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An excerpt from the Introduction

Theoretical physics� especially quantummechanics� has always both
supplied ideas to and used the results of the theory of di�erential equa�
tions� As a product of the interaction between the two disciplines�
there arose a new and very productive science� known as mathematical
physics� Not only has its development led to new results in the nat�
ural sciences� but it has also given an impetus for new ideas in other
mathematical �elds� such as representation theory� algebraic topology�
and di�erential geometry� Unfortunately� in the last decades the theory
of di�erential equations has moved ever farther away from its physical
origins� This is already obvious from the names of mathematical dis�
ciplines taught in high school� The traditional course of equations of
mathematical physics changed its name to �partial di�erential equa�
tions�� and apart from rather isolated derivation of the heat equation
and the equation for the motion of a vibrating string� physically mean�
ingful examples are often missed in such courses�
The present book gives a new systematic mathematically rigorous

exposition of methods for studying linear partial di�erential equations
on the basis of quantization of appropriate objects in phase space� The
quantization of all three types of classical objects 	states� observables�
and canonical transformations
 is carried out in a uni�ed way� by means
of a special integral transform� The book covers a wide variety of re�
sults� both old and new� and treats them all within a uni�ed framework�
We also consider a number of applications� The microlocal classi�ca�

tion of di�erential equations is described� Some problems of mechanics
and theoretical physics are considered� e�g�� the propagation of electro�
magnetic waves in plasma� The relationship between the quantization
of contact structures and the index theory for elliptic pseudodi�erential
operators and Fourier integral operators is also discussed� In addition�
the quantization of symplectics structures is applied to the proof of var�
ious generalizations of the Atiyah�Bott�Lefschetz �xed point theorem
that are important in studying the topology of manifolds�
The exposition moves gradually from the simple to the complex�

Numerous examples are included to help the reader understand the
material�



�

The book is intended for a wide readership� including undergradu�
ates� graduate students� and scientists specializing in di�erential equa�
tions� applied mathematics� mathematical and theoretical physics� and
di�erential geometry and topology�
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The applications of quantization methods in the theory of di�erential
equations are based on the following �experimental fact�� known as the
correspondence principle in quantum mechanics�

As Planck�s constant h tends to zero� the quantum�mechanical
description passes into the classical description of the same
physical system�

Of course� we have to explain what the relation h� � means when
h is supposedly Planck�s constant � This can be understood as follows�
When considering some physical system� we can use various scales 	or
units of measure
� As we gradually pass from �micro� units� well suited
to describe quantum phenomena� to �macro� units� suitable for classical
phenomena� the numerical value of h expressed in the corresponding
units tends to zero� At the same time� the quantum nature of the
system becomes less and less apparent� and we continuously pass from
the quantum to the classical description�
The power of the correspondence principle is not actually restricted

to quantum mechanics� it turns out that whenever we deal with phe�
nomena described by linear di�erential equations� the behavior of solu�
tions is largely determined by an appropriately constructed �classical
mechanics��
Eventually� the correspondence principle� and� accordingly� quanti�

zation 	more precisely� semiclassical� or asymptotic quantization� which
is only dealt with in this book
 penetrates throughout the theory of dif�
ferential equations� and in this book we show how the uni�ed quantiza�
tion�based approach helps one solve various problems related to linear
di�erential equations�
With this objective in mind� in the �rst chapter we deal with asymp�

totic quantization in Euclidean phase space� which corresponds to the
simplest physical model� Namely� here we describe an integral trans�
form that provides a uni�ed quantization procedure for all objects of
classical mechanics� states� observables� and transformations� This
transform has quite a long history� It was originally introduced in ��
�
by V� Bargmann ��� as a transform relating the harmonic oscillator
representation of the creation�annihilation operators to the Fock repre�
sentation by operators acting on holomorphic functions� The Bargmann
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transform enjoys numerous applications in representation theory as well
as mathematical physics� Later� many authors reintroduced or redis�
covered this transform in various contexts� sometimes in a slightly dif�
ferent or a more general form� Let us indicate some of these results�
In ���� Cordoba and Fe�erman ��� de�ned a wave packet transform
on smooth manifolds and used it to give an alternative construction
of Fourier integral operators� their construction was closely followed
in ���� by Karasev ��� in his �global description� of Maslov�s canoni�
cal operator� In �����
� Bros and Iagolnitzer ��� introduced what was
later called the Fourier�Bros�Iagolnitzer 	FBI 
 transformation and de�
veloped and generalized to general 	nonquadratic
 phase functions by
Sj�ostrand ��
� 	see also ���� ����� and ����
� The FBI transformation is
used in the context of analytic wave front� microsupport� and related
topics� some details and applications� as well as further references� can
be found� e�g�� in �
�� ���� ����� and ����� In the framework of a uni�ed
quantization procedure� this transform was considered by Sternin and
Shatalov in ����� ���� 	where it was termed the Fourier�Gauss trans�
form
� and by Nazaikinskii and Sternin in ����� Here we develop the
approach adopted in the last three papers� Of the numerous names as�
signed to Bargmann type transforms since ��
�� we prefer �wave packet
transform�� Indeed� in our approach the transform arises from quanti�
zation of states� which gives wave packets as ��functions of minimum
uncertainty�

��� Classical and Quantum Descriptions

of a Physical System

Suppose that we intend to describe a physical system� Regardless of
whether our description will be classical or quantum� it must necessar�
ily contain certain basic elements� Indeed� at each instant of time the
system resides in some state� and so we must explain how states are
described and what the overall supply of states is�that is� we must
de�ne what is called the state space� Next� all our knowledge about a
speci�c system comes from observation� or measurement � So we must
explain what and how can be measured and how the measurement re�
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sults can be interpreted� Thus� we arrive at the notion of an observable�
Our system develops in time� and so we must explain how to specify
the dynamics 	the evolution law
 of states and how to describe it in
terms of states themselves and in terms of what can be measured� i�e�
observables� Last� but not least� we must indicate admissible trans�
formations of our objects� i�e�� transformations that do not a�ect the
form of the model and hence provide equivalent representations of the
same physical system� 	Note that the dynamic �ow speci�ed by the
evolution law will then give particular cases of such transformations�

Summarizing� we see that any description of a physical system must

necessarily include the following elements�

�� States�

�� Observables�

�� Dynamics 	evolution law
�

�� Transformations�

Now let us see how all these elements are described in the framework
of classical and quantum mechanics�
By way of example� we consider the simplest physical system S with

n degrees of freedom and �at con�guration space Rn� If n � �k� this
may be a system of k particles� possibly interacting and acted upon by
an external �eld� points x � Rn represent the coordinates of particles
in three�dimensional space� x � 	�y�� �y�� ���� �yk
� �yj � R�� j � �� ���� k�

����� Classical mechanics

The phase space� According to the principles of classical Newtonian
mechanics� the state of such a system will be uniquely determined if
we specify the position vector and the momentum of each of the par�
ticles� Thus� every state s of S is depicted by some point 	q� p
 � R�n�
where q � 	q�� ���� qn
 is the vector of coordinates of all particles

� and

�Essentially� q denotes the same object as x above� however� we shall see later
on that using distinct letters for the coordinate variables in the con�guration space
and the phase space is convenient�
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p � 	p�� ���� pn
 is the vector of the corresponding momenta� The space
R�n � R�n

q�p is called the phase space of the system S�

For a more complicated physical system� whose con�guration space is some

manifoldM � the phase space is the cotangent bundle T �M � This case will be dis�

cussed in the forthcoming chapters� here we only deal with the simplest situation�

Observables� Now let f be an observable in the system S� In classical
mechanics� observables are functions of state� once the system is in a
given state s� the measurement of f will invariably give the same value�
If s is represented� by a point 	q� p
� then we denote this value by
f	q� p
� Thus an observable is none other than a function f � R�n � R

	there is of course no law against considering� say� complex�valued or
matrix observables� etc�
� The simplest observables are the coordinates
q and the momenta p themselves� they are represented by the functions
f	q� p
 � q and f	q� p
 � p� respectively�

The evolution law� One of the most important observables is the
energy h� represented in classical mechanics by a function H	q� p
� also
referred to as the Hamiltonian of the system� The system dynamics
is uniquely determined by the Hamiltonian� Namely� the evolution of
the phase point 	q� p
 is described by the Hamilton system of ordinary
di�erential equations

�q � Hp	q� p
� �p � �Hq	q� p
� 	���


	the dot stands for the derivative with respect to time
�
Accordingly� the value of any observable evolves in time according

to the equation�

�f � d

dt
f	q	t
� p	t

 � �pfp � �qfq � Hpfq �Hqfp� 	���


�In what follows we sometimes do not distinguish between objects and their
representatives in a model provided this cannot lead to a misunderstanding�

�In expressions like those on the right�hand in ���	
� summation from � to n is
assumed� Hpfq �

Pn

j��Hpjfqj � etc�
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The right�hand side of 	���
 is denoted by fH� fg and is called the
Poisson bracket of H and f � Thus� f satis�es the Liouville equation

�f � fH� fg� 	���


Under appropriate assumptions on the Hamiltonian� system 	���
 de�
termines a one�parameter group

gt � R
�n � R�n 	���


of di�eomorphisms of the state space� Moreover� these di�eomorphisms
are canonical� that is� they prefer the symplectic ��form �� � dp�dq �Pn

j�� dpj � dqj�

g�t�
� � ��� 	���


Transformations� It is also useful to consider general transforma�
tions g satisfying 	���
� They preserve the form of the Hamilton sys�
tem 	���
 and the Liouville equation 	���
 	the Hamiltonian itself is� of
course� transformed according to the law H �� g�H
� and so they can
be viewed just as admissible coordinate transformations of the state
space R�n of classical mechanics�

����� Quantum mechanics

First� let us recall some general principles of quantum mechanics with�
out referring to the speci�c nature of the system S�

The state space� In quantum mechanics� the states of S are de�
scribed by elements � � H of a Hilbert space H� called the state space
of the system� More precisely� the elements � corresponding to states
have unit norm� jj�jj � �� and any two elements ��� di�ering by a
unimodular complex factor� � � �ei�� correspond to the same state�
	Putting this other way round� we can say that the set of states of a
system in quantum mechanics is the projective space P 	H
�
 The inner
product on H will be denoted by 	�� �
� We adopt the convention� usual
in quantum mechanics� that the inner product is linear in the second
argument and antilinear in the �rst argument�
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Observables� Observables are not functions of state in quantum me�
chanics� the measurement of an observable in some state is not uniquely
determined by the state but can produce di�erent values obeying some
probability distribution law� Speci�cally� any observable f is repre�
sented by a linear 	in general� unbounded
 operator

bf � H �H

in the state space� for physically meaningful observables� this operator
is usually self�adjoint� This operator is related to measurements as fol�
lows� Any measurement of f yields some number � belonging to the
spectrum �	 bf
� For simplicity� let us consider the case in which the
spectrum is discrete� �	 bf
 � f�kg�k��� Let f�kg�k�� be the correspond�
ing orthonormal basis of eigenfunctions of bf � Then the probability of
obtaining the value �k when measuring f in a state � is given by

