Boundary Value Problems
in Cuspidal Wedges

Vladimir Rabinovich?
Department of Mathematics and Mechanics
University of Rostov-on-Don
Zorge str. 5
344104 Rostov-on-Don
Russia

Bert-Wolfgang Schulze Nikolai Tarkhanov?
Institut fur Mathematik Institute of Physics
Universitat Potsdam Russian Academy of Sciences
Postfach 60 15 53 Akademgorodok
14415 Potsdam 660036 Krasnoyarsk

Germany Russia

October 16, 1998

!Supported by the RFFI grant 98-01-01-023.
2Supported by the Max-Planck Gesellschaft.



Abstract

The paper is devoted to pseudodifferential boundary value problems in do-
mains with cuspidal wedges. Concerning the geometry we even admit a more
general behaviour, namely oscillating cuspidal wedges. We show a criterion
for the Fredholm property of a boundary value problem and derive estimates
of solutions close to edges.

AMS subject classification: primary: 35505; secondary: 35515, 46E40.
Key words and phrases: pseudodifferential operators, boundary value prob-
lems, manifolds with edges.
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Introduction

Boundary value problems in domains (or on manifolds) with singular bound-
ary appear in numerous models of applied sciences, in particular, in mechan-
ics, crack theory, hydrodynamics, mathematical physics. Many authors con-
tributed to the corresponding theory under different aspects, especially Kon-
drat’ev [Kon67], Grisvard [Gri85], Maz'ya and Plamenevskii [MP77, MP7§],
Feigin [FeiTl, Fei72], Bagirov and Feigin [BF73], Maz’ya, Kozlov and Rof-
mann [MKR97], Nazarov and Plamenevskii [NP91].

In recent years the interest in such problems increased enormously, and new
structure insight was obtained by applying pseudodifferential methods, cf.,
in particular, Melrose and Mendoza [MMS83], Rabinovich [Rab95¢c, Rab95b],
Schrohe and Schulze [SS94, SS95].

Some general ideas are the same as in the classical theory for smooth do-
mains, cf. Boutet de Monvel [BAM66, BAMT71], for instance, to embed the
differential boundary value problems into an algebra of operators in which the
parametrices of elliptic elements can be expressed.

A typical feature of these theories is that a given fixed (say differential)
boundary value problem generates a hierarchy of symbols whose components
are operator-valued and consist of parametrised operators in the correspond-
ing algebras on spaces of lower order singularity. For the smooth case and
pseudodifferential operators with the transmission property this is the inte-
rior symbolic structure and the boundary symbolic calculus on the half-axis.
For operators in the sense of Vishik and Eskin [VE67, Esk73] there appear
more general singular integral operators on the half-axis (modulo reductions
of orders), cf. Gokhberg and Krupnik [GK70, GK79]. This aspect was widely
employed also in the book of Schulze [Sch94].

Parametrices associated with the inverted symbols should be available in
the corresponding algebras. This emphasises the role of the values of operator-
valued symbols as elements in the algebras on spaces of lower order singularity,
where the inverses of those parameter-dependent families are to be expressed.
Although these general aspects are rather clear at first glance, the investigation
of boundary value problems in concrete singular configurations is far from being
straightforward, in particular, for cuspidal singularities on the boundary. In
many cases there are in fact no results at all. The reason is not only the wealth
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of new structures but also rather unexpected ambiguities in the choice of the
approach.

Let us mention in this connection the paper [SSS98] where methods of the
non-commutative analysis are used to study operator algebras on manifolds
with power-like cusps, in case the link of the local cone is closed. There
are obtained parametrices and the Fredholm property in the corresponding
weighted Sobolev spaces.

The results of the present paper are based on a specific interplay between
classes of operator-valued symbols and ‘order reductions’ which are also in-
volved in the symbol estimates. In a simpler situation (isolated cuspidal sin-
gularities on the boundary) ideas of this kind are developed in [RST97]. There
are applied weighted pseudodifferential operators which contain the local in-
verses to the operators of elliptic boundary value problems near singularities of
the boundary. The property of being slowly varying is of great importance for
the symbols of pseudodifferential operators near singularities. It means that
the pseudodifferential operators may bear oscillating discontinuities in sym-
bols which allows one to consider boundary value problems in domains with
oscillating cuspidal singularities.

The behaviour of symbols in [RST97] is controlled by an operator-valued
function A(7) satisfying the condition

IIA(7 + v))\_l(r)Hﬁ(H) <c(v)® forall 7,v€R,

with some ¢, ¢ € R, where H is a Hilbert space and (v) = (1 + |v[H)Y2

In the case of cuspidal wedges we need a calculus of pseudodifferential
operators where the behaviour of symbols is controlled by an operator-valued
function A(¢,7) depending on two variables ¢, 7 € R. It should satisfy

IA(t+ 6,7+ v))\_l(t,r)HE(H) < () (v)? forall t,7,0,veR,

with some constants ¢, €1, €2 € R independent of ¢, 7,8, v. Moreover, a standing
condition on the symbols under study will be that they vary slowly close to
singularities.

The typical differential operator on a manifold with cuspidal edges is of the

A= @O Y auslyr) (ﬁD)(ﬁD)

la+i<m

form

where y stands for local coordinates along the edges, r is the distance to
the edges and a, ;(y,r) are C'* functions of y, r whose values are differential
operators of order m — |a| — 7 on some compact C'>° manifold B. Depending on
the context, the manifold B is closed or has a boundary. Furthermore, ¢t = §(r)
is a diffeomorphism of Ry onto the entire real axis R, such that §(0) = +oo
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and d(+o00) = —oo. The derivative §'(r) is a qualitative characteristic of the
cuspidal degeneracy.
The typical weight function in the theory with edges is

A7) = (L4 (6(0)A, + 78 + As)

where ¢(t) = —1/§(674(t)), t € R, and Ap : H*(B) — H* '(B) is an order
reduction.
The key property of the cuspidal degeneracy is that the function ¢(¢) meets

/
lim ()
t—too (1)
It is easy to check that the property (0.0.1) holds in the case of power-like

the condition

=0, (0.0.1)

and exponential cuspidal degeneracies. Moreover, some higher-order cuspidal
degeneracies obey (0.0.1). On the other hand, this property does not hold for
usual conical wedges in which case we have ¢(t) = e¢™".

It was Feigin [Fei72] who first studied general boundary value problems
in domains with cuspidal wedges. However, this paper does not contain any
proofs and, as far as we know, no proof has appeared till now. Moreover,
Feigin [Fei72] assumed merely power-like cuspidal degeneracy.

Our approach allows us to consider boundary value problems in domains
with oscillating cuspidal wedges as well as pseudodifferential operators on
closed manifolds with cuspidal edges. The boundary may oscillate near edges

and the speed of this oscillation is connected with the degree of degeneracy.



Chapter 1

A Class of Pseudodifferential

Operators with
Operator-Valued Symbols

1.1 Weight operator-valued functions

Let H and I be complex Hilbert spaces and L(H, [:[) be the space of all

bounded linear operators from H to H.

Definition 1.1.1 We denote by A(H, H) the space of all functions A(t,T)
on R x R with values in L(H, H), such that for each (t,7) € R x R there exists

an inverse A\~ (¢, 1), and
At + 0,7 4+ 0)A7 (¢, T)]\E(g) < e (0) (v)* (1.1.1)
forallt,7,0,v € R, where c,e1,e5 € R are constants independent of t, 7,0, v.

The elements of A(H, H ) will be referred to as operator-valued weight func-
tions on R x R.

It is easily seen that an operator-valued function A(¢,7) satisfies (1.1.1) if
and only if

A+ 0, 7)A ) gmy < e(0)”
AT+ 0N Gy < el
(1

.1.2) is fulfilled, then we

> b
o (1.1.2)

the constants €; and €, being the same. Indeed, if

get

IACE+ 0,7 + o)A (7)o
SHAE+ 0,7+ AT T+ o)l g 1A T+ AT () 2
< {0)" (v)?

showing (1.1.1). The reverse implication is obvious.

8
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1.2 Symbol classes

Fix ~
M) € Al )
Aao(t,7) € A(Hz, H).

Definition 1.2.1 By S(A1, A2) is meant the class of C™ functions a(t, 1)
on R x R with values in L(Hy, Hz), such that, for each o, € Z, there is a
constant ¢, g(a) with the property that

H)\Q(t,T)(DfD?a(t,T)))\l_l(t77—)H£(Hl7H2) < cuapla) forall (t,7) € RxR.
(1.2.1)

The best constants ¢, g(a) in (1.2.1) define a Fréchet topology in the space
S(A1,A2). The elements of S(A1,Az) are called operator-valued symbols on
T"R=R x R.

To any symbol a € S(A1, A2) there corresponds a pseudodifferential opera-
tor A =op(a) by

1 o
Au(t) = %/RdT/Rel(t_t )Ta(t,T)u(t')dt',

the operator A being first defined on functions v € CZ,, (R, H).

Denote by OP S(A1, A2) the class of all operators A = op(a) with symbols
a € S(A1, A2).

Pseudodifferential operators with scalar-valued symbols whose behaviour is
controlled by scalar-valued weight functions A(¢, 7) were introduced by Kuma-
no-go and Taniguchi [KgT73]. The calculus of [KgT73] was later generalised
by Beals [Bea75] (see also Hormander [Hor79]). The calculus of Beals and
Hormander was extended to operator-valued symbols in Levendorskii [Lev93].
However, the calculus of [Lev93] requires certain restrictions on symbols, which
are not fulfilled for the symbols arising in the study of differential operators
on cuspidal wedges.

We introduce an analogue of the calculus of Kumano-go and Taniguchi
[KgT73] for operator-valued symbols, which relies on oscillatory integrals with
operator-valued amplitude functions. For weight functions A(¢, 7) independent
of ¢, a calculus of pseudodifferential operators with applications to boundary
value problems in domains with singular boundary points was given by the

first author [Rab94, Rab95a, Rab95¢] and in [RSTI7].

1.3 A composition formula for pseudodifferen-
tial operators

The following result gives rise to a calculus of pseudodifferential operators with

symbols in S(A1, A2).
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Proposition 1.3.1 Suppose A € OPS(A1,A2) and B € OPS(Xq, A3).
Then BA € OPS(A1, As), the symbol of BA is
1 .
opa(t,7) = — // e op(t, T+ v)os(t + 0, 7)d0dv (1.3.1)
R xR

27

and the corresponding mapping S(A1, A2) X S(Aqg, Az) = S(A1, A3) is continu-
ous.

Proof. The proof is actually the same as the proof of Proposition 1.4.1 in
[RSTI7].
O
We emphasise that the double integral in (1.3.1) is regarded as an oscil-
latory integral. For a definition of oscillating integrals with operator-valued
amplitude functions, we refer the reader to [RST97].

1.4 Formal adjoint

Let H be a Hilbert space. Denote by S(R, H) = S(R)&,H the space of all
rapidly decreasing C'* functions on R with values in H. We endow S(R, H)
with a Fréchet topology defined by the sequence of norms

lullms = sup () WD, T =0,1,....
0<i<s

Proposition 1.4.1 Ifa € S(A1, A\2), then op(a) is a bounded operator from
S(R, Hl) to S(R, HQ)

Proof. Indeed, (1.1.1) yields
A T)ATH0, 00| 20y A0, 0| o,y
c (b ()

as well as a similar estimate for the inverse A™'(¢,7). When combined with
(1.2.1), these give

1Y D2 alt, 7)o iy < cas (1) (7)™

for all a, 3 € Z, the constants ¢, 3, 91,02 € R being independent of ¢ and 7.
Now the desired assertion follows by differentiation and integration by parts

A )l ey <
<

just in the same way as for scalar-valued functions.

0
Let A = op(a), where a € §(A1,A2). Then the formal adjoint A* of A is
defined by the equality
(Au, U)L2(R,H2) = (v, A*U)B(R,Hl)

for any u € S(R, H;) and v € S(R, Hy).
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Proposition 1.4.2 If A € OP S(\;, \2), then A* € OPS((A\;N)", (A[1))

and

oax(t,7) = %//R Re_w“ (ca(t+6,7+v)) didv,
X

the corresponding mapping S(A1, Aa) — S((A;1)*, (AT')*) being continuous.

Proof. The proof is standard.
O
Applying Proposition 1.4.1 to the adjoint operator A* and using a duality
argument, we arrive at the following result.

Corollary 1.4.3 Fach operator A € OP S(A1, Ag) extends to a continuous
mapping S'(R, Hy) — S'(R, Hy), where S'(R, H) is the dual space of S(R, H).

Recall that the elements of (R, H) are usually referred to as temperate
distributions on R with values in H

1.5 Boundedness of pseudodifferential operat-
ors in Sobolev spaces of distributions

Unless otherwise stated we assume that the operator-valued weight functions
A(t, 7) under consideration are of class €™ on R x R and satisfy

IDFDEME NN D gy < cas

1.5.1
DLt P DEDIAE ) ey € o (L5.1)

for all «, 8 € Z, the constants ¢, s being independent of (¢,7) € R x R.

We denote by A’(H, H) the subspace of A(H, H) consisting of operator-
valued weight functions satisfying (1.5.1).

By the very definition, if A € A'(H, ]:]), then A belongs to both S(A,15)
and S(1g, A1), and conversely.

Our next goal is to introduce, given any A € A'(H, ]:]), a Sobolev space
H(\) related to this weight function. Were A(¢,7) independent of ¢, the op-
erator op(A) be invertible and we might proceed just in the same way as in
[RSTI97]. In order to adapt the definition of [RST97] to general weight func-

tions, we need an auxiliary construction.

Proposition 1.5.1 Suppose A € A'(H, H). Then:
1) the inverse A™" belongs to both S(15,A) and S(A™Y, 1y);
2) setting A.(t,7) = A(t,eT), we get

op(A)op(AZY) = lpag g + 7L,

1.5.2
(A op(\) = iz + 1 (15.2)
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where ‘ /
hr%HrsH,C(L2(R,fI)) = 0,
=0 (1.5.3)
i {[rZfl e my = 0.

