ), Hb)= (2, H2) = Y Hyz7;, (1.47)
7,k=0
where z = (zy,23,...) are the coordinates of the wave function % in

the basis {e;} and H = {H;;} is the matrix of the operator H in the
same basis. Here we replace all z;, by creation operators and all Z; by
annihilation operators, that is, consider the operator

17‘]\: ZijaZaj (148)

5k

in the Fock space. The operator (1.48) is essentially obtained from the
symbol (1.47) by quantization: the coordinates of the wave function
are replaced by the creation—annihilation operators. Straightforward
computation shows that

o~
oy g

Hr =H.

In quantum mechanics and quantum field theory, what is called
“second quantization” is usually applied to infinite-dimensional systems
like the Schrodinger equation (as discussed above) or the classical field
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equations. However, to obtain the Fock representation, we only need
to “second-quantize” a certain finite-dimensional system.

In fact, second quantization is based on the following observations.

1°. There exists an “exact” quantization of quadratic Hamiltonians
(this will be clarified below).

2°. The Schrodinger equation can be viewed as a Hamilton system
with quadratic Hamiltonian of a special form related to the complex
structure (we have just seen this in the preceding).

Essentially, by 2°, in second quantization we reinterpret the quan-
tum system as a classical system, which is then quantized. By 1°, it
proves to be possible to embed the “classical” system thus obtained
in the quantized system (more precisely, the “classical” phase space
is embedded in the quantum state space as a subspace) so that the
“classical” evolution is just the restriction of the quantum evolution.
Thus, in the usual context of second quantization we have the following
“shift” of notions:

1. The classical system is the original quantum system.

2. The quantum system is the system with variable number of par-
ticles (the second-quantized system).

Though interpreting the quantum system as classical, this technique
uses both aspects of the original system. Therefore, to apply the “sec-
ond quantization” technique to the classical system, we must learn how
to interpret this system as a quantum system (which of course will be
degenerate, i.e. finite-dimensional).

With regard to all these considerations, we start from the analysis
of quadratic Hamiltonians.

Exact quantization of quadratic Hamiltonians. Dirac’s famous
problem on the quantization of observables (already mentioned in Sub-
section 1.1) can be stated as follows: for a given set of symbols f(q, p)
on the phase space Rgzj = T"Ry, find a quantization rule

~

fla.p) = f (1.49)
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taking each symbol f(q, p) to an operator fin the quantum state space
L*(R?) so that the following conditions hold:

a) The mapping (1.49) is linear;
b) 1 is the identity operator; (1.50)
C) [fv.a] = _Zh{fvg}v

where {, } is the classical Poisson bracket.

As was already mentioned in Section 1.1, this problem is known to
have no natural solutions® for arbitrary (and even polynomial) symbols;
we can only achieve (1.50) modulo O(h?).

However, this problem does have a solution if we restrict ourselves
to the case of quadratic Hamiltonians, i.e., symbols of the form

1 1
flg.p) = §<p,Ap>+ §<q,Bq>+<p,Cq>

+ <a,p>+<bg>+c,

where A = 'A, B = ‘B and (' are n X n matrices, a and b are n-vectors,
and ¢ € C. Specifically, the solution is given by the Weyl quantization

13
7 P+p 2
f=r\—1; (1.51)
where p = —ihaa—x and ¢ = . For polynomial (in particular, quadratic)

symbols this definition can be restated as follows: let f(q, p) be a poly-
nomial. We represent f in the form

f=> cafas (1.52)
where the ¢, are constants and
fo=(apr + ... aupn +brgu + ...+ b,q,)" (1.53)

where the coefficients ay, ..., a,, by,...,b, and the nonnegative integer
exponent k& depend on «. Then

F=3cufu, (1.54)

SNatural solutions must satisfy fﬁ = E + O(h); this condition excludes the
nonnatural solution (used in geometric quantization) given by first-order operators
on the phase space (see [8]).
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where

fo= (@1 + .+ anho + 011 + - . + badin)". (1.55)

We can readily verify that for the Weyl quantization

1.3 = {], 9} + O(h*), (1.56)

where the O(h?) is bilinear in the third- and higher order derivatives
of f and g. It follows that for quadratic Hamiltonians Eq. (1.50) is
satisfied exactly.

From now on, until the end of this section, we use the system of units
in which » = 1, as is customary in the theory of second quantization.

The complex structure of the classical phase space. The phase
space Rgzj = T"R} bears the standard symplectic structure wr =dp A
dq. Since this space is linear, it can be identified with its tangent space
at an arbitrary point, and so w?(v, w) is well-defined for any v, w € R*".
Next, let us consider the standard FEuclidean structure

2n

(v,w)R = ; Vjw;. (1.57)
Then
W (v, w) = (v, [w)R, (1.58)

where [ is the 2n x 2n matrix

I = ( _%ﬂ ]f)” ) (1.59)

and F, is the n x n identity matrix (we assume that the coordinates
in R2% are ordered as follows: (py,...,pn.q1,-..,qy).) We have I? =
—Fs,, and hence [ defines a complex structure on Rz?;. More precisely,

2

let us define a one-to-one mapping of R}, onto C" by setting

. 1 , §
REZBUJ:((]?}?)H]U):ZZﬁ(q—lp)EC : (1.60)
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Then lw — 1z, that is, the matrix [ is taken to multiplication by .
Next, let (-, - ) be the standard inner product on C”,

(22) =< Z,Z >= Z?kgk for any 2,z € C". (1.61)
k=1
Then . .
. ?
(Jw, jv) = §(w7U)R + §w2(w,v). (1.62)
Next, we readily see that the operators 2 e and 2 5= are expressed in the