P�	� � �k
 � j	�k� �
j�� 	��



This is none other than the squared absolute value of the kth coe cient
in the expansion of � with respect to the basis f�kg� Since k�k � �� we
see that these probabilities sum to �� and moreover� the expectation of
the value produced by the measurement of f in a state � 	also referred
to as the expectation of bf 
 is given by

bf � �X
k��

�kP�	� � �k
 �

�
��

�X
k��

	�k� �
�k�k

�
� 	�� bf�
� 	���


When the spectrum of f is not purely discrete� the above formulas undergo

obvious modi�cations� sums are supplemented by integrals over the continuous

spectrum� where instead of probabilities we have probabilitymeasures like 	�	�
 �
j	��� �
j� d�� where �� is the �generalized eigenfunction
 corresponding to a point

� of the continuous spectrum�

Since the expectations are the only entities that can be measured�
this explains why vectors ���� di�ering by a unimodular complex factor
describe the same state� the factor does not a�ect the value of the
expectation 	���
�
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Mixed states and the density matrix� The above quantum�me�
chanical description of states of the physical system S by vectors of the
Hilbert space H is perfectly valid if the system is closed or at least if
the environment is purely classical 	say� if S is a system of interacting
quantum particles in a classical �eld
� If� however� S is part of a larger
system S� whose remaining part also displays quantum properties� then
the situation is di�erent� A simple analysis shows that if we wish to
describe the states of S in terms ofH� then we have to admit states more
complicated than those described by separate elements ofH� Indeed� let
S� � S�T� where T is another system� whose quantum state space will
be denoted by G� Then the quantum state space of S� is H� � H	 G�
where 	 stands for the tensor product of Hilbert spaces� Now suppose
that the system S� is in a state 
 � H�� By the de�nition of the tensor
product� we have


 �
X

�j �j 	 �j � �j � C� �j � H� �j � G� jj�jjj � jj�jjj � ��

where the sum may be in�nite� We can assume without loss of gener�
ality that the �j form an orthonormal system� ThenX

��
j � jj
jj� � ��

Let cf be a quantum observable in the system S� The expectation of bf
can be calculated as follows�

bf � 	
� bf 	 � 

 � �X
�j �j 	 �j � bf 	 �X�k �k 	 �k

�
�

X
j

�j �k	�j� bf�k
	�j� �k
 �
X j�jj�	�j� bf�j
� 	���


By comparing 	���
 with 	���
� we arrive at the following interpretation
of the expectation 	���
� our system is in the state �� with probability
j��j�� in the state �� with probability j��j�� and so on� Such com�
plicated states are referred to as mixed states� in contrast with pure
states� described by elements of H� To describe mixed states more
conveniently� note that Eq� 	���
 can be rewritten in the form

bf � trace	b
 bf
�
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where b
 �X j�jj��j	�j� �
 	���


is an operator in H� which is called the density matrix corresponding
to our mixed state� Density matrices are characterized by the following
properties�

�� b
 � b
� 
 �� that is� b
 is self�adjoint and nonnegative�
�� trace b
 � ��
In the sequel we shall sometimes use the description of states via the

density matrix� However� we almost invariably deal with pure states�
We can readily see that the density matrix corresponding to a pure
state � � H is the rank one orthogonal projection

b
 � bP� � �	�� �
 	����


on the subspace generated by ��

The evolution law� Just as in classical mechanics� the evolution
of the system in quantum mechanics is determined by a distinguished
observable� the energy h� Here it is represented by the energy operator
	Hamiltonian
 cH � The state � � �t evolves in time according to the
Schr�odinger equation

ih �� � cH�� 	����


where h is Planck�s constant� The solution of 	����
 is given by

�t � Ut��� 	����


where
Ut � e�

i
h
bHt 	����


is the one�parameter group of unitary operators generated by cH�
We recall that the wave function � itself cannot be measured� only

expectations 	���
 can be observed� Let us calculate the expectation of

an observable cf in the state �t� We have

	�t� bf�t
 � 	Ut��� bfUt��
 � 	��� U
��
t

bfUt��
 � 	��� bft��
�



���� DESCRIPTIONS OF A PHYSICAL SYSTEM ��

where bft � U��
t

bfUt 	����


satis�es the Heisenberg equation

ih
d bf
dt
� ��cH� bf �� 	����


	Here �cH� bf � � cH bf � bfcH is the commutator of the operators cH and bf �

Thus� without changing the expectations� we can replace the Schr�odin�
ger picture� in which observables are independent of time and states
evolve according to 	����
� by the Heisenberg picture� in which states
are independent of time and observables evolve according to the rule
	����
�
Let us also write out the equation that governs the evolution of the

density matrix in the Schr�odinger picture� We derive it for the density
matrix 	����
 corresponding to a pure state �� 	this is just the case in
which we shall need it
� We have

b
t � Ut��	Ut��� �
 � Ut b
�U��
t �

by di�erentiating this with respect to t� we �nd that b
t satis�es the
Wigner equation

ih
db
t
dt
� �cH� b
t�� 	���



Note the di�erence between the Wigner and the Heisenberg equation�
Although very similar in the appearance 	they di�er only in the sign
of the commutator
� they describe two opposite points of view� the
Wigner equation shows how the density matrix 	i�e� the state
 evolves�
whereas the Heisenberg equation describes the evolution of observables
in the di�erent picture where the states are �frozen��

Transformations� Just as in classical mechanics� it is useful to con�
sider general unitary transformations U � H � H that do not neces�
sarily have the form 	����
� These transformations preserve the form
of the Schr�odinger equation 	����
 and the Heisenberg equation 	����

	the Hamiltonian is transformed according to the rule cH � bUcH bU��
�
and so they can be viewed as admissible transformations of the state
space H of quantum mechanics�
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Quantum mechanics of the simplest system� Now let us proceed
to what is speci�c to the quantum description of our simplest physical
system S�
In this system� we have the fundamental observables q and p 	the

coordinates and the momenta
� Quantum mechanics postulates that
these observables must be represented by self�adjoint operators

	bq� bp
 � 	bq�� ���� bqn� bp�� ���� bpn

in the Hilbert state space H such that the commutation relations
�bpj � bpk� � �bqj� bqk� � �� �bpj� bqk� � �ih�jk� j� k � �� ���� n� 	����


are valid� where �jk is the Kronecker delta� 	We shall recall the moti�
vation for this later on in the discussion of quantization and the corre�
spondence principle�
 Moreover� this representation must be irreducible
in the sense that there is no proper subspace of H invariant under all
the operators 	bq� bp
�

Technically� things are a bit more complicated� Relations �����
 mean that

the �n�� self�adjoint operators 	bq�� ���� bqn� bp�� ���� bpn� �
 �where � is the identity

operator
 form a representation of a speci�c Lie algebra� known as the Heisenberg

algebra and denoted by hn� The Heisenberg algebra is the real Lie algebra with

�n � � basis elements e�� ���� en� f�� ���� fn� � with the Lie brackets

�ej� ek� � �fj� fk� � �ej� �� � �fj� �� � �� �fj� ek� � �jk�� 	����


j� k � �� ���� n�

The term �representation
 means that there is a mapping of hn into the set of

self�adjoint operators on H such that

ej �� bqj� fj �� bpj � � �� h� and

	Lie bracket
 ��� �ih� 	commutator

�the factor �ih has been introduced for convenience� so that all operators in the

representation be self�adjoint rather than skew�self�adjoint and Planck�s constant h
occur in convenient places in all formulas�
 However� since the representation oper�

ators are unbounded� we must take extreme care with their domains� The standard

way of handling this di�culty is to assume� as is customary in representation the�

ory of Lie algebras and Lie groups� that our representation of the Lie algebra hn
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comes from an irreducible unitary representation of the corresponding Lie group

Hn� which is called the Heisenberg group� Further details can be found in standard

textbooks on Lie groups and representation theory�

The celebrated Stone�von Neumann theorem says that these condi�
tions uniquely determine the representation up to a unitary equivalence
	an isometric isomorphism
� The standard coordinate representation
is the one in which the state space H is just L�	Rn

x
� where R
n
x is the

con�guration space of the system� and the operators bp� bq have the form
bq � x 	the operator of multiplication
� 	����


bp � �ih �

�x
� 	����


Thus� the states are represented by square integrable functions �	x
 on
the con�guration space Rn

x� The squared absolute value j�	x
j� has the
meaning of the probability density of the system at the point x� 	If the
system is in a state �	x
� then the probability of �nding the system in
a small cube 	x�� x��!x�
� � � � � 	xn� xn �!xn
 of the con�guration
space is j�	x
j�!x� � � �!xn�

We shall study a number of other representations in Section ����

����� Classical vs� quantum

For convenience� let us bring together all main elements of the classical
and quantum descriptions of the simplest physical system S� They are
shown in Table ���� where the �rst column displays classical objects
and the second contains their quantum counterparts�

����� Quantization problem and the correspon�

dence principle

So far� we have described the main elements of the classical and quan�
tum descriptions of a physical system� However� nothing has been said
as to how the classical and the quantum descriptions are related to
each other� The quantum description involves Planck�s fundamental
constant h� and one of the basic postulates of quantum mechanics is
the correspondence principle� already discussed in the beginning of this
chapter� Now we state it in the following form�
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Main objects Classical Mechanics Quantum Mechanics

points 	q� p
 of the Elements � � H
States phase space of the Hilbert state

R�n � Rn
q �Rn

p space H � L�	Rn
x


functions f	q� p
 Linear operators

Observables on the phase space bf � H � H
	usually self�adjoint
and unbounded


Hamilton system Schr�odinger equation
for states� for states�

�
p� �Hq�

�
q� Hp ih

�
�� cH�

Dynamics Liouville equation Heisenberg equation
for observables for observables

�
f� fH� fg ih�bf

�t
� ��cH� bf �

H is the Hamiltonian cH is the energy operator

canonical transformations Unitary transformations
of the phase space� U � H �H

Transformations g � R�n � R�n � �� U�

	p� q
 �� g	p� q
 bf �� U bfU��

f	p� q
 �� 	g�f
	p� q
 � f	g	p� q



Table ���� Classical and quantum objects
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As Planck�s constant h tends to zero� the solutions of quantum�
mechanical equations result in the solutions of the corre�
sponding equations of classical mechanics for the same phys�
ical system�

More precisely� the evolution of the mean values bf � 	�� bf�
 of
quantum observables is described in the limit as h� � by the classical
equations of notion 	���
� where f and H are the classical observables
corresponding to the quantum observables bf and cH� respectively 	of
course� the latter correspondence must also be described
� The passage�

quantum
description

�
h����

�
classical
description

�
	����


is known as the 	semi
classical limit �
Now we are faced with the following problem� Suppose that we

know the classical description of some objects related to the system
S� What can we say then about the quantum description of the same
objects" The passage�

classical
description

�
��

�
quantum
description

�

is known as quantization� The quantum description of a physical system
is much richer than the classical one� and so quantization is by no means
unique� One obvious restriction is that the quantization procedure
must be the right inverse of the semiclassical limit 	by passing from
the classical description to a quantum description and then back we
obtain the original classical description
� However� this requirement
alone gives us insu cient information on how to quantize� Thus we
must add some extra requirements�
Suppose that we have already constructed the quantum state space