Proof. The first part follows by the rule of differentiation of the inverse of
an operator-valued function (cf. Proposition 1.6.1 in [RST97]).
Let us prove the second part. Put

A, = op(A.),
B. = op(A7h).
By formula (1.3.1), we get
1 .
oa.B.(l,7)= — // TNt T+ )AL+ 0, T)dOdv. (1.5.4)
21 JJrxr

We now make use of the Lagrange formula to see that

1
Ae

A(t, 74+ v) = At 7))+ v a—(t,r—l—ﬂv)dﬁ.
T

0

Substituting this to (1.5.4) and using a particular case of the Fourier inversion

formula |
— dv/ TNt +0,7)d0 = X7 (t, 7),
27T B B
we get
1
oap.(t,7)=1 —I—/ q-(t, 7,9)dv,
0
where

1 ) It
(t.7,0) = — v s Y < (t4+0,7)d0d
otori) =5 [ e r o) G+ 0.y,

27

the double integrals on the right side being regarded as oscillatory ones.
From the first estimate (1.5.1) it follows that ¢.(¢, 7, ¥) meets an estimate

D7 D3 qe(t, 7, 9) | oy < Carp 2T

for all o, 3 € Z4, with ¢, 3 a constant independent of (¢,7) € R x R and
¥ € [0,1]. The Calderon-Vaillancourt theorem now shows that

lim {lop (ge(t, 7 ) [l ¢(22 (2, 7)) = 0
uniformly with respect to ¢ € [0, 1]. Thus, we can assert that

op(A:) op(AZ!) = 1y iy + 77,
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with vl € OP S(15,15) satisfying
: , o
lim Irell 2oz e, iy = 0

as required.
The second equality of (1.5.2) is proved in just the same way, using the
second estimate of (1.5.1). This completes the proof.
O
The interest of the proposition is that it allows one to construct so-called
order reductions within the calculus.

Corollary 1.5.2 For any A\ € N'(H, H), the operator R.(\) = op()\ ) s
invertible for ¢ > 0 small enough, and the inverse RZ*(X) is in OPS(A™Y, 1y).

Proof. By Proposition 1.5.1, R.(A) € OP S(A, 1) fulfils (1.5.2) with

T; - OPS(lH,lﬁ),
1g,1

satisfying (1.5.3). Hence it follows that both 1 + v and 1 4 r” are invert-
ible for sufficiently small ¢ > 0. Moreover, we can assert, by a theorem of

Beals [Bea75], that

(1—|—T;)_1 - OPS(lﬁ,lH),
(1—|—T;/)_1 € OPS(l 1

for ¢ > 0 small enough. We deduce that

op(A\Z)(L+7rl)™" € OPS(1g,N),
(I+r)~lop(A") € OPS(A ' 1p)

are the right inverse and the left inverse of R.()), respectively. Hence they

coincide, thus giving an inverse RZ1(A) € OP S(A™, 1) for R.()), as required.

O

We make use of the operators R.()), for ¢ > 0 small enough, to introduce
Sobolev spaces of operator-valued functions.

Definition 1.5.3 Let A € A'(H, [:[) We denote by H(X) the space of all
distributions u € S'(R, H) with finite norm

lellmroy = 1B (A)ull 2 e -

Analysis similar to that in the proof of Proposition 1.5.1 shows that the
composition Rs(A)RZ*()A) is a bounded operator in LZ(R,[:[), provided that
d,e > 0 are sufficiently small. Hence the space H(A) is independent of the
particular choice of 0 < & <« 1.
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Proposition 1.5.4 Suppose Ay € N'(Hy, Hy) and Ay € N'(Hy, Hy). Every
operator A € OP S(A1, A2) extends to a continuous mapping H(A1) — H(Xz).
Moreover,

[l < e( S casloa) lullmpy, u € H), (15.5)
a+[B<N

the constants ¢ > 0 and N € Zy being independent of A.

Proof. The boundedness of A : [:[()\1) — H(Ay) is equivalent to the
boundedness of A: L*(R, H,) — L*(R, Hs), where

A= R.(A) AR (\),

R.(A;) and RZ'(\;) being given by Corollary 1.5.2.
By Proposition 1.3.1 we conclude that A € OP S(1g ,15,), and so

sup 107 D205 (8, ™) ety 1y < €op(o5)

for all a, 3 € Z4. According to the Calderon-Vaillancourt theorem, A extends
to a bounded operator L*(R, H,) — L*(R, Hy) and

HAH,C(L2(R,F11),L2(R,FIQ)) <¢ Z ca,5(04),
oz—I—ﬁSN

the constants ¢ > 0 and N € Z being independent of A. Combining this with
Proposition 1.3.1, we arrive at estimate (1.5.5), as required.
O
We finish this section by yet another technical assertion whose proof is
similar to the proof of Proposition 1.5.1.

Proposition 1.5.5 Let A € OP S(A1, A2). Suppose x € C(R) satisfies
X(t)=0 fort <1 and x(t) =1 fort > 2. Then,

A [LA X C R e ey = 0-

1.6 Pseudodifferential operators with symbols
slowly varying at infinity

In studying pseudodifferential operators A = op(a(x,£)) on R™ it is usually
assumed that the symbol a(x, £) stabilises in some sense as # — co. There are,
however, a great number of problems which lead to differential or pseudodif-
ferential operators without the condition of stabilisation of the symbol at the
point of infinity. A class of such operators was studied by Grushin [Gru70] who
extended a joint work with Vishik [GV69]. The following definition introduces
this class in the case of operator-valued symbols on the real axis.
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Definition 1.6.1 A symbol a(t,7) € S(A1, X2) is called slowly varying as
t— 400 if
lim sup [Aa(t, (D D2alt, DA (6 ey =0 (16.1)

t—4oc0 T7ER
for each o >0 and > 1.

Let Sov (A1, A2) stand for the class of symbols slowly varying as t — 4+o00. We
also distinguish the subclass Sp(A1, A2) of Sev(A1, A2) consisting of the symbols
a(t,7) which obey (1.6.1) for all o, 5 € Z,.

Proposition 1.6.2
1) If A € OP Ssv(A1,A2) and B € OP Ssy(A2,A3), then BA € OP Sqy(A1,A3)
and the symbol of BA is given by

opa(t,7)=op(t,m)oalt, )+ r(t,7),

where r(t,7) € So(A1, A3).

2) If A€ OP S.y(A1, \a), then A~ € OP Soo (A7), (A1)*) and the symbol
of A* is given by

oax(t,7) = (oalt, 7)) +r(t,7),

where r(t,7) € So((A71)*, (A\TH)).

Proof. The proof is similar to the proof of Proposition 1.5.2 in [RST97].

O

1.7 Local invertibility of pseudodifferential
operators at infinity

Let x € C®(R) satisfy y(¢t) = 0, if t < 1, and x(¢) = 1, if t > 2. Put
Yr(t) = x(t/R), for k> 0.

Definition 1.7.1 We say that an operator A € L(H (A1), H(A2)) is locally
invertible from the left (right) at the point +oo if there exist R > 0 and an
operator B € L(H(X2), H(A1)) such that BAxr = \r (xrAB = \r), respec-
tively.

We call A locally invertible at the point +oo if it is locally invertible both
from the left and from the right at this point.

Before formulating our next result, we note that the concept of being slowly
varying is also applicable to the weight functions in A’(H, [:[) Namely, such a
function A(t,7) is said to vary slowly as ¢t — +oo if

lim_sup 1(DF DA DA (&7 iy = O

t——+oo pu

forall¢ € Zyand g =1,2,....
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Theorem 1.7.2 Suppose \; € A’(Hj,lf]j), J = 1,2, are slowly varying as
t — t+oo. Let A =op(a), where a € Sv(A1,A2). Then A: H(Ay) — H(X2) is
locally invertible at the point 400 if and only if there exists a number R > 0
such that the symbol a(t,7): Hy — Hy is invertible for all (t,7) € (R, +00) xR,
and

wp Ml (A gy <o (L)
(R,4o0) xR

Proof. The proof of this theorem is actually the same as the proof of
Theorem 1.7.4 in [RSTI7].
O

1.8 Exponential weighted estimates for pseu-
dodifferential operators with analytic
symbols

For v € R, we denote by H(A;v) the completion of C25, (R, H) with respect
to the norm

el ey = 17wz -

If a(t, 74 iy) € S(A1, A2), then

op(a(t, 7 +17)) = " op,(a(t, z)) 7",

where
1 o
op,(a(t, z))u(t) = g/R ' dz/Rel(t_t )Za(t,z)u(t')dt/, teR,
+iy

foruec C®

comp

(R, Hy). Hence it follows that

llop,(a(t, 2)) ullaum = lle”op,(a(t, 2)) ullm )
= Jlop(a(t, 7+ 7)) " ullmon)
< el ullmon

= ¢ HUHH(MW)a

¢ being the norm of op(a(t, 7 + 7)) in L(H(X1), H()2)). Thus, op,(a(t,2))
extends to a continuous mapping H(A;v) — H(Ae; 7).

Were a(t, z) polynomial in z, the operator op. (a(t, z)) would be differential
and thus independent of the particular choice of v € R. This still holds for
those symbols a(t, z) which extend analytically in z to some strip around R+i+.
More precisely, assume that a(?, z) is an analytic function of z in a horizontal
strip R +i(a, b), such that a(t,7 + 1y) € S(A1, Ag) uniformly in 4 in compact
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intervals of (a,b). Then it is an easy consequence of the Cauchy theorem that
the operator op. (a(t,z)), when restricted to CZ5, (R, H;), does not depend
on v € (a,b). We will denote it simply by op(a). As described above, op(a)
extends to a continuous mapping H(Ay;v) — H(Aq;7), for each v € (a,b), and

this extension is given by op,(a(t, 2)).

Theorem 1.8.1 Let a(t, z) be an analytic function of z € R +1i(a,b), such
that a(t, + iv) € Sw(A1,A2) uniformly in v € (a,b). Suppose there is an
R > 0 such that the symbol a(t,z): Hi — Hy is invertible for all t > R and
z € R+1i(a,b), and

sup At 7)a™ (2 (6 ) iy iy < 00
ZERii(a,b)

Then, if a <" <" <band u € H(A;v') satisfies op(a)u € H(Ay;v") near
t =400, then u € H(A;v") near t = +00.

As usual, we say that v € D'(R, H) is of class H();7v) near t = 400 if
ou € H(A;v) for some function ¢ € C*°(R) equal 0 near { = —oo and 1 near
t = 4o00. Note that o H(A;y") <= @H(X;7') provided " < +".

The proof of Theorem 1.8.1 is based on the following two lemmas proved
in a more general context in [Rab95b].

Lemma 1.8.2 Let a(t, z) satisfy

sup [Aa(t, ) (D] DZalt, )DAT (6T g iy < 005 @B € Ty, (1.8.1)
te
z€R+1(a,b)

and let w(t) = expy(t) with v€ C*(R) such that a < inf,v'(t) < sup,v'(¢) <
b. Then, op(a) extends to a continuous mapping H(A;w(t)) — H(Ag;w(1)).

Proof. See Theorem 3.1 (a) in [Rab95b]. In fact, Theorem 3.1 is proved
in [Rab95b] for the weight functions A(¢,7) that do not depend on t € R.
However, the same proof still goes for arbitrary A(¢, 7) meeting our conditions.
0
The spaces H(A;w(t)) generalise H(A;~) while the function w(t) = exp(~t)
is assigned to any v € R. More precisely, by H(A;w(t)) is meant the completion
of (R, H) with respect to the norm ||ul|g(xuw@)) = [[w(t)ul[m(y)-
Lemma 1.8.3 Suppose ap(t,z) =1+ rg(t,z), R >0, is a family of ana-
lytic functions of z € R +i(a,b) with values in L(H), such that

Rh_r>n Su]g H)‘(tv T)(DtﬁDer(tv Z)))‘_l(tv T)H/L(f[) = 07 a, ﬁ € Z-I-' (182)
o0 te
z€R+i(a,b)
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Then, the operator Ar = op(ar) on H(X;7v), v € (a,b), is invertible for R > 0
large enough, and AR' = op(sgr) where sg(t,2) is an analytic operator-valued
symbol satisfying

?5161]11{3 H)\(t,T)(DEDSSR(t,Z)))\_l(t,T)HE(H) <cap, o,BEZi (183)
z€R+i(a,b)

Proof. See Theorems 2.2 and 2.3 in [Rab95b].
U

Proof of Theorem 1.8.1. Let yg(?) stand for a cut-off function at ¢t =
+00, as above. By assumption, the symbol bgr(t,z) = yr(t)a™ (¢, 2) is an
analytic operator-valued function satisfying an estimate of the type (1.8.1),
provided that R > 0 is large enough.

Set Br = op(br). We get BrA = \r+ op(rr) where rg(t, z) is an analytic
function of z € R + i(a,b) with values in L(H;), satisfying

sup [Aa(t, YD DErR(E, DT ) gy < 00
1
ZER-IG—i(a,b)

for all a, 3 € Z . Moreover, we have

lim  sup  [[Ad(t, 7D DRt )T (G T gy =0, (1.8.4)
1=+ ;eR+4(a,b)

for each o, € Z4, because both a(,z) and bgr(t,z) are slowly varying at
t = 4o00.

Pick yet another cut-off function y at t = 400, such that y “covers” y,
i.e., YY = X. By the above, we have

XrBrAXR = Xr+ XrOP(TR)XR
= (1 + xrop(7r)) XR-

It follows from (1.8.4) that the symbol yr(¢)rgr(t, z) meets condition (1.8.2).
By Lemma 1.8.3, the operator 14+ xrop(rr) on H(A1;7v), v € (a,b), is invertible
for sufficiently large R > 0, and the inverse has an analytic symbol sg(?,2)
satisfying estimates (1.8.3), with A replaced by A;. We thus obtain

(14 xrop(7r)) " 'xRBRAYR = YR

for all R > 0 large enough, where Pr = (1 4+ yrop(rr)) ' xrBr is a pseudodif-
ferential operator with an analytic operator-valued symbol pg(t, z) satisfying

sup 1M, 7)(DY D2 pr(t, 2 )N (6 7)) < Conts
ZER-IG-i(a,b)
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for any «a, 3 € Z,. These estimates ensure, by Lemma 1.8.2, the boundedness

of the operator P acting as H(Ag;w(t)) — H(A1;w(t)), where w(t) = exp y(t)

and v € C*(R) is such that a < inf;+'(t) < sup,+'(t) < b. In particular, we
may take

At it <

V(t) - { ,Y//t if tZ 2

and extend it to a smooth function on the whole axis satisfying the above
conditions.

