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Abstract

The paper is devoted to pseudodi�erential boundary value problems in do�
mains with cuspidal wedges� Concerning the geometry we even admit a more
general behaviour� namely oscillating cuspidal wedges� We show a criterion
for the Fredholm property of a boundary value problem and derive estimates
of solutions close to edges�
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Introduction

Boundary value problems in domains �or on manifolds� with singular bound�
ary appear in numerous models of applied sciences� in particular� in mechan�
ics� crack theory� hydrodynamics� mathematical physics� Many authors con�
tributed to the corresponding theory under di�erent aspects� especially Kon�
drat�ev �Kon
��� Grisvard �Gri���� Maz�ya and Plamenevskii �MP��� MP����
Feigin �Fei��� Fei���� Bagirov and Feigin �BF���� Maz�ya� Kozlov and Ro��
mann �MKR���� Nazarov and Plamenevskii �NP����

In recent years the interest in such problems increased enormously� and new
structure insight was obtained by applying pseudodi�erential methods� cf��
in particular� Melrose and Mendoza �MM���� Rabinovich �Rab��c� Rab��b��
Schrohe and Schulze �SS��� SS����

Some general ideas are the same as in the classical theory for smooth do�
mains� cf� Boutet de Monvel �BdM

� BdM���� for instance� to embed the
di�erential boundary value problems into an algebra of operators in which the
parametrices of elliptic elements can be expressed�

A typical feature of these theories is that a given �xed �say di�erential�
boundary value problem generates a hierarchy of symbols whose components
are operator�valued and consist of parametrised operators in the correspond�
ing algebras on spaces of lower order singularity� For the smooth case and
pseudodi�erential operators with the transmission property this is the inte�
rior symbolic structure and the boundary symbolic calculus on the half�axis�
For operators in the sense of Vishik and Eskin �VE
�� Esk��� there appear
more general singular integral operators on the half�axis �modulo reductions
of orders�� cf� Gokhberg and Krupnik �GK�	� GK���� This aspect was widely
employed also in the book of Schulze �Sch����

Parametrices associated with the inverted symbols should be available in
the corresponding algebras� This emphasises the role of the values of operator�
valued symbols as elements in the algebras on spaces of lower order singularity�
where the inverses of those parameter�dependent families are to be expressed�
Although these general aspects are rather clear at �rst glance� the investigation
of boundary value problems in concrete singular con�gurations is far from being
straightforward� in particular� for cuspidal singularities on the boundary� In
many cases there are in fact no results at all� The reason is not only the wealth

�
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of new structures but also rather unexpected ambiguities in the choice of the
approach�

Let us mention in this connection the paper �SSS��� where methods of the
non�commutative analysis are used to study operator algebras on manifolds
with power�like cusps� in case the link of the local cone is closed� There
are obtained parametrices and the Fredholm property in the corresponding
weighted Sobolev spaces�

The results of the present paper are based on a speci�c interplay between
classes of operator�valued symbols and �order reductions� which are also in�
volved in the symbol estimates� In a simpler situation �isolated cuspidal sin�
gularities on the boundary� ideas of this kind are developed in �RST���� There
are applied weighted pseudodi�erential operators which contain the local in�
verses to the operators of elliptic boundary value problems near singularities of
the boundary� The property of being slowly varying is of great importance for
the symbols of pseudodi�erential operators near singularities� It means that
the pseudodi�erential operators may bear oscillating discontinuities in sym�
bols which allows one to consider boundary value problems in domains with
oscillating cuspidal singularities�

The behaviour of symbols in �RST��� is controlled by an operator�valued
function ��� � satisfying the condition

k��� � ������� �kL� �H� � c h�i� for all �� � � R�

with some c� � � R� where �H is a Hilbert space and h�i � �� � j�j������
In the case of cuspidal wedges we need a calculus of pseudodi�erential

operators where the behaviour of symbols is controlled by an operator�valued
function ��t� � � depending on two variables t� � � R� It should satisfy

k��t� �� � � ������t� � �kL� �H� � c h�i�� h�i�� for all t� �� �� � � R�

with some constants c� ��� �� � R independent of t� �� �� �� Moreover� a standing
condition on the symbols under study will be that they vary slowly close to
singularities�

The typical di�erential operator on a manifold with cuspidal edges is of the
form

A � ����r��m
X

j�j�j�m

a��j�y� r�

�
�

���r�
Dy

��� �

���r�
Dr

�j

where y stands for local coordinates along the edges� r is the distance to
the edges and a��j�y� r� are C� functions of y� r whose values are di�erential
operators of order m�j�j�j on some compact C� manifold B� Depending on
the context� the manifold B is closed or has a boundary� Furthermore� t � ��r�
is a di�eomorphism of R� onto the entire real axis R� such that ��	� � ��
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and ����� � ��� The derivative ���r� is a qualitative characteristic of the
cuspidal degeneracy�

The typical weight function in the theory with edges is

��t� � � �
�
�� � �	�t����y � � ��

�
� � �B

�s
�

where 	�t� � ��
�������t��� t � R� and �B � Hs�B� � Hs���B� is an order
reduction�

The key property of the cuspidal degeneracy is that the function 	�t� meets
the condition

lim
t���

	��t�

	�t�
� 	� �	�	���

It is easy to check that the property �	�	��� holds in the case of power�like
and exponential cuspidal degeneracies� Moreover� some higher�order cuspidal
degeneracies obey �	�	���� On the other hand� this property does not hold for
usual conical wedges in which case we have 	�t� � e�t�

It was Feigin �Fei��� who �rst studied general boundary value problems
in domains with cuspidal wedges� However� this paper does not contain any
proofs and� as far as we know� no proof has appeared till now� Moreover�
Feigin �Fei��� assumed merely power�like cuspidal degeneracy�

Our approach allows us to consider boundary value problems in domains
with oscillating cuspidal wedges as well as pseudodi�erential operators on
closed manifolds with cuspidal edges� The boundary may oscillate near edges
and the speed of this oscillation is connected with the degree of degeneracy�
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A Class of Pseudodi�erential

Operators with

Operator�Valued Symbols

��� Weight operator�valued functions

Let H and �H be complex Hilbert spaces and L�H� �H� be the space of all
bounded linear operators from H to �H �

De�nition ����� We denote by ��H� �H� the space of all functions ��t� � �
on R�Rwith values in L�H� �H�� such that for each �t� � � � R�R there exists
an inverse ����t� � �� and

k��t� �� � � ������t� � �kL� �H� � c h�i�� h�i�� �������

for all t� �� �� � � R� where c� ��� �� � R are constants independent of t� �� �� ��

The elements of ��H� �H� will be referred to as operator�valued weight func�
tions on R�R�

It is easily seen that an operator�valued function ��t� � � satis�es ������� if
and only if

k��t� �� � �����t� � �kL� �H� � c h�i�� �
k��t� � � ������t� � �kL� �H� � c h�i�� � �������

the constants �� and �� being the same� Indeed� if ������� is ful�lled� then we
get

k��t� �� � � ������t� � �kL� �H�

� k��t� �� � � ������t� � � ��kL� �H�k��t� � � ������t� � �kL� �H�

� c� h�i�� h�i��

showing �������� The reverse implication is obvious�

�
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��� Symbol classes

Fix
���t� � � � ��H�� �H���

���t� � � � ��H�� �H���

De�nition ����� By S���� ��� is meant the class of C� functions a�t� � �
on R� R with values in L�H��H��� such that� for each �� � � Z�� there is a
constant c����a� with the property that

k���t� � ��D�
tD

�
� a�t� � ���

��
� �t� � �kL� �H�� �H��

� c����a� for all �t� � � � R�R�
�������

The best constants c����a� in ������� de�ne a Fr�echet topology in the space
S���� ���� The elements of S���� ��� are called operator�valued symbols on
T �R�� R�R�

To any symbol a � S���� ��� there corresponds a pseudodi�erential opera�
tor A � op�a� by

Au�t� �
�

�


Z
R

d�

Z
R

ei�t�t
���a�t� � �u�t��dt��

the operator A being �rst de�ned on functions u � C�
comp�R�H���

Denote by OP S���� ��� the class of all operators A � op�a� with symbols
a � S���� ����

Pseudodi�erential operators with scalar�valued symbols whose behaviour is
controlled by scalar�valued weight functions ��t� � � were introduced by Kuma�
no�go and Taniguchi �KgT���� The calculus of �KgT��� was later generalised
by Beals �Bea��� �see also H ormander �H or����� The calculus of Beals and
H ormander was extended to operator�valued symbols in Levendorskii �Lev����
However� the calculus of �Lev��� requires certain restrictions on symbols� which
are not ful�lled for the symbols arising in the study of di�erential operators
on cuspidal wedges�

We introduce an analogue of the calculus of Kumano�go and Taniguchi
�KgT��� for operator�valued symbols� which relies on oscillatory integrals with
operator�valued amplitude functions� For weight functions ��t� � � independent
of t� a calculus of pseudodi�erential operators with applications to boundary
value problems in domains with singular boundary points was given by the
�rst author �Rab��� Rab��a� Rab��c� and in �RST����

��� A composition formula for pseudodi�eren�

tial operators

The following result gives rise to a calculus of pseudodi�erential operators with
symbols in S���� ����
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Proposition ��	�� Suppose A � OP S���� ��� and B � OP S���� ����
Then BA � OP S���� ���� the symbol of BA is

�BA�t� � � �
�

�


ZZ
R�R

e�i�	�B�t� � � ���A�t� �� � �d�d� �������

and the corresponding mapping S���� ���� S���� ���� S���� ��� is continu�
ous�

Proof� The proof is actually the same as the proof of Proposition ����� in
�RST����

�

We emphasise that the double integral in ������� is regarded as an oscil�
latory integral� For a de�nition of oscillating integrals with operator�valued
amplitude functions� we refer the reader to �RST����

��� Formal adjoint

Let H be a Hilbert space� Denote by S�R�H� � S�R� !	
H the space of all
rapidly decreasing C� functions on R with values in H� We endow S�R�H�
with a Fr�echet topology de�ned by the sequence of norms

kukH�J � sup
t�R

��j�J

htiJ ku�j��t�kH � J � 	� �� � � � �

Proposition ����� If a � S���� ���� then op�a� is a bounded operator from
S�R�H�� to S�R�H���

Proof� Indeed� ������� yields

k��t� � �kL�H� �H� � k��t� � �����	� 	�kL� �H�k��	� 	�kL�H� �H�

� c hti�� h� i��
as well as a similar estimate for the inverse ����t� � �� When combined with
�������� these give

kD�
t D

�
� a�t� � �kL�H��H�� � c��� hti�� h� i��

for all �� � � Z�� the constants c���� ��� �� � R being independent of t and � �
Now the desired assertion follows by di�erentiation and integration by parts
just in the same way as for scalar�valued functions�

�

Let A � op�a�� where a � S���� ���� Then the formal adjoint A� of A is
de�ned by the equality

�Au� v�L��R�H�� � �u�A�v�L��R�H��

for any u � S�R�H�� and v � S�R�H���
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Proposition ����� If A � OP S���� ���� then A� � OP S������ ��� ����� ���
and

�A��t� � � �
�

�


ZZ
R�R

e�i�	 ��A�t� �� � � ���� d�d��

the corresponding mapping S���� ���� S������ ��� ����� ��� being continuous�

Proof� The proof is standard�
�

Applying Proposition ����� to the adjoint operator A� and using a duality
argument� we arrive at the following result�

Corollary ����	 Each operator A � OP S���� ��� extends to a continuous
mapping S ��R�H��� S ��R�H��� where S ��R�H� is the dual space of S�R�H��

Recall that the elements of S ��R�H� are usually referred to as temperate
distributions on R with values in H

��	 Boundedness of pseudodifferential operat�

ors in Sobolev spaces of distributions

Unless otherwise stated we assume that the operator�valued weight functions
��t� � � under consideration are of class C� on R�R and satisfy

k�D�
t D

�
� ��t� � ���

���t� � �kL� �H� � c����

k����t� � ��D�
t D

�
� ��t� � ��kL�H� � c���

�������

for all �� � �Z�� the constants c��� being independent of �t� � � � R�R�
We denote by ���H� �H� the subspace of ��H� �H� consisting of operator�

valued weight functions satisfying ��������
By the very de�nition� if � � ���H� �H�� then � belongs to both S��� � �H�

and S��H � ����� and conversely�
Our next goal is to introduce� given any � � ���H� �H�� a Sobolev space

H��� related to this weight function� Were ��t� � � independent of t� the op�
erator op��� be invertible and we might proceed just in the same way as in
�RST���� In order to adapt the de�nition of �RST��� to general weight func�
tions� we need an auxiliary construction�

Proposition ����� Suppose � � ���H� �H�� Then�
�� the inverse ��� belongs to both S�� �H � �� and S����� �H��
�� setting ���t� � � � ��t� �� �� we get

op���� op����� � � �L��R� �H� � r���

op����� � op���� � �L��R�H�� r���
�������
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where
lim
���

kr��kL�L��R� �H�� � 	�

lim
���

kr���kL�L��R�H�� � 	�
�������

Proof� The �rst part follows by the rule of di�erentiation of the inverse of
an operator�valued function �cf� Proposition ��
�� in �RST�����

Let us prove the second part� Put

A� � op�����
B� � op����� ��

By formula �������� we get

�A�B��t� � � �
�

�


ZZ
R�R

e�i�	���t� � � ������ �t� �� � �d�d�� �������

We now make use of the Lagrange formula to see that

���t� � � �� � ���t� � � � �

Z �

�

���
��

�t� � � ���d��

Substituting this to ������� and using a particular case of the Fourier inversion
formula