H� 	This is just the �rst step of the quantization procedure in the
wide sense� For our simplest model system� as the Stone�von Neumann
theorem guarantees� this step is unique
� Then we must do quantization
in the narrow sense 	which will be referred to as simply quantization
in what follows
� to each classical observable f	q� p
 we must assign
a quantum observable bf � Apparently the oldest quantization recipe
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going back to the creators of quantum mechanics and incorporated by
them in the correspondence principle says that we must have

� bf� bg� � �ih dff� gg� 	����


	On the left�hand side� � � � � � is the commutator� and f � � � g on the
right�hand side is the Poisson bracket
� Later Dirac indicated that
	����
 cannot be achieved exactly for arbitrary f � g� and so the actual
requirement will be�

� bf� bg� � �ihf bf� bgg�O	h�
� 	����


Moreover� we require that

b� � � 	the identity operator in H
 	����


and bf bg � cfg �O	h
� 	����


There is extensive literature devoted to the quantization problem
	see Bibliographic remarks in the end of the book
� Here we do not con�
sider the problem in its full generality and restrict ourselves to the sim�
plest physical system� The phase space R�n

q�p of this system is linear� and
the space C�	R�n

q�p
 of classical observables contains the subspace hn
of linear functions� spanned by the functions fq�� � � � � qn� p�� � � � � pn� �g�
This subspace is just the Heisenberg Lie algebra of coordinates and
momenta with respect to the Poisson bracket�

fpi� qjg � �ij� fpj � �g � fqj� �g � ��

By virtue of the above description of the simplest physical system�
regardless of what quantization we take� the following must be satis�ed�

�� quantization takes any element l � hn to a self�adjoint operatorbl � H �H�
�� relation 	����
 is satis�ed exactly if f� g � hn�

�The exact meaning of O�h�
 also needs to be further explained� This will be
done in due place�



���� REPRESENTATIONS AND TRANSFORMS ��

However� the quantization of observables that are not linear func�
tions of 	p� q
 is not uniquely determined� Since a classical observable
f	p� q
 is a function of the coordinates and momenta� we can try to
quantize f	p� q
 by substituting bp and bq for p and q� that is� by consid�
ering a function f	bp� bq
 of the operators bp� bq�

bf � f	bp� bq
� 	���



The correct de�nition of functions 	���

 is the subject of noncommu�
tative analysis 	see Chapter �
� In few words� we can assign a precise
meaning to the expression 	���

 by specifying the order of action of
the operators 	bp� bq
 in this expression� Various orderings are possi�
ble� say� the Feynman orderings f	

�bp� �bq
 and f	�bp� �bq
� the Weyl ordering
f

� �bp��bp
� �

�bq�� the Jordan ordering �
�f

�
	
�bp� �bq
 � f	

�bp� �bq
�� and so on�
Further discussion of the quantization problem will be given in the

forthcoming sections and in Chapter ��

��� Representations and Transforms

The Hilbert state space of a given physical system can be described in
many di�erent ways� For example� the quantum�mechanical state space
H of the simplest system S was described in the preceding section as
L�	Rn

x
� but this is not the only possible choice� We can pass to a
di�erent description as follows� Let H� be another Hilbert space� and
let

U � H �H� 	����


be an isometric isomorphism 	a unitary operator
� Then to each ele�
ment � � H we assign the element

e� � U� � H��

and to each observable bA � H � H
we assign the operator

eB � U bAU�� � H� � H��
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This procedure takes bA� to bB e� and moreover preserves the mean
values of observables�

	�� bA�
 � 	 e�� bB e�
�
so that the two descriptions are indistinguishable from the viewpoint of
an experimenter� The mapping U and the space H� are said to de�ne
a representation of the quantum�mechanical system in question��

If we have two representations� 	U��H�
 and 	U��H�
� of the same
system � then they are obviously related by a transform

U � H� �� H��

Namely� U is the transform such that the diagram

H�
U�� H��


 U� 
 U�

H �� H
commutes�
An instructive example of two di�erent representations is given by

the Schr�odinger picture and the Heisenberg picture 	see 	����
 and
	����

� Here the operator U relating the two representations depends
on time 	and hence the dynamics is described di�erently in the two
pictures#
� and H� � H is the same 	abstract
 Hilbert space�
Clearly� there are many di�erent quantum�mechanical representa�

tions of the same physical system� In practice� the construction of a
representation often does not start from the unitary operator U � One
constructs H� independently and then tries to �nd U �
In the remaining part of this section we solely deal with quantum�

mechanical representations of the simplest system S and study the
transforms relating these representations to each other� In this study�
the following consideration will be useful for us� Suppose that we have
two representations of S in Hilbert spaces H� and H�� and moreover� we
know the coordinate and momenta operators in both representations�

bq	k
j � bp	k
j � Hk �� Hk� k � �� ��

�Although this notion of a representation is in some respect close to the notion
of a representation used� say� in representation theory of groups� they must not be
confused�
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Then by the Stone�von Neumann theorem there is a unique unitary
operator

U � H� � H�

such that

U bp	�
j U�� � bp	�
j � U bq	�
j U�� � bq	�
j � j � �� � � � � n� 	����


Thus� the operator U can be found by solving Eq� 	����
�
Let us now proceed to the description of speci�c representations�

����� Coordinate and momentum representations

and the Fourier transform

Mixed representations� The coordinate representation� There
are various methods for obtaining representations� one of these meth�
ods is to take a set of commuting observables and reduce them to a
diagonal form in some basis of H� Then each vector � � H is naturally
represented by the set of its coordinates with respect to this basis� The
coordinate and momentum representations are constructed as follows�
From the set of �n operators

bq�� � � � � bqn� bp�� � � � � bpn�
we choose a maximal subset of pairwise commuting operators and re�
duce them to a �diagonal form�� Any such subset can be constructed
as follows� for each j � �� � � � � n� we take either bqj or bpj� 	Clearly� there
are �n distinct choices�
 Thus we obtain mixed coordinate�momentum
representations in general� However� there are two basic cases in which
we make the same choice for all j � �� � � � � n� Suppose that we have
chosen all coordinate operators� What does it mean to reduce these
operators to a diagonal form" The spectrum of each of these operators
is purely continuous and �lls the entire real axis� Hence there are no
eigenvectors in the usual sense� but there are �generalized eigenvectors��
which are numbered by points of Rn� The corresponding diagonal form
is achieved in the space of square integrable functions of x � Rn� where
the coordinate operators become just the multiplication operators

bqj � xj� j � �� � � � � n�
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The generalized eigenfunctions are the Dirac delta functions �	x� q
�
where q is the parameter numbering the eigenfunctions and� at the same
time� the corresponding n�tuple of eigenvalues�

xj�	x� q
 � qj�	x� q
j� j � �� � � � � n�

We can �nd the form of the momentum operators in this representation
by solving the commutation relations 	����
�

�bpj� bpk� � �bqj� bqk� � �� �bpj� bqk� � �ih�jk� j� k � �� ���� n�

With regard to the additional requirement that the bpj must be self�
adjoint� we can show that

bpj � �ih �

�xj
� $j	x
� j � �� � � � � n� 	����


where the $j	x
 are real�valued functions such that

�$j	x


�xk
�

�$k	x


�xj
� j� k � �� ���� n� 	����


Let S	x
 be a real�valued function such that

�S

�xj
	x
 � $j	x
� j � �� � � � � n�

	The existence of S	x
 follows from condition 	����
�
Then

�ih �

�xj
� e i

h
S	x
 � e

i
h
S	x
 �

�
�ih �

�xj
� $j	x


�
�

whence we see that the multiplication by e
i
h
S	x
 	which is a unitary

operator in L�	Rn
x

 reduces the momentum operators to the simplest

form in which $j	x
 � �� j � �� � � � � n�
We see that in the representation that we have just constructed� the

state space is H � L�	Rn
x
� and the coordinate and momenta operators

are given by

bq � x� bp � �ih �

�x
� 	����


Thus� this is none other than the coordinate representation� mentioned
in the preceding section�
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The momentumrepresentation and the quantum Fourier trans�

form� Equally important is themomentum representation�H �� L�	Rn
p 
�

in which the momentumoperators are diagonal� that is� are represented
by the multiplication operators�

bpj � pj 	����


	the corresponding generalized eigenfunctions are� of course� the delta
functions �	p � �
� where � is the spectral point
 and the coordinate
operators are represented by di�erentiations�

bxj �� ih
�

�pj
� 	����


	Here we are very brief� since the argument is much the same as in the
preceding case�

Let us derive the well�known transform relating these two rep�

resentations� Let an element � � H be represented by a function
�	x
 � L�	Rn

x
 and a function
e�	p
 � L�	Rn

p
 in the coordinate and
momentum representations� respectively�
Then e�	p
 � F ��	x
�� 	����


where
F � L�	Rn

x
� L�	Rn
p
 	����


is the desired unitary transformation� We seek F in the form of an
integral operator�

	F�
	p
 �
Z
K	x� p
�	x
 dx� 	���



where K	x� p
 is the Schwartz kernel of F �
According to 	����
 and 	����
� we have

�ih
Z
K	x� p


��	x


�x
dx � p

Z
K	x� p
�	x
 dx

for any �	x
 � L�	Rn
x
 and any p � Rn

x� or� after integration by parts�

ih
Z
�K

�x
	x� p
�	x
 dx � p

Z
K	x� p
�	x
 dx� 	����
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Since �	x
 is arbitrary� we see that

ih
�K

�x
	x� p
 � pK	x� p
�

whence it follows that

K	x� p
 � e�
i
h
pxa	p
� px �

X
pjxj� 	����


where a	p
 is so far arbitrary� 	However� we must take care that our
operator must be unitary� In particular� a	p
 �� � for any p�
 Thus F
has the form

�F��	p
 � a	p

Z
e�

i
h
px�	x
 dx� 	����


Under this transform the operator bxj is represented by
bxj �� ih

�

�pj
� iha��	p


�a	p


�p
� 	����


It is only natural to choose a	p
 � const� and then we shall have
	����
� The speci�c value of the constant is determined by the normal�

ization condition� the choice a	p
 �
�
�i
��h

�n	�
makes F unitary� 	This

is obvious� since with a	p
 � const the mapping F is just a rescaling of
the ordinary Fourier transform�
 Thus

�F��	p
 �
� �i
��h

�n	� Z
e�

i
h
px�	x
 dx� 	����


The transform de�ned by 	����
 will be called the quantum Fourier
transform� The inverse F�� of 	����
 is given by