Having disposed of this preliminary step, we are able to complete the proof
of the theorem. Indeed, suppose u € H(A;;v') satisfies op(a)u = f with
f € H(X2;9') bearing moreover the property that f € H(A2;+") near t = +oo.
Write

)~<Ru = —PRA(l — )N(R) u + PRf

It is evident that (1 — Yr)u € H(A1;w(t)) and f € H(Az;w(t)). According
to Lemma 1.8.2, PrA extends to a continuous mapping of H(Aq;w(t)), hence
Xru € H(A;w(t)). This yields uw € H(A;4") near t = +oo, which is our
claim.

4

1.9 Examples of weight functions

In this section we show several examples of operator-valued weight functions
A(t,7) to be used in the calculus on manifolds with edges.

Example 1.9.1 Let

H H>(RY),
H L*(R?)

and
At,m) = (14 (6(1)*A, +72)7

where ¢(1) > 0 is a C'™ function on the real axis meeting an estimate

(1) e
@) Se+lt—d) forall t.0€R, (1.9.1)

with ¢ and ¢ > 0 independent of ¢ and 0, A, = D;l + 4+ D;q is the non-
negative Laplace operator on R? and s € R. We have

At 7T) = op(l+ ()2 + 73",
M) = 0p(1_|_(¢(t))2|77|2_|_7_2)—5/2



20 V. Rabinovich, B.-W. Schulze, and N. Tarkhanov

whence

L ($(E+0)[nl + (7 + v)?)“
L+ (o(1))?[n]? + 72 ’

for the symbols are independent of y. To verify (1.1.1) we need an elementary

estimate.

Mt +0,7 +v)AHt,7) = op (

Lemma 1.9.2 [fq > 1, then

2 2\s5/2
(q + 7 ) / 2| s|/2 (1 + |7_ |2)|5|/2‘

(g% +v2)s/2 =
Proof. Indeed,
(@ +72 (14 (r/9)*)"
(¢* +v?)s/? (1+ (v/q)z)“"/2
< 2P (14 ((r/g) — (v]g)))*V?

< 9ll/z (1—|—(T—v) >|5|/2,

the first estimate being a consequence of the well-known Peetre inequality.
This is our claim.

O
Applying Lemma 1.9.2 we obtain
1 22 215/2 .
(1 +(o)°Inl* + 7 )5/2 <P (1 4 Jr — o)V (19.2)
(L + (&(1))*[n]* + v?)
for all 7,v € R. Further,
L+ (o(t+0))2nlP + 72 < 14 A(1+[0)*(o(1)*n]* + 77
< AL+ 10D)* (1 + (o(1)|n]* +7°)
where ¢ > 1 is the constant of (1.9.1). Hence it follows that
1 ( ( ‘|"9)) |77|2‘|‘ ? 2 2
<! < 1+ ]0),
T e PPy
and so p
1 L4 022 2\8

(1+ (3(1))2]n]? + 72)*2
for all t,0 € R. As

lop(a(n)|lz2@ey) < sup |a(n)],
neRY

the estimates (1.9.2) and (1.9.3) imply the estimates (1.1.2) for A(¢, 7), with
€1 = €|s| and €3 = |s|. Thus, we get A € A(H*(R?), L*(RY)), as required.
0
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Example 1.9.3 Suppose B is a ('* compact closed manifold and R? x B
a cylindrical manifold over B. For s € R, set

H = H*(R?x B),
H = L*R?x B)

and .

Mt,m) = (14 (6(1)?A, + 72 + Ap) 7,
where ¢(t) > 0 is a C* function on R satisfying (1.9.1), and Agp = V*V is
the Laplace operator associated with a connection V on B. Let (ei)z’:m,... be
a complete orthonormal system in L?(B) consisting of eigenfunctions of Ag,
and let (/“”)2:172,... be the corresponding system of eigenvalues, each p; being
non-negative. If u(y,z) € L*(R? x B), then

At+0,7+ v))\_l(t T)u

t—l—@ n, T+ v
Z 77'—>y tn, ) )Fyﬁn(u(yv‘)aei) €;

where .

Ai(tn, ) = (L4 (o) [nl* + 7% + i)
and (u(y,-),e;) is the scalar product of u(y,x) and e;(x) in L*(B). Hence we
deduce that

HA(HH r+v>A‘1< Tullh
t—l—@ n, T+ v
- Z / 12 1y, ), )Pl

Ai(t,m, )
Ai(t+ 0, 77,7'—|—v 5 / 5
< su F. )y €| d
> neﬂg‘? | Nt T | Z | Fysn(uly, <), e)|"dn
1=1,2,.
Ai(t+0,1m,7 +v)
= sup | : 1 lull,
7716]12@ Ai(t,n,T)

and so

_ Ai(t+0,n, 7+ v)
Mt+0, 7+ o)\t T 7 < sup P

1=1,2,...

for all t,7,6,v € R. From what has already been proved in Example 1.9.1 it
follows that

MEE 00T H0) | oternll/z el gyelsl g,
)\i(t77777—) B
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with ¢ a constant independent of ¢, 7, # and v. Thus, we see that X is of class
A(H*(R? x B), L*(R? x B)).
O

Example 1.9.4 Let

and let { = (£',&,) be the corresponding splitting of the covariables { € R"™.

For s € R, we denote by H*(R%}) the space consisting of the restrictions to R’}
of distributions in H*(R"). We have

H*(RY) = H*(R")/H*(R")

where [;S(Rﬁ) is the subspace of H*(R™) consisting of distributions supported

in R”. Under the quotient norm, HS(]RZT_) is a Hilbert space.! As IEIS(]RE)
coincides with the closure of CS (R™) in H*(R"), it follows that

comp

P o

() 2 (R (1.9.4)

under the pairing induced by the scalar product of L*(R™). It is well-known
that the operator

Ay =op () +it)

restricts to a topological isomorphism IEIS(RZT_) — POIS_I(Rﬁ), for any s € R
(see [Gru86, 2.5.2]). The formal adjoint to this mapping is given by ryA_ey,
where

A =op ((¢') —1&)

is preceded by extension e, by zero to R"™ and followed by restriction ry to
R%. From (1.9.4) we conclude that 1 A_ey induces a topological isomorphism

H*(R%) — H*"'(R7), for any s > —1/2. Put

H = H*RYxRY),

0 = L*R?xR7)

and

M) = (L4 (6(0)28, + 728 + 44 )

INote that H* (R7) can not be thought of as a subspace of H*(R") because the natural
mapping of the former to the latter is not injective unless s > —1/2. Indeed, the surface
layer on ORY} belongs to H*(R") if s < —1/2.
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where ¢ € C2°(R) and A, are as above whereas s € Z. When passing to the
Fourier images with respect to y and x, we reduce A(¢,7) to multiplication by
the scalar-valued weight function

b

(L + @O +72)% + (&) +ic,)

and so estimate (1.1.1) for A(t,7) is verified in much the same way as in
Example 1.9.1. Thus, A € A <1{J]5(Rq x R7%), L*(R? x ]Rﬁ_)) On the other
hand, if B
H = H*(R?xR?),
i = L*R?xRY)

and

M) = (14 ()2, + 78 +radoey )

where s € Z,, then we make use of what has already been proved and a fa-
miliar duality argument to see that A € A (HS(Rq x R%), L*(R? x ]Rﬁ_)) This
choice of the weight function is certainly more relevant to our theory than the
preceding one.

4

Note that the “order-reducing” operators op({¢’) £ 1¢¢,)°, for s € R, in the
half-space have been used by Vishik and Eskin [VE67]. Their symbols are not
in 87 o(T"R"), since (£') does not satisfy all the estimates in terms of powers
of (£) required for that. However, these operators are convenient for special
purposes, and sometimes allow simpler formulations. In the Boutet de Monvel
calculus they are usually replaced by other operators with almost as convenient

properties (see Grubb [Gru95], Schrohe and Schulze [SS94, 2.3.10], and so on).

Example 1.9.5 Finally, suppose B is a C'* compact manifold with bound-
ary. Denote by 2B the “double” of B, i.e., a C'* compact closed manifold
obtained by gluing together two copies of B along dB. For s € R, we define
H?(B) to be the space formed by the restrictions of distributions in H*(2B) to
the interior of B, with the standard quotient norm. There is an order-reducing
operator

Ag: H*(B) — H*'(B), s> —1/2,
possessing the following properties:

e in local coordinates near the boundary, Ag is given by ry A_ey with ¢
replaced by (&', 1), 11 € R being a sufficiently large parameter;

e the operator (1) + Ap is invertible for all 7 € R, the inverse being given
by ({t) + ryA_ey)™! in local coordinates near dB; and
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e the norm of ({r +v) + Ag)({7) + Ag)~" in L(L?*(B)) is dominated by

¢ max(1l, (7 +v)/(7)), with ¢ a constant independent of 7,v € R
(cf. Section 5 in [Gru95]). We now set

H = H*(R?x B),

H = L*R?x B)

and

M) = (L4 (6028, + 727 + Ag)

for s € Z;. We claim that A € A (H*(R? x B), L*(R? x B)). To prove this,
fix u € L*(R? x B). We have

IACE+ 0,7+ o)A Tl
B ny'—m)‘(t + 07 T+ U))‘_l(tv T)UH%2(B)d77

| Nb(e+8,m, 7+ )b s T sy 1 Fvmnul 12 )

< (Sup 16(t+0,n, 7 + U)b_l(tvan)H%S(B(B))) [Jul|%

neRY

for all ¢,7,0,v € R, where

bt,m,7) = (1+ (&)’ n* + %) + Ap.
This yields

A+ 0,7 + )N ()l ey < sup [6(E+ 0,77+ 0)b7 (L0, 7) [ 128y

nER?
(1.9.5)
and so we are reduced to estimating the norm of b(t + 6,1, 7+ v)b~'(¢,n,7) in
L(L*(B)). On the one hand, we get

16t + 0, 7680, ) gy < ¢ max (1, d

(O P+ )
(3 (R + 777
)

< cmax(

hence, by (1.9.1),

Hb(t + 07 17, T)b_l(tv 7, 7_)HIL(L2(B)) S C <(9>E (196)
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where the constant ' does not depend on ¢, 7, § and n. On the other hand,
we have

16(¢, 0,74+ )b~ (t, 0, 7)l| 2228y

t)2|77|2 (r + 0)2)?
<Cmax<1’ (60T + ) )

< V2e (v), (1.9.7)

the last inequality being a consequence of Lemma 1.9.2. Combining (1.9.5),
(1.9.6) and (1.9.7), we arrive at the desired estimate for A(t, 7).
O



Chapter 2

A Class of Weighted
Pseudodifferential Operators
with Operator-Valued Symbols

2.1 Preliminaries

Let t = &(r) be a diffeomorphism of R4 onto R, such that ¢'(r) < 0 for all
r e R+.

Using this diffeomorphism, we pull back the structure of an Abelian group
from R to R;. More precisely, we introduce a group operation on the half-axis
by

rof =¢§" (6(r)+46(9)),

for r,s € Ry. It is easily seen that under this operation R is a locally compact
Abelian group with an invariant measure dm = |6'(r)| dr.

Example 2.1.1 Set §(r) = —logr, for r € Ry. Then ro 6 = rf, and so
R with this operation is a multiplicative group whose invariant measure is
dm =dr/r.

O

Example 2.1.2 For p > 0, take

L/pr?, v e (0,1];
§(r) = { —f, r € [2,+00).

Then we can extend 4 to the interval (1,2) in such a way that the extended

mapping is a diffeomorphism of R onto R.
O

26
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Example 2.1.3 Set

5(r) = { exp(1/r), r € (0,1];

-, S [27+OO)

and extend this to the entire half-axis to get a diffeomorphism of R, onto R.
O

2.2 Weighted pseudodifferential operators

Denote by A, (H, [:[) the space formed by all functions A(r, o) on Ry x R with
values in L(H, H), such that

[A(r 00,0+ )N (ry o)l ¢y < e (6(0))7 (v)™ (2.2.1)

for any r,0 € R, and p,v € R, the constants €, €5, ¢ € R being independent
of r, p, # and v.
The pull-back of the derivative D, = —id/dt under the diffeomorphism
r=4(1) is
119
=T o

which degenerates at r = 0 because ¢'(0) = —oo. As described in [ST96] and

[RST97], this characteristic derivative is of great importance in the analysis

(2.2.2)

on manifolds with singular points.
Suppose
€ Ay(Hy, Hy),
Aa(r,0) € Ay(Ha, Ha).

Definition 2.2.1 Let S,,(A1, Xg) stand for the class of C™ functions a(r, o)
on Ry x R with values in L(Hy, Hy), such that, for any o, 3 € Z, there is a
constant ¢, g(a) with the property that

A2 (r, ) (DY D7 alr, o)) AT (1, 0)ll ity iy < €opla)  for all (r,0) € Ry x R.

To any symbol a € S, (A1, A2) we assign a “weighted” pseudodifferential
operator A = op,(a) by

1 , ,
Au(r) = g/RdQ/R GO Neg(r, ou(r)dm(r), reRy,  (22.3)
+

for uw € CZ5 L (Ry, Hy).

Note that op, (@) is a Fourier integral operator on the half-axis with phase
function ¢(r,r’, 0) = (6(r) — 6(r'))o.
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Set
Salt) = w(E(D),  teR;
" f(r) = [f(o(r)), re Ry,
then
5*: Cfoomp(R‘HH) — Cé)oomp(R7H)7
6% Cé)oomp(R7H) — Cfoomp(R-HH)

are the ‘push-forward’ and ‘pull-back’ operators induced by 4, respectively. If
a(t,7) € S(A1, Az), then a straightforward computation yields

§fop(a) = & op(a)d.
= op,(da),

where §*a (r, 0) = a(d(r), 0). The operator §* op(a) is called the operator pull-
back of op(a) under 4. In fact,

&< A(H,H)

Ay (H, 1),
(S*i S()\l,)\z) S

_>
= Su(0"A1,0%As)

are easily verified to be isomorphisms, hence the calculus on R is pulled back
to Ry under ¢t = 6(r).