Coordmates (g, p) as follows:
d d
w ) el m) e
Conversely,
d 1 [0 d d i [0 d
o_L1fo 9y 9 (0 OJ) 1.64
dq ﬂ(aﬁ%)’ ap \/5(85 62) (1.64)

J
An easy computation shows that for arbitrary functions f, ¢ on Rgzj =
C" the Poisson bracket is given by

B 0f dg of 99
Accordingly, the Hamiltonian vector field of f is given by
af 0 af 0

Let us now consider quadratic Hamiltonians. A general quadratic
Hamiltonian has the form

1 1
H(z,z) = 5 <z, Az > —|—§ <Z,BZ >+ <Z Hz > + linear terms,
(1.67)

where A, B, and H are n x n matrices with complex entries and <, >
is the bilinear pairing

< 275 >= szgk (168)
k=1
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We shall consider special Hamiltonians in which only the third term on
the right-hand side in (1.67) is present, i.e.

H(z,Z) =<z Hz >= (2, Hz). (1.69)

Moreover, we require that the Hamiltonian be real-valued, that is H =
H* is a self-adjoint matrix.

Let us write out the Hamilton system for the Hamiltonian (1.69).
According to (1.65), (1.66), this system has the form

:=iHz, (1.70)

that is, is given by a C-linear equation.

We see that the equation of motion (1.70) coincides with the “Schro-
dinger equation” corresponding to the Hamiltonian H : C* — C” of a
quantum-mechanical system with finitely many degrees of freedom.

The Fock representation. Now we can construct the Fock repre-
sentation of a system S. We denote the complexified phase space con-
structed in the preceding item by ® and proceed in complete analogy
with the infinite-dimensional case considered above.
Let
SH(®) C OF

be the subspace of completely symmetric tensors. We adopt the con-
vention that S°(®) = C. The Fock space is again defined as

F(®) = ;é )

and we have the embedding
¢ = SY (D) C F(P).

Let ey,..., e, be an orthonormal basis in @ (say, the standard basis
in the ¢g-plane; then z = 37, z;e;). We construct the Fock basis in
F(®) corresponding to ey,...,e, along the same lines as above. The
only difference is that now the sequence 1 = (nq,...,n,) of occupa-
tion numbers is finite. The vector i) is defined by the same formula
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*

(1.45), and the creation-annihilation operators a7, a;, j = 1,...,n in
the Fock space F(®) are given by the formulas (1.46) and satisfy the
same commutation relations [a;, a%] = ;.

To make F(®) the quantum state space of the simplest physical
system S, it remains to define the action of the Heisenberg algebra h,
on F(®). The Fock representation is specified by the condition that
the Heisenberg algebra elements are quantized as follows (recall that
we assume h = 1 in this section)

~

l—1 = 4id (the identity operator in F(®))
1 . . .
z; = ﬁ(qj—zpj)waj j=1,....n (1.71)
_ 1 :
zj = g +ip) = aj.

N

In particular,

-~ 1 * o 1 *
4 = 75(% +ai), b= ﬁ(% — aj) (1.72)

are self-adjoint operators and satisfy the desired commutation relations

(1.17).

The Bargmann—Fock representation. There is yet another con-
venient representation, which can be obtained from the Fock represen-
tation and which will be called the “Bargmann-Fock representation.””
The introduction of it is motivated by the following simple consid-
erations. According to (1.71), in the Fock quantization the classical
variable z; = %(qj — 1p;) corresponds to the creation operator asso-
ciated with the jth basis state in quantum mechanics. We seek for
some analog of the coordinate representation: just as the coordinate
representation can be described as a representation in which the coor-
dinate operators are depicted as the operators of multiplication by the
corresponding classical variables, so in our would-be representation the
creation operators a* will be depicted as the operators of multiplication

"This representation was discovered by Fock and later studied thoroughly by
Bargmann.
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by z;. Naturally, the elements of the state space will then be treated
as functions of z1,..., z, (that is, functions on ®). More precisely, let
us isomorphically map S*(®) onto the space of kth-order homogeneous
polynomials in z = (z1,...,z,) by letting

n) — egzft -z (1.73)

n

Thus, each basis vector in S*(®) is taken to the corresponding mono-
mial. According to (1.46), we have

7,7‘J+1 Zn"

*In . - L.
ai|n) >y /n; + legy, 2] 2, e

To ensure that this is the same as the multiplication by z;, we require

that
/1y + ey, = cq.

This is the case if we choose the coefficient ¢z in the form

1
nl. . on,l

Now, after obvious modifications, we can write out the correspondence

between the basic classical and quantum variables in the Bargmann—

Fock representation:®

* o
Zj @ = 2
0

5o (1.74)

Z]‘I—>a]‘:

The elements (1.73) by definition form an orthonormal basis in the
newly defined representation space. Thus, we have mapped F(®) onto
the space Hp of power series

F(2) =3 foosazit o2 (1.75)

with finite norm

||f||2:ZSI!---Sn!|f51...sn|2- (176)

8The verification of the second formula is straightforward.