�F��
�	x
 �
�

i

��h

�n	� Z
e
i
h
px
	p
 dp�

Again� this follows from the inversion formula for the usual Fourier
transform�

����� Fock representations and Bargmann trans�

form

Now we shall describe some other representations of the same quantum�
mechanical system�
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The oscillator representation� To obtain this representation� we
again choose some set of commuting operators and �nd a basis in which
they all become diagonalized� Namely� let us consider the quantum
oscillator operators

cHj �
�

�
	bp�j � bq�j 
� j � �� � � � � n� 	����


Each of these self�adjoint operators has a discrete spectrum consisting
of the eigenvalues

�k � h
�
k �

�

�

�
� k � �� �� �� � � �

In the coordinate representation� the orthonormal basis of joint eigen�
functions corresponding to these eigenvalues has the form

�k����kn	x
 � ck����knHk�

�
x�p
h

�
� � �Hkn

�
xnp
h

�
e�

x�

�h � 	����


k�� � � � � kn � �� �� �� � � � �

where the Hj	y
� y � R�� are Hermite polynomials and ck����kn are nor�
malizing constants� The oscillator representation is the representation
in which every ��function is represented by the sequence of coe cients
in its generalized Fourier series expansion with respect to the basis
	����
� Thus� the space of the oscillator representation is

H� � l� 	 � � � 	 l�� 	z 

n times

� 	l�
�n�

Let us �nd the transform

% � L�	Rn
x
 �� 	l�
�n

relating the coordinate representation to the oscillator representation�
Since 	����
 is an orthonormal basis� the coe cients ak����kn in the ex�
pansion

�	x
 �
�X

k������kn��

ak����kn�k� ���kn	x
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can be found readily�

ak����kn �
Z
Rn

�k����kn	x
�	x
 dx

	recall that the functions �k����kn are real�valued� so we omit the complex
conjugation
� We conclude that % is the integral transformation with
kernel

%	k� x
 � �k����kn	x
� x � Rn� k � k�� � � � � kn � Zn
�� 	����


This kernel is real�valued� and since the transformation is unitary� it
follows that the inverse transformation %�� has the same kernel 	with
the roles of the arguments interchanged
�

Second quantization method� The oscillator representation can
also be obtained in a completely di�erent way� by applying the so�
called second quantization method due to V� Fock to the phase space
of classical mechanics� 	In this context� the oscillator representation
is called the Fock representation�
 We shall �rst recall this method in
its usual context� as it is applied to the Schr�odinger equation� Since
we do this for clarity and motivation alone� we shall never treat the
convergence issues there 	for the mathematically rigorous treatment of
second quantization in the in�nite�dimensional situation� see Berezin
���
�
In fact� we deal with the simplest version of second quantization�

namely� the one that deals with the �one�particle� Schr�odinger equation
	so that the many�particle system obtained by second quantization is
a system of noninteracting particles
�
Let H be the state space of an �elementary� quantum�mechanical

system 	for short� we refer to this system as a �particle�� even though
actually it can be rather complicated� The second quantization method
is a construction that provides a description of the ensemble of a vari�
able number of particles� Any state of the system of k particles is
described by an element of the Hilbert tensor product H� 	 � � � 	Hk�
whereHi is the state space of the ith particle� This assertion pertains to
the case in which all particles are distinct� If all particles are identical�
then they are indistinguishable in quantum mechanics 	no one can say
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which particle is the �rst� which is the second� and so on
� Accordingly�
the state described by a vector

� � H�k � H	 � � �	H� 	z 

k times

must be invariant under the permutation of any two particles� that is�

&jl� � �jl��

where &jl is the operator of permutation of the jth and lth particle and
�jl � C� Since &�

jl � �� we have �
�
jl � �� that is�

�jl � ���
The case �jl � �� corresponds to the so�called Bose statistics 	which
is the only one we consider here
� Hence� for bosons 	Bose particles

any k�particle state is described by an element of the symmetric tensor
power

Sk	H
 � H�k

of the main space H� The state of the system with a variable number
of particles is described by an element of the Fock space

F � F	H
 �
�M
k��

Sk	H
 	S�	H
 � C
�

where the in�nite orthogonal sum of Hilbert spaces is naturally under�
stood as the completion of the algebraic direct sum with respect to
the corresponding norm� Note that H itself is embedded in F	H
 in a
natural way as S�	H
�
A natural orthonormal basis in F	H
 can be constructed as follows�

Let fe�� � � � � ek� � � �g be an orthonormal basis inH� We take an arbitrary
tuple 	el�� � � � � elk
� symmetrize the tensor product el� 	 � � � 	 elk � and
normalize the resulting product to �� The set of all possible vectors
provided by this procedure is an orthonormal basis in F	H
� it will be
called the Fock basis�
It is convenient to describe this procedure in terms of the so�called

occupation numbers� Let

�n � 	n�� � � � � ns� � � �
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be a sequence of nonnegative integers such that

j�nj �
�X
j��

nj � k�

Next� let 	f�� � � � � fk
 be the sequence of basis vectors in H such that
	f�� � � � � fk
 � 	e�� � � � � e�� 	z 


n� times

� e�� � � � � e�� 	z 

n� times

� � � �
�

We set

j�ni � �p
k#
p
n�#n�# � � �

nX
��
k

f�	�
 	 � � �	 f�	k
� 	����


where the sum is taken over all permutations � � Sk of k elements�
Then the set of all vectors j �n i with j�nj � k is an orthonormal basis in
Sk	H
� the union of all these bases is an orthonormal basis in F	H
�
Let �j be the sequence �n such that nj � � and nk � � for k �� j� We
introduce the creation�annihilation operators a�j � aj� j � �� �� � � � � in the
Fock space F	H
 by the formulas

a�j j�n i �
q
nj � � j�n� �ji

ajj�n i �

� p
nj j�n� �ji if nj � ��

� if nj � ��
	���



Obviously� the operators aj and a�j satisfy the commutation relations

�aj� a
�
j � � �jk�

furthermore� we can readily see that a�j is the adjoint of aj with respect
to the inner product on F	H
� Indeed�

	j�mi� ajj�n i
 �� �
if and only if j�mi � j�n � �ji� in this case�

	j�mi� ajj�n i
 � pnj � 	a�j j�mi� j�n i
�
In quantummechanics� the common value of these expressions is usually
denoted by h �m j aj j �n i 	the hbrajcj keti notation due to Dirac
�
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Now let cH be the one�particle energy operator� We assume that
the particles are noninteracting� that is� the energy operator of the
k�particle system has the form

cHk � cH 	 � 	 � � �	 � � � 	 cH 	 � 	 � � �	 � � � � �

��	 �	 � � �	 � 	 cH�cH� � ��

Thus we have de�ned the Hamiltonian 	the energy operator
 in the
Fock space� cHF � diag	cH��cH�� � � � �cHk� � � � � � � �
�

It turns out 	this explains the term �second quantization�
 that the
Schr�odinger equation with Hamiltonian cHF in the Fock space can be
obtained in the following simple way� Consider the mean value of the
energy of one particle�

� cH �� 	��cH�
 � 	z�fHz
 �
�X

j�k��

Hjkzkzj� 	����


where z � 	z�� z�� � � �
 are the coordinates of the wave function � in
the basis felg and fH � fHjkg is the matrix of the operator cH in the
same basis� Here we replace all zk by creation operators and all zj by
annihilation operators� that is� consider the operator

ccH �X
j�k

Hjka
�
kaj 	����


in the Fock space� The operator 	����
 is essentially obtained from the
symbol 	����
 by quantization� the coordinates of the wave function
are replaced by the creation�annihilation operators� Straightforward
computation shows that cHF �

ccH�

In quantum mechanics and quantum �eld theory� what is called
�second quantization� is usually applied to in�nite�dimensional systems
like the Schr�odinger equation 	as discussed above
 or the classical �eld
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equations� However� to obtain the Fock representation� we only need
to �second�quantize� a certain �nite�dimensional system�
In fact� second quantization is based on the following observations�

�o� There exists an �exact� quantization of quadratic Hamiltonians
	this will be clari�ed below
�

�o� The Schr�odinger equation can be viewed as a Hamilton system
with quadratic Hamiltonian of a special form related to the complex
structure 	we have just seen this in the preceding
�

Essentially� by �o� in second quantization we reinterpret the quan�
tum system as a classical system� which is then quantized� By �o� it
proves to be possible to embed the �classical� system thus obtained
in the quantized system 	more precisely� the �classical� phase space
is embedded in the quantum state space as a subspace
 so that the
�classical� evolution is just the restriction of the quantum evolution�
Thus� in the usual context of second quantization we have the following
�shift� of notions�

�� The classical system is the original quantum system�

�� The quantum system is the system with variable number of par�
ticles 	the second�quantized system
�

Though interpreting the quantum system as classical� this technique
uses both aspects of the original system� Therefore� to apply the �sec�
ond quantization� technique to the classical system� we must learn how
to interpret this system as a quantum system 	which of course will be
degenerate� i�e� �nite�dimensional
�
With regard to all these considerations� we start from the analysis

of quadratic Hamiltonians�

Exact quantization of quadratic Hamiltonians� Dirac�s famous
problem on the quantization of observables 	already mentioned in Sub�
section ���
 can be stated as follows� for a given set of symbols f	q� p

on the phase space R�n

q�p � T �Rn
q � �nd a quantization rule

f	q� p
� bf 	����
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taking each symbol f	q� p
 to an operator bf in the quantum state space
L�	Rn

x
 so that the following conditions hold�

a
 The mapping 	����
 is linear�

b
 b� is the identity operator�
c
 � bf� bg� � �ih dff� gg� 	����


where f � g is the classical Poisson bracket�
As was already mentioned in Section ���� this problem is known to

have no natural solutions� for arbitrary 	and even polynomial
 symbols�
we can only achieve 	����
 modulo O	h�
�
However� this problem does have a solution if we restrict ourselves

to the case of quadratic Hamiltonians� i�e�� symbols of the form

f	q� p
 �
�

�
� p�Ap � �

�

�
� q�Bq � � � p�Cq �

� � a� p � � � b� q � �c�

where A � tA� B � tB and C are n�n matrices� a and b are n�vectors�
and c � C� Speci�cally� the solution is given by the Weyl quantization

bf � f

�B
 �bp � �bp
�

�
�bq
�CA � 	����


where bp � �ih �
�x
and bq � x� For polynomial 	in particular� quadratic


symbols this de�nition can be restated as follows� let f	q� p
 be a poly�
nomial� We represent f in the form

f �
X

c�f�� 	����


where the c� are constants and

f� � 	a�p� � � � �� anpn � b�q� � � � �� bnqn

k 	����


where the coe cients a�� � � � � an� b�� � � � � bn and the nonnegative integer
exponent k depend on �� Thenbf �X

c� bf�� 	����


�Natural solutions must satisfy bfbg � cfg � O�h
� this condition excludes the
nonnatural solution �used in geometric quantization
 given by �rst�order operators
on the phase space �see ���
�
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where bf� � 	a�bp� � � � �� an bpn � b�bq� � � � �� bnbqn
k� 	����


We can readily verify that for the Weyl quantization

� bf� bg� � dff� gg�O	h�
� 	���



where the O	h�
 is bilinear in the third� and higher order derivatives
of f and g� It follows that for quadratic Hamiltonians Eq� 	����
 is
satis�ed exactly�

From now on� until the end of this section� we use the system of units
in which h � �� as is customary in the theory of second quantization�

The complex structure of the classical phase space� The phase
space R�n

q�p � T �Rn
q bears the standard symplectic structure �

� � dp �
dq� Since this space is linear� it can be identi�ed with its tangent space
at an arbitrary point� and so ��	v�w
 is well�de�ned for any v�w � R�n�
Next� let us consider the standard Euclidean structure

	v�w
R �
�nX
j��

vjwj� 	����


Then

��	v�w
 � 	v� Iw
R� 	����


where I is the �n� �n matrix

I �

�
� En

�En �

�
	����


and En is the n � n identity matrix 	we assume that the coordinates
in R�n

q�p are ordered as follows� 	p�� � � � � pn� q�� � � � � qn
�
 We have I
� �

�E�n� and hence I de�nes a complex structure on R�n
q�p� More precisely�

let us de�ne a one�to�one mapping of R�n
q�p onto C

n by setting

R�n
q�p � w � 	q� p
 �� jw � z �

�p
�
	q � ip
 � Cn� 	��
�
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Then Iw �� iz� that is� the matrix I is taken to multiplication by i�
Next� let 	 �� � 
 be the standard inner product on Cn�

	zez
 �� z� ez �� nX
k��

zk ezk for any z� ez � Cn� 	��
�


Then

	jw� jv
 �
�

�
	w� v
R �

i

�
��	w� v
� 	��
�


Next� we readily see that the operators �
�z
and �

�z
are expressed in the

coordinates 	q� p
 as follows�

�

�z
�
p
�

�
�

�q
� i

�

�p

�
�

�

�z
�
p
�

�
�

�q
� i

�

�p

�
� 	��
�


Conversely�

�

�q
�
�p
�

�
�

�z
�

�

�z

�
�

�

�p
�

ip
�

�
�

�z
� �

�z

�
� 	��
�


An easy computation shows that for arbitrary functions f � g on R�n
q�p

j��
Cn the Poisson bracket is given by

ff� gg � i

�
�f

�z

�g

�z
� �f

�z

�g

�z

�
� 	��
�


Accordingly� the Hamiltonian vector �eld of f is given by

Vf � i

�
�f

�z

�

�z
� �f

�z

�

�z

�
� 	��




Let us now consider quadratic Hamiltonians� A general quadratic
Hamiltonian has the form

H	z� z
 �
�

�
� z�Az � �

�

�
� z�Bz � � � z�Hz � � linear terms�

	��
�

where A� B� and H are n� n matrices with complex entries and � � �
is the bilinear pairing

� z� ez �� nX
k��

zk ezk� 	��
�
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We shall consider special Hamiltonians in which only the third term on
the right�hand side in 	��
�
 is present� i�e�

H	z� z
 �� z�Hz �� 	z�Hz
� 	��
�


Moreover� we require that the Hamiltonian be real�valued� that is H �
H� is a self�adjoint matrix�
Let us write out the Hamilton system for the Hamiltonian 	��
�
�

According to 	��
�
� 	��


� this system has the form

�z � iHz� 	����


that is� is given by a C�linear equation�
We see that the equation of motion 	����
 coincides with the �Schr�o�

dinger equation� corresponding to the Hamiltonian H � Cn � Cn of a
quantum�mechanical system with �nitely many degrees of freedom�

The Fock representation� Now we can construct the Fock repre�
sentation of a system S� We denote the complexi�ed phase space con�
structed in the preceding item by $ and proceed in complete analogy
with the in�nite�dimensional case considered above�
Let

Sk	$
 � $�k

be the subspace of completely symmetric tensors� We adopt the con�
vention that S�	$
 � C� The Fock space is again de�ned as

F	$
 �
�M
k��

Sk	$
�

and we have the embedding

$ � S�	$
 � F	$
�

Let e�� � � � � en be an orthonormal basis in $ 	say� the standard basis
in the q�plane� then z �

Pn
i�� ziei
� We construct the Fock basis in

F	$
 corresponding to e�� � � � � en along the same lines as above� The
only di�erence is that now the sequence �n � 	n�� � � � � nn
 of occupa�
tion numbers is �nite� The vector j�n i is de�ned by the same formula
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	����
� and the creation�annihilation operators a�j � aj� j � �� � � � � n in
the Fock space F	$
 are given by the formulas 	���

 and satisfy the
same commutation relations �aj� a�j � � �jk�
To make F	$
 the quantum state space of the simplest physical

system S� it remains to de�ne the action of the Heisenberg algebra hn
on F	$
� The Fock representation is speci�ed by the condition that
the Heisenberg algebra elements are quantized as follows 	recall that
we assume h � � in this section


� �� b� � id 	the identity operator in F	$


zj �

�p
�
	qj � ipj
 �� a�j j � �� � � � � n 	����


zj �
�p
�
	qj � ipj
 �� aj�

In particular�

bqj � �p
�
	aj � a�j
� bpj � �p

�i
	aj � a�j 
 	����


are self�adjoint operators and satisfy the desired commutation relations
	����
�

The Bargmann�Fock representation� There is yet another con�
venient representation� which can be obtained from the Fock represen�
tation and which will be called the �Bargmann�Fock representation���

The introduction of it is motivated by the following simple consid�
erations� According to 	����
� in the Fock quantization the classical
variable zj �

�p
�
	qj � ipj
 corresponds to the creation operator asso�

ciated with the jth basis state in quantum mechanics� We seek for
some analog of the coordinate representation� just as the coordinate
representation can be described as a representation in which the coor�
dinate operators are depicted as the operators of multiplication by the
corresponding classical variables� so in our would�be representation the
creation operators a�j will be depicted as the operators of multiplication

�This representation was discovered by Fock and later studied thoroughly by
Bargmann�
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by zj� Naturally� the elements of the state space will then be treated
as functions of z�� � � � � zn 	that is� functions on $
� More precisely� let
us isomorphically map Sk	$
 onto the space of kth�order homogeneous
polynomials in z � 	z�� � � � � zn
 by letting

j�n i ��� c�nz
n�
� � � � znnn � 	����


Thus� each basis vector in Sk	$
 is taken to the corresponding mono�
mial� According to 	���

� we have

a�j j�n i ���
q
nj � �c�n��jz

n�
� � � � znj��j � � � znnn �

To ensure that this is the same as the multiplication by zj� we require
that q

nj � �c�n��j � c�n�

This is the case if we choose the coe cient c�n in the form

c�n �
�p

n�# � � � nn#
�

Now� after obvious modi�cations� we can write out the correspondence
between the basic classical and quantum variables in the Bargmann�
Fock representation�


zj ��� a�j � zj

zj ��� aj �
�

�zj
	����


The elements 	����
 by de�nition form an orthonormal basis in the
newly de�ned representation space� Thus� we have mapped F	$
 onto
the space HB of power series

f	z
 �
X
s

fs����snz
s�
� � � � zsnn 	����


with �nite norm

jjf jj� �X
s

s�# � � � sn# jfs����snj�� 	���



	The veri�cation of the second formula is straightforward�
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Let us represent the norm 	���

 in a somewhat di�erent form� It is
generated by the inner product

	f� g
 �
X
s

s�# � � � sn# 'fs� ���sngs����sn �

First� suppose that the series 	����
 of f and g contain only one term�

f	z
 � azs� g	z
 � bzl�

where s � 	s�� � � � � sn
 and l � 	l�� � � � � ln
 are multiindices� Then an
easy computation shows that

	f� g
 �
�

�n

Z
Cn

'f 	z
g	z
e�zzdq dp 	z � q � ip
� 	����


and� accordingly�

jjf jj� � �

�n

Z
Cn
jf	z
j�e�zzdq dp� 	����


Next� the �niteness of the norm 	���

 readily implies that the series
	����
 converges everywhere in Cn in the general case� Hence f is an
analytic function� and now a standard argument shows that formula
	����
 remains valid in the general case�
Finally� the result can be stated as follows�
The Bargmann�Fock space HB is the space of entire analytic func�

tions in Cn with �nite norm 	���

� This is a Hilbert space with respect
to the inner product 	����
�

The Bargmann transform and its properties� Let us now �nd
the transform relating the usual Schr�odinger coordinate representation
to the Fock�Bargmann representation� By the Stone�von Neumann
theorem� it su ces to �nd the unique unitary transformation

An � H � L�	Rn
x
� HB

such that

An � �p
�
	bq � ibp
 � z �An�

An � �p
�
	bq � ibp
 � �

�z
�An 	����
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where bq � x� bp � �i���x 	recall that h � � in this section
�
The transformation An is called the Bargmann transform ���� Let

us represent the Bargmann transform An as an integral operator that
acts from L�	Rn

q 
 into HB according to the formula

	An�
	z
 �
Z
Rn
x

An	z� x
�	x
 dx� � � L�	Rn
x
� 	����


Equations 	����
 yield linear �rst�order di�erential equations for the
kernel An	z� x
� These equations have the form

zAn	z� x
 �
�p
�

�
x�

�

�x

�
An	z� x
�

�

�z
An	z� x
 �

�p
�

�
x� �

�x

�
An	z� x
�

The solution of these equations yields

An	z� x
 �
�

�n	�
exp

�
��
�
	z� � x�
 �

p
�zx

�
� 	����


	The normalization constant �
�n��

is chosen from the condition that An

must be an isometry
�
The main properties of the Bargmann transform are given by the

following theorem�

Theorem � �� The transform

An � L
�	Rn

x
�HB

is an isometric isomorphism 	that is� a unitary operator
�

�� The inverse transform is given by the formula

	A��
n f
	x
 � lim

���

�

�n

Z
Cn

An	z� x
f	�z
e
��zzdq dp� 	����


where �� � from below and the limit is understood in the strong
sense in L�	Rn

x
�

�� The intertwining formulas 	����
 hold�

The proof can be found in ����
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����� Summary on representations and transforms

So far we have de�ned four quantum�mechanical representations for the
simplest physical system S with n degrees of freedom and �at phase
space R�n

p�q�

�� the coordinate representation�

�� the momentum representation�

�� the Fock �occupation numbers� representation in the space S	$

	or� which is the same� the oscillator representation
�

�� the Bargmann�Fock representation in the space HB of analytic
functions on Cn square integrable with weight e�zz �

For convenience� we list these representations in Table ����

Furthermore� we have unitary operators relating these representa�
tions to each other�

L�	Rn
p


F�� L�	Rn
x


An�� HB
j�� S	$
�

where F is the Fourier transform� An is the Bargmann transform� and
j acts according to the rule

j � zn�� � � � znnn ��� j�n i�

In the next section we shall see that there is a transform very close
to the Bargmann transform and arising within a completely di�erent
approach� if here we were comparing various representations and deriv�
ing our transforms as intertwining mappings between these represen�
tations� in the next section we use a semiclassical argument to obtain
quantization of states and� on the basis of it� a decomposition of an
arbitrary quantum state in a superposition of elementary ones� hence
the transform�
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Name Hilbert space Coordinate and
momentum operators

