BENDING OF AN ORTHOTROPIC CUSPED PLATE GEORGE V. JAIANI

I.Vekua Institute of Applied Mathematics of Tbilisi State University

Abstract

The bending of an orthotropic cusped plate in energetic and weighted Sobolev spaces has been considered. The existence and uniqueness of generalized and weak solutions of admissible boundary value problems (BVPs) have been investigated.

AMS subject CLASSIFICATION: primary 35J40; secondary 73C99 Key Words - Elliptic equation with order degeneration, energetic space, weighted Sobolev space, bending of an orthotropic cusped plate

\section*{CONTENTS} Introduction 1 1. Cylindrical Bending 3 2. Bending in the Energetic Space 10 3. On a Modification of the Lax-Milgram theorem 16 4. Bending in the Weighted Sobolev Space 19 5. The case $D_{0}=0(\varkappa>4)$ 28 References 30

INTRODUCTION

Let $O x_{1} x_{2} x_{3}$ be the Cartesian coordinate system, and Ω be a domain in the plane $O x_{1} x_{2}$ with a piecewise smooth boundary. The body bounded from upper by the surface $x_{3}=h\left(x_{1}, x_{2}\right) \geq 0,\left(x_{1}, x_{2}\right) \in \Omega$, from lower by the surface $x_{3}=$ $-h\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in \Omega$, from the side by a cylindrical surface parallel to the $x_{3^{-}}$ axis, will be called cusped plate. The points $P \in \partial \Omega$, at which s.c. plate thickness $2 h\left(x_{1}, x_{2}\right)=0$, will be called plate cusps. If $h \in C^{1}(\Omega)$, obviously,

$$
0 \leq L:=\lim _{Q \rightarrow P} \frac{\partial 2 h(Q)}{\partial n} \leq+\infty, \quad Q \in \Omega, \quad P \in \partial \Omega,
$$

provided that the finite or infinite limit L exists; if P is an angular point of the boundary $\partial \Omega$ then under inward to $\partial \Omega$ normal n we mean bisectriss of angle between unilateral tangents to $\partial \Omega$ at P. Ω will be called the projection of the plate. $\partial \Omega$ will be called the plate boundary. On the figures $1-3$ are represented the possible normal sections (profiles) of a symmetric plate at the point P in its neighbourhood.

$L=+\infty$
fig. 1

$0<L<+\infty$ fig. 2

$L=0$
fig. 3

Let us now consider an orthotropic cusped plate.
The equation of the classical bending theory of the orthotropic plates has the form as follows (see [1], p. 364)

$$
\begin{align*}
& J w:=\left(D_{1} w,_{11}\right),,_{11}+\left(D_{2} w, 22\right),{ }_{22}+\left(D_{3} w,,_{22}\right),,_{11}+ \\
& +\left(D_{3} w,{ }_{11}\right),{ }_{22}+4\left(D_{4} w,,_{12}\right),{ }_{12}=f\left(x_{1}, x_{2}\right) \text { in } \Omega \subset R^{2}, \tag{0.1}
\end{align*}
$$

where w is a deflection; f is a lateral load; $D_{i} \in C^{2}(\Omega), i=1,2,3,4$, and

$$
\begin{align*}
D_{i} & :=\frac{2 E_{i} h^{3}}{3}, \quad i=1,2,3, \quad D_{4}:=\frac{2 G h^{3}}{3} ; \\
& D_{\alpha}-D_{3}>0, \quad \alpha=1,2 \quad \text { if } h>0 \tag{0.2}
\end{align*}
$$

(for all known orthotropic plates these last conditions are fulfilled (see [1])); E_{i}, $i=1,2,3$, and G are elastic constants for the orthotropic case; indices after comma mean differentiation with respect to corresponding variables.

In particular, if the plate is isotropic,

$$
E_{\alpha}=\frac{E}{1-\sigma^{2}}, \quad \alpha=1,2, \quad E_{3}=\frac{\sigma E}{1-\sigma^{2}}, \quad G=\frac{E}{2(1+\sigma)},
$$

where E is Young's modulus and σ is Poisson's ratio.
Let $\partial \Omega$ be the piecewise smooth boundary of the domain Ω with a part Γ_{1} lying on the axis $O x_{1}$ and a part Γ_{2} lying in the upper half-plane $x_{2}>0\left(\partial \Omega \equiv \bar{\Gamma}_{1} \cup \bar{\Gamma}_{2}\right)$.

Let further the thickness $2 h>0$ in $\Omega \cup \Gamma_{2}$, and $2 h \geq 0$ on Γ_{1}. Therefore

$$
\begin{equation*}
D_{i}\left(x_{1}, x_{2}\right)>0 \quad \text { in } \Omega \cup \Gamma_{2}, \quad D_{i}\left(x_{1}, x_{2}\right) \geq 0 \quad \text { on } \quad \Gamma_{1}, \quad i=1,2,3,4 . \tag{0.3}
\end{equation*}
$$

In particular case let

$$
\begin{equation*}
D_{1 i} x_{2}^{\varkappa} \leq D_{i}\left(x_{1}, x_{2}\right) \leq D_{2 i} x_{2}^{\varkappa}, \quad i=1,2,3,4, \quad \text { in } \Omega, \tag{0.4}
\end{equation*}
$$

where

$$
D_{\alpha i}=\text { const }>0, \quad \alpha=1,2, \quad i=1,2,3,4, \quad \varkappa=\text { const } \geq 0,
$$

i.e.

$$
\begin{align*}
D_{i}\left(x_{1}, x_{2}\right)=\tilde{D}_{i}\left(x_{1}, x_{2}\right) x_{2}^{\kappa}, & D_{1 i} \leq \tilde{D}_{i}\left(x_{1}, x_{2}\right) \leq D_{2 i} \\
D_{1 \alpha}>D_{23}, & \alpha=1,2 \tag{0.5}
\end{align*}
$$

(otherwise there would exist such points of Ω where (0.2) will be violated). In the case under consideration, (0.1) is an elliptic equation, in general, with order degeneration on Γ_{1}.