1.2.  REPRESENTATIONS AND TRANSFORMS 37

Let us represent the norm (1.76) in a somewhat different form. It is
generated by the inner product

(f?g) — Z‘Sl! ce Sn! fsl...sngsl...sn-

First, suppose that the series (1.75) of f and ¢ contain only one term,

flz)=az®, g¢g(z)= bz,

where s = (s1,...,8,) and [ = ({1,...,[,) are multiindices. Then an
easy computation shows that

(f.9) = % /C f(z)g(z)eFdgdp (2= q—ip), (1.77)

and, accordingly,

1 _
1P = = [ V)P dg dp, (1.78)

Next, the finiteness of the norm (1.76) readily implies that the series
(1.75) converges everywhere in C™ in the general case. Hence f is an
analytic function, and now a standard argument shows that formula
(1.78) remains valid in the general case.

Finally, the result can be stated as follows:

The Bargmann—Fock space Hp is the space of entire analytic func-
tions in C™ with finite norm (1.78). This is a Hilbert space with respect
to the inner product (1.77).

The Bargmann transform and its properties. Let us now find
the transform relating the usual Schrodinger coordinate representation
to the Fock—Bargmann representation. By the Stone—von Neumann
theorem, it suffices to find the unique unitary transformation

An: H=LXR?) = Hp

such that
1
A 5(a=ip) = = A,
A Lgrin) = Loa (1.79)
" \/§q P)= dz " '
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where ¢ = x, p = —10/0x (recall that h = 1 in this section).

The transformation A, is called the Bargmann transform [1]. Let
us represent the Bargmann transform A, as an integral operator that
acts from L?(R}) into Hz according to the formula

(A)(2) = [ Az (o) de, § € PRD). (1.80)
Rn

Equations (1.79) yield linear first-order differential equations for the
kernel A, (z, ). These equations have the form

zAL(z,2) = % (:1; + %) Az, ),
0 1 d
—A,(z, = —|z——) Az 2).
The solution of these equations yields
1 1
An(z,2) = p—y exp{—§(22—|—x2)—|—\/§zx}. (1.81)

(The normalization constant 7r"1/4 1s chosen from the condition that A,

must be an isometry).
The main properties of the Bargmann transform are given by the
following theorem.

Theorem 1 1. The transform
An : LZ(RZ) — Hg
is an isometric isomorphism (that is, a unitary operator).

2. The inverse transform is given by the formula

(A= f)(2) = lim — [ A fOe g dp, (182)
Cn

A—=1 "

where A — 1 from below and the limit is understood in the strong

sense in L*(R2).
3. The intertwining formulas (1.79) hold.

The proof can be found in [1].
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1.2.3 Summary on representations and transforms

So far we have defined four quantum-mechanical representations for the
simplest physical system S with n degrees of freedom and flat phase
space R?fq:

1. the coordinate representation;
2. the momentum representation;

3. the Fock “occupation numbers” representation in the space S(®)
(or, which is the same, the oscillator representation);

4. the Bargmann—Fock representation in the space Hp of analytic
functions on C” square integrable with weight e=%7.

For convenience, we list these representations in Table 1.2.

Furthermore, we have unitary operators relating these representa-
tions to each other:

LR & L2RY) 25 U 1 5(0),

where F'is the Fourier transform, A,, is the Bargmann transform, and
J acts according to the rule

Jrzt ooz — ).

In the next section we shall see that there is a transform very close
to the Bargmann transform and arising within a completely different
approach: if here we were comparing various representations and deriv-
ing our transforms as intertwining mappings between these represen-
tations, in the next section we use a semiclassical argument to obtain
quantization of states and, on the basis of it, a decomposition of an
arbitrary quantum state in a superposition of elementary ones, hence
the transform.
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Hilbert space

Coordinate and

Name
momentum operators
coordinate L*(RY) g=1,p=—iz-
representation
momentum L*(R7) q= iaa—p p=rp
representation
Fock representation S(®) see (1.72) and (1.71)

Bargmann—Fock

representation

7= (= + )
p= (- 2)

Table 1.2: Quantum-mechanical representations
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1.3 Semiclassical Quantization of States
and the Wave Packet Transform

1.3.1 Semiclassical states and the quantum Sobolev
spaces

The construction of the wave packet transform carried out in this sec-
tion is based on the quantisation of classical one-point states. The idea
of this quantization is to assign to each classical state some quantum
state that “passes” into the classical state as h — 0. First of all, let us
introduce the important class of states that “behave well” as h — 0.

Semiclassical states. What does it mean that we deal with semi-
classical states of a physical system? This means that we have an entire
hierarchy of scales in which we perform our measurements, from “mi-
cro” to “macro” size, and as we move along this hierarchy to its “macro”
end (which corresponds to successively choosing units of measurement
so that h — 0), the system displays less and less of quantum and more
and more of classical behavior. Mathematically, this corresponds to
considering quantum states—elements ¢ of the quantum state space
‘H—depending on the small parameter h € (0, 1] rather that defined
for some fixed value of h. Moreover, the dependence on h has to be
such that the expectations (¢, ;l;/)) of quantum observables (all or from
some specified set) be convergent as h — 0 to the corresponding clas-
sical observables A. This condition is however too subtle to define a
linear space of semiclassical states in its terms. We shall actually use a
weaker condition and thus define a broader space of states. Truly semi-
classical states form a (nonclosed) subset of this space. The condition
is stated as follows:

The expectations (@/},1&/}) depend on h continuously and remain
bounded as h — 0.

We must further specify for which class of observables this condition
must be satisfied. (For example, if an observable itself is “pathologi-
cal” in that it behaves singularly as A — 0, then there is no point in
demanding that the above condition be met for this observable). In
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the simplest physical system, we already have distinguished observ-
ables, namely, the coordinate and momentum operators. We require
that the above condition be satisfied for operators A that are arbitrary
nonnegative powers of the coordinates and momenta:

sup ([(¢, p")| + [(¥,¢7¢)]) < Cay o[ =0,1,2,... (1.83)

he(0,1]

Quantum Sobolev spaces. We can readily see that condition (1.83)
is equivalent to the requirement that

N N N N 2
sup (4, (143 +52)') = sup (14 + 50| < ef1.84)
he(0,1] he(0,1]

k=0,1,2,...