� coordinate L�	Rn
x
 bq � x� bp � �i �

�x

representation

� momentum L�	Rn
p 
 bq � i �

�p
bp � p

representation

� Fock representation S	$
 see 	����
 and 	����


� Bargmann�Fock HB � L�	$� e�zz
 bq � �p
�

�
z � �

�z

�
representation bp � �p

�

�
z � �

�z

�

Table ���� Quantum�mechanical representations
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��� Semiclassical Quantization of States

and the Wave Packet Transform

����� Semiclassical states and the quantum Sobolev

spaces

The construction of the wave packet transform carried out in this sec�
tion is based on the quantisation of classical one�point states� The idea
of this quantization is to assign to each classical state some quantum
state that �passes� into the classical state as h� �� First of all� let us
introduce the important class of states that �behave well� as h� ��

Semiclassical states� What does it mean that we deal with semi�
classical states of a physical system" This means that we have an entire
hierarchy of scales in which we perform our measurements� from �mi�
cro� to �macro� size� and as wemove along this hierarchy to its �macro�
end 	which corresponds to successively choosing units of measurement
so that h� �
� the system displays less and less of quantum and more
and more of classical behavior� Mathematically� this corresponds to
considering quantum states�elements � of the quantum state space
H�depending on the small parameter h � 	�� �� rather that de�ned
for some �xed value of h� Moreover� the dependence on h has to be
such that the expectations 	�� bA�
 of quantum observables 	all or from
some speci�ed set
 be convergent as h � � to the corresponding clas�
sical observables A� This condition is however too subtle to de�ne a
linear space of semiclassical states in its terms� We shall actually use a
weaker condition and thus de�ne a broader space of states� Truly semi�
classical states form a 	nonclosed
 subset of this space� The condition
is stated as follows�

The expectations 	�� bA�
 depend on h continuously and remain
bounded as h� ��

We must further specify for which class of observables this condition
must be satis�ed� 	For example� if an observable itself is �pathologi�
cal� in that it behaves singularly as h � �� then there is no point in
demanding that the above condition be met for this observable
� In
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the simplest physical system� we already have distinguished observ�
ables� namely� the coordinate and momentum operators� We require
that the above condition be satis�ed for operators bA that are arbitrary
nonnegative powers of the coordinates and momenta�

sup
h�	����

	j	�� bp��
j� j	�� bq��
j
 � C�� j�j � �� �� �� � � � 	����


Quantum Sobolev spaces� We can readily see that condition 	����

is equivalent to the requirement that

sup
h�	����

	�� 	� � bq� � bp�
k�
 � sup
h�	����

���	� � bq� � bp�
k	������ � ck�	����


k � �� �� �� � � �

We denote by Hk � C		�� ���H
 the subspace of vectors � � �	h

such that the kth norm 	����
 is �nite� For k � � these spaces can be
de�ned in the usual manner as the dual spaces of H�k with respect to
the pairing given by the inner product in H � H�� By H� we denote
the intersection

H� �
�
k

Hk�

This is clearly a Fr(echet space whose topology is de�ned by the system
of seminorms 	����
 for all k�
The above treatment pertains to the �abstract� Hilbert state space

H� However� in this section we shall mainly work with the coordinate
representation�
In the coordinate representation� where the space H is isomorphi�

cally mapped onto L�	Rn
x
 the spaces Hk become the quantum Sobolev

spaces Hs	Rn
x
� These are the spaces of functions f	x� h
 for which the

following norm is �nite��

jjf jjs � sup
h�	����

jj	� � x� � bp�
s	�f jjL� � 	����



The reader shall not mix up these spaces with the ordinary Sobolev spaces�
which are sometimes denoted in the same way� Formally� the de�nition of the
ordinary Sobolev space is obtained from our de�nition by setting h � � and by
dropping out the term x� in the expression for the norm�
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where jj � jjL� is the usual L��norm in the space Rn
x and

bp� � nX
j��

bp�j � nX
j��

�
�ih �

�xj

��

�

Further� we denote by H	Rn
x
 the intersection of all spaces H

s	Rn
x
�

H	Rn
x
 �

�
s

Hs	Rn
x
�

Likewise� in the momentum representation the spaces Hk become
the quantum Sobolev spaces Hs	Rn

p
� These are the spaces of functions
f	p� h
 for which the norm

jjf jjs � sup
h�	����

jj	� � bq� � p�
s	�f jjL� �

where

bq� � nX
j��

bq�j � nX
j��

�
ih

�

�pj

��

�

is �nite�
Let us �nd out how the quantum Fourier transform acts in these

spaces� We have already seen in Section ��� that the quantum Fourier
transform is just the transformation from the coordinate to the mo�
mentum representation and hence is an intertwining operator for the
following pairs of operators�

x� bq � ih
�

�p
� p� bp � �ih �

�x
�

As a consequence� we obtain the following statement�

Theorem � The quantum Fourier transform de�nes an isometric iso�
morphism 	denoted by the same letter


F � Hs	Rn
x
� Hs	Rn

p 
�

for any s�

In particular� it follows that the quantum Fourier transform is an
isomorphism between the spaces

F � H	Rn
x
� H	Rn

p
�
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Examples of semiclassical states� To give natural examples of
semiclassical states� we ask how states satisfying the dynamic equa�
tions can behave as h � �� As the simplest example� consider the
Schr�odinger equation with translation invariant Hamiltonian cH � H	bp
�
independent of x�

� ih
��

�t
�H

�
�ih �

�x

�
� � �� 	���



We can seek particular solutions of this equation in the form of expo�
nentials 	plane waves
��

�	x� t
 � ce
i
h
	kx�Et
� 	����


where c is an arbitrary constant� and k and E are real constants satis�
fying the eikonal equation

H	k
� E � �� 	����


Suppose now that the Hamiltonian is not translation invariant� cH �
H

�
x��ih �

�x

�
� It is known from the WKB method 	e�g�� see ���� and

references therein
� that in this case solutions are similar to 	����
�
speci�cally� the linear phase function kx� Et and the constant ampli�
tude c are replaced� respectively� by a general 	not necessarily linear

phase function S	x� t
 and an amplitude a � a	x� h
� which need not to
be constant� Furthermore� the function S	x� t
 satis�es the Hamilton�
Jacobi equation

�S

�t
�H

�
x�
�S

�x

�
� ��

the amplitude a	x� h
 possesses a regular expansion in powers of h�
and the coe cients of this expansion can be computed from a recur�
sion chain of ordinary di�erential equations known as the transport
equations 	all these issues will be discussed in detail in the chapter de�
voted to asymptotic solutions of di�erential equations
� Thus� a typical

��These exponentials do not belong to L� �in fact� they are generalized eigen�
functions of the momentum operator
 and hence can only be viewed as generalized

states�
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	though by now means general
 semiclassical wave function may have
the form

�	x� t
 � e
i
h
S	x�t
a	x� t� h
� 	����


where S	x� t
 is a smooth real�valued function and the amplitude a	x� t� h

is a smooth function that can be expanded in a regular asymptotic se�
ries in powers of h�

����� Oscillation front

Consider the simplest physical system in a semiclassical quantum state
�� As h � �� the system becomes classical� However� this generally
does not mean that the system will be in some uniquely determined
classical state� In general� it can be in one of a set of classical states�
this set is known as the oscillation front of �� After this physical pre�
liminary� let us proceed to more rigorous mathematical treatment of
the subject� First� we describe the coarser notion of support of oscil�
lations� It describes the possible values of the coordinates in the limit
state� whereas the oscillation front does the same for the pairs 	q� p
 of
coordinates and momenta�

Support of oscillations� Let us �rst recall the notion of ordinary
support� The support of a function u	x
 is the closure of the set of
points where u	x
 does not vanish�

supp u � fx � Rn j u	x
 �� �g�

Alternatively� we can say that x� � u if and only if for any smooth
compactly supported function �	x
 such that �	x
u	x
 � � one has
�	x�
 � ��
The notion of support of oscillations makes sense for functions de�

pending on a small parameter h� Let u	x� h
 be a given function�We
write u � O	hl
 or u	x� h
 � � 	modhl
 if h�lu � H	Rn

x
� By de�ni�
tion� u � O	h�
 if u � O	hl
 for every l�

De�nition � A point x� belongs to the support of oscillations of a
function u�

x� � osc � supp u
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if and only if for any smooth compactly supported function �	x
such
that �u � O	h�
 one has �	x�
 � ��

We shall not use the more delicate notion of the kth�order support
of oscillations� where O	h�
 is replaced by O	hk

The notion of support of oscillations is useful because it behaves

well under the action of observables� Let cH � H
�
�
x�

�bp� be a quantum
observable� We shall always assume that the corresponding classical ob�
servable is a function H	q� p
 that is in�nitely di�erentiable and grows
at in�nity together with all derivatives no faster than a given power of
r � 	q� � p�
�	�� 	The power is solely determined by H and is inde�
pendent of the number of derivatives�
�� Then the following assertion
holds�

osc � supp H
�
�
x�

�bp�u � osc � supp u�
Localization in the phase space and oscillation front� Now let
us de�ne the notion of the oscillation front� Let u	x� h
 be a given
function� Furtermore� let 	q�� p�
 be a given point of the phase space�
We wish to �nd out whether this point is a possible limit classical state
for our semiclassical state u� To this end� we can act as follows� Let
�	x
 be a smooth function of compact support� independent of h and
localized in a su ciently small neighbourhood of q�� If

�	x
u	x� h
 � O	h�
� 	����


then q� cannot be the limit classical value of the coordinate s and
	q�� p�
 de�nitely cannot belong to the oscillation front� If however
	����
 fails�then we must put further e�ort and study what the sit�
uation is with the momentum� To this end� we apply the quantum
Fourier transform to the function �	x
u	x� h
 and investigate whether
p� belongs to the support of oscillations of F ��	x
u	x� h
�� If no� then
	q�� p�
 is not in the oscillation front� The above discussion justi�es the
following de�nition�

��We have taken the Maslov quantization
�

x�
�bp� but this does not matter� since

the class of quantum observables is the same for the opposite Maslov quantization�
Weyl quantization� etc�
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De�nition 	 The oscillation front of u is the set OF �u� � R�n
q�p deter�

mined by the following condition� A point 	q�� p�
 does not belong to
OF �u� if and only if there exist compactly supported functions �	x
 and
�	p
 such that

�	q�
 �� �� �	p�
 �� �� and �	p
F ��	x
u	x
� � O	h�
�

where F is the quantum Fourier transform� In other words�

F ��	x
u	x
� � O	h�


in a neighborhood of the point p��

Since the notion of oscillation front pertains to localization in the
phase space� it is not surprising that it can also be de�ned by analogy
with the support of oscillations but with cuto� functions substituted
by observables with compactly supported symbols� Let us state this
property� along with two other properties of oscillation fronts� in the
form of a theorem�

Theorem 
 �� A point 	q�� p�
 of the phase space belongs to OF �u�

if and only if for any observable H
�
�
x�

�bp� with compactly sup�

ported symbol H	q� p
 the estimate H
�
�
x�

�bp� u � O	h�
 implies

H	q�� p�
 � �� Eqivalently� 	q�� p�
 �� OF �u� if for some compactly
supported classical observable H	x� p
 such that H	x�� p�
 �� � we
have H