�

�


Z
R

d�

Z
R

e�i�	���� �t� �� � �d� � ���� �t� � ��

we get

�A�B��t� � � � � �

Z �

�

q��t� �� ��d��

where

q��t� �� �� �
�

�
i

ZZ
R�R

e�i�	
���
��

�t� � � ���
�����
�t

�t� �� � �d�d��

the double integrals on the right side being regarded as oscillatory ones�
From the �rst estimate ������� it follows that q��t� �� �� meets an estimate

kD�
t D

�
� q��t� �� ��kL� �H� � c��� �

���

for all �� � � Z�� with c��� a constant independent of �t� � � � R � R and
� � �	� ��� The Calderon�Vaillancourt theorem now shows that

lim
���

kop �q��t� �� ���kL�L��R� �H�� � 	

uniformly with respect to � � �	� ��� Thus� we can assert that

op���� op��
��
� � � �L��R� �H� � r���
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with r�� � OP S�� �H � � �H� satisfying

lim
���

kr��kL�L��R��H�� � 	�

as required�
The second equality of ������� is proved in just the same way� using the

second estimate of �������� This completes the proof�
�

The interest of the proposition is that it allows one to construct so�called
order reductions within the calculus�

Corollary ����� For any � � ���H� �H�� the operator R���� � op���� is
invertible for � � 	 small enough� and the inverse R��� ��� is in OP S����� �H��

Proof� By Proposition ������ R���� � OP S��� � �H� ful�ls ������� with

r�� � OP S�� �H � � �H��
r��� � OP S��H � �H�

satisfying �������� Hence it follows that both � � r�� and � � r��� are invert�
ible for su"ciently small � � 	� Moreover� we can assert� by a theorem of
Beals �Bea���� that

�� � r���
�� � OP S�� �H � � �H��

�� � r��� �
�� � OP S��H � �H�

for � � 	 small enough� We deduce that

op����� ��� � r���
�� � OP S�� �H � ���

�� � r��� �
��op����� � � OP S����� �H�

are the right inverse and the left inverse of R����� respectively� Hence they
coincide� thus giving an inverseR��� ��� � OP S����� �H� forR����� as required�

�

We make use of the operators R����� for � � 	 small enough� to introduce
Sobolev spaces of operator�valued functions�

De�nition ����	 Let � � ���H� �H�� We denote by H��� the space of all
distributions u � S ��R�H� with �nite norm

kukH�
� � kR����ukL��R� �H��

Analysis similar to that in the proof of Proposition ����� shows that the
composition R����R��� ��� is a bounded operator in L��R� �H�� provided that
�� � � 	 are su"ciently small� Hence the space H��� is independent of the
particular choice of 	 � �
 ��
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Proposition ����� Suppose �� � ���H�� �H�� and �� � ���H�� �H��� Every
operator A � OP S���� ��� extends to a continuous mapping H����� H�����
Moreover�

kAukH�
�� � c �
X

����N

c�����A�� kukH�
��� u � H����� �������

the constants c � 	 and N �Z� being independent of A�

Proof� The boundedness of A � H���� � H���� is equivalent to the
boundedness of �A � L��R� �H��� L��R� �H��� where

�A � R�����AR��� �����

R����� and R��� ���� being given by Corollary ������
By Proposition ����� we conclude that �A � OP S�� �H�

� � �H�
�� and so

sup
x��

kD�
t D

�
� � �A�t� � �kL� �H�� �H��

� c����� �A�

for all �� � �Z�� According to the Calderon�Vaillancourt theorem� �A extends
to a bounded operator L��R� �H��� L��R� �H�� and

k �AkL�L��R� �H���L��R� �H���
� �c

X
���� �N

c����� �A��

the constants �c � 	 and �N �Z� being independent of �A� Combining this with
Proposition ������ we arrive at estimate �������� as required�

�

We �nish this section by yet another technical assertion whose proof is
similar to the proof of Proposition ������

Proposition ����� Let A � OP S���� ���� Suppose � � C��R� satis�es
��t� � 	 for t � � and ��t� � � for t � �� Then�

lim
R��

k�A����
R��kL�H�
���H�
��� � 	�

��
 Pseudodi�erential operators with symbols

slowly varying at in�nity

In studying pseudodi�erential operators A � op�a�x� ��� on Rn it is usually
assumed that the symbol a�x� �� stabilises in some sense as x��� There are�
however� a great number of problems which lead to di�erential or pseudodif�
ferential operators without the condition of stabilisation of the symbol at the
point of in�nity� A class of such operators was studied by Grushin �Gru�	� who
extended a joint work with Vishik �GV
��� The following de�nition introduces
this class in the case of operator�valued symbols on the real axis�
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De�nition ��
�� A symbol a�t� � � � S���� ��� is called slowly varying as
t� �� if

lim
t���

sup
��R

k���t� � ��D�
t D

�
� a�t� � ���

��
� �t� � �kL� �H�� �H��

� 	� ���
���

for each � � 	 and � � ��

Let Ssv���� ��� stand for the class of symbols slowly varying as t� ��� We
also distinguish the subclass S����� ��� of Ssv���� ��� consisting of the symbols
a�t� � � which obey ���
��� for all �� � �Z��

Proposition ��
��

�� If A � OP Ssv������� and B � OP Ssv�������� then BA � OP Ssv�������
and the symbol of BA is given by

�BA�t� � � � �B�t� � ��A�t� � � � r�t� � ��

where r�t� � � � S����� ����
�� If A � OP Ssv���� ���� then A� � OP Ssv������ ��� ����� ��� and the symbol

of A� is given by
�A��t� � � � ��A�t� � ��

� � r�t� � ��

where r�t� � � � S������� ��� ����� ����

Proof� The proof is similar to the proof of Proposition ����� in �RST����
�

��� Local invertibility of pseudodi�erential

operators at in�nity

Let � � C��R� satisfy ��t� � 	� if t � �� and ��t� � �� if t � �� Put
�R�t� � ��t
R�� for R � 	�

De�nition ����� We say that an operator A � L�H�����H����� is locally
invertible from the left �right	 at the point �� if there exist R � 	 and an
operator B � L�H�����H����� such that BA�R � �R ��RAB � �R	� respec�
tively�

We call A locally invertible at the point �� if it is locally invertible both
from the left and from the right at this point�

Before formulating our next result� we note that the concept of being slowly
varying is also applicable to the weight functions in ���H� �H�� Namely� such a
function ��t� � � is said to vary slowly as t� �� if

lim
t���

sup
��R

k�D�
t D

�
� ��t� � ���

��
� �t� � �kL� �H� � 	

for all � �Z� and � � �� �� � � ��
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Theorem ����� Suppose �j � ���Hj� �Hj�� j � �� �� are slowly varying as
t � ��� Let A � op�a�� where a � Ssv���� ���� Then A � H���� � H���� is
locally invertible at the point �� if and only if there exists a number R � 	
such that the symbol a�t� � � �H� � H� is invertible for all �t� � � � �R�����R�
and

sup
�R�����R

k���t� � �a���t� � ����� �t� � �kL� �H�� �H��
��� �������

Proof� The proof of this theorem is actually the same as the proof of
Theorem ����� in �RST����

�

��
 Exponential weighted estimates for pseu�

dodi�erential operators with analytic

symbols

For � � R� we denote by H��
 �� the completion of C�
comp�R�H� with respect

to the norm
kukH�
	�� � ke�tukH�
��

If a�t� � � i�� � S���� ���� then

op�a�t� � � i��� � e�t op��a�t� z�� e
��t�

where

op��a�t� z��u �t� �
�

�


Z
R�i�

dz

Z
R

ei�t�t
��za�t� z�u�t��dt�� t � R�

for u � C�
comp�R�H��� Hence it follows that

kop��a�t� z��ukH�
�	�� � ke�top��a�t� z��ukH�
��

� kop�a�t� � � i��� e�tukH�
��

� c ke�tukH�
��

� c kukH�
�	���

c being the norm of op�a�t� � � i��� in L�H�����H������ Thus� op��a�t� z��
extends to a continuous mapping H���
 ��� H���
 ���

Were a�t� z� polynomial in z� the operator op��a�t� z�� would be di�erential
and thus independent of the particular choice of � � R� This still holds for
those symbols a�t� z� which extend analytically in z to some strip around R�i��
More precisely� assume that a�t� z� is an analytic function of z in a horizontal
strip R� i�a� b�� such that a�t� � � i�� � S���� ��� uniformly in � in compact
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intervals of �a� b�� Then it is an easy consequence of the Cauchy theorem that
the operator op��a�t� z��� when restricted to C�

comp�R�H��� does not depend
on � � �a� b�� We will denote it simply by op�a�� As described above� op�a�
extends to a continuous mappingH���
 ��� H���
 ��� for each � � �a� b�� and
this extension is given by op��a�t� z���

Theorem ��
�� Let a�t� z� be an analytic function of z � R� i�a� b�� such
that a�t� � � i�� � Ssv���� ��� uniformly in � � �a� b�� Suppose there is an
R � 	 such that the symbol a�t� z� � H� � H� is invertible for all t � R and
z � R� i�a� b�� and

sup
t�R

z�R�i�a�b�

k���t� � �a���t� z����� �t� � �kL� �H�� �H��
���

Then� if a � �� � ��� � b and u � H���
 ��� satis�es op�a�u � H���
 ���� near
t � ��� then u � H���
 ���� near t � ���

As usual� we say that u � D��R�H� is of class H��
 �� near t � �� if
�u � H��
 �� for some function � � C��R� equal 	 near t � �� and � near
t � ��� Note that �H��
 ���� �� �H��
 ��� provided �� � ����

The proof of Theorem ����� is based on the following two lemmas proved
in a more general context in �Rab��b��

Lemma ��
�� Let a�t� z� satisfy

sup
t�R

z�R�i�a�b�

k���t� � ��D�
t D

�
z a�t� z���

��
� �t� � �kL� �H�� �H��

��� �� � �Z�� �������

and let w�t� � exp ��t� with ��C��R� such that a � inft � ��t� � supt �
��t� �

b� Then� op�a� extends to a continuous mapping H���
w�t��� H���
w�t���

Proof� See Theorem ��� �a� in �Rab��b�� In fact� Theorem ��� is proved
in �Rab��b� for the weight functions ��t� � � that do not depend on t � R�
However� the same proof still goes for arbitrary ��t� � � meeting our conditions�

�

The spaces H��
w�t�� generalise H��
 �� while the function w�t� � exp��t�
is assigned to any � � R� More precisely� byH��
w�t�� is meant the completion
of C�

comp�R�H� with respect to the norm kukH�
	w�t�� � kw�t�ukH�
��

Lemma ��
�	 Suppose aR�t� z� � � � rR�t� z�� R � 	� is a family of ana�
lytic functions of z � R� i�a� b� with values in L�H�� such that

lim
R��

sup
t�R

z�R�i�a�b�

k��t� � ��D�
tD

�
z rR�t� z���

���t� � �kL� �H� � 	� �� � �Z�� �������
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Then� the operator AR � op�aR� on H��
 ��� � � �a� b�� is invertible for R � 	
large enough� and A��R � op�sR� where sR�t� z� is an analytic operator�valued
symbol satisfying

sup
t�R

z�R�i�a�b�

k��t� � ��D�
t D

�
z sR�t� z���

���t� � �kL� �H� � c���� �� � �Z�� �������

Proof� See Theorems ��� and ��� in �Rab��b��
�

Proof of Theorem ��
��� Let �R�t� stand for a cut�o� function at t �
��� as above� By assumption� the symbol bR�t� z� � �R�t�a���t� z� is an
analytic operator�valued function satisfying an estimate of the type ��������
provided that R � 	 is large enough�

Set BR � op�bR�� We get BRA � �R�op�rR� where rR�t� z� is an analytic
function of z � R� i�a� b� with values in L�H��� satisfying

sup
t�R

z�R�i�a�b�

k���t� � ��D�
tD

�
z rR�t� z���

��
� �t� � �kL� �H��

��

for all �� � �Z�� Moreover� we have

lim
t���

sup
z�R�i�a�b�

k���t� � ��D�
tD

�
z rR�t� z���

��
� �t� � �kL� �H��

� 	� �������

for each �� � � Z�� because both a�t� z� and bR�t� z� are slowly varying at
t � ���

Pick yet another cut�o� function �� at t � ��� such that � #covers$ ���
i�e�� ��� � ��� By the above� we have

�RBRA��R � ��R � �Rop�rR���R

� �� � �Rop�rR�� ��R�

It follows from ������� that the symbol �R�t�rR�t� z� meets condition ��������
By Lemma ������ the operator ���Rop�rR� on H���
 ��� � � �a� b�� is invertible
for su"ciently large R � 	� and the inverse has an analytic symbol sR�t� z�
satisfying estimates �������� with � replaced by ��� We thus obtain

�� � �Rop�rR��
���RBRA��R � ��R

for all R � 	 large enough� where PR � ����Rop�rR�����RBR is a pseudodif�
ferential operator with an analytic operator�valued symbol pR�t� z� satisfying

sup
t�R

z�R�i�a�b�

k���t� � ��D�
t D

�
z pR�t� z���

��
� �t� � �kL� �H�� �H��

� c����
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for any �� � �Z�� These estimates ensure� by Lemma ������ the boundedness
of the operator PR acting as H���
w�t��� H���
w�t��� where w�t� � exp ��t�
and � � C��R� is such that a � inft ���t� � supt �

��t� � b� In particular� we
may take

��t� �

�
��t if t � �

���t if t � �

and extend it to a smooth function on the whole axis satisfying the above
conditions�

Having disposed of this preliminary step� we are able to complete the proof
of the theorem� Indeed� suppose u � H���
 ��� satis�es op�a�u � f with
f � H���
 ��� bearing moreover the property that f � H���
 ���� near t � ���
Write

��Ru � �PRA �� � ��R�u� PRf�

It is evident that �� � ��R�u � H���
w�t�� and f � H���
w�t��� According
to Lemma ������ PRA extends to a continuous mapping of H���
w�t��� hence
��Ru � H���
w�t��� This yields u � H���
 ���� near t � ��� which is our
claim�

�

��� Examples of weight functions

In this section we show several examples of operator�valued weight functions
��t� � � to be used in the calculus on manifolds with edges�

Example ����� Let
H � Hs�Rq��
�H � L��Rq�

and

��t� � � �
�
� � �	�t����y � � �

� s
� �

where 	�t� � 	 is a C� function on the real axis meeting an estimate

	�t�

	���
� c �� � jt� �j�� for all t� � � R� �������

with c and � � 	 independent of t and �� �y � D�
y�

� � � � � D�
yq

is the non�
negative Laplace operator on Rq� and s � R� We have

��t� � � � op �� � �	�t���j�j� � � ��
s��

�

����t� � � � op �� � �	�t���j�j� � � ��
�s��
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whence

��t� �� � � ������t� � � � op

�
� � �	�t� ����j�j� � �� � ���

� � �	�t���j�j� � � �

�s��

�

for the symbols are independent of y� To verify ������� we need an elementary
estimate�

Lemma ����� If q � �� then

�q� � � ��s��

�q� � ���s��
� �jsj�� �� � j� � �j��jsj���

Proof� Indeed�

�q� � � ��s��

�q� � ���s��
�

�� � ��
q���s��

�� � ��
q���s��

� �jsj��
�
� � ���
q�� ��
q���

�jsj��
� �jsj��

�
� � �� � ���

�jsj��
�

the �rst estimate being a consequence of the well�known Peetre inequality�
This is our claim�

�

Applying Lemma ����� we obtain

�� � �	�t���j�j� � � ��
s��

�� � �	�t���j�j� � ���s��
� �jsj��

�
� � j� � �j��jsj�� �������

for all �� � � R� Further�
� � �	�t� ����j�j� � � � � � � c��� � j�j����	�t���j�j� � � �

� c��� � j�j��� �� � �	�t���j�j� � � �
�

where c � � is the constant of �������� Hence it follows that

�

c��� � j�j��� �
� � �	�t� ����j�j� � � �

� � �	�t���j�j� � � �
� c��� � j�j����

and so
�� � �	�t� ����j�j� � � ��

s��

�� � �	�t���j�j� � � ��s��
� cjsj �� � j�j��jsj �������

for all t� � � R� As

kop�a����kL�L��Rq�� � sup
��Rq

ja���j�

the estimates ������� and ������� imply the estimates ������� for ��t� � �� with
�� � �jsj and �� � jsj� Thus� we get � � ��Hs�Rq�� L��Rq��� as required�

�
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Example ����	 Suppose B is a C� compact closed manifold and Rq�B
a cylindrical manifold over B� For s � R� set

H � Hs�Rq�B��
�H � L��Rq�B�

and
��t� � � �

�
� � �	�t����y � � � ��B

� s
� �

where 	�t� � 	 is a C� function on R satisfying �������� and �B � r�r is
the Laplace operator associated with a connection r on B� Let �ei�i
������� be

a complete orthonormal system in L��B� consisting of eigenfunctions of �B�
and let ��i�i
������� be the corresponding system of eigenvalues� each �i being

non�negative� If u�y� x� � L��Rq�B�� then

��t� �� � � ������t� � �u

�
�X
i
�

F��
� 	�y

�i�t� �� �� � � ��

�i�t� �� � �
Fy 	���u�y� ��� ei� ei

where
�i�t� �� � � �

�
� � �	�t���j�j� � � � � �i

� s
�

and �u�y� ��� ei� is the scalar product of u�y� x� and ei�x� in L��B�� Hence we
deduce that

k��t� �� � � ������t� � �uk��H
�

�X
i
�

Z
Rq

j �i�t� �� �� � � ��

�i�t� �� � �
j� jFy 	���u�y� ��� ei�j�d�

� sup
��Rq

i
�������

j �i�t� �� �� � � ��

�i�t� �� � �
j�

�X
i
�

Z
Rq

jFy 	���u�y� ��� ei�j�d�

� sup
��Rq

i
�������

j �i�t� �� �� � � ��

�i�t� �� � �
j� kuk��H�

and so

k��t� �� � � ������t� � �kL� �H� � sup
��Rq

i
�������

j �i�t� �� �� � � ��

�i�t� �� � �
j

for all t� �� �� � � R� From what has already been proved in Example ����� it
follows that

j �i�t� �� �� � � ��

�i�t� �� � �
j � ������jsj��cjsj h�i�jsj h�ijsj
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with c a constant independent of t� � � � and �� Thus� we see that � is of class
��Hs�Rq�B�� L��Rq �B���

�

Example ����� Let

R
n

 � fx � �x�� xn� � Rn � 
xn � 	g

and let � � ���� �n� be the corresponding splitting of the covariables � � Rn�
For s � R� we denote by Hs�%Rn

�� the space consisting of the restrictions to Rn
�

of distributions in Hs�Rn�� We have

Hs�%Rn
�� � Hs�Rn�


�

H s�%Rn
��

where
�

Hs�%Rn
�� is the subspace of Hs�Rn� consisting of distributions supported

in %Rn
�� Under the quotient norm� Hs�%Rn

�� is a Hilbert space�� As
�

H s�%Rn
��

coincides with the closure of C�
comp�R

n
�� in Hs�Rn�� it follows that

�
Hs�%Rn

��
�� top�� �

H�s�%Rn
�� �������

under the pairing induced by the scalar product of L��Rn�� It is well�known
that the operator

�� � op �h��i� i�n�

restricts to a topological isomorphism
�

Hs�%Rn
�� �

�

Hs���%Rn
��� for any s � R

�see �Gru�
� �������� The formal adjoint to this mapping is given by r���e��
where

�� � op �h��i � i�n�

is preceded by extension e� by zero to Rn and followed by restriction r� to
R
n
�� From ������� we conclude that r���e� induces a topological isomorphism

Hs�%Rn
��� Hs���%Rn

��� for any s � ��
�� Put

H �
�

H s�Rq� %Rn
���

�H � L��Rq� %Rn
��

and

��t� � � �
�
�� � �	�t����y � � ��

�
� � ��

�s
�

�Note that
�

Hs��Rn

�� can not be thought of as a subspace of Hs��Rn

�� because the natural
mapping of the former to the latter is not injective unless s � ����� Indeed� the surface
layer on �Rn

�
belongs to Hs�Rn� if s � �����
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where 	 � C�
loc�R� and �y are as above whereas s � Z� When passing to the

Fourier images with respect to y and x� we reduce ��t� � � to multiplication by
the scalar�valued weight function�

�� � �	�t���j�j� � � ��
�
� � h��i � i�n

�s
�

and so estimate ������� for ��t� � � is veri�ed in much the same way as in

Example ������ Thus� � � �
� �

H s�Rq� %Rn
��� L

��Rq� %Rn
��
�
� On the other

hand� if
H � Hs�Rq� %Rn

���
�H � L��Rq� %Rn

��

and
��t� � � �

�
�� � �	�t����y � � ��

�
� � r���e�

�s
�

where s � Z�� then we make use of what has already been proved and a fa�
miliar duality argument to see that � � �

�
Hs�Rq � %Rn

��� L
��Rq � %Rn

��
�
� This

choice of the weight function is certainly more relevant to our theory than the
preceding one�

�

Note that the #order�reducing$ operators op�h��i 
 i�n�s� for s � R� in the
half�space have been used by Vishik and Eskin �VE
��� Their symbols are not
in Ss

����T
�
R
n�� since h��i does not satisfy all the estimates in terms of powers

of h�i required for that� However� these operators are convenient for special
purposes� and sometimes allow simpler formulations� In the Boutet de Monvel
calculus they are usually replaced by other operators with almost as convenient
properties �see Grubb �Gru���� Schrohe and Schulze �SS��� �����	�� and so on��

Example ����� Finally� suppose B is a C� compact manifold with bound�
ary� Denote by �B the #double$ of B� i�e�� a C� compact closed manifold
obtained by gluing together two copies of B along �B� For s � R� we de�ne
Hs�B� to be the space formed by the restrictions of distributions in Hs��B� to
the interior of B� with the standard quotient norm� There is an order�reducing
operator

�B � Hs�B�� Hs���B�� s � ��
��

possessing the following properties�

� in local coordinates near the boundary� �B is given by r���e� with ��

replaced by ���� ��� � � R being a su"ciently large parameter


� the operator h� i� �B is invertible for all � � R� the inverse being given
by �h� i� r���e���� in local coordinates near �B
 and
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� the norm of �h� � �i � �B��h� i � �B��� in L�L��B�� is dominated by
c max��� h� � �i
h� i�� with c a constant independent of �� � � R

�cf� Section � in �Gru����� We now set

H � Hs�Rq�B��
�H � L��Rq�B�

and

��t� � � �
�
�� � �	�t����y � � ��

�
� � �B

�s
�

for s � Z�� We claim that � � � �Hs�Rq�B�� L��Rq�B��� To prove this�
�x u � L��Rq �B�� We have

k��t� �� � � ������t� � �uk��H
�

Z
Rq

kFy 	����t� �� � � ������t� � �uk�L��B�d�

�
Z
Rq

kb�t� �� �� � � ��b���t� �� � �k�sL�L��B��kFy 	��uk�L��B�d�

�
�
sup
��Rq

kb�t� �� �� � � ��b���t� �� � �k�sL�L��B��

�
kuk��H

for all t� �� �� � � R� where

b�t� �� � � �
�
� � �	�t���j�j� � � �

� �
� � �B�

This yields

k��t� �� � � ������t� � �kL� �H� � sup
��Rq

kb�t� �� �� � � ��b���t� �� � �ksL�L��B���

�������
and so we are reduced to estimating the norm of b�t� �� �� � � ��b���t� �� � � in
L�L��B��� On the one hand� we get

kb�t� �� �� � �b���t� �� � �kL�L��B�� � c max

�
��

�� � �	�t� ����j�j� � � �����

�� � �	�t���j�j� � � �����

�

� c max

�
��

	�t� ��

	�t�

�

hence� by ��������

kb�t� �� �� � �b���t� �� � �kL�L��B�� � C h�i� �����
�
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where the constant C does not depend on t� � � � and �� On the other hand�
we have

kb�t� �� � � ��b���t� �� � �kL�L��B��

� c max

�
��

�� � �	�t���j�j� � �� � �������

�� � �	�t���j�j� � � �����

�
�
p
�c h�i� �������

the last inequality being a consequence of Lemma ������ Combining ��������
�����
� and �������� we arrive at the desired estimate for ��t� � ��

�



Chapter �

A Class of Weighted

Pseudodi�erential Operators

with Operator�Valued Symbols

��� Preliminaries

Let t � ��r� be a di�eomorphism of R� onto R� such that ���r� � 	 for all
r � R��

Using this di�eomorphism� we pull back the structure of an Abelian group
from R to R�� More precisely� we introduce a group operation on the half�axis
by

r � � � ��� ���r� � ����� �

for r� s � R�� It is easily seen that under this operation R� is a locally compact
Abelian group with an invariant measure dm � j���r�j dr�

Example ����� Set ��r� � � log r� for r � R�� Then r � � � r�� and so
R� with this operation is a multiplicative group whose invariant measure is
dm � dr
r�

�

Example ����� For p � 	� take

��r� �

�
�
prp� r � �	� ��

�r� r � �������

Then we can extend � to the interval ��� �� in such a way that the extended
mapping is a di�eomorphism of R� onto R�

�

�
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Example ����	 Set

��r� �

�
exp��
r�� r � �	� ��

�r� r � ������

and extend this to the entire half�axis to get a di�eomorphism of R� onto R�
�

��� Weighted pseudodi�erential operators

Denote by �w�H� �H� the space formed by all functions ��r� �� on R��R with
values in L�H� �H�� such that

k��r � �� �� ������r� ��kL� �H� � c h����i��h�i�� �������

for any r� � � R� and �� � � R� the constants ��� ��� c � R being independent
of r� �� � and ��

The pull�back of the derivative Dt � �i �
�t under the di�eomorphism
r � ��t� is

Dr �
�

i

�

���r�

�

�r
�������

which degenerates at r � 	 because ���	� � ��� As described in �ST�
� and
�RST���� this characteristic derivative is of great importance in the analysis
on manifolds with singular points�

Suppose
���r� �� � �w�H�� �H���

���r� �� � �w�H�� �H���

De�nition ����� Let Sw���� ��� stand for the class of C� functions a�r� ��
on R��R with values in L�H��H��� such that� for any �� � � Z�� there is a
constant c����a� with the property that

k���r� ���D�
rD

�
� a�r� ����

��
� �r� ��kL� �H�� �H��

� c����a� for all �r� �� � R��R�

To any symbol a � Sw���� ��� we assign a #weighted$ pseudodi�erential
operator A � opw�a� by

Au�r� �
�

�


Z
R

d�

Z
R�

ei���r����r
����a�r� ��u�r��dm�r��� r � R�� �������

for u � C�
comp�R��H���

Note that opw�a� is a Fourier integral operator on the half�axis with phase
function ��r� r�� �� � ���r�� ��r�����
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Set
��u �t� � u�����t��� t � R

��f �r� � f���r��� r � R��

then
�� � C�

comp�R��H� � C�
comp�R�H��

�� � C�
comp�R�H� � C�

comp�R��H�

are the �push�forward� and �pull�back� operators induced by �� respectively� If
a�t� � � � S���� ���� then a straightforward computation yields

�� op�a� � �� op�a� ��

� opw��
�a��

where ��a �r� �� � a���r�� ��� The operator �� op�a� is called the operator pull�
back of op�a� under �� In fact�

�� � ��H� �H� � �w�H� �H��
�� � S���� ��� � Sw������ �����

are easily veri�ed to be isomorphisms� hence the calculus on R is pulled back
to R� under t � ��r��

From what has been proved it follows that the weighted pseudodi�eren�
tial operators opw�a� behave in much the same way as the usual ones op�a��
Thus� their properties can be deduced from those of usual pseudodi�erential
operators �cf� Chapter ��� In �RST���� we gave an exposition of the theory
for weight functions ��t� � � independent of t� The class of weighted pseudod�
i�erential operators thereof is adapted for studying boundary value problems
in domains with isolated singular points on the boundary� The class of pseu�
dodi�erential operators under consideration here is well adapted for treating
boundary value problems in domains with cuspidal wedges�

Recall once again that condition ������� for a weight function � just amounts
to saying that ��� satis�es estimate �������� where ��� �t� � � � ������t�� � ��

��� Function spaces related to weighted pseu�

dodi�erential operators

We de�ne ��w�H� �H� to consist of all weight functions ��r� �� � �w�H� �H� which
are of class C� on R��R and satisfy

k�D�
rD

�
� ��r� ����

���r� ��kL� �H� � c����

k����r� ���D�
rD

�
� ��r� ���kL�H� � c���

�������

for all �� � �Z�� where c��� do not depend on �r� �� � R��R�
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Proposition ��	�� For any � � ��w�H� �H�� there are operators

R���� � OP Sw��� � �H��
R��� ��� � OP Sw����� �H�

such that
R��� ���R���� � �L��R��dm�H��
R����R��� ��� � �L��R��dm� �H��

Proof� This follows from Corollary ������
�

Here� by L��R�� dm�H� we mean the space formed by all measurable func�
tions u on R� with values in H� such that

R
R�
kuk�Hdm ��� The square root

of this integral provides a norm in L��R�� dm�H��

De�nition ��	�� Suppose � � ��w�H� �H�� By Hw��� is meant the comple�
tion of C�

comp�R��H� with respect to the norm

kukHw�
� � kR����ukL��R��dm� �H��

For analysis on manifolds with edges we need also two�parameter spaces
Hw��
 �� ��� where � and � vary over R� They consist of all distributions u on
R� with values in H� such that e���r�����r���u � Hw���� We equip Hw��
 �� ��
with the norm

kukHw�
	���� � ke���r�����r���ukHw�
�� �������

If � � 	� we omit this index in the notation� i�e�� we write Hw��
 �� 	�
simply Hw��
 �� when no confusion can arise�

Proposition ��	�	 Let �� � ��w�H�� �H�� and �� � ��w�H�� �H��� Suppose
that a�r� � � i�� � Sw���� ���� for some � � R� Then� A � opw���a�r� ���
extends to a continuous mapping Hw���
 ��� Hw���
 �� and

kAukHw�
�	�� � c �
X

����N

c����a�r� �� i���� kukHw�
�	��

for any u � Hw���
 ��� where c � 	 and N �Z� do not depend on A�

Proof� This assertion is an immediate consequence of Proposition ����� if
we apply the operator pull�back ���

�

Note that the operator A � opw���a�r� ��� is de�ned by

Au �r� �
�

�


Z
R�i�

d�

Z
R�

ei���r����r
����a�r� ��u�r��dm�r��� r � R��

for u � C�
comp�R��H���
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Proposition ��	�� Let �� � ��w�H�� �H�� and �� � ��w�H�� �H��� Suppose
that a�r� �� i�� � Sw���� ���� for some � � R� If

���r � ��
���r� � c h����i��
j �D����r�

�

���r�j � c�� � �Z��

�������

with �� c and c� independent of r� � � R�� then ����r��mopw���a�r� ��� extends
to a continuous mapping Hw���
 �� ��� Hw���
 �� ��m� for each � � R�

Proof� The �rst condition in ������� implies� given any weight function
� � �w�H� �H�� that ����r�����r� �� � �w�H� �H� for each � � R� Indeed� letting
��r� �� � ����r�����r� ��� we get

k��r � �� �� ������r� ��kL� �H� �

�
���r � ��
���r�

��

k��r � �� �� ������r� ��kL� �H�

� c h����i�� h�i��
�
���r � ��
���r�

��

with c a constant independent of r� � � R� and �� � � R� Replacing r by
r � ��� in the �rst estimate �������� where ��� is determined from the equality
���� � ������ � 	� we see that

���r�
���r � ���� � c h������i�

for all r� ��� � R�� Combining this with the �rst estimate of �������� we deduce
easily that �

���r � ��
���r�

��

� cj�j h����i�j�j

for any r� � � R�� showing ��r� �� � �w�H� �H�� which is our claim�

On the other hand� the second condition of ������� means that ����r��m�H
lies in ��w�H�H� for each m � R� We will prove more� namely that ����r��m�H
belongs to Sw�����r����� ����r����m��� for any weight function � � �w�H� �H�
and � � R� To this end� consider

k����r����m��r� ����D�����r��m�H���
��r�����r� �����kL� �H�

� j�D�����r��m� ����r���mj�

for � �Z�� An easy computation shows that

D�����r��m �
X

i������i���

ci� ���i� ��
��r��m�i������i� �D���r��i� � � � �D����r��i�
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where the coe"cients ci����i� depend only on m� We now invoke the second
condition of ������� to obtain

j�D�����r��m� ����r���mj �
X

i������i���

jci����i� j ci�� � � � c
i�
�

� const���

for all r � R� Hence the desired symbol estimates for ����r��m�H follow�
We are now able to prove the boundedness of A � ����r��mopw���a�r� ����

For this purpose� �x u � Hw���
 �� ��� We have

kAukHw�
�	����m� � k����r����m AukHw�
�	��

� c k����r���ukHw�
�	��

� c kukHw�
�	�����

where c stands for the norm of

����r���opw���a�r� �����
��r���� �������

in L�Hw���
 ���Hw���
 ���� Thus� we shall have established the proposition
if we prove that c is �nite� However� from what has already been proved it
follows that

����r�����H� � Sw���� ����r�������
a�r� � � i�� � Sw�����r������ ����r�������
����r����H� � Sw�����r������ ����

and so ����r���a�r� � � i������r���� � Sw���� ���� By Proposition ����� the
operator ������� extends to a continuous mapping Hw���
 �� � Hw���
 ���
Hence c is �nite� as required�

�

��� Local invertibility at the origin

A weight function ��r� �� � ��w�H� �H� is said to be slowly varying at the point
r � 	 if

lim
r��

sup
��R

k�D�
rD

�
� ��r� ����

���r� ��kL� �H� � 	

for all � �Z� and � � �� �� � � ��
The concept of being slowly varying at r � 	 is applicable as well to the

scalar�valued function ���r� if we think of ���r� as multiplication operator in a
Hilbert space� This means simply that

lim
r��

�
D����r�

�

���r� � 	� �������
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for every � � �� �� � � ��
In this section we will be concerned with the problem of local invertibility

at the singular point for an operator

A � ����r��mopw�a�r� ����

where a�r� �� i�� � Sw���� ���� We restrict our attention to those di�eomor�
phisms t � ��r� which ful�l �������� Then Proposition ����� enables us to
conclude that A maps Hw���
 �� �� to Hw���
 �� ��m�� for any � � R� More�
over� we assume that the symbol a�r� � � i�� is slowly varying at the point
r � 	� i�e��

lim
r��

sup
��R

k���r� ��
�
D�

rD
�
� a�r� �� i��

�
���� �r� ��kL� �H�� �H��

� 	

for any � �Z� and � � �� �� � � ��
The de�nition of local invertibility of A � Hw���
 �� �� � Hw���
 �� ��m�

at r � 	 is an evident change of De�nition ������ with the cut�o� function
�R�t� at t � �� replaced by the cut�o� function ���R�r� at r � 	�

Theorem ����� Suppose both �j � ��w�Hj � �Hj�� j � �� �� and �� are slowly
varying at r � 	� Let A � ����r��mopw�a�r� ���� with a�r� ��i�� � Sw�sv���� ����
Then A � Hw���
 �� �� � Hw���
 �� � �m� is locally invertible at r � 	 if and
only if there exists � � 	 such that the symbol a�r� ��i�� �H� � H� is invertible
for all �r� �� � �	� ���R� and

sup
������R

k���r� ��a���r� �� i������ �r� ��kL� �H�� �H��
��� �������

Proof� The proof of this theorem is similar to the proof of Theorem �����
in �RST���� Proposition ����� yields all the additional information we need�

�

The important point to note here is the form of the invertibility condition
������� which is independent of � � R� This is explained by the fact that under
condition ������� the weight function exp ��r� dominates the weight function
���r� near r � 	� Thus� the case ��r� � � log r corresponding to conical
singularities is automatically excluded from consideration�

We �nish this chapter by a weighted estimate for pseudodi�erential oper�
ators with analytic symbols�

Theorem ����� Let a�r� �� extend to an analytic function of � in the strip
R�i�a� b�� such that a�r� ��i�� � Sw�sv���� ��� uniformly in � � �a� b�� Suppose
there is an � � 	 such that a�r� �� � H� � H� is invertible for all r � �	� �� and
� � R� i�a� b�� and

sup
r������

��R�i�a�b�

k���r� ��a���r� ������ �r� ��kL� �H�� �H��
���
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Then� if a � �� � ��� � b and u � Hw���
 ��� �� satis�es ����r��mopw�a�u � f
with f � Hw���
 ���� ��m� near r � 	� then u � Hw���
 ���� �� near r � 	�

Proof� This theorem is a reformulation of Theorem ����� in terms of
weighted pseudodi�erential operators on the half�axis�

�
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Di�erential Operators on

Manifolds with Cuspidal Edges

��� Canonical cuspidal wedge

We say that �r� �� is a polar system of coordinates in Rn�� with centre at the
origin if each point x � Rn�� n f	g can be written in the form

x � r S���� �r� �� � R��Rn�

where S is a smooth periodic mapping of Rn to the unit sphere Sn in Rn���
A well�known example of polar coordinates in the space Rn�� is given by

the mapping

S�w� �

	





�






�

cos ���
sin�� cos���
sin�� sin �� cos���
� � � � � � � � � � � � � � � � � �

sin�� sin �� sin�� � � � sin�n�� cos�n�
sin�� sin �� sin�� � � � sin�n�� sin�n�

�������

where � � ���� � � � � �n�� This mapping fails to be one�to�one on the planes
f� � Rn � �j � 
kg� for j � �� � � � � n � � and k � Z� This in turn results in
degeneracy of the Jacobian matrix�

det
�x

��r� ��
� rn sinn�� �� sin

n�� �� � � � sin�n���

To cope with this di"culty one often uses the so�called stereographic pro�
jection of Rn onto Sn with the north pole removed� given by

SP ��� �
���� j�j� � ��

j�j� � �
� � � Rn�

��
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in which case

det
�x

��r� ��
� ����n�� ��r�n

�j�j� � ��n

does not vanish but for r � 	�
Let f be a C� function on R� with the following properties�

�� f�r� � 	 for all r � R�


��
R �
� dr
rf�r� ��
 and

�� jrjf �j��r�j � cj near r � 	� for each j �Z��

Modifying f away from a �nite interval if necessary� we may actually assume
that

R�
R

dr
rf�r� ��� Thus� setting

��r� �

Z r

�

d�

�f���
� for r � R�� �������

we get a monotone decreasing function � � C�
loc�R��� such that ���r� � �
rf�r�

and
lim
r��

��r� � ���

lim
r��

��r� � ���

In the analysis on manifolds with singularities� only the germ of f�r� at
r � 	 is prescribed by the geometry of singularities� Hence we will restrict our
attention to the behaviour of f�r� near r � 	� keeping in mind the construction
above�

Example 	���� Let

f�r� �

� �rp� r � �	� ��

��
r� r � �������

where p � 	� When appropriately extended to the interval ��� ��� this function
meets all the conditions above� In this case ��r� di�ers by a constant from the
di�eomorphism of Example ������

�

Example 	���� Consider

f�r� �

� � �log �
r�p � r � �	� �
��

��
r� r � �������

where p � �� If appropriately extended to the interval ��
�� ��� the function
f�r� ful�ls all the above conditions� Indeed� we haveZ �

�

dr

rf�r�
� �

Z �

log�

t�pdt�

Z �

���

dr

rf�r�
� �
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and

lim
r��

rjf �j��r� � ����j�� �j � ��& p lim
r��

�log �
r�p��

� �
for all j �Z��

�

Note that� for p � 	� the function f�r� of Example ����� tends to �� as
r � 	� This corresponds to the case where the canonical surface Cx� given
by ������� is of �nite smoothness at x�� Such #singularities$ require another
pseudodi�erential calculus on the half�line di�erent from that of Chapter ��
In fact� the function f�r� of Example ����� fails to satisfy the �rst estimate of
������� for all p � �� hence Theorem ����� is not applicable�

Example 	���	 Set

f�r� �

� �r exp���
r�� r � �	� ��

��
r� r � �������

and extend f�r� to the interval ��� �� so that the extension be negative and
smooth� Then f�r� bears all the above properties� Moreover� ��r� di�ers by a
constant from the di�eomorphism of Example ������

�

Example 	���� For f�r� � ��� we have ��r� � � log r up to a constant
term �which disappears if � � ���

�

We now return to the conditions on the function f to show that they are
not independent� In fact� the last condition for either of j � 	 and j � �
implies the second one�

Lemma 	���� Suppose f is a C� function of constant signs on R�� such
that jrf ��r�j � c for all r � �	� ��� Then�Z �

�

dr

rf�r�
���

Proof� We can assume without loss of generality that f is non�negative
everywhere in R��

Write Z �

�

dr

rf�r�
� �

Z �

�

�

f�r�
d �� log r�

�

Z �

T

�

F �t�
dt



Boundary Value Problems ��

where F �t� � f�e�t� and T � � log �� If t varies over �T���� then r � exp��t�
varies over �	� ��� hence

sup
t��T���

jF ��t�j � sup
r������

jf ��r�rj
� c

by assumption� The Lagrange formula now yields

F �t� � F �T � � �t� T �

Z �

�

F ��T � ��t� T ��d�

� F �T � � c �t� T �

for all t � T � Hence it follows thatZ �

�

dr

rf�r�
�
Z �

T

�

F �T � � c �t� T �
dt

� ��

which is our claim�
�

We also mention that condition �� on f just amounts to saying that each
derivative �rDr�jf�r�� j �Z�� is bounded close to r � 	�

By a canonical surface with an oscillating cusp at a point x� � Rn�� we
mean

Cx� � fx� � rS�	�r�f�r��� � r � R�� � � Bg� �������

where B is a C� compact closed submanifold of Rn� Here� f � C�
loc�R�� is

a function with properties ��'�� above� We shall say that f�r� speci�es the
degeneracy of Cx� at the cusp x�� On the other hand� 	 � C�

loc�R�� is required
to meet the following conditions�

a� infr�R� 	�r� � 	


b� jD�	�r�j � c�� for every � �Z�
 and

c� lim
r��

D	�r� � 	�

We say that 	�r� speci�es the oscillation of the surface Cx� at the cusp x�� A
typical example of 	�r� satisfying a�'c� is as follows�

Example 	���
 For � � �	� ��� consider

	�r� � � � �

�
sin���r��� ��r��

where � is a cut�o� function on %R�� such that � does not vanish on the support
of �� Then 	 meets a�'c�� as is easy to check�

�
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Applying the Hardy�Littlewood inequality �cf� �HL����� we deduce that
conditions b� and c� actually imply

lim
r��

Dj	�r� � 	� �������

for each j � �� �� � � �� In fact� we have the following lemma�

Lemma 	���� If 	 � C�
loc�R�� satis�es

jD�	�r�j � c� r � �	� ���
lim
r��

	�r� � 	�

then lim
r��

D	�r� � 	�

Proof� Set (�t� � 	�����t��� thus obtaining a C� function on the entire
real axis� Since

(��t� � D	 �����t���
(���t� � D�	 �����t���

we get
j(���t�j � c� t � ����������

lim
t���

(�t� � 	�

Combining the Hardy�Littlewood inequality j(��t�j � p
�
p

sup j(j sup j(��j on
Rwith a suitable extension operator from the half�line� we arrive at an estimate

j(��t�j� � C sup
���T���

j(���j sup
���T���

j(�����j� t � �T����

with C an absolute constant� For example�C � ��
 �lls the bill �cf� Remark ��
in �Bur��� ������ � Hence it follows that lim

t���
(��t� � 	� which is the desired

conclusion�
�

It is worth pointing out that the product 	f fails to ful�l ��'�� in general�
for f and 	 possessing the properties ��'�� and a�'c�� respectively� To see this�
take f�r� � �r� and 	�r� � � � �

� sin���r��� for r � 	 small enough� where
� � �
�� Thus� introducing 	 into the de�nition of a canonical surface with a
cusp enriches the class of surfaces under consideration�

For f given in Example ������ we have a canonical surface with a power�
like cusp� If f is given by Example ������ we get a canonical surface with
an exponential cusp� Finally� for f of Example ������ we obtain a canonical
surface with a conical point�

If Cx� is given by ������� with B being a domain in Rn� then we call Cx� a
canonical domain with an oscillating cusp at the boundary point x��

�In the Appendix� we give an independent proof of the Hardy�Littlewood inequality on
the half�line�
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De�nition 	���
 Let C� be a canonical domain with an oscillating cusp at
the origin� Then W � Rq � C� is said to be a canonical oscillating cuspidal
wedge�

Clearly� the boundary of a canonical oscillating cuspidal wedge is of the
form W � Rq � C�� where C� is a canonical surface with an oscillating cusp
at the origin� In this way we obtain what will be referred to as a canonical
surface with an oscillating cuspidal edge Rq�

��� Di�erential operators

If W � Rq�C� is a canonical oscillating cuspidal wedge or a canonical surface
with an oscillating cuspidal edge� then one has distinguished local coordinates
in W � These are given by �y� r� ��� where y � Rq� r � R� and � stands
for local coordinates on B� Using the coordinates �y� r� �� actually leads to
desingularisation of W � forW � Rq�R��B bears a cylindrical structure and
one has a blow�down mapping W � W which is a di�eomorphism away from
r � 	 and restricts to a di�eomorphism of Rq� Under this desingularisation�
di�erential operators near W in Rq�n�� are pulled back to W� The pull�backs
give rise to typical di�erential operators in the calculus on manifolds with
oscillating cuspidal edges�

To illustrate this� we con�ne ourselves to the case where W is a canonical
oscillating cuspidal wedge� Similar arguments apply to the case of canonical
surfaces with oscillating cuspidal edges�

Let
A �

X
j�j�j�j�m

a����y� x�D
�
yD

�
x

be a di�erential operator with C� coe"cients on W � We assume that the
coe"cients a����y� x�� with j�j� j�j � m� satisfy the conditions

jDB
y D

G
x a����y� x�j � cB�G�a���� �����jxj��jGj �

lim
x��

sup
y�Rq

�
Dxja����y� x�

�

���jxj� � 	 �������

for all multi�indices B � Zq� G � Zn�� and for every j � �� � � � � n � �� the
constants cB�G�a���� being independent of �y� x� � W �

Denote by 
 �W � W the mapping of passage to the #cylindrical$ coordi�
nates �y� r� �� via �

y � y�
x � r S�	�r�f�r����

�������

for y � Rq� r � R� and � � B� Thus� 
 � �y� r� �� �� �y� r S�	�r�f�r���� is a
di�eomorphism provided the dilatations tB� t � 	� do not meet the set where
S��� fails to be a di�eomorphism�
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Applying Proposition ����� of �RST��� yields

Dx � ��
�
S�	f��Dr �

�
��S
������	f��

�T
D�
	 � r�	f��S�	f�� �D�
	

�
�

�������
where ��S
����� is a left inverse for the Jacobian matrix of S� the superscript
�T � indicates the transposed matrix� and �D� �

Pn
�
� ��D�� � As

D ����� � i � ����� �f � rf �� �
D
�
rjf �j�

�
� �if �jrjf �j� � rj��f �j���

�
�

D	� � �	���D	�
r�	f�� � iD	� 	 rf �

�������

and

Dr S�	f�� �
nP
�
�

��� �S
���� j�
�f� �D	
	� rDf� �

D� S�	f�� � D�S j�
�f� �	f� �
�������

we conclude that

D�
x � ����j�j

X
j�j�j�j�j

	j�j�j p
���
j��D

j
rD

�
� �

for any � �Zn��
� � where p

���
j�� are polynomials with integer coe"cients of r�f ���

and D�	 �� � 	� �� � � � � j�j � j�� � and elements of the matrices DI
�S and

DI
� ��S
���

��� jIj � j�j � j � j�j� with � � 	f� substituted� It follows
that� under the change of variables �������� A transforms into a di�erential
operator


�A � ����r��
m

X
j�j�j�j�j�m

a��j���y� r� ��D
�
yD

j
rD

�
� �����
�

on the stretched wedgeW� whereDy is a new #totally characteristic$ derivative
in the calculus� given by

Dy �
�

��
Dy

� rf�r�Dy �

and

a��j���y� r� �� �
X

j�j�j�j�j�m�j�j

����j�j�j�j�m 	j�j�j p
���
j�� 
�a����y� r� ���
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Note that the pull�backs 
�a����y� r� �� behave #well$ near the base r � 	
of W� Indeed� applying �������� ������� and the chain rule yields

D�
y � �����j�jD�

y �

Dj
r � �����j

P
jGj�j

p
�j�
G

��
r�f ���

�
��j

� �D�	���j � ��
�
DI

�S
�
jIj�j

�
DG

x �

D�
� � �����j�j 	j�j

P
jGj�j�j

p
���
G

��
DI

�S
�
jIj�j�j

�
DG

x �

p
�j�
G and p

���
G being polynomials with integer coe"cients of the variables indi�

cated in the parentheses� We now invoke the �rst estimate of ������� and the
property �� of f to see that

jDj
rD

B
y D

A
� 


�a����y� r� ��j � cj�B�A�a����� j �Z�� B �Zq
�� A �Zn

��

uniformly in �y� r� �� � W� Combining these estimates with the explicit for�
mulas for the coe"cients of 
�A given above� we get

sup
r������

jDk
rD

B
y D

A
� a��j���y� r� ��j � ck�B�A� k �Z�� B �Zq

�� A �Zn
�� �������

uniformly in �y� �� � Rq�B�
Estimates ������� may be summarised by saying that �����m
�A is a weight�

ed di�erential operator in the sense of Section ���� with � given by ��������
Moreover� �����m
�A is a di�erential operators with a symbol slowly varying
as r � 	 if� in addition to �������� the coe"cients a��j�� bear

lim
r��

Dra��j���y� r� �� � 	 �������

uniformly in �y� �� � Rq � B �cf� Lemma ������� Our next result highlights
conditions on f under which the second condition of ������� implies ��������

Proposition 	���� Suppose that

lim
r���

rf ��r� � 	� �������

Let ������� hold� Then� a��j�� satis�es �������� for each � � Zq
�� j � Z� and

� �Zn
� satisfying j�j� j � j�j � m�

Proof� We �rst observe� by Lemma ������ that equality ������� actually
implies

lim
r���

rjDjf�r� � 	�

for every j � �� �� � � �� Moreover� the second condition of ������� just amounts
to the fact that

lim
r��

Dr 

�a����y� r� �� � 	
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uniformly in �y� �� � Rq � B� for all � and � with j�j � j�j � m� Since

both Dr ����
j�j�j�j�m and Dr 	

j�j�j vanish as r � 	 �cf� ��������� it remains to

evaluate the derivative Drp
���
j�� when r � 	� To this end� set

v� � r�f ���� � � 	� �� � � � � j�j � j

w� � D�	� � � 	� �� � � � � j�j � j�

and let z�� � � �� � � � �K� be an indexing of the elements of both matrices DI
�S

and DI
� ��S
���

��� jIj � j�j � j � j�j� where � � 	f�� By the chain rule� we
get

Dr p
���
j�� �

j�j�jX
�
�

�p
���
j��

�v�
D �r�f ���� �

j�j�jX
�
�

�p
���
j��

�w�
D �D�	� �

KX
�
�

�p
���
j��

�z�
Dr z��	f��

whence
lim
r��

Dr p
���
j�� � 	

uniformly in � � B� which is due to �������� ������� and �������� This completes
the proof�

�

The choice of f meeting ������� seems to be the best adapted to our the�
ory� Recall that ������� strengthens condition �� on the functions f under
consideration�

In case f satis�es ������� we can distinguish in a natural way a proper
part of 
�A responsible for the local invertibility of this operator near r � 	�
To this end� denote by �p

���
j�� the polynomial obtained from p

���
j�� by replacing

rf �� � � � � rj�j�jf �j�j�j� and D	� � � � �Dj�j�j	 via zeroes� It is easy to see that
�p���j�� is of the form �p���j�� � 	j�j�j�j�j q

���
j��� where q

���
j�� is a polynomial with integer

coe"cients of f and elements of the matricesDI
�S and DI

���S
���
��� jIj � j�j�

with � � 	f�� Write


�A � ����m
X

j�j�j�j�j�m



�	�j�j

X
j�j
m�j�j

q
���
j�� 
�a���

�
AD�

yD
j
rD

�
�

� ����mS� ������	�

Proposition 	���� Under condition �������� if moreover a��� ful�l ��������
then the coe
cients of the di�erential operator S in ������	� are in�nitesimal
as r � 	�

Proof� Indeed� we have

S �
X

j�j�j�j�j�m

���j��D
�
yD

j
rD

�
� �
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with

���j�� �
X

j�j
m�j�j

	j�j�j
�
p
���
j�� � �p���j��

�

�a���

�
X

j�j�j�j�j�m�j�j

����
j�j�j�j�m

p
���
j�� 
�a����

If j � j�j� then p
���
j�� � �p���j�� � 	 by the very de�nition� For �xed j� � and

� with j � j�j � m � j�j� set N � j�j � j� Using Taylor�s expansion for the

polynomial p���j�� yields

p
���
j�� � �p

���
j��

�
X
I�Z�N�
I �
�

�

I&
�Iv��w�p

���
j�� jv�
�

w�
�
�rf ��i� � � � �rNf �N��iN �D	�iN�� � � � �DN	�i�N �

where I � �i�� � � � � i�N� and v� � �v�� � � � � vN�� w� � �w�� � � � � wN �� Combining
this with ������� and taking into account the properties of 	� we deduce that
the �rst sum in the expression for ���j�� vanishes when r � 	�

On the other hand� if j�j � m� j�j� then ����j�j�j�j�m � 	 as r � 	� This
shows that the second term of ���j�� also vanishes when r � 	� Hence the
desired conclusion follows�

�

We show below that the operator ����mS has a small local norm in suitable
function spaces and is thus immaterial in the problem of local invertibility at
the point r � 	�

The class of coe"cients meeting ������� and ������� contains some functions
rapidly oscillating near the edges �i�e�� close to r � 	��

Example 	���	 For each 	 � p � � and any c � C��Rq�B� with bounded
derivatives� the function a�y� r� �� � ei���r��

p

c�y� �� satis�es both ������� and
��������

�

��� Local invertibility of di�erential operators

on a surface with oscillating cuspidal edges

Let A be a di�erential operator on a canonical surface W � Rq� C� with an
oscillating cuspidal edge� C� being of the form �������� The cross�section of C�

close to 	 is identi�ed with B� a compact closed submanifold of Rn�
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When written in the cylindrical coordinates �������� the operator A takes
the form