From what has been proved it follows that the weighted pseudodifferen-
tial operators op, (a) behave in much the same way as the usual ones op(a).
Thus, their properties can be deduced from those of usual pseudodifferential
operators (cf. Chapter 1). In [RST97], we gave an exposition of the theory
for weight functions A(t,7) independent of ¢. The class of weighted pseudod-
ifferential operators thereof is adapted for studying boundary value problems
in domains with isolated singular points on the boundary. The class of pseu-
dodifferential operators under consideration here is well adapted for treating
boundary value problems in domains with cuspidal wedges.

Recall once again that condition (2.2.1) for a weight function A just amounts
to saying that §,\ satisfies estimate (1.1.1), where §,A (¢, 7) = AM(§71(¢), 7).

2.3 Function spaces related to weighted pseu-
dodifferential operators

We define A/, (H, H) to consist of all weight functions A(r, o) € A, (H, H) which
are of class U™ on Ry x R and satisfy

I(D7DFA(r, 0)A™ (r, o)

0 ()
A1 (r, 0)(DEDA(r, 0))

(H)

Co 65 (2.3.1)

ca7ﬁ

IAINA

L
L

for all o, 8 € Z 4, where ¢, 5 do not depend on (r,p) € Ry x R.
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Proposition 2.3.1 For any A € Al (H, ]:[), there are operators

R.(\) € OPS.(\1p),
BRI\ € OPS,(A\1x)

€

such that
RV MR = 2@y dmm,
R NRT(N) = Liz @, dm i)

Proof. This follows from Corollary 1.5.2.
O

Here, by L*(R4,dm, H) we mean the space formed by all measurable func-
tions u on Ry with values in H, such that fR+ ||ul|3;dm < oco. The square root

of this integral provides a norm in L*(Ry,dm, H).

Definition 2.3.2 Suppose A € A’ (H, H). By H,()\) is meant the comple-
tion of C35 (R, H) with respect to the norm

HUHHw(A) = HRE()\)UHE2(R+,dm,ﬁ)'

For analysis on manifolds with edges we need also two-parameter spaces
H., (X7, i), where v and p vary over R. They consist of all distributions u on
R, with values in H, such that ") (§'(r))*u € H,(N). We equip Hy,(A; 7, 1)
with the norm

el revy = 1€ () - (2.3.2)

If ¢ = 0, we omit this index in the notation, i.e., we write H,(X;~,0)

simply H,(A;7) when no confusion can arise.

Proposition 2.3.3 Let )\ € AQU(Hl,[:[l) and Xy € AQU(HQ,I:IQ). Suppose
that a(r,0 +1v) € Suw(A1,Az), for some v € R. Then, A = op,,_(a(r,())
extends to a continuous mapping H,(A1;y) — Hy(Ag;y) and

A oy < (Y caplalr, o+ iv))) ull o)
a+[B<N

for any v € Hy,(A;7), where ¢ >0 and N € Z, do not depend on A.

Proof. This assertion is an immediate consequence of Proposition 1.5.4 if
we apply the operator pull-back &%

0
Note that the operator A = op,,(a(r,()) is defined by
1 : /
M) = [ [ SOt u ), e R
27 SRty R4

forue C2 (R, Hy).

comp
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Proposition 2.3.4 Let )\ € AQU(Hl,[:[l) and Xy € AQU(HQ,I:IQ). Suppose
that a(r,0 +iv) € Sw(A1, A2), for some v € R. If

Frad) 7)< ¢ (O, o)
[(D%3(r) 3)] < en Be s, 5
with ¢, ¢ and cg independent of r,0 € Ry, then (&'(r))™op,,(a(r,()) extends
to a continuous mapping H,,(A1;v, 1) = Hy(Ae; vy, 0 — m) for each p € R.

Proof. The first condition in (2.3.3) implies, given any weight function
A€ AN(H, H), that (6'(r)*A(r,0) € Ay(H, H) for each 1 € R. Indeed, letting
Alr,0) = (3'(r))" A, 0), we get

_ &(rob
!MWO&@+MA%ﬁMMm>=< (r o 9)

H
-1
Ty ) Wreoetonn ol

< e (5(0))7 (v)” <5lfsf<i>0)>u

with ¢ a constant independent of r,0 € Ry and p,v € R. Replacing r by
ro#~! in the first estimate (2.3.3), where #~! is determined from the equality
5(0) +6(071) = 0, we see that

F(r)[8(rob7") < e (5(671))°

for all 7,6~ € Ry. Combining this with the first estimate of (2.3.3), we deduce

easily that
F(rof)\" _ clul
(Z62) < o

for any r,8 € Ry, showing A(r,p) € Ay, (H, ]:]), which is our claim.

On the other hand, the second condition of (2.3.3) means that (§'(r))" 1y
lies in A/ (H, H) for each m € R. We will prove more, namely that (§'(r))" 1y
belongs to S, ((8"(r))*X, (6'(r))*~™\), for any weight function A € A, (H, H
and p € R. To this end, consider

160" ()= A, @) (D7 (8 (1)) ™ L) (& (1)) A, )™ ey
= (D& (r)™) (& ()",

m

for B € Z,. An easy computation shows that

DS ()" = Y iy 8(r) T (DS ()L (DS ()

itetig<p
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where the coeflicients Ciy..ig depend only on m. We now invoke the second
condition of (2.3.3) to obtain

(D)™ EE) ™ < D> Jenild..ef

itetig<p

= const(f3)

for all » € R. Hence the desired symbol estimates for (§'(r))™ 1y follow.
We are now able to prove the boundedness of A = (§'(r))™op,, ., (a(r,()).
For this purpose, fix u € Hy,(A1;7,1). We have

AU i pmmy = ()™ Avl i)
< e 1) ull o)

= ¢ |[ullg, ()

where ¢ stands for the norm of

(0°(r))*opy,  (alr, C))(8(r)) ™" (2.3.4)
in L(Hy,(A1;7), Hu(A2;7v)). Thus, we shall have established the proposition

if we prove that ¢ is finite. However, from what has already been proved it

follows that

(0'(r) ™ m € Sw(h, ('(r))" M),

a(r, ¢ +i7) E 5 ((0"(r))" Ay, (67(r))"A2),

0" (r) 1, € Suwl(d'(r)* Az, M),
and so (¢'(r))*a(r,( + i’y)((S’(T))_“ € Su(A1,A2). By Proposition 2.3.3 the
operator (2.3.4) extends to a continuous mapping H,(A;y) — Hyu(A2;7).

Hence ¢ is finite, as required.

4

2.4 Local invertibility at the origin

A weight function A(r,p) € Al (H, [:[) is said to be slowly varying at the point
r=0if

limsup [|(D Dy A(r, 2))A™ (1, 0)l| iy = 0

r—0 0€R
forall¢ € Zyand g =1,2,....

The concept of being slowly varying at » = 0 is applicable as well to the
scalar-valued function ¢'(r) if we think of §'(r) as multiplication operator in a
Hilbert space. This means simply that

lim (D?8'(r)) /§'(r) =0, (2.4.1)

r—0
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for every 8 =1,2,....
In this section we will be concerned with the problem of local invertibility
at the singular point for an operator

A= (&'(r))"opula(r, Q)),

where a(r, 0 + 17) € Su(A1, A2). We restrict our attention to those diffeomor-
phisms ¢ = §(r) which fulfil (2.3.3). Then Proposition 2.3.4 enables us to
conclude that A maps H,(A1;7, 1) to Hy(A;y, i —m), for any 4 € R. More-
over, we assume that the symbol a(r,p + i) is slowly varying at the point
r=20,i.e.,

limsup || A2(r, o) (DY Dga(r, 0 +17)) A7 (r, 0)ll ¢ty i) = 0

r—0 o€R
forany o« € Zy and f=1,2,....

The definition of local invertibility of A: Hy(A1;v, 1) = Hy(A2;y, 10— m)

at ¥ = 0 is an evident change of Definition 1.7.1, with the cut-off function
Xr(t) at t = +oo replaced by the cut-off function §*yg(r) at r = 0.

Theorem 2.4.1 Suppose both \; € A (H;, H,), j =1,2, and §' are slowly
varying atr = 0. Let A = (6'(r))"op,,(a(r, (), with a(r, 04+17) € Swev(A1, A2).
Then A: Hy(A;v, 1) = Hy(Ags vy, 0 — m) is locally invertible at r =0 if and
only if there exists € > 0 such that the symbol a(r, o+1v): Hy — Hy is invertible
for all (r,0) € (0,¢) xR, and

sup [ Au(r, @)a™ (r, 0+ i9)A; (s o)l gy iy < 00 (2.4.2)
(0,e) xR
Proof. The proof of this theorem is similar to the proof of Theorem 1.7.4
in [RST97]. Proposition 2.3.4 yields all the additional information we need.
O
The important point to note here is the form of the invertibility condition
(2.4.2) which is independent of © € R. This is explained by the fact that under
condition (2.4.1) the weight function exp d(r) dominates the weight function
§'(r) near r = 0. Thus, the case d(r) = —logr corresponding to conical
singularities is automatically excluded from consideration.
We finish this chapter by a weighted estimate for pseudodifferential oper-
ators with analytic symbols.

Theorem 2.4.2 Let a(r,() extend to an analytic function of ¢ in the strip
R+i(a,b), such that a(r, o+17) € Swev(A1, A2) uniformly invy € (a,b). Suppose
there is an ¢ > 0 such that a(r,(): Hy — Hy is invertible for all v € (0,¢) and
¢ € R+1i(a,b), and

Stlop) A, @)a™ (r, N (7 )l gz 1,y < 00
re(0,e
CER-I—i(a,b)
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Then, if a < v <~" <band u € H,(A;7', 1) satisfies (§'(r))"op,,(a)u = f
with f € Hy(Ae; v, 0 —m) near r =0, then u € Hy,(A1;~", 1) near r = 0.

Proof. This theorem is a reformulation of Theorem 1.8.1 in terms of
weighted pseudodifferential operators on the half-axis.

4



Chapter 3

Differential Operators on

Manifolds with Cuspidal Edges

3.1 Canonical cuspidal wedge

We say that (r,w) is a polar system of coordinates in R"™! with centre at the
origin if each point € R"*'\ {0} can be written in the form

r=rSw), (rw)eRixR"

where S is a smooth periodic mapping of R” to the unit sphere S” in R"*1,
A well-known example of polar coordinates in the space R™*! is given by
the mapping

cos wy,
sinw; €oswsy,
sinw; Sinwy €OS ws,

S(w) = (3.1.1)
Sinw; SiNwy SINWs ...SINW,_1 COS Wy,
sinw; SiNwy SINWs ...SINW,_1 SINwW,,
where w = (wy,...,w,). This mapping fails to be one-to-one on the planes

{weR": wj=mnk}, forj=1,....,n—1and k € Z. This in turn results in
degeneracy of the Jacobian matrix,

ox

det )

. _1 . _2 .
=7r"sin” " wisin” T wy ... sinw,_ .

To cope with this difficulty one often uses the so-called stereographic pro-
jection of R™ onto S™ with the north pole removed, given by

(2(4), |(“j|2 - 1)

S e

b weRn7

34
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in which case

dx it (2r)"
o) - TV ey

does not vanish but for r = 0.

det

Let f be a C* function on Ry with the following properties:
1) f(r)<0forall re Ry

2) [ dr/rf(r) = oci and
3) |7 fO(r)| < ¢; near r = 0, for each j € Z.

Modifying f away from a finite interval if necessary, we may actually assume

that f;o dr/rf(r) = co. Thus, setting

"d
é(r) = — R 3.1.2
(T) /5 0]('(0) Y or r E + ( )
we get a monotone decreasing function § € C° (Ry), such that 6'(r) = 1/rf(r)
and
limd(r) = oo,
7:—>0
rli}rgo é(r) = —oo.
In the analysis on manifolds with singularities, only the germ of f(r) at
r = 0 is prescribed by the geometry of singularities. Hence we will restrict our
attention to the behaviour of f(r) near r = 0, keeping in mind the construction

above.
Example 3.1.1 Let
_ _rp7 T C (07 1]7
ﬂ”‘{—un r € [2,+00),

where p > 0. When appropriately extended to the interval (1, 2), this function
meets all the conditions above. In this case 6(r) differs by a constant from the
diffeomorphism of Example 2.1.2.

O

Example 3.1.2 Consider
_ | —(og1/r)",  re(0,1/2];
10={ 2 € [2.400)

where p < 1. If appropriately extended to the interval (1/2,2), the function
f(r) fulfils all the above conditions. Indeed, we have

/% - —/lootdt—l-//%

= o0



36 V. Rabinovich, B.-W. Schulze, and N. Tarkhanov

and

li 7 fO(r) = (1) (= 1)l lim (log 1/r)7!

r—0
< o0

for all y € Zj,.
O

Note that, for p > 0, the function f(r) of Example 3.1.2 tends to —oo as
r — 0. This corresponds to the case where the canonical surface Co given
by (3.1.3) is of finite smoothness at °. Such “singularities” require another
pseudodifferential calculus on the half-line different from that of Chapter 2.
In fact, the function f(r) of Example 3.1.2 fails to satisfy the first estimate of
(2.3.3) for all p <1, hence Theorem 2.4.1 is not applicable.

Example 3.1.3 Set

—rexp(—=1/r), re€(0,1];
flr) = { —1/r,p r € [2,+00),

and extend f(r) to the interval (1,2) so that the extension be negative and
smooth. Then f(r) bears all the above properties. Moreover, §(r) differs by a
constant from the diffeomorphism of Example 2.1.3.