We denote by H* C C((0,1],H) the subspace of vectors v = (h)
such that the kth norm (1.84) is finite. For k < 0 these spaces can be
defined in the usual manner as the dual spaces of H™* with respect to
the pairing given by the inner product in H = H°. By H* we denote
the intersection

H =(H"
k

This is clearly a Fréchet space whose topology is defined by the system
of seminorms (1.84) for all k.

The above treatment pertains to the “abstract” Hilbert state space
‘H. However, in this section we shall mainly work with the coordinate
representation.

In the coordinate representation, where the space H is isomorphi-
cally mapped onto L*(R") the spaces H* become the quantum Sobolev
spaces H*(R?). These are the spaces of functions f(x,h) for which the
following norm is finite:?

1/l = sup [I(1+2* + ) ||, (1.85)

he(0,1]

9The reader shall not mix up these spaces with the ordinary Sobolev spaces,
which are sometimes denoted in the same way. Formally, the definition of the
ordinary Sobolev space is obtained from our definition by setting 2 = 1 and by
dropping out the term #? in the expression for the norm.
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where || - ||1, is the usual Ly-norm in the space R? and
2 ~2 .
p° = pi = Z (—zh—)
=1 ! j=1 da;

Further, we denote by H(RZ) the intersection of all spaces H*(R%):
H(R) =) 1"(R).

Likewise, in the momentum representation the spaces H* become
the quantum Sobolev spaces H*(R})). These are the spaces of functions

f(p,h) for which the norm
f]ls = sup [|(1+ @+ p))* "L,

he(0,1]
where
~2 ~2 .
]Z:; ! ]Z:; ( Ip;
is finite.

Let us find out how the quantum Fourier transform acts in these
spaces. We have already seen in Section 1.2 that the quantum Fourier
transform is just the transformation from the coordinate to the mo-
mentum representation and hence is an intertwining operator for the
following pairs of operators:

quZihagp, pHﬁ:—ih%.

As a consequence, we obtain the following statement.

Theorem 2 The quantum Fourier transform defines an isometric iso-
morphism (denoted by the same letter)

P HY(RY) — H°(R)),
for any s.

In particular, it follows that the quantum Fourier transform is an
isomorphism between the spaces

F : H(R) — H(R}).
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Examples of semiclassical states. To give natural examples of
semiclassical states, we ask how states satisfying the dynamic equa-
tions can behave as h — 0. As the simplest example, consider the
Schrodinger equation with translation invariant Hamiltonian H = H(p),
independent of x:

. OY 0 B
— zha + H (_Zha_x) Y = 0. (1.86)

We can seek particular solutions of this equation in the form of expo-

nentials (plane waves)!'®

P, t) = ce%(kx_Et), (1.87)

where ¢ is an arbitrary constant, and k£ and F are real constants satis-
fying the eikonal equation

H(k)— E =0. (1.88)

Suppose now that the Hamiltonian is not translation invariant, H =
H (:1;, —ihaa—x). It is known from the WKB method (e.g., see [14] and
references therein), that in this case solutions are similar to (1.87);
specifically, the linear phase function kx — Kt and the constant ampli-
tude ¢ are replaced, respectively, by a general (not necessarily linear)
phase function S(x,t) and an amplitude ¢ = a(x, k), which need not to
be constant. Furthermore, the function S(x,t) satisfies the Hamilton—

a5 a5
E—I—H (l’,%) = 0,

the amplitude a(x,h) possesses a regular expansion in powers of h,

Jacobi equation

and the coefficients of this expansion can be computed from a recur-
sion chain of ordinary differential equations known as the transport
equations (all these issues will be discussed in detail in the chapter de-
voted to asymptotic solutions of differential equations). Thus, a typical

10These exponentials do not belong to L? (in fact, they are generalized eigen-
functions of the momentum operator) and hence can only be viewed as generalized
states.
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(though by now means general) semiclassical wave function may have
the form

P, 1) = eF " Da(a,t,h), (1.89)

where S(x,t)is a smooth real-valued function and the amplitude a(x, ¢, h)
is a smooth function that can be expanded in a regular asymptotic se-
ries in powers of h.

1.3.2 Oscillation front

Consider the simplest physical system in a semiclassical quantum state
. As h — 0, the system becomes classical. However, this generally
does not mean that the system will be in some uniquely determined
classical state. In general, it can be in one of a set of classical states;
this set is known as the oscillation front of . After this physical pre-
liminary, let us proceed to more rigorous mathematical treatment of
the subject. First, we describe the coarser notion of support of oscil-
lations. It describes the possible values of the coordinates in the limit
state, whereas the oscillation front does the same for the pairs (¢, p) of
coordinates and momenta.

Support of oscillations. Let us first recall the notion of ordinary
support. The support of a function u(x) is the closure of the set of
points where u(x) does not vanish,

suppu ={x € R | u(x) # 0}.

Alternatively, we can say that xo € w if and only if for any smooth
compactly supported function () such that ¢(x)u(z) = 0 one has
p(o) = 0.

The notion of support of oscillations makes sense for functions de-
pending on a small parameter h. Let u(x,h) be a given function.We
write u = O(Rh') or u(x,h) =0 (modhr') if h='u € H(R"). By defini-
tion, u = O(h*) if u = O(R') for every .