A � ����r��
m
X

j�j�j�m

a��j�y� r�D
�
yD

j
r� �y� r� � Rq�R�� �������

where a��j is a C� function on Rq�R� taking its values in Di�m�j�j�j�B�� We
can thus regard a��j as an operator�valued function on Rq�R� with values in
L�Hs�B��Hs��m�j�j�j��B��� for any s � R� Moreover� from ������� and �������
it follows that

kDk
rD

b
yaj���y� r�kL�Hs�B��Hs��m�j�j�j��B�� � ck�b�aj����

lim
r��

sup
y�Rq

kDraj���y� r�kL�Hs�B��Hs��m�j�j�j��B�� � 	 �������

for all k �Z� and b �Zq
�� the constants ck�b�aj��� depending on s� but not on

y and r�
We next introduce appropriate function spaces to be domains ofA� Namely�

given any s �Z� and �� � � R� we de�ne Hs�����W � to consist of all distribu�
tions u on W with �nite norm

kukHs�����W �

�



�ZZ

Rq�R�

e���������



� X
j�j�j�s

kD�
yD

j
r

�uk�Hs�j�j�j�B�

�
Aj��jqdy dm

�
A

�
�

�������

�cf� ������� in �RST����� For integer s � 	 and non�integer s � R� these spaces
are de�ned by duality and interpolation�

Note that the factor j��jq is included by purely aesthetic reasoning� In fact�
under the change of coordinates�

z � ���r� y�
t � ��r�

the norm ������� transforms into an equivalent norm

kukHs�����W � �


�ZZ

Rq��

e��t��� � ������


� X
j�j�j�s

kD�
zD

j
t �uk�Hs�j�j�j�B�

�
Adzdt

�
A

�
�

�

where �u�z� t� �� � u�z
��� rS�	f��� for r � ����t�� To prove the equivalence of
the norms� it su"ces to use the equality

�Dy�Dr� � i �f � rf ��Dy �������
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and the property �� of f �
We think of operator ������� as acting from Hs�����W � to Hs�m�����m�W ��

By ������� and the property �� of f � this is really the case�
Note that the space Hs�����W � coincides� modulo equivalent norms� with

the space Hw��s
 �� �� q
�� of ��������� where

�s�r� �� �
�
� � ����r�����y � �� ��B

� s
� � �������

�B being a non�negative Laplacian on the manifold B �cf� Example �������
As described in Section ���� the function

	�t� �
��

�������t��

should satisfy �������� This is equivalent to the �rst condition of �������� More�
over� we require 	�t� to be slowly varying as t� ��� i�e��

lim
t���

�
D�	�t�

�

	�t� � 	 �����
�

for each � � �� �� � � �� It is a simple matter to see that �����
� just amounts to
�������� Indeed� we have

Dj	�t�

	�t�
jt
��r� � �D

j���r�

���r�
� pj

�
D���r�

���r�
� � � � �

Dj�����r�

���r�

�

for any j � Z�� where pj is a polynomial with integer coe"cients of the
variables indicated in the parentheses� such that pj�	� � 	� Thus� under the
assumptions on � just imposed� Proposition ����� is applicable�

Example 	�	�� Let ��r� � � log r be the di�eomorphism of Example
������ Then�

���r � ��
���r�

�
�

�

for any r� � � R�� hence the �rst estimate of ������� fails to hold� On the other
hand� we have

D����r� � ��i�� ���r�
for � �Z�� and so condition �����
� is violated� too�

�

Example 	�	�� Suppose t � ��r� is the di�eomorphism of Example ������
To show that � ful�lls the �rst condition �������� set

SR � f�r� �� � R��R� � ��� ���r� � ����� � Rg�
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�

� r

�

�

�

Fig� ���� The domain SR� R � 	�

for R � 	 �cf� Fig� ����� We can choose R � 	 small enough� so that

SR � ��	� ���R�� � �R�� �	� ��� �

If �r� �� �� SR� then
���r � ��
���r�

�
�
sup
���

�

j��� �j
��

sup
��R

j��� �j
�

� ��

the last estimate being a consequence of the properties of �� Thus� for �r� ��
away from SR� the �rst estimate ������� holds with � � 	� We are left with
the task of establishing the estimate for �r� �� � SR� To this end� it su"ces to
examine the following three cases�

�� �r� �� � �	� ��� �	� ��


�� �r� �� � ������ �	� ��
 and

�� �r� �� � �	� ��� ������

In the case ��� we make use of the explicit formula for � on the interval �	� ��
to obtain

���r � ��
���r�

� ��p�
p��
p h����i p��

p �

We have used the condition p � 	� In the case ��� we have r � � whence

jr � �j � � � ��
As r � � � �� it follows that

���r � ��
���r�

�
�

sup
�������

�

j��� �j

�
j���� � ��j

�

�
sup
�������

�

j��� �j

�
�� � �p�

p��
p

�
�

�

�p��

�
�

sup
�������

�

j��� �j

�
��p�

p��
p h����i p��p �
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Finally� in the case ��� we have � � � implying r � � � r � �� Since r � � and
r � � � �� we get

���r � ��
���r�

� ���r � ��
j���r�j

� �� � rp�
p��
p

� ��p�
p��
p

independently of �� Combining the above estimates� we arrive at the �rst
estimate of �������� Moreover�

D����r� � const�j� rpj ���r�

for r � �	� ��� hence � meets �����
��
�

Example 	�	�	 The di�eomorphismof Example ����� satis�es both �������
and �����
�� This is veri�ed as in the preceding example�

�

The conditions ������� and �����
� guarantee that �s�r� �� is a weight func�
tion slowly varying at the point r � 	�

From what has already been proved it follows that the operator ������� can
be thought of as acting from Hw��s
 �� �� to Hw��s�m
 �� ��m��

In this section we indicate how the results of Section ��� highlight the
problem of local invertibility of A� To this end� we �rst treat this problem
for A with coe"cients #frozen$ at any point y� along the edge Rq� Namely�
consider the operator

Ay� � ����r��
m
X

j�j�j�m

a��j�y
�� r�D�

yD
j
r

acting from Hs�����W � to Hs�m�����m�W �� for any s� �� � � R� By the above�
Ay� maps Hw��s
 �� �� to Hw��s�m
 �� ��m�� hence it can be speci�ed within
the class OP Sw��s� �s�m�� The symbol of this operator is easily seen to be

�A
y�
�r� �� � ����r��m

X
j�j�j�m

a��j�y
�� r� �j D�

y �

�r� �� � T �R�� Moreover� the estimates ������� imply that �A
y�

varies slowly
as r � 	�

In what follows� a so�called #compressed$ symbol of A with respect to
action in both y and r variables proves to be of great importance� It is given
by

� �A� �y� r
 �� �� �
X

j�j�j�m

a��j�y� r� �
� �j� �������
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for �y� r
 �� �� � T � �Rq�R��� Thus� � and � substitute the totally character�
istic derivatives Dy and Dr� respectively�

By the very construction� ��A� is a C� function on T � �Rq�R�� taking
its values in the space of di�erential operators of order m on B� Note that
� �A� is actually C� up to r � 	 if so are the coe"cients of A�

We also apply the symbol mapping � to our weight functions �s�r� �� by

���s���� �� � �� � j�j� � �� ��B�
s��

�

Theorem 	�	�� In order that Ay� � H
s�����W �� Hs�m�����m�W � be locally

invertible at r � 	 it is necessary and su
cient that there be an � � 	 such
that the symbol ��A��y�� r
 �� � � i�� � Hs�B�� Hs�m�B� be invertible for all
�r� �� �� � �	� ���Rq��� and

sup
������Rq��

k���s���� ����A����y�� r
 �� �� i������s�m���� ��kL�L��B�� ���

�������

Proof� Indeed� the estimate ������� is equivalent to the estimate

sup
������R

k�s�r� �����A
y�
�r� �� i�����s�m�r� ��kL�L��Rq�B�� ���

as is easy to see by applying the Fourier transform in y � Rq� Thus� Theo�
rem ����� is a direct consequence of Theorem ������

�

The condition ������� implies that ��A��y�� r
 �� ��i�� is an elliptic operator
on the manifold B� for any ��� �� � Rq��� uniformly in r � �	� ��� Under
a stronger condition on A� Theorem ����� can be reformulated without any
weight functions�

Corollary 	�	�� Suppose ��A��y�� r
 �� � � i�� is an elliptic operator on
B with parameter ��� �� � Rq��� uniformly in r � 	 small enough� Then�
Ay� � H

s�����W � � Hs�m�����m�W � is locally invertible at r � 	 if and only
if there exists � � 	 such that ��A��y�� r
 �� � � i�� � Hs�B� � Hs�m�B� is
invertible for all �r� �� �� � �	� ���Rq��� and

sup
r������

k��A����y�� r
 �� �� i��kL�Hs�m�B��Hs�B�� ��� �������

Proof� Since

k��A����y�� r
 �� �� i��kL�Hs�m�B��Hs�B��

� c� c� k���s���� ����A����y�� r
 �� �� i������s�m���� ��kL�L��B���

with
c� � k����s���� ��kL�L��B��Hs�B���
c� � k���s�m���� ��kL�Hs�m�B��L��B���
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estimate ������� implies estimate ��������
Conversely� ���s�m���� ����A��y�� r
 �� ��i������s���� �� is an elliptic pseu�

dodi�erential operator of order zero with parameter ��� �� � Rq�� on B� uni�
formly in r � �	� ��� From standard composition formulas for parameter�
dependent pseudodi�erential operators �cf� Shubin �Shu���� it follows that
there is an R � 	 such that ��A��y�� r
 �� �� i�� is invertible for all r � �	� ��
and ��� �� � Rq�� with j��� ��j � R� and

sup
r������
j�����j�R

k���s���� ����A����y�� r
 �� �� i������s�m���� ��kL�L��B�� ���

This gives ������� for ��� �� � Rq�� large enough� On the other hand� for those
��� �� � Rq�� which meet j��� ��j � R� the estimate ������� follows from ��������

�

It is clear that the exponential estimate of Theorem ����� holds for solutions
of Ay�u � f � too� We skip the formulation because the result is actually valid
for solutions of the #perturbed$ equation Au � f � The proof of this takes�
however� muchmore e�orts including a localisation procedure �cf� Section �����

Example 	�	�
 Let us endow the surface W with the Riemannian metric
induced by the embedding W �� Rq � Rn��� We require � to satisfy ��������
When combined with �����
� for � � �� this gives f�	� � 	 because

D��

��
� if � rDf�

Hence it follows� by Proposition ������ that the Laplace operator � on W takes
the form

� � ����r���

��
�

���r�

��

�y �

�
�

���r�
Dr

��

�

�
�

	�r�

��

�B

�

in the coordinates �y� r� �� � Rq � R� � B� modulo operators of small local
norm near the edge r � 	� Here� f�r� speci�es the degeneracy of W along the
edge Rq whereas 	�r� speci�es the oscillation of W near the edge� We regard
� as acting from Hs�����W � to Hs���������W �� for s� �� � � R� The compressed
symbol of the Laplace operator is

�����y� r
 �� �� i�� � j�j� � �� � i��� �

�
�

	�r�

��

�B�

where ��� �� � Rq��� As 	 is a point of the spectrum of �B� the condition
of Theorem ����� is satis�ed for no � � R� because j�j� � �� � i��� vanishes
whenever j�j � j�j and � � 	� Thus� Theorem ����� shows that the Laplace
operator on W is never locally invertible near the edge in the scale of weighted
Sobolev spaces �Hs�����W ��s�����R�

�
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Example 	�	�� On the other hand� let us consider the Schr odinger oper�
ator on the surface W �

A � �� p�r��

the potential p being of the form p�r� � ����r���a�r� with a�r� a C� function
on R� satisfying

jDja�r�j � cj� j �Z�

lim
r��

Da � 	�

In this case we get

��A��y� r
 �� �� i�� � j�j� � ��� i��� �

�
�

	�r�

��

�B � a�r��

for ��� �� � Rq��� If
lim inf
r��

a�r� � 	� ������	�

then it is evident that the conditions of Theorem ����� are satis�ed with � � 	�
for each s � R� It follows that the Schr odinger operator� when acting from
Hs�����W � to Hs���������W �� is locally invertible at r � 	� We now assume
that a stronger condition than ������	� is ful�lled� namely

inf
r������

a�r� � k� ��������

where k � 	� Then the operator�valued function ��A��y� r
 �� �� i�� is invert�
ible for all ��� �� � Rq��� uniformly in r � �	� ��� provided that � � ��k� k��
Consequently� for any s� � � R and � � ��k� k�� the Schr odinger operator�
if acting from Hs�����W � to Hs���������W �� is locally invertible near the edge
r � 	� Furthermore� as the coe"cients of A are independent of y� we can make
e"cient use of Theorem ������ Thus� if �k � � � � ��� � k and u � Hs������W �
satis�es Au � f with f � Hs�����������W � near r � 	� then u � Hs�������W �
near r � 	�

�

��� Fredholm property of di�erential opera�

tors on manifolds with oscillating cuspidal

edges

When discussing pseudodi�erential operators on manifolds with singularities�
we will con�ne ourselves to those manifolds which are embedded into an Eu�
clidean space� The same arguments still go for general manifolds where we
should take more care of rigorous de�nitions�
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Let M be a compact closed topological manifold in RN� and S a submani�
fold of M � We assume that

�� M n S is a C� submanifold of RN n S

�� S is a C� submanifold of RN
 and
�� for each point p � S there are a neighbourhood O in RN and a di�eomor�

phism h of O to an open set in RN� such that h ��M n S� � O� � B�y�� ���C
���
� �

where

B�y�� �� � fy � Rq � jy � y�j � �g�
C

���
� � frS�	�r�f�r��� � Rn�� � r � �	� ��� � � Bg�

Using the cylindrical coordinates �y� r� �� near the edge S actually leads to
a compact C� manifold with boundary� M� Roughly speaking� it is obtained
from M by identifying any neighbourhood �M nS��O in �� with its image in
B�y�� �� � �	� �� � B under the di�eomorphism h� By the very construction�
there is a blow�down mapping b �M�M which restricts to a di�eomorphism

M n �M �
� M n S� Moreover� b gives �M the structure of a �bred bundle
over S� the �bre being B� Note that M bears a C� structure with edges
induced from R