�
�
x�

�bp�u � O	h�
�

�� If H	q� p
 � � in a neighborhood of the point 	q�� p�
� then 	x�� p�
 ��
OF �H	

�
x�

�bp
u��
�� OF �H	

�
x�

�bp
u� � OF �u��

�� �	OF �u�
 � osc�supp u� where � � R�n
q�p � Rn

x� 	q� p
 �� q� is the
natural projection�

The proof can be found in numerous expositions�
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Examples� Now let us calculate the wave front for the two examples
of semiclassical states considered above� 	We disregard the dependence
on t� since anyway the oscillation fronts have to be calculated for �xed
values of t�


The �rst example is u	x� h
 � e
i
h
xp��We have

Ff�	x
u	x� h
g �
� �i
��h

�n	� Z
e
i
h
x	p�p�
�	x
 dx �

�

hn	�
e��

p� p�
h

�
�

where e�	p
 is the usual Fourier transform of �� For any N we have

j e�	p
j � CN

jpjN

as p � � provided that �	x
 � C�
� � Thus Ff�ug � O	h�
 for

p �� p� � whereas Ff�ug	p�
 � h�n	�� We conclude that OF �e
i
h
xp�� is

the n�dimesional plane fp � p�g � Rn �Rn�

The second example is u	x� h
 � e
i
h
S	x
�	x
� To calculate the oscil�

lation front� we use the �rst assertion of Theorem �� We have

H	x� bp
u	x� h
 � �
�

��h

�n Z
e
i
h
p	x�y
�S	y
H	y� p
�	y
 dp dy�

By applying the stationary phase formula to this integral� we �nd that

OFfe i
h
S	x
�	x
g �

�
p �

�S	x


�x

�
� ���	supp�
�

where � � R�n
q�p � Rn

x� 	q� p
 �� q� is the natural projection�

����� Quantization of one�point states and Gaus�

sian wave packets

The problem that will be dealt with in this subsection is that of quan�
tization of classical states� Thus� to each classical state 	q� p
 � R�n we
shall assign some quantum state � � �	q�p
	x
� For this to make sense�
we must require that the quantum state be �localized� as h � � near
the point 	q� p
� What does that mean" According to the uncertainly
principle 	which will essentially be derived here
� one cannot localize



���� WAVE PACKET TRANSFORM ��

a quantum particle 	or a system of particles
 in the coordinate and
momentum spaces simultaneously� More precisely� in any state � we
have

!qj!pj 
 h� 	����


where !qj and !pj are the mean�square deviations of the corresponding
variables�

	!qj

� � 	�� 	bqj � qj


��
�

	!pj

� � 	�� 	bpj � pj


��
� 	����


where qj and pj are the corresponding expectations�
Thus� the best localization that we can expect to achieve is as fol�

lows�
�
 OF 	�	q�p

 consists of the single point 	q� p
�

�
 In the state �	q�p
� both !qj and !pj are of the order of
p
h�

j � �� � � � � n�

Quantum states of minimum mean�square deviation� It turns
out that these are quite a few states satisfying these two conditions�
More precisely� let f	y
� y � Rn� be an arbitrary function of the
Schwartz class 	independent of h
 such that jjf jjL� � �� Set

�	q�p
	x
 �
�

hn	�
e
i
h
p	x�q
f

�
x� qp

h

�
� 	����


We claim that �	q�p
	x
 has the desired properties� Indeed� since the

multiplication by the exponential e
i
h
px and the change of variables x ��

x � q just represent shifts in the coordinate and momentum spaces�
respectively� it su ces to prove that the function

�	x
 � �	���
	x
 �
�

hn	�
f

�
xp
h

�
	����


has the oscillation front OF 	�
 � f	�� �
g and that

!xj � O	
p
h
� !pj � O	

p
h
 	����


in the state ��
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We have

e�	p
 � � �i
��h

�n	� �

hn	�

Z
e�

i
h
pxf

�
xp
h

�
dx

�
��i
��

�n	� �

hn	�

Z
e
�i pp

h

xp
hf

�
xp
h

�
d

�
xp
h

�

�
�

hn	�



�
pp
h

�
�

where


	�
 �
��i
��

�n	� Z
e�i�yf	y
 dy

is the ordinary 	rather than quantum
 Fourier transform of f	y
� Thus�e�	p
 has the same structure as �	x
�
Let �	x
 be an arbitrary cuto� function such that O �� supp��

Then

j�	x
�	x
j � sup j�j � h�n	� �max
jxj�


�����f
�

xp
h

������
� CN sup j�j � h�n	�

�
� �

�p
h

��N
� C � hN

� �n	�� N � �� �� � � � �

since f	�
 belongs to the Schwartz class� 	Here � is the distance between
supp � and zero�
 It follows that osc�supp � � f�g� and henceOF 	�
 �
f	q� p
 j q � �g� Likewise� osc�supp e� � f�g� and hence OF 	�
 �
f	q� p
 j p � �g� By combining these two assertions� we obtain

OF 	�
 � f	�� �
g�

as desired� Let us prove that !xj � O	
p
h
 	for !pj� the proof is

similar
� We have

xj �
�

hn	�

Z
xjjf j�

�
xp
h

�
dx �

p
h
Z
yjjf�j	y
 dy � O	

p
h
�
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Next�

	!xj

� �

�

hn	�

Z
	xj � xj


�jf�j
�

xp
h

�
dx

� h
Z
	yj � yj
jf j�	y
 dy�

where yj �
R
yjjf j�	y
 dy is independent of h� This completes the proof�

The function 	����
 will be called the wave packet with amplitude
f	y
�

Gaussian packets� In what follows we mainly deal with Gaussian
wave packets� where the amplitude has the special form

f	y
 � e
i
��y�Ay� 	���



and the symmetric matrix A �tA has a positive imaginary part� Im
A � �� The motivation for considering packets of the form 	���

 is
as follows� Suppose that we intend to �nd a state �	x� h
 with zero
expectations of coordinate and momenta and minimum mean�square
deviations of these exactly� 	Note that in the general wave packet we
only have 	����
 but not the optimal constants in theO	

p
h
 estimates�


To simplify the calculations� we consider the one�dimensional case n �
�� Thus� our minimization problem is as follows�

	!q
� � 	�� bq��
� min� 	!p
� � 	�� bp��
� min� 	����


jj�jj� � �� 	����


	Note that on the solution of this problem the expectations of the coor�
dinate and the momentum are necessarily zero�
 Problem 	����
 with
condition 	����
 is a two�criterion problem that has optimal solutions
in the sense of Pareto� To single out a speci�c solution� we proceed to
a single�criterion problem with the weighted criterion

�	�� bq��
 � �	�� bp��
� min 	����


and with the same condition 	����
� Here � and � are arbitrary positive
constants� For example� let us take � � � � �

� � Then the criterion
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	����
 acquires the form

	��cHosc�
� min� 	�����


where cHosc � �
�
	bq� � bp�


is the Hamiltonian of the quantum�mechanical oscillator� The Euler�
Lagrange equations for the conditional minimization problem 	�����
�
	����
 have the form cHosc� � ���

and the minimum is provided by the ground eigenfunction

��	x� h
 � Ce�x
�		�h
�

where C is a normalization constant� corresponding to the eigenvalue
�� � h��� Thus we have arrived at a special Gaussian wave packet�
Note that the mean�square variations of the coordinate and the momen�

tum are equal to the same number
q

h
� � By assigning di�erent weights�

we would obtain di�erent Gaussian packets� However� the product of
the mean�square variations remains constant� and hence from the in�
equality relating the arithmetic and geometric means we can observe
that this product is optimal� Furthermore� for the case of several vari�
ables� we can obtain various Gaussian packets 	with pure imaginary
matrix A
 by considering various quadratic self�adjoint Hamiltonians�

Time evolution of Gaussian packages� It is a very attractive� nat�
ural idea to use wave packets as the quantizations of the corresponding
classical states 	p� q
� However� for this idea to be fruitful� we have to
verify that the quantum dynamics preserves the class of wave packets
and that the corresponding classical states obey the classical dynamic
law� We do this in the spirit of ����� Let

cH � H

�B
 �
x��

�

ih
�

�x

�CA 	�����
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be the energy operator of the system� We consider the Schr�odinger
equation

� ih
��

�t
� cH� � � 	�����


with the initial function in the form of a Gaussian wave packet�

�jt�� � �

hn	�
e
i
h
p	x�q
f

�
x� qp

h

�
� 	�����


We seek the asymptotic solution of problem 	�����
�	�����
 in the form

�	x� t� h
 �
�

hh	�
e
i
h
	S	t
�P 	t
	x�Q	t


f

�
t�
x�Q	t
p

h

�
� 	�����


By substituting 	�����
 into 	�����
� we obtain

�ih��
�t
�H

�B
�
x��

�

ih
�

�x

�CA �

�
�

hn	�
e
i
h
	S	t
�P 	t
	x�Q	t




�
�
S �

�
P 	x�Q
� P

�
Q �ih �

�t

�H

�B
 �
x��

�

ih
�

�x
�P 	t


�CA
��� f

�
t�
x�Qp

h

�

�
�

hn	�
e
i
h
	S	t
�P 	t
	x�Q	t




�
�����
��� �
S �

�
P 	x�Q
� P

�
Q �H

�B
�
x��

�

ih
�

�x
�P 	t


�CA
���

�f
�
t�
x�Qp

h

�
� i
p
h

�
Q

�f

�y

�
t�
x�Qp

h

�
� ih

�f

�t

�
t�
x�Qp

h

��
�

Let us make the change of variables

� �
x�Q	t
p

h
�

�

�x
�
�p
h

�

��
� 	�����
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Then 	�����
 is reduced to

�ih��
�t
� cH� �

�

hn	�
e
i
h
	S	t
�P 	t
	x�Q	t




�
�����
��� �
S �P

�
Q �

p
h

�
P � �H

�B
Q�ph �
�� P�

�

i
p
h
�

��

�CA
�i
p
h

�
Q

�

��
� ih

�

�t

 
f	�


������
��x�Q�t�p

h

� 	����



In the expression in braces on the right�hand side of 	����

� we can
expend in powers of

p
h� The �rst three equations 	for the coe cients

of h�� h�	�� and h�
 read

�
�
S �P

�
Q �H	Q�P 
� f	t� �
 � �� 	�����
�

�
P �Hq� � i

�
Q

�

��
� iHp

�

��

 
f	t� �
 � �� 	�����
�

�i �
�t
�
�

�
Hqq�

� � �
�
Hpp

��

���
� i � ��Hqp

�

��
�

 
f	t� �
 � �� 	�����


Equation 	�����
 will be satis�ed identically if 	P 	t
� Q	t

 is the tra�
jectory of the Hamilton system

�
P� �Hq	Q�P 
�

�
Q� Hp	Q�P 


Q	�
 � q� P 	�
 � p� 	�����


Then from 	�����
 we obtain

S	t
 �
Z t

�
	P

�
Q �H
 dt� 	�����


that is� S	t
 is just the classical action along the trajectory 	P 	t
� Q	t

�
Now let us solve Eq� 	�����
� Let the initial Gaussian wave packet be
given by

f	�� �
 � e
i
� 	��A��
� 	�����


We seek the solution f	t� �
 of Eq� 	�����
 in the form

f	t� �
 � a	t
e
i
�
���A	t
��� 	�����
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where A	t
 � tA	t
� A	�
 � A�� Im A	t
 � �� a	�
 � �� and a	t
 is a
smooth scalar function� We have 	we omit the argument t