4

Example 3.1.4 For f(r) = —1, we have §(r) = —logr up to a constant
term (which disappears if £ = 1).
0

We now return to the conditions on the function f to show that they are
not independent. In fact, the last condition for either of j = 0 and j = 1
implies the second one.

Lemma 3.1.5 Suppose [ is a C! function of constant signs on Ry, such
that |rf'(r)] < ¢ for all v € (0,e]. Then,

/06 f() -

Proof. We can assume without loss of generality that f is non-negative

everywhere in R .

Write
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where I'(t) = f(e7") and T'= —loge. If ¢ varies over [T, 00), then r = exp(—t)
varies over (0,¢], hence

sup |[F(t)] = sup |f'(r)r]
te[T,00) re(0,2]
< ¢

by assumption. The Lagrange formula now yields
1
F(t) = F(T)+ (- T)/ FAT 4 9(t — T))do
0
< F(I)+e(t—-T)
for all ¢ > T'. Hence i1t follows that

[0z | svan®

= o0

Y

which is our claim.
O
We also mention that condition 3) on f just amounts to saying that each
derivative (rD, ) f(r), 7 € Z, is bounded close to r = 0.
By a canonical surface with an oscillating cusp at a point 2° € R™! we
mean

Coo = {2° +rS(o(r)f(r)0) : r € Ry, 0 € B}, (3.1.3)

where B is a C'* compact closed submanifold of R". Here, f € C22(Ry) is
a function with properties 1)-3) above. We shall say that f(r) specifies the
degeneracy of (o at the cusp 2. On the other hand, ¢ € C°(Ry) is required
to meet the following conditions:

a) inf,er, o(r) > 0;
b) |DP¢(r)| < cg, for every 3 € Z,; and
c) 11_1()1% Do(r) = 0.

We say that &(r) specifies the oscillation of the surface C,o at the cusp 2°. A
typical example of ¢(r) satisfying a)—c) is as follows.

Example 3.1.6 For ¢ € [0, 1), consider

B(r) =1~ 3 sin(3(r)) w(r),

where w is a cut-off function on R, such that § does not vanish on the support
of w. Then ¢ meets a)—c), as is easy to check.

4
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Applying the Hardy-Littlewood inequality (cf. [HL32]), we deduce that
conditions b) and ¢) actually imply

; J —
lg%D o(r) =0, (3.1.4)
for each y =1,2,.... In fact, we have the following lemma.

Lemma 3.1.7 If ¢ € C} (R) satisfies

D2(r)]
lirm (1)

A
o
-
M
—
\'O
AR

then limDeo(r) = 0.

r—0

Proof. Set ®(¢) = ¢(67*(t)), thus obtaining a C* function on the entire

real axis. Since
(1) = D¢ (67'(1))
) = Ht

et D¢ (671(1)),
we get
[®"(1)] < ¢ tel[(e),+o0),
lim ®(t) = 0.
t—4o00

Combining the Hardy-Littlewood inequality |®'(¢)| < v/24/sup |®] sup [®”] on
R with a suitable extension operator from the half-line, we arrive at an estimate

()P < sup [@(0)] sup [®"(9)], 1€ [T, 00),
9€[T,0) 0€[T,00)
with C'an absolute constant. For example, C' = 327 fills the bill (c¢f. Remark 11
in [Bur98, 4.2]). ' Hence it follows that lim @’(¢) = 0, which is the desired

t——+oo
conclusion.

O

It is worth pointing out that the product ¢f fails to fulfil 1)-3) in general,
for f and ¢ possessing the properties 1)-3) and a)—c), respectively. To see this,
take f(r) = —r? and ¢(r) = 1 — % sin(6(r))* for r > 0 small enough, where
¢ > 1/2. Thus, introducing ¢ into the definition of a canonical surface with a
cusp enriches the class of surfaces under consideration.

For f given in Example 3.1.1, we have a canonical surface with a power-
like cusp. If f is given by Example 3.1.3, we get a canonical surface with
an exponential cusp. Finally, for f of Example 3.1.4, we obtain a canonical
surface with a conical point.

If Cpo is given by (3.1.3) with B being a domain in R”, then we call Cpo a

canonical domain with an oscillating cusp at the boundary point z°.

'In the Appendix, we give an independent proof of the Hardy-Littlewood inequality on
the half-line.



Boundary Value Problems 39

Definition 3.1.8 Let Cy be a canonical domain with an oscillating cusp at
the origin. Then W = R? x Cy is said to be a canonical oscillating cuspidal
wedge.

Clearly, the boundary of a canonical oscillating cuspidal wedge is of the
form W = R? x (Cy, where (y is a canonical surface with an oscillating cusp
at the origin. In this way we obtain what will be referred to as a canonical
surface with an oscillating cuspidal edge RY.

3.2 Differential operators

If W = R?x (Cy is a canonical oscillating cuspidal wedge or a canonical surface
with an oscillating cuspidal edge, then one has distinguished local coordinates
in W. These are given by (y,r,0), where y € R% r € R, and 6 stands
for local coordinates on B. Using the coordinates (y,r,8) actually leads to
desingularisation of W, for W = R? xR, x B bears a cylindrical structure and
one has a blow-down mapping W — W which is a diffeomorphism away from
r = 0 and restricts to a diffeomorphism of R? Under this desingularisation,
differential operators near W in R?t"*1 are pulled back to W. The pull-backs
give rise to typical differential operators in the calculus on manifolds with
oscillating cuspidal edges.

To illustrate this, we confine ourselves to the case where W is a canonical
oscillating cuspidal wedge. Similar arguments apply to the case of canonical
surfaces with oscillating cuspidal edges.

Let
A= Z aﬁ,w(w)DfDl
[B]+]v]<m
be a differential operator with C* coefficients on W. We assume that the
coefficients ag(y, x), with |3| + |y] < m, satisfy the conditions

DY DS ag,(y, o)l < cnalags) (=8(e])
lim sup (Dy,a5,(y,2)) /8(|z]) = 0 (3.2.1)
r—0 yeRY
for all multi-indices B € Z%, G € Z"*" and for every j = 1,...,n + 1, the
constants ¢g ¢(ap,) being independent of (y,x) € W.
Denote by m: W — W the mapping of passage to the “cylindrical” coordi-
nates (y,r,6) via

vy =y
V2 s, 322
fory € R, r € Ry and 0 € B. Thus, 7n: (y,7,0) — (y,r S(o(r)f(r)d)) is a
diffeomorphism provided the dilatations ¢ B, ¢t > 0, do not meet the set where
S(w) fails to be a diffeomorphism.
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Applying Proposition 3.2.1 of [RST97] yields

D, = ¢ <S(¢f0) D, + ((95/0w) " (6£0))" Dy)d — r(6f) S(6£0) 0D9/¢> :
(3.2.3)
where (9.5/0w)™" is a left inverse for the Jacobian matrix of S, the superscript
“I"” indicates the transposed matrix, and 6Dy = 2?21 0,Dy,. As

D (&) = ip (8 (f +rf),

D (rjf(j)> = —if (jrff(f) T rj+1f(j+1)> 7
D — no-iDy. (3.2.4)
"(of) = Do+ orf
and
Dr S(qbf@) = Z::l ((.UL 85/8%) |w:¢f€ (Dﬁb/ﬁb + er) 3 (325)
Dy S(¢f0) = D,S|u=gre (Of),

we conclude that

pr=(@" 37 DD,
Jtlel<hl

()

for any ~v € ZT’I, where p; '/ are polynomials with integer coefficients of rtf)
and D'¢ (¢ = 0,1,...,]y| — 7), 0 and elements of the matrices DLS and
DL (95/0w)™", |I] < |v] — 7 — |a|, with w = &f6 substituted. It follows
that, under the change of variables (3.2.2), A transforms into a differential
operator

TA= ()" Y. apaly,r,0) DIDID; (3.2.6)

|8l +i+]a]<m

on the stretched wedge W, where D, is a new “totally characteristic” derivative

in the calculus, given by

1
Dy — 5 Dy

= Tf(?“) Dy7

and

apioly.r,0)= > (&) Gl s (. 0).

Jtle|<|yI<m—|8]
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Note that the pull-backs 7*as(y,r,#) behave “well” near the base r = 0
of W. Indeed, applying (3.2.4), (3.2.5) and the chain rule yields

_ ~l8l
DI = (&) DY,

Df = )7 5 o (1Y) (D00, (DLS) ) DE.

1GI<i

Dy = (&)l o pl) <<D£S>|I|§|al> Dy

|GI<]a

() ()

pe; and pg’ being polynomials with integer coefficients of the variables indi-
cated in the parentheses. We now invoke the first estimate of (3.2.1) and the
property 3) of f to see that

ID!DY D n as (y,r,0)| < ¢jpalasy), j€Zy, BEZLL, A€y,

uniformly in (y,r,8) € W. Combining these estimates with the explicit for-
mulas for the coefficients of 7fA given above, we get

sup |DfD5D§‘a57j7a(y,r,0)| <crBa, k€Zy BeZi, AcZy, (3.2.7)
re(0,2]
uniformly in (y,0) € R? x B.
Estimates (3.2.7) may be summarised by saying that (8')~™ %A is a weight-
ed differential operator in the sense of Section 2.2, with ¢ given by (3.1.2).
Moreover, (§')~"m%A is a differential operators with a symbol slowly varying
as r — 0 if, in addition to (3.2.7), the coefficients ag ;. bear

1E%Dra57j7a(y,r,0) =0 (3.2.8)

uniformly in (y,0) € R? x B (cf. Lemma 3.1.7). Our next result highlights
conditions on f under which the second condition of (3.2.1) implies (3.2.8).

Proposition 3.2.1 Suppose that
lim rf'(r) = 0. (3.2.9)

r—04
Let (3.2.1) hold. Then, ap ;. satisfies (3.2.8), for each 8 € Z%, j € Zy and
a € 77 satisfying |B| + J + |of < m.

Proof. We first observe, by Lemma 3.1.7, that equality (3.2.9) actually
implies
; i —
Tim D f(r) =0,
for every j = 1,2,.... Moreover, the second condition of (3.2.1) just amounts
to the fact that

lim D, m*ag~(y,r,0) =0

r—0
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uniformly in (y,0) € R? x B, for all § and v with |3]| + |y] < m. Since
both D, (5’)|ﬁ|+h|_m and D, ¢*~Pl vanish as r — 0 (cf. (3.2.4)), it remains to

evaluate the derivative D,,p;jcz when r — 0. To this end, set

v, = 1 (L)v L:07177|7|_]7
w, = DL¢7 L:0717"'7|7|_.j7
and let z., k = 1,..., K, be an indexing of the elements of both matrices DS

and DL (0S/0w)™", |I| < |y] — j — |a|, where w = ¢ff. By the chain rule, we
get

[v[-7 vI=3 4. (v) K (v)

apa L . P . P;a
D, p) = Z 61]% ))+ZﬁD(D¢)+Z 6;; D, z.(¢f0)

=0 ¢ r=1

whence

]7a

lim D, p) =0
r—0

uniformly in § € B, which is due to (3.2.4), (3.2.5) and (3.2.9). This completes
the proof.
O

The choice of f meeting (3.2.9) seems to be the best adapted to our the-
ory. Recall that (3.2.9) strengthens condition 3) on the functions f under
consideration.

In case f satisfies (3.2.9) we can distinguish in a natural way a proper
part of mFA responsible for the local invertibility of this operator near r = 0.
To this end, denote by ﬁ;g the polynomial obtained from pycz by replacing
r(f’) =3 fll=1) and Do, . D|)W|_jqb via zeroes. It is easy to see that

Pia 18 of the form p p = ¢hl-i- Jol where q(a) is a polynomial with integer
coefficients of f and elements of the matrlces DIS and DL(9S/0w)=1, 1| < |7,
with w = ¢ f6. Write

A = @ Y (e Y ¢ ras, | DIDIDE
1B+ +|o|<m Iy[=m—16]
+ (8)"S, (3.2.10)

Proposition 3.2.2 Under condition (3.2.9), if moreover ag., fulfil (3.2.1),
then the coefficients of the differential operator S in (3.2.10) are infinitesimal
asr — 0.

Proof. Indeed, we have

S = Z 8.0 DIDIDG,
[Bl4+i+|e|<m
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with

Spja = >, N <p§13 — ﬁ;,@) magp,

|v|=m—18|
+ S (@) ) g,

Jtlel<|yl<m—|8]

If j = |v|, then pycz — ﬁ;g = 0 by the very definition. For fixed j, o and

v with 7 < |y| = m —|8], set N = |y| — j. Using Taylor’s expansion for the
polynomial p( ) yields

v ()

Pia = Pja
= 30 Ot b () Y O (D (DY g,
IEZ2N '
10
where [ = (i1,...,172n) and ©' = (vy,...,0n), 0 = (wy,...,wy). Combining

this with (3.2.9) and taking into account the properties of ¢, we deduce that
the first sum in the expression for d3 ;. vanishes when r — 0.

On the other hand, if |y| < m — |3, then (5’)|ﬁ|+h|_m — 0 as r — 0. This
shows that the second term of g, also vanishes when r — 0. Hence the
desired conclusion follows.

O

We show below that the operator (§')”S has a small local norm in suitable
function spaces and is thus immaterial in the problem of local invertibility at
the point r = 0.

The class of coefficients meeting (3.2.7) and (3.2.8) contains some functions
rapidly oscillating near the edges (i.e., close to r = 0).

Example 3.2.3 Foreach 0 < p < 1 and any ¢ € C*(R?x B) with bounded
derivatives, the function a(y,r,0) = C®0)’¢(y, ) satisfies both (3.2.7) and
(3.2.8).