Definition 3 A point xq belongs to the support of oscillations of «
function u,
Tg € 0SC-supp u
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if and only if for any smooth compactly supported function o(x)such
that pu = O(h™) one has p(xo) = 0.

We shall not use the more delicate notion of the kth-order support
of oscillations, where O(h>) is replaced by O(h*)
The notion of support of oscillations is useful because it behaves

A 1
well under the action of observables. Let H = H (:%,ﬁ) be a quantum

observable. We shall always assume that the corresponding classical ob-
servable is a function H(q,p) that is infinitely differentiable and grows
at infinity together with all derivatives no faster than a given power of
r = (¢ + p*)'/%. (The power is solely determined by H and is inde-
pendent of the number of derivatives.)!! Then the following assertion

holds.

2 L
osc-supp H (:L’,p) u C osc-supp u.

Localization in the phase space and oscillation front. Now let
us define the notion of the oscillation front. Let u(x,h) be a given
function. Furtermore, let (o, po) be a given point of the phase space.
We wish to find out whether this point is a possible limit classical state
for our semiclassical state u. To this end, we can act as follows. Let
@(x) be a smooth function of compact support, independent of h and
localized in a sufficiently small neighbourhood of ¢y. If

o(x)u(z,h) = O(h™), (1.90)

then ¢g cannot be the limit classical value of the coordinate s and
(go, po) definitely cannot belong to the oscillation front. If however
(1.90) fails,then we must put further effort and study what the sit-
uation i1s with the momentum. To this end, we apply the quantum
Fourier transform to the function p(x)u(x,h) and investigate whether
po belongs to the support of oscillations of Fp(x)u(x,h)]. If no, then
(go, po) is not in the oscillation front. The above discussion justifies the
following definition.

o2 L . .
H'We have taken the Maslov quantization #,p, but this does not matter, since
the class of quantum observables is the same for the opposite Maslov quantization,
Weyl quantization, etc.
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Definition 4 The oscillation front of u is the set OF[u] C R deter-
mined by the following condition. A point (qo,po) does not belong to

OF[u] if and only if there exist compactly supported functions (x) and
Y (p) such that

p(qo0) # 0, ¥(po) # 0, and (p)Flp(x)u(x)] = O(h™),
where F' is the quantum Fourier transform. In other words,
Fle(z)u(x)] = O(h™)
in a neighborhood of the point pqg.

Since the notion of oscillation front pertains to localization in the
phase space, it is not surprising that it can also be defined by analogy
with the support of oscillations but with cutoff functions substituted
by observables with compactly supported symbols. Let us state this
property, along with two other properties of oscillation fronts, in the
form of a theorem.

Theorem 5 1. A point (qo, po) of the phase space belongs to O Fu]
1
if and only if for any observable H (:%,ﬁ) with compactly sup-

1
ported symbol H(q,p) the estimate H (:%,ﬁ) u = O(h™) implies

H(qo,po) = 0. Egivalently, (qo,po) ¢ OF[u] if for some compactly
supported classical observable H(x,p) such that H(xq,po) # 0 we

1
have H (:%,ﬁ) u = 0(h*>).

2. If H(q,p) = 0 in a neighborhood of the point (qo, po), then (xo, po) ¢
1
OF[H (%, p)ul.

5. OF[H(},p)u] C OF[u].

4. m(OF[u]) = osc-supp u, where m : R2" — RZ, (q.p) — q, is the
natural projection.

The proof can be found in numerous expositions.



48 CHAPTER 1. WAVE PACKET TRANSFORM

Examples. Now let us calculate the wave front for the two examples
of semiclassical states considered above. (We disregard the dependence
on t, since anyway the oscillation fronts have to be calculated for fixed
values of ¢.) ‘
The first example is u(x, h) = e 777 . We have
—i\"/? ; 1 _
Flotoule = (=) [ b0t de = g (P10,

where @(p) is the usual Fourier transform of ¢. For any N we have

- Cn
P < —~
[2(p)] o

as p — oo provided that ¢(z) € C§°. Thus F{pu} = O(h™) for
p # po , whereas F{pu}(po) ~ h™"/2. We conclude that OF[en""] is
the n-dimesional plane {p = po} C R" & R".

The second example is u(z, h) = 7@ (). To calculate the oscil-
lation front, we use the first assertion of Theorem 5. We have

1

LN [ fes)
27rh) /eh H(y,p)ply) dpdy.

H(e.p)ul. ) = (
By applying the stationary phase formula to this integral, we find that

0r (e p(a)) = {p = S 0t

where m: R2" — R, (¢,p) — ¢, is the natural projection.

1.3.3 Quantization of one-point states and Gaus-
sian wave packets

The problem that will be dealt with in this subsection is that of quan-
tization of classical states. Thus, to each classical state (q,p) € R** we
shall assign some quantum state ¢» = 1, ,)(2). For this to make sense,
we must require that the quantum state be “localized” as h — 0 near
the point (¢,p). What does that mean? According to the uncertainly
principle (which will essentially be derived here), one cannot localize
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a quantum particle (or a system of particles) in the coordinate and
momentum spaces simultaneously. More precisely, in any state ¢ we
have

Aq]‘Ap]‘ 2 h, (191)

where Ag; and Ap; are the mean-square deviations of the corresponding
variables,

(Agy)* = (¥, (g, — 7;)*¥),
(Ap;)? = (¢, (p; — 7)), (1.92)

where g, and p; are the corresponding expectations.