N� C� functions on M being the restrictions of C� near M
in RN� Under the blow�down mapping� this structure is pulled back to M�
Thus� various degeneracies of M along S may be speci�ed within various C�

structures on a compact closed manifold with boundary� We have therefore
arrived at the slogan� the analysis on a closed manifold with edges reduces to
that on a C� manifold with boundary�

As described above� �typical� di�erential operators A on M are those di�er�
ential operators on the smooth part M n S of M � which take the form �������
in the coordinates �y� r� �� � B�y�� ��� �	� ���B near S� with coe"cients a��j
meeting �������� More precisely� a��j are required to ful�l

kDk
rD

B
y aj���y� r�kL�Hs�B��Hs��m�j�j�j��B�� � ck�B�aj����

lim
r��

kDraj���y� r�kL�Hs�B��Hs��m�j�j�j��B�� � 	

for all k �Z� and B �Zq
�� uniformly in y on compact subsets of B�y�� �� and

r � �	� ��� � � ��
For s� �� � � R� the weighted Sobolev spacesHs�����M� onM are introduced

in a familiar way by gluing together the usual Sobolev spaces Hs
loc�M n S� on

the smooth part of M with the weighted Sobolev spaces Hs�����W � of �������
near S� Namely� �x a �nite covering �O�� of M by open sets in RN� such that
every M � O� lies in the domain of some chart on M � These charts are of
two types� either O� � S � � and the local coordinates in M � O� are those
on an open set in RdimM or O� � S �� � and the local coordinates in M � O�

are �y� r� �� � B�y�� ��� �	� ���B� Pick a C� partition of unity on M � �����
subordinate to the covering �O��� Then� a distribution u on M n S is said
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to belong to Hs�����M� if ��u � Hs�RdimM� for the charts away from S and
��u � Hs�����W � for the charts intersecting S� It is immaterial which charts
and partition of unity on M we choose to de�ne Hs�����M� as long as transition
di�eomorphisms obey the structure of M � Moreover� the space Hs�����M� can
be given a Hilbert structure in an evident way�

Obviously� the operator A maps Hs�����M� to Hs�m�����m�M�� for any
s� �� � � R�

Given any point p � S� the operator A possesses an operator�valued symbol
��A��y� r
 �� �� in local coordinates �y� r� �� � B�y�� ����	� ���B near p� Here�
y� � h�p�� The changes of local coordinates on M obeying the structure of M
are of the form 	�

�
Y � Y��y� � r Y��y� r� ���
R � r expR��y� r� ���
) � )�y� r� ���

where Y�� R� and ) are smooth up to r � 	 and )�y� r� �� is a di�eomorphism
of B� for any �xed y and r� Under such a change� we have

Dy � ����R�
���r�� ��Y�
�y�
T
DY �

Dr � ����R�
���r��
�
�Y��

T
DY � �expR��DR

�
D� � ��)
���T D


modulo operators of in�nitesimal local norm as r � 	� Hence it follows im�
mediately that

� ��Y�R�)��A� �Y�R
 �� �� � )� � �A� �y� r
T ��� ��� �������

modulo operators of small local norm at R � 	� where )� means the push�
forward operator on B under the di�eomorphism )� for �xed y and r� and

T ��� �� � ����R�
���r��

�
��Y�
�y�

T 	

�Y��
T expR�

��
�
�

�
�

The equality ������� shows that whether or not the compressed symbol ��A� is
invertible at a point p � S does not depend on the choice of local coordinates
on M to evaluate it�

Theorem 	���� Let s� �� � � R� Then� A � Hs�����M� � Hs�m�����m�M�
is Fredholm if�

�� A is an elliptic operator on M n S� and
�� for each p � S there exists � � 	 such that ��A��p� r
 �� �� is an invertible

operator on B� for any �r� �� �� � �	� ���Rq��R�i��� and the inverse satis�es
��������
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Proof� Let the condition �� be ful�lled� We claim that there exist �� � 	

and operators B�L�
�� and B

�R�
�� such that

B
�L�
�� A�� � ���

��AB
�R�
�� � ��

�������

for all � � �	� ���� where ���r� is a cut�o� function of a collar neighbourhood
of the manifolds S�

Indeed� it follows from �� that� given any point p � S with local coordinates
�y�� 	�� the operator Ay� with coe"cients frozen at y� is locally invertible�

Hence there are operators T �L�
y� ��

and T
�R�
y� ��

such that

T
�L�
y���

Ay��� � ���

��Ay�T
�R�
y���

� ��

for all � � 	 small enough �in accordance with y���
A familiar argument based on smoothness of the coe"cients along the edge

shows that we can �nd a neighbourhood Op of p on S and operators B�L�
y��� and

B
�R�
y���

such that

B
�L�
y���A �!p 	 ��� � !p 	 ���

�!p 	 ���AB
�R�
y��� � !p 	 ���

�������

where !p � C�
comp�Op� is a cut�o� function at the point p� Note that the

domain of � in ������� depends on y��
When p varies over S� the neighbourhoods Op cover S� Since S is com�

pact� there is a �nite subcovering Op� � " � �� � � � � N � Fix a partition of unity
�!���
������N on S subordinate to this covering�

Choose �� � 	 small enough� so that ��� �r�����r� � ����r� for each " �
�� � � � � N � Then�

B
�L�
y� ���A �!� 	 ���� � !� 	 ����

�!� 	 ����AB
�R�
y� ��� � !� 	 ���

for any " � �� � � � � N �
Set ���� � !� 	 ��� As

PN
�
� !� � �� we obtain

PN
�
� ���� � �� for � � 	

small enough�
Introducing the operator

P �L�
� �

NX
�
�

B
�L�
y� ��������

we get

P �L�
� A �

NX
�
�

B
�L�
y� ��� A���� �

NX
�
�

B
�L�
y� ��� ������ A��



�� V� Rabinovich� B��W� Schulze� and N� Tarkhanov

We keep � � �� small enough� such that ��������� � ����� whence

B
�L�
y� ���A���� � B

�L�
y� ���A �����������

� �����

On the other hand�

lim
���

k������ A�kL�Hs�����M��Hs�m�����m�M�� � 	

for every " � �� � � � � N � as is easy to check� Therefore�

P �L�
� A � �� �R�

where
lim
���

kR�kL�Hs�����M�� � 	�

Pick an �� � 	 such that kR��kL�Hs�����M�� � �� Then the operator � � R��

is invertible within the calculus� If moreover � � �� is su"ciently small� so
that ����� � ��� then

�� �R���
�� P

�L�
�� A�� � �� �R���

�� ���� �R�����

� ���

i�e�� B
�L�
�� � �� �R���

�� P
�L�
�� is a local left inverse of A� as is required in ��������

In the same way we can construct a local right inverse of A satisfying the
second equality in ��������

We now proceed by pasting together these local inverses with a parametrix
of A on the smooth part of M � Namely� the condition �� makes it legitimate
to apply the usual elliptic theory away from the edge on M to deduce that� for
any � � 	� there are classical pseudodi�erential operators Q

�L�
� and Q

�R�
� such

that
Q

�L�
� A ��� ��� � ��� ��� �K �

��

�� � ���AQ
�R�
� � ��� ��� �K ��

� �

both R�� and R��� being compact operators� Set

R�L�
� � B

�L�
�� �� �Q�L�

� �� � ��� �

then

R�L�
� A � B

�L�
��

A�� �Q�L�
� A ��� ��� �B

�L�
��

���� A� �Q�L�
� ��� ��� A�

� � �K� � S��

where
K� � K �

� �Q
�L�
� ��� ��� A��

S� � B
�L�
��

���� A��
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It is clear that K� is a compact operator� for each � � 	 small enough�
Furthermore� the operator ���S�� is invertible� for any su"ciently small � � 	�
because

lim
���

k���� A�kL�Hs�����M��Hs�m�����m�M�� � 	�

Hence it follows that �� � S��
�� R

�L�
� � for �
 �� is a left regulariser of A�

The same reasoning applies to prove the existence of a right regulariser�
which completes the proof�

�

Note that if the coe"cients a��j�y� r� of A are C� up to r � 	� then
the condition �� just amounts to saying that ��A��p� 	
 �� �� is an invertible
operator on B� for any ��� �� � Rq � �R � i��� Indeed� ��A��p� r
 �� �� is a
perturbation of ��A��p� 	
 �� �� by an operator of small local norm as r � 	�

Theorem 	���� Let the condition �	 of Theorem 
���� hold uniformly in �
on compact intervals in �a� b�� If a � �� � ��� � b and u � Hs��� ���M� satis�es
Au � f with f � Hs�m���� ���m�M�� then u � Hs�������M��

Proof� In the proof of Theorem ����� we have constructed a local left
inverse for A near the singular manifold S� This operator B

�L�
�� bears a symbol

analytic in the strip R� i�a� b�� and thus extends to a continuous mapping
Hs�m�����m�M� � Hs�����M�� for each � � �a� b�� If � � 	 is small enough�
then

��u � �B�L�
�� A �� � ���u�B

�L�
�� f�

We have �� � ���u � Hs�������M� and f � Hs�m���� ���m�M�� By the map�

ping properties of A and B
�L�
��

� we deduce that u � Hs�������M�� The proof is
complete�

�

Example 	���	 Let us equip �the smooth part of� the manifold M with
the Riemannian metric induced by the embedding M �� RN� Consider the
Schr odinger operator on M n S

A � �� p�

where p is a C� function on M nS� We require the potential to be of the form
p�y� r� �� � ����r���a�y� r� �� in local coordinates �y� r� �� � B�y�� ��� �	� ���B
near S� with a�y� r� �� satisfying

jD�
yD

j
rD

�
� a�y� r� ��j � c��j���

lim
r��

Dra�y� r� �� � 	
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for all multi�indices �� j and �� uniformly in y on compact subsets of B�y�� ���
r � �	� ��� � � �� and � on compact subsets of the domains of local charts on
B� If moreover

lim inf
r��

a�y� r� �� � k�

where k � 	 �cf� ���������� then A �Hs�����M�� Hs���������M� is a Fredholm
operator for all s� � � R and � � ��k� k�� This follows from Theorem ����� and
what has already been proved in Example ������ Furthermore� any solution
u � Hs��k�����M� of the homogeneous equation Au � 	 actually belongs to
H��k�����M��

�



Chapter �

Boundary Value Problems in

Domains with Cuspidal Wedges

��� Domains with cuspidal wedges

Let D be a domain in Rq�n�� with a compact closure %D� and S be a closed
subset of the boundary of D� We assume that

�� �D n S is a C� submanifold of Rq�n�� n S

�� S is a C� submanifold of Rq�n�� of dimension q
 and
�� for any point p � S there are a neighbourhood O in Rq�n�� and a

di�eomorphism h of O to an open set inRq�n��� such that h�D�O� � B�	� ���
C

���
� � where

B�	� �� � fy � Rq � jyj � �g�
C

���
� � frS�	�r�f�r��� � Rn�� � r � �	� ��� � � Bg�

It is worth pointing out that� in contrast to the de�nition of a closed man�
ifold with edges �cf� Section ����� B is here a relatively compact domain in Rn

with smooth boundary�
The functions f�r� and 	�r� have been introduced in Section ���� They

control the degeneracy of D along the edge S and the oscillation of D near the
edge S� respectively�

��� Boundary value problems in a canonical

domain

Recall that W � Rq � C� is referred to as a canonical oscillating cuspidal
wedge� C� being given by ������� with B a bounded domain in Rn with C�

boundary� We also call W the canonical domain�

��
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Consider a boundary value problem in the canonical domainW with bound�
ary data given on the smooth part of �W � Namely��

Au � f in W�
Biu � ui on �W n �Rq� f	g�� �������

where A is a di�erential operator in W and �Bi� a system of di�erential oper�
ators de�ned in a neighbourhood of �W n �Rq� f	g��

The pull�backs of A and �Bi� under cylindrical coordinates ������� in W
are of the form


�A � ����r��m
P

j�j�j�m

a��j�y� r�D�
yD

j
r�


�Bi � ����r��mi
P

j�j�j�mi

bi���j�y� r�D�
yD

j
r�

where a��j is a C� function of �y� r� � Rq � R� whose values are di�erential
operators of orderm�j�j�j onB� and bi���j is a C� function of �y� r� � Rq�R�

whose values are di�erential operators of order mi�j�j�j in a neighbourhood
of �B� When passing to the cylindrical coordinates� we are actually lifted to
the in�nite #stretched$ wedge W � Rq�R��B�

In order to apply the theory of Chapter �� we require the coe"cients aj��
and bi�j�� to satisfy ������� uniformly in �y� r� � Rq�R��

For s � 	 and �� � � R� we introduce weighted Sobolev spaces Hs�����W �
just as in �������� with B being now a domain in Rn� If s � �
�� then we
de�ne the space Hs����������W � to consist of the traces on �W n �Rq � f	g�
of functions in Hs�����W �� It is a Hilbert spaces under the canonical quotient
norm�

Assuming s � maxmi � �
�� we assign an operator

�
A

�r�WBi

�
� Hs�����W ��

Hs�m�����m�W �
�

�Hs�mi���������mi��W �
�������

to the boundary value problem �������� where r�W means restriction to �the
smooth part of� the boundary of W � Denote the operator ������� by A� It can
be written as a weighted pseudodi�erential operator over the half�line R� with
an operator�valued symbol a�r� �� taking its values in the space L�H��H���
where

H� � Hs�Rq�B��
H� � Hs�m�Rq�B�� ��Hs�mi�����Rq� �B�

�
�cf� the remark after Proposition ������� In fact� A � ����r��mopw���a�r� ���
where

a�r� �� �



B�

P
j�j�j�m

a��j�y� r� �j D�
y

� P
j�j�j�mi

r�B � bi���j�y� r� �j D�
y

�
CA �
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Consider the weight functions