0

3.3 Local invertibility of differential operators
on a surface with oscillating cuspidal edges
Let A be a differential operator on a canonical surface W = R? x (y with an

oscillating cuspidal edge, Cy being of the form (3.1.3). The cross-section of Cj
close to 0 is identified with B, a compact closed submanifold of R".
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When written in the cylindrical coordinates (3.2.2), the operator A takes
the form

A= ()™ > aply,r)DJDI, (y,r) € RI X Ry, (3.3.1)
[B]+5<m

where ag ; is a C™ function on R?x R taking its values in Diff"~1#1=7(B). We
can thus regard ag; as an operator-valued function on R? x Ry with values in
L(H?*(B), H*=(m=IFI=)(B)), for any s € R. Moreover, from (3.2.7) and (3.2.8)
it follows that

k()

IDEDb a; 5(y, )| (B 2ro—(m—181-9) (B

},1_1% ysélé)q Drajs(y,r) HL‘(HS(B),HS—(W—WI—J)(B))

1A

for all k € Z and b € Z%, the constants ¢ p(a;3) depending on s, but not on
y and r.

We next introduce appropriate function spaces to be domains of A. Namely,
given any s € Z, and v, € R, we define H*"#(W) to consist of all distribu-
tions u on W with finite norm

||| vy

o U/ U S5t N 1 ) I CEES
RqXR+

|B]+5<s

NI

(cf. (3.5.1) in [RSTI7]). For integer s < 0 and non-integer s € R, these spaces
are defined by duality and interpolation.

Note that the factor |§'|? is included by purely aesthetic reasoning. In fact,
under the change of coordinates

{525

the norm (3.3.3) transforms into an equivalent norm

1
2

[[el] grevmqmry ~ // fwt((sloé—l)?u > DL DYoo ) | dzdt ]
o |Bli<s

where @(z,¢,0) = u(z/d',rS(¢f0)) for r = §71(¢). To prove the equivalence of

the norms, it suffices to use the equality

[Dy.D,]=i(f+rf)D, (3.3.4)
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and the property 3) of f.

We think of operator (3.3.1) as acting from H*V#(W) to H*=""#=" ().
By (3.2.4) and the property 3) of f, this is really the case.

Note that the space H*?*(W') coincides, modulo equivalent norms, with

the space H,(As;v, 10+ ¢/2) of (2.3.2)), where
A(r,0) = (14 (8(r) A, + 0> + Ag) 7, (3.3.5)
Ap being a non-negative Laplacian on the manifold B (cf. Example 1.9.3).
As described in Section 1.9, the function
1
o(t) = S0
should satisfy (1.9.1). This is equivalent to the first condition of (2.3.3). More-

over, we require ¢(t) to be slowly varying as t — 400, i.e.,

lim_ (DPg(t)) Jo(t) =0 (3.3.6)

t—+

for each 0 =1,2,.... It is a simple matter to see that (3.3.6) just amounts to
(2.4.1). Indeed, we have

Dio(t) _ D) (D&(r) DI~ (r)
o) == T g *”(5/(@ () )

for any j € Z4, where p; is a polynomial with integer coeflicients of the
variables indicated in the parentheses, such that p;(0) = 0. Thus, under the
assumptions on ¢ just imposed, Proposition 2.3.4 is applicable.

Example 3.3.1 Let 6(r) = —logr be the diffeomorphism of Example
2.1.1. Then,
§'(rod) 1
§'(ry 0

for any r, 0 € R4, hence the first estimate of (2.3.3) fails to hold. On the other
hand, we have

Dd(r) = (=) §'r)

for # € Z, and so condition (3.3.6) is violated, too.
0

Example 3.3.2 Suppose t = §(r) is the diffeomorphism of Example 2.1.2.
To show that ¢ fulfills the first condition (2.3.3), set

Sp=1{(r.0) € Ry x Ry: 671 (3(r) + 8(0)) < R,
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Fig. 3.1: The domain Sg, R > 0.

for R > 0 (cf. Fig. 3.1). We can choose R > 0 small enough, so that
Sr C ((0,1] x Ry) U (R4 x (0,1]).
If (r,0) € Sk, then
§'(rod) ( 1 ) ( , )
— < [sup—— ) [supld
&'(r) >0 [0'(p)] p>R| 2
< o0,

the last estimate being a consequence of the properties of 6. Thus, for (r,0)
away from Sg, the first estimate (2.3.3) holds with ¢ = 0. We are left with
the task of establishing the estimate for (r,8) € Sg. To this end, it suffices to
examine the following three cases:

1) (r,0) € (0,1] x (0,1];
2) (r,0) € (1,00) x (0,1]; and
3) (r,8) € (0,1] x (1,00).

In the case 1), we make use of the explicit formula for § on the interval (0, 1]

to obtain §(r o 6)
o ptl ptl
< (2p) 7 (0(0)) ¥ .
Lol < o )
We have used the condition p > 0. In the case 2), we have r > 1 whence
lrof| >108.

As rof <1, it follows that
!
5 (7/“ 06) < /1
) (T) pe(0,1] |5 (P)|
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Finally, in the case 3), we have § > 1 implying r o > r o 1. Since r > 1 and
rof <1, we get
§'(rod) < §(rol)
o(r)  —|d(r)]

= (1+™)5
ptl
< (2p)7

independently of §. Combining the above estimates, we arrive at the first
estimate of (2.3.3). Moreover,

D?§'(r) = const(j) r* §'(r)

for r € (0, 1], hence § meets (3.3.6).
0

Example 3.3.3 The diffeomorphism of Example 2.1.3 satisfies both (2.3.3)
and (3.3.6). This is verified as in the preceding example.
0

The conditions (1.9.1) and (3.3.6) guarantee that As(r, o) is a weight func-
tion slowly varying at the point r = 0.

From what has already been proved it follows that the operator (3.3.1) can
be thought of as acting from H.,(As;y, 1) to Hy(As—m; v, — m).

In this section we indicate how the results of Section 2.4 highlight the
problem of local invertibility of A. To this end, we first treat this problem
for A with coefficients “frozen” at any point y° along the edge R?% Namely,
consider the operator

Ap = (@)™ Y agi(y’,r) DD}
|8]+5<m
acting from H*V#(W) to H*=™7#=" (W), for any s,v,u € R. By the above,
Ay maps Hy,(Ag; v, 1) to Hy(As_pm; vy, ¢t —m), hence it can be specified within
the class OP Sy (s, As—m ). The symbol of this operator is easily seen to be

oa,(r0) = ()" Y agi(y’,r) o’ DY,
|5l +5<m

(r,0) € T*R4. Moreover, the estimates (3.3.2) imply that 04, varies slowly
as r — 0.

In what follows, a so-called “compressed” symbol of A with respect to
action in both y and r variables proves to be of great importance. It is given

by

a(A)(y.rime)= Y ag;ly,r)n’ o, (3.3.7)
|8]+i<m
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for (y,r;n,0) € T*(R? x R;). Thus, n and p substitute the totally character-
istic derivatives D, and D,, respectively.

By the very construction, o(A) is a € function on T (R? x R} ) taking
its values in the space of differential operators of order m on B. Note that
o (A) is actually C* up to r = 0 if so are the coefficients of A.

We also apply the symbol mapping o to our weight functions As(r, o) by

o(As)(,0) = (1 +Inf* + 0* + Ap) ™",
Theorem 3.3.4 In order that Ayp: H¥"H (W) — H*=™ 4= (W) be locally

invertible at r = 0 it is necessary and sufficient that there be an ¢ > 0 such
that the symbol o(A)(y°,r;n, 0 +17v): H*(B) — H* ™ (B) be invertible for all
(r.n;0) € (0,6) x R™*, and

( S)ug . lo(Xs)(n, 0)a(A) (i, 0+ 7)o (Asim ) (5 0) || 2(1208)) < 00
0,e)xRaetl
(3.3.8)

Proof. Indeed, the estimate (3.3.8) is equivalent to the estimate

sup [[As(r, 0)o (r, 0+ 17)A (7 0) | eqraaxsy) < oo,
(0,e) xR Y
as 1s easy to see by applying the Fourier transform in y € RY Thus, Theo-
rem 3.3.4 is a direct consequence of Theorem 2.4.1.
O
The condition (3.3.8) implies that o(A)(y°, r;n, o+i7) is an elliptic operator
on the manifold B, for any (n,0) € R uniformly in r € (0,¢). Under
a stronger condition on A, Theorem 3.3.4 can be reformulated without any
weight functions.

Corollary 3.3.5 Suppose o(A)(y°,r;n, 0+ 17) is an elliptic operator on
B with parameter (n,0) € R uniformly in r > 0 small enough. Then,
Ayp o HVHW) — HP70#= (W) s locally invertible at v = 0 if and only
if there exists ¢ > 0 such that o(A)(y°,r;n, 0 +iv): H(B) — H*"™(B) is
invertible for all (r,n,0) € (0,¢) x R and

S?P) lo(A) "m0+ V)| c(rre—m(B),H(B)) < 00 (3.3.9)
re(0,e

Proof. Since
o (A) " (y°, iy 0 + 19| cgae—m(B),m2(8))
< e |lo(As)(m,0)a(A) " (Yo rim, 0 4 19)o0(AZsrm) (0, 0) || 222 (B))

with
‘G = HU()‘—S)(nvQ)H/L(L?(B),HS(B)),
2 = |lo(Asem)(n, 0) HL‘(HS—’"(B),L?(B))a
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estimate (3.3.8) implies estimate (3.3.9).

Conversely, a(Xs—n ) (1, 0)o(A)(y°, 731, o+i7)a(As)(n, o) is an elliptic pseu-
dodifferential operator of order zero with parameter (n, o) € R on B, uni-
formly in r € (0,e). From standard composition formulas for parameter-
dependent pseudodifferential operators (cf. Shubin [Shu87]) it follows that
there is an R > 0 such that o(A)(y% r;n, 0+ 77) is invertible for all r € (0, ¢)
and (n, o) € R with |(n, 0)| > R, and

up lo(As) (. ) (A) (" s, 0+ i7)0 (Ao ) (1, 0) || cz2(8)) < 00
re(0,e
|(n,0)|>R
This gives (3.3.8) for (n, 0) € R4*! large enough. On the other hand, for those
(n,0) € R which meet |(1, 0)| < R, the estimate (3.3.8) follows from (3.3.9).
O
It is clear that the exponential estimate of Theorem 2.4.2 holds for solutions
of Apu = f, too. We skip the formulation because the result is actually valid
for solutions of the “perturbed” equation Au = f. The proof of this takes,
however, much more efforts including a localisation procedure (cf. Section 3.4).

Example 3.3.6 Let us endow the surface W with the Riemannian metric
induced by the embedding W — R? x R"*!. We require § to satisfy (3.2.9).
When combined with (3.3.6) for 8 = 1, this gives f(0) = 0 because

D .
5= iof —rDf.
Hence it follows, by Proposition 3.2.2, that the Laplace operator A on W takes
the form

st () o)+ () )

in the coordinates (y,r,0) € R? x Ry x B, modulo operators of small local
norm near the edge r = 0. Here, f(r) specifies the degeneracy of W along the
edge R? whereas ¢(r) specifies the oscillation of W near the edge. We regard

A as acting from H*7V*(W) to H*=?7#=2(W), for s,v,u € R. The compressed
symbol of the Laplace operator is

. . Y
o(A)(y.rins e +iv) =l + (e +iv)" + <%> Ap,
where (1,0) € R?!. As 0 is a point of the spectrum of Ag, the condition
of Theorem 3.3.4 is satisfied for no v € R, because |n|*> + (o + i7)? vanishes
whenever |n| = |y| and p = 0. Thus, Theorem 3.3.4 shows that the Laplace
operator on W is never locally invertible near the edge in the scale of weighted

Sobolev spaces (H*7V*(W))

5,7, pER”

4
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Example 3.3.7 On the other hand, let us consider the Schrodinger oper-
ator on the surface W,

A=A+ p(r),

the potential p being of the form p(r) = (¢'(r))*a(r) with a(r) a C* function
on R, satisfying

Dia(r) < o, jeZy

lim Da = 0.

r—0

In this case we get

. . I
A rin e+ in) = P+ (o 7+ (5 ) Ba+atr)

for (n,0) € RITLIf
limionf a(r) >0, (3.3.10)
r—r

then it is evident that the conditions of Theorem 3.3.4 are satisfied with v = 0,
for each s € R. It follows that the Schrodinger operator, when acting from
H*"(W) to H*=*%#=2(W), is locally invertible at r = 0. We now assume
that a stronger condition than (3.3.10) is fulfilled, namely

inf a(r)>k° (3.3.11)

where k > 0. Then the operator-valued function o(A)(y,r;n, 0+ iv) is invert-
ible for all (n, ) € Rt uniformly in r € (0,¢), provided that v € (—k, k).
Consequently, for any s, € R and v € (—k, k), the Schrédinger operator,
if acting from H*7#(W) to H*=*7#=2(W), is locally invertible near the edge
r = 0. Furthermore, as the coefficients of A are independent of y, we can make
efficient use of Theorem 2.4.2. Thus, if —k < 7' <~" < k and u € H>"*(W)
satisfies Au = f with f € H*=27"#=2(W) near r = 0, then u € H*""*(W)
near r = 0.

4

3.4 Fredholm property of differential opera-
tors on manifolds with oscillating cuspidal
edges

When discussing pseudodifferential operators on manifolds with singularities,

we will confine ourselves to those manifolds which are embedded into an Eu-

clidean space. The same arguments still go for general manifolds where we
should take more care of rigorous definitions.
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Let M be a compact closed topological manifold in RV, and S a submani-
fold of M. We assume that

1) M\ S is a C* submanifold of RY \ §;

2) S is a C* submanifold of RY; and

3) for each point p € S there are a neighbourhood O in R and a diffeomor-
phism % of O to an open set in R, such that & ((M \ S)N O) = B(y° &) x Cés),

where

B(y’,e) = {yeRi: Jy—y° <e},
C = {rS(a(r)f(r)0) € R™': v € (0,¢), 6 € B}

Using the cylindrical coordinates (y,r,#) near the edge S actually leads to
a compact ' manifold with boundary, M. Roughly speaking, it is obtained
from M by identifying any neighbourhood (M \ S)N O in 3) with its image in
B(y° &) x (0,&) x B under the diffeomorphism .. By the very construction,
there is a blow-down mapping b: M — M which restricts to a diffeomorphism

M\ oM S M \ S. Moreover, b gives M the structure of a fibred bundle
over S, the fibre being B. Note that M bears a C* structure with edges
induced from R?, C* functions on M being the restrictions of C°° near M
in RY. Under the blow-down mapping, this structure is pulled back to M.
Thus, various degeneracies of M along S may be specified within various C'*
structures on a compact closed manifold with boundary. We have therefore
arrived at the slogan, the analysis on a closed manifold with edges reduces to
that on a C'* manifold with boundary.