Thus, the best localization that we can expect to achieve is as fol-
lows.

1) OF (3(y,)) consists of the single point (g, p).

2) In the state 1, ,), both Ag; and Ap; are of the order of Vi,
j = 17

ceey T

Quantum states of minimum mean-square deviation. It turns
out that these are quite a few states satisfying these two conditions.
More precisely, let f(y), v € R", be an arbitrary function of the
Schwartz class (independent of k) such that ||f]|;2 = 1. Set

1 v —
Piap(T) = hn/4eﬁp(“”‘q)f( \/Eq). (1.93)

We claim that ¢, ,)(x) has the desired properties. Indeed, since the

multiplication by the exponential e#?” and the change of variables x —
x — ¢ just represent shifts in the coordinate and momentum spaces,
respectively, it suffices to prove that the function

1 x
Y(x) = oo (r) = Wf (ﬁ) (1.94)
has the oscillation front OF(¢) = {(0,0)} and that
Ax; =O0(Wh),  Ap;=0(Wh) (1.95)

in the state .
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We have
0 = (o)
—i\"? 1 iz x x
- &) [ () ()

1 p
= h”/4X \/—E7

€= ()" [ ay

is the ordinary (rather than quantum) Fourier transform of f(y). Thus,
¥(p) has the same structure as ¢ (x).
Let ¢(x) be an arbitrary cutoff function such that O ¢ supp .

Then
T
()
—n/4 € -
< Cnsup || - h 1+ —

Vh
< - hzTA N=12,...,

s|e

where

/4 max

|| >e

o) ()|

IA

sup [ -

since f(n) belongs to the Schwartz class. (Here ¢ is the distance between
supp ¢ and zero.) It follows that osc-supp ¢ = {0}, and hence OF(v)) C
{(¢,p)| ¢ = 0}. Likewise, osc-supp o= {0}, and hence OF(y) C
{(¢q,p) | p = 0}. By combining these two assertions, we obtain

OF(¢) = {(0,0)},

as desired. Let us prove that Az; = O(vV/h) (for Ap;, the proof is

similar). We have

= s A () e = VB [l = 0V
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Next,

S = i o=l ()
= [l = T)IIP ) dy.

where 7; = [ y;]f1*(y) dy is independent of h. This completes the proof.
The function (1.93) will be called the wave packet with amplitude

fy).

Gaussian packets. In what follows we mainly deal with Gaussian
wave packets, where the amplitude has the special form

fly) = ex<utv> (1.96)

and the symmetric matrix A ='A has a positive imaginary part, Im
A > 0. The motivation for considering packets of the form (1.96) is
as follows. Suppose that we intend to find a state ¢ (x,h) with zero
expectations of coordinate and momenta and minimum mean-square
deviations of these exactly. (Note that in the general wave packet we
only have (1.95) but not the optimal constants in the O(v/h) estimates.)
To simplify the calculations, we consider the one-dimensional case n =
1. Thus, our minimization problem is as follows:

(Ag)* = (,¢") — min, (Ap)® = (,p"¢) — min, (1.97)
oI = 1. (1.98)

(Note that on the solution of this problem the expectations of the coor-
dinate and the momentum are necessarily zero.) Problem (1.97) with
condition (1.98) is a two-criterion problem that has optimal solutions
in the sense of Pareto. To single out a specific solution, we proceed to
a single-criterion problem with the weighted criterion

a(i, @) + B, p*¢) — min (1.99)

and with the same condition (1.98). Here o and 3 are arbitrary positive

constants. For example, let us take a = 3 = % Then the criterion
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(1.99) acquires the form
(, Hosct) — min, (1.100)

where

o~ 1 . R

Hosc = 5(92 + %)
is the Hamiltonian of the quantum-mechanical oscillator. The Euler—
Lagrange equations for the conditional minimization problem (1.100)—

(1.98) have the form
Hosc@/) = )\@/)7

and the minimum is provided by the ground eigenfunction
77/)0(1', h) — Cfe—aﬂ/(zh)7

where (' is a normalization constant, corresponding to the eigenvalue
Ao = h/2. Thus we have arrived at a special Gaussian wave packet.
Note that the mean-square variations of the coordinate and the momen-

tum are equal to the same number \/g By assigning different weights,
we would obtain different Gaussian packets. However, the product of
the mean-square variations remains constant, and hence from the in-
equality relating the arithmetic and geometric means we can observe
that this product is optimal. Furthermore, for the case of several vari-
ables, we can obtain various Gaussian packets (with pure imaginary
matrix A) by considering various quadratic self-adjoint Hamiltonians.

Time evolution of Gaussian packages. It is a very attractive, nat-
ural idea to use wave packets as the quantizations of the corresponding
classical states (p,q). However, for this idea to be fruitful, we have to
verify that the quantum dynamics preserves the class of wave packets
and that the corresponding classical states obey the classical dynamic
law. We do this in the spirit of [13]. Let

1
Ten|d—inl (1.101)
Oz
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be the energy operator of the system. We consider the Schrodinger
equation

—ih%—%ﬁ;@:o (1.102)

with the initial function in the form of a Gaussian wave packet:

Vh

We seek the asymptotic solution of problem (1.102)—(1.103) in the form

I r —
Y=o = hn/4eﬁp($_q)f( q) : (1.103)

1 i(s P(t)(z—Q T — Q(t)
(b, h) = hh/4eh( O+POE=RM)) ¢ (t’T ) (1.104)

By substituting (1.104) into (1.102), we obtain

1
. OY 2 0
—Zha—l—H (l’, th;) ¢

L(8(0)+P(0)(-Q (1) [5 Q) —PO il

ot
()