���r� �� �
�
�� � ����r�����y � ���

�
� � �B

�s
�

���r� �� �
�
�� � ����r�����y � ���

�
� � �B

�s�m
�
�
��s�mi�

�
�
�r� ��

�
where �B � H��B� � H����B�� � � ��
�� is the order�reducing operator
described in Example ������ and

�s�mi�
�
�
�r� �� �

�
� � ����r�����y � �� ���B

� s�mi�
�
�

�

�cf� ��������� If ��r� meets the �rst condition of �������� then

���r� �� � �w�H�� �H���

���r� �� � �w�H�� �H��

where
�H� � L��Rq�B��
�H� � L��Rq�B�� ��L��Rq� �B�� �

It is a standard matter to verify that a�r� � � i�� � Sw�sv���� ��� for each
� � R�

Having disposed of this preliminary step� we now turn to the problem of
local invertibility of the boundary value problem A near the edge Rq� i�e�� at
r � 	�

We shall make two standing assumptions on the functions t � ��r� under
consideration� namely ������� and �����
�� These guarantee that both ���r� ��
and ���r� �� vary slowly as r � 	�

From Proposition ����� it follows that the operator A can be thought of as
acting from Hw���
 �� �� to Hw���
 �� ��m��

In this section� we discuss conditions of local invertibility for A with coef�
�cients #frozen$ at any point y� � Rq� Similarly to Section ���� we write Ay�

for this operator� It still belongs to OP Sw�sv���� ����
It was Feigin �Fei��� who observed that the local invertibility of A at r � 	

is controlled by the #compressed$ symbol of A with respect to action in y and
r� It is de�ned by

� �A� �y� r
 �� �� �



B�

P
j�j�j�m

a��j�y� r� ���j

� P
j�j�j�mi

r�B � bi���j�y� r� ���j

�
CA � �������

for �y� r
 �� �� � T � �Rq�R��� Thus�

� �A� �y� r
 �� �� � Hs�B��
Hs�m�B�

�
�Hs�mi������B�
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is a C� function on T � �Rq�R�� taking its values in the space of boundary
value problems on B�

We also apply the symbol mapping � to our weight functions �j�r� ��� for
j � �� �� by

�������� �� � �h�� �i� �B�
s �

�������� �� � �h�� �i� �B�
s�m �

�
� �h�� �i� ���B�

s�mi�
�
�

�

�
�

Theorem ����� Let s � Z� satisfy s � maxmi� and �� � � R� Then� Ay�

acting as in ������� is locally invertible at r � 	 if and only if there exists � � 	
such that ��A��y�� r
 �� �� i�� is invertible for all �r� �� �� � �	� ���Rq��� and

sup
������Rq��

k�������� ����A����y�� r
 �� �� i�������
����� ��k �� �������

where k � k means the operator norm in L �L��B�� ��L���B��� L��B���

Proof� Applying the Fourier transform in y � Rq shows that the estimate
������� just amounts to the estimate

sup
������R

k���r� �����A
y�
�r� �� i������ �r� ��kL� �H�� �H��

��

adapting ������� to our problem� Moreover� our assumptions on � guarantee
that the hypotheses of Theorem ����� are ful�lled� Consequently� the desired
conclusion follows from Theorem ������

�

For elliptic boundary value problems A� the weight functions ���r� �� and
���r� �� can be removed from the condition ��������

Corollary ����� Suppose ��A��y�� r
 �� ��i�� is an elliptic boundary value
problem on B with parameter ��� �� � Rq��� uniformly in r � 	 small enough�
Then� the operator Ay� is locally invertible at r � 	 if and only if there exists
� � 	 such that ��A��y�� r
 �� ��i�� is invertible for all �r� �� �� � �	� ���Rq���
and

sup
r������

k��A����y�� r
 �� �� i��k ��� �������

k�k meaning the operator norm in L �Hs�m�B�� ��Hs�mi������B���Hs�B�
�
�

Proof� As is shown in the proof of Corollary ������ estimate ������� implies
estimate �������� On the other hand� the latter implies the former for ��� ��
on any ball in Rq�� while for j�� �j large enough the estimate ������� is a
consequence of the parameter�dependent ellipticity�

�

As the symbols of di�erential boundary value problems are polynomials in
�� Theorem ����� applies to the operator Ay� � This results in an exponential
estimate for solutions of the problem with coe"cients frozen along the edge�
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Theorem ����	 Under the hypotheses of Theorem ������ let moreover
��A��y�� r
 �� �� be invertible for all r � �	� �� and ��� �� � Rq � �R� i�a� b��
and the estimate ������� hold uniformly with respect to � on compact intervals
in �a� b�� Then� any function u � Hs�a�����W � satisfying Ay�u � f with f �
Hs�m�b�����W � � ��Hs�mi�����b�����mi��W �

�
near r � 	� is actually of class

Hs�b�����W � near r � 	�

As but two examples we consider the classical Dirichlet and Neumann prob�
lems for the Schr odinger operator�

Example ����� Suppose that the function f�r� specifying the degeneracy
of W along the edge meets �������� As mentioned� this implies f�	� � 	� The
Dirichlet problem in W is�

�u � f in W�
u � u� on �W n �Rq� f	g��

where f and u� are given functions on W and the smooth part of �W � re�
spectively� The operator A of this boundary value problem can be thought of
as acting from Hs�����W � to Hs���������W ��Hs����������W �� for each integer
s � 	 and �� � � R� By Proposition ������ the compressed symbol of A is given
by

��A��y� r
 �� �� �

� j�j� � �� � �	�r�����B

r�B

�

modulo operators of small local norm as r � 	� 	�r� being the function control�
ling the oscillation of W near the edge� Denote by k� � 	 the �rst eigenvalue
of the Laplacian �B acting on functions u � Hs�B� which satisfy r�Bu � 	�
Then� Corollary ����� enables us to conclude that the operator A is locally
invertible near the edge r � 	 if

� k

��
� � �

k

��
�

where

	� � lim inf
r��

	�r�

� 	�

Moreover� Theorem ����� shows that if �k
	� � �� � ��� � k
	�� then any
solution u � Hs������W � of the homogeneous problem Au � 	 actually belongs
to H��������W ��

�
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Note that the Neumann problem for the Laplacian in the canonical domain
is not locally invertible at r � 	 in any space Hs�����W �� for 	 is an eigenvalue
of the Laplacian �B acting on functions u which satisfy ��
�n�u � 	 on the
boundary of B�

Example ����� Let us consider the boundary value problem�
��� p�r�� u � f in W�

�u
�n � u� on �W n �Rq� f	g��
where f and u� are given functions on W and the smooth part of �W � respec�
tively� We assume that the potential p�r� is of the form p�r� � ����r��� a�r��
with a�r� meeting the conditions of Example ������ In particular� we require

lim inf
r��

a�r� � k�

� 	�

The operator A of this boundary value problem can be regarded as acting from
Hs�����W � to Hs���������W � � Hs������������W �� for each integer s � � and
�� � � R� Once again we invoke Proposition ����� to see that the compressed
symbol of A is given by

��A��y� r
 �� �� �

� j�j� � �� � �	�r�����B � a�r�
r�B � ��
�n�

�

up to an operator of small local norm as r � 	� If j�j � k� then the operator�
valued function

��A��y� r
 �� �� i�� � Hs�B��
Hs���B�

�
Hs������B�

is invertible for all ��� �� � Rq��� uniformly in r � R�� and the inverse ful�lls
�������� Thus� Corollary ����� applies to show that the Neumann problem for
the Schr odinger operator on W � when posed in any weighted space Hs�����W �
with � � ��k� k�� is locally invertible near the edge r � 	�

�

��� Fredholm property of a boundary value

problem in a domain with cuspidal wedges

We now turn to boundary value problems in a domain D � RN� N � q�n���
with a cuspidal edge S of dimension q on the boundary� as is described in
Section ����
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Blowing up D along the edge S by using the cylindrical coordinates �y� r� ��
near S does not remove the singularity� What we obtain in this way� is still a
domain with edges on the boundary� However� this new domain is of product
type close to the singularities on the boundary� In fact� it bears the structure
of a �bred bundle over the edge S� whose typical �bre is the semicylinder
R� � B over B� This #resolution of singularities$ simpli�es the analysis of
pseudodi�erential operators near S in D�

We consider a boundary value problem�
Au � f in D�
Biu � ui on �D n S� �������

where A is a di�erential operator in D and �Bi� a system of di�erential opera�
tors de�ned near �DnS in D� The coe"cients of both A and �Bi� are assumed
to be C� functions up to the smooth part of �D�

The pull�backs of A and �Bi� under cylindrical coordinates ������� close to
S are of the form


�A � ����r��m
P

j�j�j�m

a��j�y� r�D�
yD

j
r�


�Bi � ����r��mi
P

j�j�j�mi

bi���j�y� r�D�
yD

j
r�

where a��j is a C� function of �y� r� � B�	� �� � �	� �� whose values are dif�
ferential operators of order m � j�j � j on B� and bi���j is a C� function
of �y� r� � B�	� �� � �	� �� whose values are di�erential operators of order
mi�j�j�j in a neighbourhood of �B� We require the coe"cients aj�� and bi�j��
to satisfy ������� uniformly in y on compact subsets of B�	� �� and r � �	� ���
� � ��

For s � 	 and �� � � R� the weighted Sobolev spaces Hs�����D� on D
are introduced by gluing together the local Sobolev spaces Hs

loc�D� with the
weighted Sobolev spaces Hs�����W � of ��������

If s � �
�� then Hs����������D� stands for the space formed by the traces
on �D nS of functions in Hs�����D�� It is a Hilbert spaces under the canonical
quotient norm� When regarded as a normed space� Hs����������D� coincides
with the weighted Sobolev space on the surface �D de�ned in Section ����

Assuming s � maxmi � �
�� we assign an operator

A �

�
A

�r�DBi

�
� Hs�����D��

Hs�m�����m�D�
�

�Hs�mi���������mi��D�
�������

to the boundary value problem �������� r�D being restriction to �the smooth
part of� the boundary of D�
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For any point p � S� we can writeA in the cylindrical coordinates near p in
D and de�ne the #compressed$ symbol of A by formula �������� Analysis simi�
lar to that in Section ��� actually shows that the invertibility of ��A��p� r
 �� ��
is independent of the particular choice of local coordinates near p to evaluate
��A��

Theorem ��	�� Let s be an integer satisfying s � maxmi� and �� � � R�
Then� the operator ������� is Fredholm if�

�� A is an elliptic boundary value problem away from the edge S on the
boundary of D� and

�� for each p � S there exists � � 	 such that ��A��p� r
 �� �� is an invertible
operator on B� for any �r� �� �� � �	� ���Rq��R�i��� and the inverse satis�es
��������

Proof� The proof is based on the standard localisation procedure and
Theorem ����� �cf� the proof of Theorem �������

�

If ��A��y� r
 �� � � i�� is an elliptic boundary value problem on B with
parameter ��� �� � Rq��� uniformly in r � 	 small enough� then condition �� of
Theorem ����� just amounts to saying that ��A��p� r
 �� �� i�� is an invertible
operator on B for all �p� r� � S � �	� �� and ��� �� � Rq��� and the inverse
satis�es

sup
r������

k��A����p� r
 �� �� i��k ��� �������

where k � k means the norm in L �Hs�m�B�� ��Hs�mi������B���Hs�B�
�
� If

moreover the condition ������� holds uniformly in � on compact intervals in
�a� b�� then the conclusion of Theorem ����� is valid with W replaced by D and
Ay� replaced by A�

Example ��	�� Consider the Dirichlet problem�
�u � f in D�
u � u� on �D n S�

where f and u� are given functions on D and �DnS� respectively� The operator
A of this boundary value problem can be regarded as acting from Hs�����D� to
Hs���������D��Hs����������D�� for any integer s � 	 and �� � � R� Combining
Theorem ����� with Example ����� we deduce that the Dirichlet problem is
Fredholm if

� k

��
� � �

k

��
�

where k� � 	 is the �rst eigenvalue of the Laplacian �B which acts on functions
u � Hs�B� satisfying r�Bu � 	� and 	� � lim infr�� 	�r�� Furthermore� any
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solution u � H
s�� k

��
����

�M� of the homogeneous problem Au � 	 is actually

of the class H
�� k

��
����

�M��
�

We leave it to the reader to examine in a similar way the Neumann problem
for the Schr odinger operator in D �cf� Example �������



Appendix A

Hardy�Littlewood inequality on

the half�line

Lemma A���	 Let (�t� be a C� function on a ray �T��� with values in
a Banach space H� such that

k(�j�kL���T����H� � sup
t��T���

k(�j��t�kH

be �nite� for j � 	� �� �� Then�

k(�kL���T����H� �
p
�
q
k(kL���T����H�k(��kL���T����H��

Proof� We have �
e�t(��t�

��
� �e�t(���t� � e�t(��t��

and so integration by parts gives

e�t(��t� �

Z �

t

e��(�����d� �
Z �

t

e��(����d�

�

Z �

t

e��(�����d� � e�t(�t��
Z �

t

e��(���d��

for t � �T���� Hence it follows that

(��t� �

Z �

t

et��(�����d� � (�t��
Z �

t

et��(���d��

Let us introduce the function

k�t� �

�
et if t � 	

	 if t � 	�
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then the above equality for (� can be rewritten in the form

(��t� � �k � (��� �t� � (�t�� �k � (� �t��

for t � �T���� Since kkkL��R� � �� the well�known estimate for convolutions
yields

k(�kL���T����H� � � k(kL���T����H� � k(��kL���T����H��

We now apply this estimate to the family of functions (�T � ��t� T �� on
�T���� parametrised by � � R�� This gives

� k(�kL���T����H� � � k(kL���T����H� � �� k(��kL���T����H��

or

k(�kL���T����H� � �

�
k(kL���T����H� � � k(��kL���T����H��

for any � � 	�
Taking the minimum over � � 	 on the right hand side� we arrive at the

desired estimate�
�
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