As described above, ‘typical” differential operators A on M are those differ-
ential operators on the smooth part M \ S of M, which take the form (3.3.1)
in the coordinates (y,r,0) € B(y°,¢) x (0,¢) x B near S, with coefficients ag ;
meeting (3.3.2). More precisely, ag ; are required to fulfil

crp(ajs),
0

IDE Dy a5y 7) | cirre(m) mre-tm=1et-2 8))
W |[Dy a5y, )| c(ar(m), e=tn-101-0 (8))

1A

for all k € Z4 and B € Z%, uniformly in y on compact subsets of B(y’,¢) and
r € (0,¢], e <e.

For s,v, 1 € R, the weighted Sobolev spaces H*V#(M) on M are introduced
in a familiar way by gluing together the usual Sobolev spaces H{ (M \ 5) on
the smooth part of M with the weighted Sobolev spaces H*"*(W) of (3.3.3)
near S. Namely, fix a finite covering (O,) of M by open sets in R, such that
every M N O, lies in the domain of some chart on M. These charts are of
two types: either O, NS = () and the local coordinates in M N O, are those
on an open set in R4™M or O, N S # () and the local coordinates in M N O,
are (y,r,0) € B(y% ¢) x (0,e) x B. Pick a C'"™ partition of unity on M, (¢, ),
subordinate to the covering (O,). Then, a distribution v on M \ S is said
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to belong to H*"(M) if p,u € H*(RI™M) for the charts away from S and
w,u € H*" (W) for the charts intersecting S. It is immaterial which charts
and partition of unity on M we choose to define H*7*(M) as long as transition
diffeomorphisms obey the structure of M. Moreover, the space H*?*(M) can
be given a Hilbert structure in an evident way.

Obviously, the operator A maps H*V*(M) to H*™™"*~ (M), for any
5,7, 10 € R.

Given any point p € 5, the operator A possesses an operator-valued symbol
a(A)(y,r;n, 0) in local coordinates (y,r,0) € B(y°,¢) x (0,¢) x B near p. Here,
y° = h(p). The changes of local coordinates on M obeying the structure of M
are of the form

Y Yo(y) + rYi(y,r.0),
R = rexpRi(y,r0),
© = O(y,r,0),

where Y1, Ry and O are smooth up to r = 0 and O(y, r, ) is a diffeomorphism
of B, for any fixed y and r. Under such a change, we have

D, = (§(R)/8(r)(0Y/dy)" Dy,
D, = (§(R)/3(r) ()" Dy + (exp 1) Di)
Dy = (90/00)" Do

modulo operators of infinitesimal local norm as r — 0. Hence it follows im-
mediately that

o ((Y,R,0). A) (Y, RBin,0) = ©.0(A) (y,r; T(n, 0)) (3.4.1)

modulo operators of small local norm at B = 0, where O, means the push-
forward operator on B under the diffeomorphism O, for fixed y and r, and

Tmmwwﬂmww»(wﬁﬁwT ")

exp Ry 0

The equality (3.4.1) shows that whether or not the compressed symbol o(A) is
invertible at a point p € S does not depend on the choice of local coordinates
on M to evaluate it.

Theorem 3.4.1 Let s,y,u € R. Then, A: H*"H(M) — H*="7H " (M)
is Fredholm if:

1) A is an elliptic operator on M \ S, and

2) for each p € S there exists € > 0 such that o(A)(p,r;n, () is an invertible
operator on B, for any (r,n,() € (0,e) xRIx (R+1v), and the inverse satisfies
(3.3.8).
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Proof. Let the condition 2) be fulfilled. We claim that there exist ¥ >0
and operators Bs(f) and Bs(f) such that

BgJ)AXE = Xs

3.4.2
VABE — (3.4.2)

for all ¢ € (0,£°), where x.(r) is a cut-off function of a collar neighbourhood
of the manifolds S.

Indeed, it follows from 2) that, given any point p € S with local coordinates
(y°,0), the operator A, with coefficients frozen at y° is locally invertible.

Hence there are operators Ty(é:)s and Ty(fl such that
L
T(O lApoE = Xe

A

XEAyOTy((fz- = X

for all € > 0 small enough (in accordance with y°).
A familiar argument based on smoothness of the coefficients along the edge

shows that we can find a neighbourhood O, of p on S and operators Bz(/é:)s and
Bg(/f)s such that
(¢p @ Xs) = ¢p & Xe, (343)

(¢p®xs)AB( L= o
where ¢, € C2 (0,) is a cut-off function at the point p. Note that the

domain of ¢ in (3. Z 3) depends on y°.

When p varies over S, the neighbourhoods O, cover S. Since S is com-
pact, there is a finite subcovering O, , v = 1,..., N. Fix a partition of unity
(¥0),—;... n on S subordinate to this covering.

Choose ¢? > 0 small enough, so that y..(r)y.o(r) = Yeo(r) for each v =

1,...,N. Then,
By &Y (¢U®X€O) = ¢U®X€O7
( © x) ABEL = 4, ® v

forany v =1,..., V.

Set ¢, = ;by@xs As Ey LYy =1, we obtain Ey | Puve = X for e >0
small enough.
Introducing the operator

L
Bl(/ufsuc,ol,@,

] =

P =

v=1

we get

A ZBy EVAS«QVE‘I'ZB 991/67 ]
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We keep ¢ < € small enough, such that ¢, .00,. = ¢,., whence

L L
B:EU?EVAS«QV75 — B:l(/V?EVA (901460 S‘QU,E)
= Pre-
On the other hand,

i [[pv,e0 Allleareem vy re=mau-man) = 0

for every v =1,..., N, as is easy to check. Therefore,
PE(L)A = Xe + Rs

where

i {[ Bl caennany = 0.

Pick an € > 0 such that ||Reol|zs~n(ar)) < 1. Then the operator 1 + R.o
is invertible within the calculus. If moreover ¢ < &£° is sufficiently small, so
that y.oy. = v., then

(14 Ro) ' PP A, = (14 Ro) ™ (veo + Reo) ve
= Xe

ie., Bs(f) = (1+ Ro)™" PE(OL) is a local left inverse of A, as is required in (3.4.2).

In the same way we can construct a local right inverse of A satisfying the
second equality in (3.4.2).

We now proceed by pasting together these local inverses with a parametrix
of A on the smooth part of M. Namely, the condition 1) makes it legitimate
to apply the usual elliptic theory away from the edge on M to deduce that, for
any ¢ > 0, there are classical pseudodifferential operators QﬁL) and QﬁR) such
that

QA=) = (1—xo)+ KL,
(1= x) AQ = (1= ) + KL,

both R. and R being compact operators. Set

R = By + QP (1 - x2),

= 50

RDA = BBAv, + QWAL= vo)+ B [x., Al + QU [1 — x., A]

£ 0 &0

= 1+ K.+ 5.,

K. = K. +QW[1—., A4,
S. = BU[y., A

0
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It is clear that K. is a compact operator, for each ¢ > 0 small enough.
Furthermore, the operator (1+4.5.) is invertible, for any sufficiently small € > 0,
because

i [Dxe, Alll e man), pre=man=—mn) = 0.

Hence it follows that (1 + SE)_I RﬁL), for e < 1, is a left regulariser of A.

The same reasoning applies to prove the existence of a right regulariser,
which completes the proof.

0

Note that if the coefficients ag ;(y,r) of A are C* up to r = 0, then
the condition 2) just amounts to saying that o(A)(p,0;7n,() is an invertible
operator on B, for any (n,() € R? x (R 4 ¢y). Indeed, o(A)(p,r;n,() is a
perturbation of o(A)(p,0;n,() by an operator of small local norm as r» — 0.

Theorem 3.4.2 Let the condition 2) of Theorem 3.4.1 hold uniformly in ~
on compact intervals in (a,b). If a < <~" < b and u € H*'#(M) satisfies
Au = f with f € H=™V" 4= (M), then u € H*Y"*(M).

Proof. In the proof of Theorem 3.4.1 we have constructed a local left
inverse for A near the singular manifold S. This operator Bs(él) bears a symbol
analytic in the strip R + i(a,b), and thus extends to a continuous mapping
He=mvm=m (M) — H*"*(M), for each v € (a,b). If ¢ > 0 is small enough,
then

Yell = B4 (1 —xo)u+ B(L)f.

We have (1 — y)u € H*"""*(M) and f € H*=™""#=™(M). By the map-
ping properties of A and B(L), we deduce that u € H*"#(M). The proof is

60
complete.

4

Example 3.4.3 Let us equip (the smooth part of) the manifold M with
the Riemannian metric induced by the embedding M — RY. Consider the
Schrodinger operator on M\ S

A=A+p,

where p is a O function on M \ S. We require the potential to be of the form
ply,r,0) = (8'(r))?a(y,r,8) in local coordinates (y,r,0) € B(y° ¢) x (0,e) x B
near S, with a(y,r, ) satisfying

|DVD] Dg a(y,r,0)

| < e
11_1()1% D,a(y,r,0) =
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for all multi-indices 3, j and «, uniformly in y on compact subsets of B(y°, ¢),
r € (0,¢], € < e, and § on compact subsets of the domains of local charts on

B. If moreover
limiglf aly,r,0) > k*
r—

where k > 0 (cf. (3.3.11)), then A: H*"*(M) — H**7+#=2(M) is a Fredholm
operator for all s, € R and v € (=, k). This follows from Theorem 3.4.1 and
what has already been proved in Example 3.3.7. Furthermore, any solution
u € H*~*O0r(M) of the homogeneous equation Au = 0 actually belongs to
HooR=0n (M.

O



Chapter 4

Boundary Value Problems in
Domains with Cuspidal Wedges

4.1 Domains with cuspidal wedges

Let D be a domain in R?"*! with a compact closure D, and S be a closed
subset of the boundary of D. We assume that

1) 9D\ S is a O submanifold of R#t"+1\

2) S is a €™ submanifold of R?*"*! of dimension ¢; and

3) for any point p € S there are a neighbourhood O in Rt and a
diffeomorphism h of O to an open set in R4T"*+! such that A(DNO) = B(0,¢) x

Cés), where

B(0,e) = {yeR?: |yl <e},
D= {rS(6(n)f(r)0) R r € (0,¢), 0 € B

It is worth pointing out that, in contrast to the definition of a closed man-
ifold with edges (cf. Section 3.4), B is here a relatively compact domain in R”
with smooth boundary.

The functions f(r) and ¢(r) have been introduced in Section 3.1. They
control the degeneracy of D along the edge S and the oscillation of D near the
edge 5, respectively.

4.2 Boundary value problems in a canonical
domain

Recall that W = R? x () is referred to as a canonical oscillating cuspidal
wedge, Cy being given by (3.1.3) with B a bounded domain in R™ with C'*

boundary. We also call W the canonical domain.

57
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Consider a boundary value problem in the canonical domain W with bound-
ary data given on the smooth part of 9W. Namely,

{Au:f in W,

Biu = u; on IW\ (R?x {0}), (4.2.1)

where A is a differential operator in W and (B;) a system of differential oper-
ators defined in a neighbourhood of 9W \ (R? x {0}).
The pull-backs of A and (B;) under cylindrical coordinates (3.2.2) in W
are of the form
A = (§(r))" ag (y,r) DD
| (6'(r)) |ﬁ|§5m 5.i(y,7)Dy ﬁm |
T B; = (§(r))™ b; 5.;(y,r) DD,
(6'(r)) WHJZSW 4.i(y;7)DyD;
where ag ; is a C* function of (y,r) € R? x Ry whose values are differential
operators of order m—|3|—jon B, and b; s ; is a C* function of (y,r) € RIxR 4
whose values are differential operators of order m; —|3|—j in a neighbourhood
of 0B. When passing to the cylindrical coordinates, we are actually lifted to
the infinite “stretched” wedge W = R? x R, x B.

In order to apply the theory of Chapter 2, we require the coefficients «a; ,
and b; ;. to satisfy (3.3.2) uniformly in (y,r) € R? x R,.

For s > 0 and v, € R, we introduce weighted Sobolev spaces H*7V#(W)
just as in (3.3.3), with B being now a domain in R™ If s > 1/2, then we
define the space H*~'/27%#(9W) to consist of the traces on W \ (R? x {0})
of functions in H*"*(W). It is a Hilbert spaces under the canonical quotient
norm.

Assuming s > maxm; + 1/2, we assign an operator

Hs—m,%u—m (W)

( 4 ): Ho (W) = & (4.2.2)
Grow b; @Hs—mi—l/lmu—mi(aw)

to the boundary value problem (4.2.1), where rasy means restriction to (the
smooth part of) the boundary of W. Denote the operator (4.2.2) by A. It can
be written as a weighted pseudodifferential operator over the half-line R, with
an operator-valued symbol a(r, () taking its values in the space L(Hy, Hz),
where

H, = H*(R?x B),
Hy = H*™(R'x B)® (& H* =™~ Y%(R? x 9B))

(cf. the remark after Proposition 2.3.3). In fact, A = (¢'(r))™op,,,(a(r,())

where 4
> ap(y.r) ¢’ Dy

_ B+ <m ;
a(rv C) = D E rsB O bi,ﬁ,j(yv T) ¢’ Dg
|81+3<mi
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Consider the weight functions
M(ro) = ((1+(8()72A, + 0)F + As)
Na(ro) = (L4028 + ) +A5) & (82, 1(r0))

where Ag: H°(B) — H°™'(B), 0 > —1/2, is the order-reducing operator
described in Example 1.9.5, and

1
s—m;—g

M0 = (1 (108, 4 6+ Bam) 5

(cf. (3.3.5)). If 6(r) meets the first condition of (2.3.3), then

)\1(7“,@) € Aw(Hh]E[l)v
)\2(r79) € Aw(H27H2)

where ~
H, = L*R‘x B),
I, = L}(R'x B)& (3 L*(R? x dB)).