1
= hn/4€

1
+H (:% - @'haa—x —I—P(t))

(o558 s (258) 1 (258}

Let us make the change of variables

S+P(x—-Q)—PQ+H (%,@'h;xw(t))

_r=Q® 9 _ 190
E=—7— G T (1.105)
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Then (1.105) is reduced to

Cin 28y T = L psterte—em)

ot N
{S PQ+\/_P§+H(Q+\/_§P fai)
0
—I-Z\/_Q 8t] f(g)} . (1.106)
==t

In the expression in braces on the right-hand side of (1.106), we can

expend in powers of V/h. The first three equations (for the coefficients
of h°, /2 and h') read

[5 =P Q+H(Q, P)] f(1,6) = 0, (1.107)
: .0 .0
[P ‘|‘qu ‘|‘ 2 6_5 - ZHpa_gl f(tvg) = 07 (1108)
o 1 1 0* . 0
[_Za + quf ppagg —1< ¢, qua_f > f(t,€) =0. (1.109)

Equation (1.108) will be satisfied identically if (P(¢),Q(t)) is the tra-

jectory of the Hamilton system

P: _Hq(va)v Q= Hp(va)

Q) =g PO)=p (1.110)
Then from (1.107) we obtain

S(t) = /Ot(P O —H)dt. (L111)

that is, S() is just the classical action along the trajectory (P(t), Q(t)).
Now let us solve Eq. (1.109). Let the initial Gaussian wave packet be
given by ‘

£(0,€) = e2(&408), (1.112)

We seek the solution f(t,¢) of Eq. (1.109) in the form

F(1,€) = a(t)eF<eA0E, (1.113)
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where A(t) = 'A(t), A(0) = Ao, Im A(t) > 0, a(0) = 1, and a(t) is a

smooth scalar function. We have (we omit the argument ¢)

Of _ iceaes [(Oa DA
E - ¢ E + 9 <&, Wf >al,
or _ 1<E,AE>
ge — AGrac : (1.114)
0 ) o
06,06, —(AL);(AE)paer <> A jpaer <1,

Let us substitute (1.114) into (1.109) and cancel the exponential factor.
Then we obtain the equation

. 1 : 1
—ia 5 <LAE>at g <G Hy > at <§HRpAL>a
1 ?

—|—§ < A& Hyp, AL > a — §tr(prA) a =0, (1.115)
whence, by separating the powers of £, we get

o1

a —|—§tr(prA) a=0, (1.116)

- 1 1 1 1,
Equation (1.117) is a matrix Riccati equation. We seek the solution in

the form

A= BC™, (1.118)

where B and C are some new matrices depending on t. Then
A=BC~'— BC 'O,
with regard to the fact that *A = A, from (1.117) we obtain

BC—'—-BC™' ¢ C~'+H,+BC~'H,,+H,,BO~+BC~"H,,BC~" = 0.
(1.119)
Let us multiply Eq. (1.119) by C on the right. Then we obtain

B+H,C+H,B+ BC Y (=C+H,C+H,B)=0. (1.120)



56 CHAPTER 1. WAVE PACKET TRANSFORM

For (1.120) to be valid, it suffices to require that

B +H,,C + Hyp B =0,

C +H,,C—H,, =0, (1.121)

or, in the block matrix form,

B\ [ —Hyp —Hgy B
( p )_ ( R o) (1.122)
Note that (1.122) is just the variational system for (1.110). It remains to

verify that the evolution law (1.122) preserves the symmetry of BC ™.
Routine computations show that

CBO™ H(BO™) = —H,,(BO™ — (BC™Y)
_(Bc_l —! (Bc_l))qu + (Bc_l —! (Bc_l))prBC_l
~YBC™YH,,(BC™' =" (BC™Y)), (1.123)

whence the desired result follows by the uniqueness theorem for sys-
tems of ordinary differential equations. Now we solve Eq. (1.116) by
integration:

a(t) = exp {—1/2 /Ot trace( H,, A) dT} : (1.124)

We have thereby proved that the class of Gaussian wave packets is pre-
served (modulo lower-order terms) by the quantum dynamics and that
the “reference point” (P, Q) of the packet obeys the classical evolution
law (1.110).

In the next subsection, we shall construct the “wave packet trans-
form” using Gaussian wave packets. The main idea of this transform is
very simple: we decompose any function ¢(z) € L*(R") into a “contin-
uous linear combination” of wave packets v, ,(x), where the reference
point p, g ranges over the entire phase space.
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1.3.4 Definition and the main properties of the
wave packet transform

We have seen in the preceding subsection that there are many wave
packets corresponding to the same point (p, ¢) of the phase space. To
define the wave packet transform, we first choose a single wave packet
for each point (p,¢). This choice is somewhat arbitrary. We take the
family of functions

i

Cap)(T,h) = WGXP {% [p(x —q)+ 5o - Q)z]} (1.125)

of the variables (x, h) with parameters (¢,p) € T*R". (The coefficient
of the exponential is just the normalization factor.) This is just the
wave packet obtained (in the one-dimensional case) in the preceding
subsection by considering the minimization problem with the quantum
oscillator Hamiltonian.

We intend to decompose an arbitrary state into a superposition of
the simplest Gaussian states (1.125). Thus, the problem is as follows.

For each function f(x,h) € L*(R"), find a function f(q,p, k) such that

HENDES /G<q,p>($,h)f(q,p,h) dq dp.
Simultaneously, we have to describe the class of functions f(q,p, h)to
be used in our expansions.