�f

�t
� e

i
����A��

�
�a

�t
�

i

�
� ��

�A

�t
� � a

�
�

�f

��
� iA� � ae i

����A��� 	�����


��f

��j��k
� �	A�
j	A�
kae i

����A�� � iAjkae
i
����A���

Let us substitute 	�����
 into 	�����
 and cancel the exponential factor�
Then we obtain the equation

�i �
a �

�

�
� ��

�
A � � a�

�

�
� ��Hqq � a� � ��HqpA� � a

�
�

�
� A��Hpp� A� � a� i

�
tr	HppA
 a � �� 	�����


whence� by separating the powers of �� we get

�
a �
�

�
tr	HppA
 a � �� 	����



�

�

�
A �

�

�
Hqq �

�

�
AHpq �

�

�
HqpA�

�

�
tAHppA � �� 	�����


Equation 	�����
 is a matrix Riccati equation� We seek the solution in
the form

A � BC��� 	�����


where B and C are some new matrices depending on t� Then

�
A�

�
B C�� �BC�� �

C C���

with regard to the fact that tA � A� from 	�����
 we obtain

�BC���BC�� �
C C���Hqq�BC

��Hpq�HqpBC
��BC��HppBC

�� � ��
	�����


Let us multiply Eq� 	�����
 by C on the right� Then we obtain

�
B �HqqC �HqpB �BC��	� �

C �HpqC �HppB
 � �� 	�����
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For 	�����
 to be valid� it su ces to require that

�
B �HqqC �HqpB � ��
�
C �HpqC �Hpp � �� 	�����


or� in the block matrix form�

��
B
C

�
�

�
�Hqp �Hqq

Hpp Hpq

��
B
C

�
� 	�����


Note that 	�����
 is just the variational system for 	�����
� It remains to
verify that the evolution law 	�����
 preserves the symmetry of BC���
Routine computations show that

d

dt
	BC�� �t	BC��

 � �Hpq	BC

�� �t 	BC��



�	BC�� �t 	BC��

Hqp � 	BC
�� �t 	BC��

HppBC

��

�t	BC��
Hpp	BC
�� �t 	BC��

� 	�����


whence the desired result follows by the uniqueness theorem for sys�
tems of ordinary di�erential equations� Now we solve Eq� 	����

 by
integration�

a	t
 � exp
�
����

Z t

�
trace	HppA
 d�

�
� 	�����


We have thereby proved that the class of Gaussian wave packets is pre�
served 	modulo lower�order terms
 by the quantum dynamics and that
the �reference point� 	P�Q
 of the packet obeys the classical evolution
law 	�����
�

In the next subsection� we shall construct the �wave packet trans�
form� using Gaussian wave packets� The main idea of this transform is
very simple� we decompose any function �	x
 � L�	Rn

x
 into a �contin�
uous linear combination� of wave packets �p�q	x
� where the reference
point p� q ranges over the entire phase space�
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����� De�nition and the main properties of the

wave packet transform

We have seen in the preceding subsection that there are many wave
packets corresponding to the same point 	p� q
 of the phase space� To
de�ne the wave packet transform� we �rst choose a single wave packet
for each point 	p� q
� This choice is somewhat arbitrary� We take the
family of functions

G	q�p
	x� h
 �
�

�n	�	�h
�n	�
exp

�
i

h

!
p	x� q
 �

i

�
	x� q
�

"�
	�����


of the variables 	x� h
 with parameters 	q� p
 � T �Rn� 	The coe cient
of the exponential is just the normalization factor�
 This is just the
wave packet obtained 	in the one�dimensional case
 in the preceding
subsection by considering the minimization problem with the quantum
oscillator Hamiltonian�
We intend to decompose an arbitrary state into a superposition of

the simplest Gaussian states 	�����
� Thus� the problem is as follows�
For each function f	x� h
 � L�	Rn

x
� �nd a function
ef	q� p� h
 such that

f	x� h
 �
Z
G	q�p
	x� h
 ef	q� p� h
 dq dp�

Simultaneously� we have to describe the class of functions ef 	q� p� h
 to
be used in our expansions�
This problem can be solved as follows� First� we consider smooth

compactly supported states�

De�nition � Let f	x� h
 be a compactly supported smooth function
on Rn

x� The function

ef	q� p� h
 � Uf	q� p� h
 �
Z
G	q�p
	x� h
f	x� h
 dx 	����



is called the wave packet transform 	or� brie�y� U�transform
 of the
function f	x� h
� Here the bar means complex conjugation�

It turns out that the transformation 	����

 is invertible on the left
	that is� on its range
� and the inverse just solves our decomposition
problem�
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Speci�cally� consider the formal L��adjoint mapping U�� It is ob�
tained by taking the complex conjugate and by exchanging the roles of
the variables 	q� p
 and x in the kernel� Speci�cally� it is given by the
formula

U� ef	x� h
 � Z
G	q�p
	x� h
 ef	q� p� h
 dq dp� 	�����


The following statement is valid�

Theorem � The inversion formula

U� � Uf � f 	�����


holds for any smooth compactly supported function f on Rn
x�

Proof� A standard integration�by�parts shows that for f � C�
� 	R

n
x
�

the transform Uf is rapidly decaying as jpj � jqj � �� so that the
left�hand side of 	�����
 is well�de�ned� By 	����

 and 	�����
� the
left�hand side of 	�����
 becomes��

U� � Uf	x
 �
Z
G	q�p
	x


�Z
G	q�p
	x		
f	x		
 dx		

�
dq dp�

or� by de�nition 	�����
 of the G	q�p
	x
�

U� � Uf	x
 �
Z
exp

�
i

h

!
p	x � x		
 �

i

�
	x� q
� �

i

�
	x		 � q
�

"�
�f	x		
 dx		 dq dp

�n	�h
�n	�
�

The usual technique of oscillatory integrals permits us to change the or�
der of integration� Then the integral over q can be computed explicitly�
whence we obtain

U� � Uf	x
 �
�
�

��h

�n Z
e
i
h
p	x�x��
 ne� �

�h
	x�x��
�f	x		


o
dx		 dp� 	�����


On the other hand� the inversion formula for the quantum Fourier trans�
form yields�

�

��h

�n Z
e
i
h
p	x�x��
 ne� �

�h
	x��x��
�f	x		


o
dx		 dp � e�

�
�h

	x��x��
�f	x


��From now� we usually omit the explicit indication of the dependence on h�
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for any x� � Rn� By substituting x� � x there� we reduce 	�����
 to
the form

U� � Uf	x
 � f	x
�

as desired� The proof is complete�
Now we intend to extend our transformation U to arbitrary states

f	x� h
 � L�	Rn
x
� To this end� let us prove that U satis�es the Parseval

identity�

Theorem 
 If f	x
� g	x
 � L�	Rn
x
� then

	Uf�Ug
 � 	f� g
�

where the inner products on the phase and the physical spaces are given
by the usual formulas� ef	q� p
� eg	q� p
� � Z ef	q� p
eg	q� p
 dq dp
and

	f	x
� g	x

 �
Z
f	x
g	x
 dx�

respectively�

Proof � The proof is by straightforward computation�

	Uf�Ug
 �
Z �Z

G	q�p
	x
f	x
 dx
�
Ug	q� p
 dq dp

�
Z
f	x


�Z
G	q�p
	x
Ug	q� p
 dq dp

�
dx

�
Z
f	x
U� � Ug	x
 dx �

Z
f	x
g	x
 dx � 	f� g
�

We obtain the following corollary�

Corollary � The mapping U extends by continuity to a partially iso�
metric mapping 	denoted by the same letter


U � L�	Rn
x
 �� L�	R�n

q�p
� 	�����


The left inverse of U is the adjoint operator U��
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However� U is indeed only partially isometric� that is� the range
of U 	which is automatically closed
 does not coincide with the entire
space L�	R�n

q�p
� and� accordingly� the formula

U � U� � id 	�����


is not valid� This is not surprising� since U takes functions of n variables
x to functions of �n variables 	q� p
� Let use describe the range of U �

Theorem �� The range of the transformation 	�����
 is the set F of
functions F 	q� p
 with the following two properties�

�

R jF 	q� p
j� dx dp ���

�
 the function exp
h
�
�h
p�
i
F 	x� p
 is an analytic function of the vari�

able z � q � ip� that is� satis�es the Cauchy�Riemann equations�
�

�qj
� i

�

�pj

��
exp

!
�

�h
p�
"
F 	q� p


�
� �� j � �� � � � � n�

Proof� The �rst property just means that F � L�	R�n
q�p
� To prove

that any function ef � Uf possesses the second property� we note that

exp
!
�

�h
p�
" ef 	q� p
 � �

�n	�	�h
�n	�

Z
exp

!
� �
�h
	x� z
�

"
f	x
 dx�

where z � q � ip� which proves the required assertion�
To complete the proof� we check that formula 	�����
 is valid on the

set of functions possessing properties �
 and �
� The proof of this fact�
based on the Bargman representation of an analytic function 	see ���

is purely technical and we omit it�
In the following� we write

U�� � U jF �

The transformation U naturally acts in quantum Sobolev spaces
with positive indices and can be extended by continuity to act in quan�
tum Sobolev spaces with negative indices� Speci�cally� the following
theorem holds�
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Theorem �� The transformation U is a continuous isomorphism 	but
generally not an isometry
 of the spaces

U � Hs	Rn
x
 �� FHs	R�n

q�p
�

Here Hs	Rn
x
 is the quantum Sobolev space over the classical con�gu�

ration space and

FHs	R�n
q�p
 � F

�
Hs	R�n

q�p
� s 
 ��

For negative s� the space FHs	R�n
q�p
 is de�ned as the closure of F in

Hs	R�n
q�p
�

The proof can be found in �����
Finally� let us carry out the comparison of the Bargmann transform

with the wave packet transform� Straightforward computation shows
that

U �f �	q� p
 � 	��
p
h
�n	� exp

�
� p�

�h

� �
exp

�
�z�

�

�
F 	z


 �����
z� q�ipp

�h

�

	�����

where F 	z
 � B�f �	z
 is the Bargmann transform of f	x

p
h
� This

is not surprising at all� since the Bargmann transform� as well as the
wave packet transform� is based on the eigenfunctions of the quantum�
mechanical oscillator� in the latter� they arose from the minimization
problem for mean�square deviations� whereas in the former they arose
as vacuum states in the Fock space�
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