It is a standard matter to verify that a(r, o + iv) € Sysv(A1, Ag) for each
v e R.

Having disposed of this preliminary step, we now turn to the problem of
local invertibility of the boundary value problem A near the edge RY, i.e., at
r=0.

We shall make two standing assumptions on the functions ¢t = §(r) under
consideration, namely (1.9.1) and (3.3.6). These guarantee that both Ai(r, o)
and Ay(r, o) vary slowly as r — 0.

From Proposition 2.3.4 it follows that the operator A can be thought of as
acting from H,, (A1;v, 1) to Hy(Ag;y, 0 —m).

In this section, we discuss conditions of local invertibility for A with coef-
ficients “frozen” at any point y° € R% Similarly to Section 3.3, we write Ao
for this operator. It still belongs to OP Sy ev(A1, A2).

It was Feigin [Fei72] who observed that the local invertibility of A at r =0
is controlled by the “compressed” symbol of A with respect to action in y and

r. It is defined by

> ag(y,r)n’¢

o) = IBl+i<m |
O'(A) (y7r7777g) - @ Z rag O bi7ﬁ7]‘(y,r) nﬁC] y (423)
[Bl+7<m;

for (y,r;n,0) € T*(R? x Ry). Thus,
H*~™(B)

o(A)(y,rn,e0): H(B)— @
D Hs—m,‘—l/?(aB)
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is a C'™ function on T (R? x R4 ) taking its values in the space of boundary
value problems on B.

We also apply the symbol mapping o to our weight functions A;(r, o), for
J =12, by

(M), 0) = ((n.0) +AB)", 1
o(A)(me) = ((n,0) +A8)"" & (69 ((n,0)* + Aop)” 2 ) :
Theorem 4.2.1 Let s € Zy satisfy s > maxm;, and v, € R. Then, Ayp

acting as in (4.2.2) is locally invertible at r = 0 if and only if there exists ¢ > 0
such that o(A)(y°,r;n, 0+ 17) is invertible for all (r,n,0) € (0,e) x R and

sup  [lo(A) (. 0)o(A) T Y0 im0+ iy)a(A) (o) < oo (4.2.4)

(0,6) xRa+1

where || - || means the operator norm in L (L*(B) & (& L*(0B)), L*(B)).

Proof. Applying the Fourier transform in y € R? shows that the estimate

(3.3.8) just amounts to the estimate
sup [[A(r, 0)o ! (r0 + i) ()l iy iy < o0
(0,e) xR Y
adapting (2.4.2) to our problem. Moreover, our assumptions on ¢ guarantee
that the hypotheses of Theorem 2.4.1 are fulfilled. Consequently, the desired
conclusion follows from Theorem 2.4.1.
O

For elliptic boundary value problems A, the weight functions A;(r, p) and

Aa(r, 0) can be removed from the condition (4.2.4).

Corollary 4.2.2 Suppose o(A)(y°,r;n, 0+i7) is an elliptic boundary value
problem on B with parameter (n, ) € R, uniformly in r > 0 small enough.
Then, the operator Ay is locally invertible at v = 0 if and only if there exists
e > 0 such that o(A)(y°, r;n, 0+17) is invertible for all (r,n,0) € (0,¢) x R,
and

sup. lo(A) M y°, im0 + i) < oo (4.2.5)
re(0,e

||| meaning the operator norm in L (Hs_m(B) © (@ H=™~Y2OB)), HS(B)>.

Proof. Asis shown in the proof of Corollary 3.3.5, estimate (4.2.4) implies
estimate (4.2.5). On the other hand, the latter implies the former for (1, o)
on any ball in R?** while for |, o| large enough the estimate (4.2.4) is a
consequence of the parameter-dependent ellipticity.

O

As the symbols of differential boundary value problems are polynomials in
¢, Theorem 2.4.2 applies to the operator Ay. This results in an exponential
estimate for solutions of the problem with coefficients frozen along the edge.



Boundary Value Problems 61

Theorem 4.2.3 Under the hypotheses of Theorem 4.2.1, let moreover
a(A)(y°, r;n, ) be invertible for all r € (0,¢) and (n,() € R? x (R + i(a,b))
and the estimate (4.2.4) hold uniformly with respect to v on compact intervals
in (a,b). Then, any function v € H*>*TOH(W) satisfying Apu = [ with [ €
He=mb=0u (W (@ Hs_mi_l/z’b_o’“_mi(QW» near r = 0, is actually of class
H#=94(W) near r = 0.

As but two examples we consider the classical Dirichlet and Neumann prob-
lems for the Schrodinger operator.

Example 4.2.4 Suppose that the function f(r) specifying the degeneracy
of W along the edge meets (3.2.9). As mentioned, this implies f(0) = 0. The
Dirichlet problem in W is

Au = f in W7
u = uy on IW\ (R?x {0}),

where f and ug are given functions on W and the smooth part of W, re-
spectively. The operator A of this boundary value problem can be thought of
as acting from H*V*(W) to H*= 2V =2(W) @ H*~'/274(9W), for each integer
s >0 and v, € R. By Proposition 3.2.2, the compressed symbol of A is given

by
U(A)(%r;mo — ( |77| ‘|'C + (Qb(r))_ AB )

TaB

modulo operators of small local norm as » — 0, ¢(r) being the function control-
ling the oscillation of W near the edge. Denote by k? > 0 the first eigenvalue
of the Laplacian Ag acting on functions v € H*(B) which satisfy rapu = 0.
Then, Corollary 4.2.2 enables us to conclude that the operator A is locally
invertible near the edge r = 0 if

k k
__<7< K
¥o ¥o

where

¢o = liminf ¢(r)

r—0

> 0.

Moreover, Theorem 4.2.3 shows that if —k/dg < 7' < 4" < k/¢g, then any
solution u € H*Y#(W) of the homogeneous problem Au = 0 actually belongs
to Ho"m(W).

O
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Note that the Neumann problem for the Laplacian in the canonical domain
is not locally invertible at » = 0 in any space H*"#(W), for 0 is an eigenvalue
of the Laplacian Ap acting on functions u which satisfy (d/dn)u = 0 on the
boundary of B.

Example 4.2.5 Let us consider the boundary value problem

{ (A+p(r))u = f in W,
Jufon = uy on OW\ (R?x{0}),

where f and u; are given functions on W and the smooth part of W, respec-
tively. We assume that the potential p(r) is of the form p(r) = (§'(r))? a(r),
with a(r) meeting the conditions of Example 3.3.7. In particular, we require

liminf a(r) = k?
r—0

> 0.

The operator A of this boundary value problem can be regarded as acting from
H>"H (W) to HS_Q’%“_Q(W) @ HS_?’/Q’%“_I(aW), for each integer s > 1 and
v, € R. Once again we invoke Proposition 3.2.2 to see that the compressed
symbol of A is given by

o (A)(y, i, C) = ( il ;%)/—;SB T a(r) )

up to an operator of small local norm as r — 0. If |y| < k, then the operator-
valued function

H*(B)
o(A)y,rm,0+1v): H(B)— P
H*=3*(9B)

is invertible for all (1, o) € R4, uniformly in r € Ry, and the inverse fulfills
(4.2.5). Thus, Corollary 4.2.2 applies to show that the Neumann problem for
the Schrodinger operator on W, when posed in any weighted space H*7* (W)
with v € (—k, k), is locally invertible near the edge r = 0.

O

4.3 Fredholm property of a boundary value
problem in a domain with cuspidal wedges

We now turn to boundary value problems in a domain D C RY, N = g+n+1,
with a cuspidal edge S of dimension ¢ on the boundary, as is described in
Section 4.1.
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Blowing up D along the edge S by using the cylindrical coordinates (y,r,6)
near S does not remove the singularity. What we obtain in this way, is still a
domain with edges on the boundary. However, this new domain is of product
type close to the singularities on the boundary. In fact, it bears the structure
of a fibred bundle over the edge S, whose typical fibre is the semicylinder
Ry x B over B. This “resolution of singularities” simplifies the analysis of
pseudodifferential operators near S in D.

We consider a boundary value problem

Au = f 1n D,
{ Biu = u; on 9D\ S, (4.3.1)

where A is a differential operator in D and (B;) a system of differential opera-
tors defined near 9D\ S in D. The coefficients of both A and (B;) are assumed
to be €' functions up to the smooth part of 9D.

The pull-backs of A and (B;) under cylindrical coordinates (3.2.2) close to
S are of the form

mA = (&'(r))" Y ap,(y.r)DIDI,
|5l +5<m 4

B = (0(r)™ Y big,(y.r)DIDI,
|Bl4+5<m;

where as ; is a C* function of (y,r) € B(0,¢) x (0,¢) whose values are dif-
ferential operators of order m — || — j on B, and b; 5, is a C° function
of (y,r) € B(0,e) x (0,e) whose values are differential operators of order
m;—|3|—J in a neighbourhood of B. We require the coefficients a; , and b, ; ,
to satisfy (3.3.2) uniformly in y on compact subsets of B(0,¢) and r € (0, €],
€< Eé.

For s > 0 and v,u € R, the weighted Sobolev spaces H*"*(D) on D
are introduced by gluing together the local Sobolev spaces Hy (D) with the
weighted Sobolev spaces H*"#(W) of (3.3.3).

If s > 1/2, then H*~'/274(9D) stands for the space formed by the traces
on D\ S of functions in H*"#(D). It is a Hilbert spaces under the canonical
quotient norm. When regarded as a normed space, H*~'/274(dD) coincides
with the weighted Sobolev space on the surface 9D defined in Section 3.4.

Assuming s > maxm; + 1/2, we assign an operator

A Hs—m,%u—m(p)
A= ( 5 ): H*"(D) — & (4.3.2)
Brap i o Hs—mi—l/Qmu—mi(aD)

to the boundary value problem (4.3.1), rap being restriction to (the smooth
part of ) the boundary of D.
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For any point p € S, we can write A in the cylindrical coordinates near p in
D and define the “compressed” symbol of A by formula (4.2.3). Analysis simi-
lar to that in Section 3.4 actually shows that the invertibility of o(A)(p, r;n, o)
is independent of the particular choice of local coordinates near p to evaluate

o(A).

Theorem 4.3.1 Let s be an integer satisfying s > maxm;, and v,pu € R.
Then, the operator (4.3.2) is Fredholm if:

1) A is an elliptic boundary value problem away from the edge S on the
boundary of D, and

2) for each p € S there exists € > 0 such that o(A)(p,r;n, () is an invertible
operator on B, for any (r,n,() € (0,e) xRIx (R+1v), and the inverse satisfies
(4.2.4).

Proof. The proof is based on the standard localisation procedure and
Theorem 4.2.1 (cf. the proof of Theorem 3.4.1).
O
If o(A)(y,r;n, 0+ iv) is an elliptic boundary value problem on B with
parameter (1, ) € R?"! uniformly in r > 0 small enough, then condition 2) of
Theorem 4.3.1 just amounts to saying that o(A)(p,r;n, 0 +1v) is an invertible
operator on B for all (p,r) € S x (0,¢) and (,0) € Rt and the inverse
satisfies
. lo(A) ™ (py 3,0+ i7)]| < o0, (4.3.3)
where || - || means the norm in £ (Hs_m(B) ® (B Hs_m"_l/z(@B)), HS(B)>. If
moreover the condition (4.3.3) holds uniformly in 4 on compact intervals in
(a,b), then the conclusion of Theorem 4.2.3 is valid with W replaced by D and
Ao replaced by A.

Example 4.3.2 Consider the Dirichlet problem

Au = f in D,
u = uy on 9D\ S,

where f and ug are given functions on D and 9D\ S, respectively. The operator
A of this boundary value problem can be regarded as acting from H*"*(D) to
He=201=2(D) @ H5=Y/27#(9D), for any integer s > 0 and v, u € R. Combining
Theorem 4.3.1 with Example 4.2.4 we deduce that the Dirichlet problem is

Fredholm if
k k
—— < “ < —,
%o %o

where &k > 0 is the first eigenvalue of the Laplacian Ag which acts on functions
u € H*(B) satisfying ropu = 0, and ¢¢ = liminf, o ¢(r). Furthermore, any
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solution u € HS’_%—l_O’“(M) of the homogeneous problem Au = 0 is actually
k
of the class Hoo’%_o’“(M).
O

We leave it to the reader to examine in a similar way the Neumann problem
for the Schrodinger operator in D (cf. Example 4.2.5).



Appendix A

Hardy-Littlewood inequality on
the half-line

Lemma A.0.3 Let ®(t) be a C* function on a ray (T,00) with values in
a Banach space H, such that

199 ((00y, iy = sup [0V (1)1
te(T,00)

be finite, for y = 0,1,2. Then,

197 2o ((7,00),1) < \/g\/H‘DHLoo((T,oo»H)H‘D”HL%((T,oo),H)-
Proof. We have
(e7'0'(1)) = —e7'O"(t) + P (1),
and so integration by parts gives
eTIO(t) = /Oo e 00" (0)do — /Oo e~ 00'(0)do
¢ ¢
= /Oo e~"®"(0)dO + e D(t) — /Oo e ®(0)do,
¢ ¢

for t € (T,00). Hence it follows that

() = / " (0)dO + B(t) — / e ®(0)do.
¢ ¢
Let us introduce the function

t :
k(t):{e if t<0;

0 if t>0,

66
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then the above equality for ®’ can be rewritten in the form
(1) = (k+ ") () + ®(t) — (k+ @) (1),

for t € (T,00). Since ||k||z1@) = 1, the well-known estimate for convolutions
yields
D] oo ((T,00), 1) < 2P Lo (T ,00),1) + (197 Los ((T,00), )
We now apply this estimate to the family of functions ®(7 + A(t — T")) on
(T, 00), parametrised by A € Ry. This gives

MD| o (1,00), 1) < 21| @] Lo (7,000, 0) + A7 |] oo (7,000, 1)

or

2
||| oo ((7,00),1) < 5 NP noe ((T00), 1) + AP || oo ((7,00), 1)

for any A > 0.

Taking the minimum over A > 0 on the right hand side, we arrive at the
desired estimate.

4
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