This problem can be solved as follows. First, we consider smooth
compactly supported states.

Definition 6 Let f(x,h) be a compactly supported smooth function
on R?. The function

Jlg.peh) = Uftaph) = [ Gouplet)f(ah)de (1.126)

is called the wave packet transform (or, briefly, U-transform) of the
function f(x,h). Here the bar means complex conjugation.

It turns out that the transformation (1.126) is invertible on the left
(that is, on its range), and the inverse just solves our decomposition
problem.
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Specifically, consider the formal L?-adjoint mapping U*. It is ob-
tained by taking the complex conjugate and by exchanging the roles of
the variables (¢, p) and « in the kernel. Specifically, it is given by the
formula

U™ Ja,h) = [ Gyl ) (g, h) dqdp. (1.127)
The following statement is valid.
Theorem 7 The inversion formula
U olUf = f (1.128)
holds for any smooth compactly supported function f on R

Proof. A standard integration-by-parts shows that for f € C5°(R2),
the transform U f is rapidly decaying as |p| + |¢| — oo, so that the
left-hand side of (1.128) is well-defined. By (1.126) and (1.127), the
left-hand side of (1.128) becomes'?

U* o Uf(x) = / Glap (@) { / Gam(@)f(z") d:z;”} dq dp,

or, by definition (1.125) of the G/, ,)(x),
* . J " J 2 J " 2
UoUfe) = [exp{r |pe -+ S —af + 50" - 0|}
dz" dqg dp
"
Xf(l' ) Qn(ﬂ-h)?m/Z'
The usual technique of oscillatory integrals permits us to change the or-

der of integration. Then the integral over ¢ can be computed explicitly,
whence we obtain

1

1 " I3 " 1y2
UrolUf(z) = (ﬂ) /eﬁp(“"“’ Wemamle=" p(a")} da” dp. (1.129)

On the other hand, the inversion formula for the quantum Fourier trans-
form yields

1 n i " 1 2 . .
(ﬂ) /eﬁp(Hj Hemarltom" f(a)} da” dp = e 0= f(2)

2From now, we usually omit the explicit indication of the dependence on A.
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for any xo € R”. By substituting 2o = x there, we reduce (1.129) to
the form

U o Uf(z) = f(x),
as desired. The proof is complete.
Now we intend to extend our transformation U to arbitrary states

f(z,h) € L*(R%). To this end, let us prove that U satisfies the Parseval
identity.

Theorem 8 If f(z),g(x) € L*(R?), then

(Uf,Ug)=(f9),

where the inner products on the phase and the physical spaces are given
by the usual formulas

((g.p).3(q.p)) = /f(q,p)g(q,p) dg dp

and
(fe)g(e) = [ fla)g(a) de.

respectively.

Proof. The proof is by straightforward computation:
01.0g) = [{ [ Ganlo) () de Ugla.p) dadp

B /f(x){/%,p)(w)Ug(q,p) dqdp} dz
= [T o Tgtde = [ o)l de = (f.9).

We obtain the following corollary.

Corollary 9 The mapping U extends by continuity to a partially iso-
metric mapping (denoted by the same letter)

U: LA(R") — LAR™). (1.130)

The left inverse of U s the adjoint operator U*.
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However, U is indeed only partially isometric, that is, the range
of U (which is automatically closed) does not coincide with the entire
space L*(R2"), and, accordingly, the formula

UolU* =id (1.131)

is not valid. This is not surprising, since U takes functions of n variables
x to functions of 2n variables (¢, p). Let use describe the range of U.

Theorem 10 The range of the transformation (1.130) is the set F of
functions F(q,p) with the following two properties:

1) [[F(q,p)* da dp < oo
2) the function exp {ﬁpz} F(x,p) is an analytic function of the vari-
able z = ¢ — 1p, that is, satisfies the Cauchy—Riemann equations

)0 L, |
(0~ ) Lo ] Fam} =0 =1

Proof. The first property just means that F C LQ(R%). To prove
that any function f = U f possesses the second property, we note that

exp [%pQ] f(%p) _ W/exp [—% (x — Z)Q] fla)de,

where z = ¢ — 1p, which proves the required assertion.

To complete the proof, we check that formula (1.131) is valid on the
set of functions possessing properties 1) and 2). The proof of this fact,
based on the Bargman representation of an analytic function (see [1])
is purely technical and we omit it.

In the following, we write

U™ = Ul

The transformation U naturally acts in quantum Sobolev spaces
with positive indices and can be extended by continuity to act in quan-
tum Sobolev spaces with negative indices. Specifically, the following
theorem holds.
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Theorem 11 The transformation U is a continuous isomorphism (but
generally not an isometry) of the spaces

U: H'(R") — FH*(R™).

Here H*(RL) is the quantum Sobolev space over the classical configu-
ration space and

FHR2")=F(H(RY), s>0.

For negative s, the space fHS(RSZD) is defined as the closure of F in
H*(R2).

The proof can be found in [15].
Finally, let us carry out the comparison of the Bargmann transform

with the wave packet transform. Straightforward computation shows
that

UlAawp) = /iy exp (<51 Jesp (=5 ) #06)

= ah
1.132)

where F'(z) = B[f](z) is the Bargmann transform of f(zv/h). This
is not surprising at all, since the Bargmann transform, as well as the
wave packet transform, is based on the eigenfunctions of the quantum-
mechanical oscillator; in the latter, they arose from the minimization

~~

problem for mean-square deviations, whereas in the former they arose
as vacuum states in the Fock space.
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