We recall (see [1]) that

$$
\begin{align*}
& M_{\alpha}=-\left(D_{\alpha} w,{ }_{\alpha \underline{\alpha}}+D_{3} w,{ }_{\beta \underline{\beta}}\right), \quad \alpha \neq \beta, \quad \alpha, \beta=1,2, \tag{0.6}\\
& M_{12}=-M_{21}=2 D_{4} w,,_{12} \tag{0.7}\\
& Q_{\alpha}=M_{\alpha, \underline{\alpha}}+M_{21, \beta}, \quad \alpha \neq \beta, \quad \alpha, \beta=1,2, \tag{0.8}\\
& Q_{\alpha}^{*}=Q_{\alpha}+M_{21, \beta}, \quad \alpha \neq \beta, \quad \alpha, \beta=1,2, \tag{0.9}
\end{align*}
$$

where M_{α} are bending moments, $M_{\alpha \beta}, \alpha \neq \beta$, are twisting moments, Q_{α} are shearing forces and Q_{α}^{*} are generalized shearing forces (bar under repeated indices means that we do not sum with respect to these indices).

In points of the plate boundary, where the thickness vanishes, all quantities will be defined as limits from inside of Ω.

1-CYLINDRICAL BENDING

In this case all quantities depend e.g. only on x_{2}. Hence (0.1) will have the form as follows:

$$
\begin{equation*}
\left(D_{2} w_{, 22}\right)_{, 22}=f\left(x_{2}\right), \quad O<x_{2}<l, \tag{1.1}
\end{equation*}
$$

where l is width of the plate. In any section $x_{1}=$ const we have the same deformation. Therefore the length of the plate plays no role. From (0.6)-(0.9) we have in Ω :

$$
\begin{align*}
M_{2} & =-D_{2} w_{, 22}, \quad M_{1}=-D_{3} w_{, 22}=\frac{D_{3}}{D_{2}} M_{2}, \quad M_{12}=-M_{21}=0 \tag{1.2}\\
Q_{1} & =0, \quad Q_{2}=M_{2,2}, \quad Q_{\alpha}^{*}=Q_{\alpha}, \quad \alpha=1,2 . \tag{1.3}
\end{align*}
$$

From (1.1)-(1.3) follows

$$
\begin{aligned}
& Q_{2,2}=-f\left(x_{2}\right), \quad M_{2,22}=-f\left(x_{2}\right), \\
& D_{2} w_{, 22}=\int_{l}^{x_{2}}\left(x_{2}-t\right) f(t) d t-C_{1}\left(x_{2}-l\right)-C_{2}, \quad C_{1}, C_{2}=\text { const. }
\end{aligned}
$$

Hence

$$
\begin{gather*}
Q_{2}=-\int_{l}^{x_{2}} f(t) d t+C_{1}, \tag{1.4}\\
M_{2}=-\int_{l}^{x_{2}}\left(x_{2}-t\right) f(t) d t+C_{1}\left(x_{2}-l\right)+C_{2}, \tag{1.5}\\
w_{, 2}=\int_{l}^{x_{2}} K_{1}(\tau) D_{2}^{-1}(\tau) d \tau+\int_{l}^{x_{2}} K_{2}(\tau) \tau D_{2}^{-1}(\tau) d \tau+C_{3}, \tag{1.6}\\
w=\int_{l}^{x_{2}}\left(x_{2}-\tau\right) K_{1}(\tau) D_{2}^{-1}(\tau) d \tau+ \tag{1.7}\\
+\int_{l}^{x_{2}}\left(x_{2}-\tau\right) K_{2}(\tau) \tau D_{2}^{-1}(\tau) d \tau+C_{3}\left(x_{2}-l\right)+C_{4},
\end{gather*}
$$

where

$$
\begin{align*}
K_{1}(\tau) & :=C_{1} l-C_{2}-\int_{l}^{\tau} f(t) t d t \tag{1.8}\\
K_{2}(\tau) & :=-C_{1}+\int_{l}^{\tau} f(t) d t \tag{1.9}
\end{align*}
$$

For f summable on $[0,1]$, obviously,

$$
\left.\left.Q_{2}, \quad M_{2} \in C([0, l]) ; \quad w, w_{, 2} \in C(] 0, l\right]\right) ;
$$

the behaviour of

$$
w_{, 2} \text { and } w \text { when } x_{2} \rightarrow 0+
$$

depends, in view of (1.6), (1.7), on convergence of

$$
I_{i}:=\int_{0}^{l} \tau^{i} D_{2}^{-1}(\tau) d \tau, \quad i=0,1,2, \cdots
$$

Obviously,

$$
I_{i}<+\infty \Rightarrow I_{i+1}<+\infty, \quad i \geq 0 ; \quad \text { and } \quad I_{i}=+\infty \Rightarrow I_{i-1}=+\infty, \quad i \geq 0
$$

STATEMENT 1.1.

$$
\begin{gather*}
w, \quad w_{, 2} \in C([0, l]) \quad \text { if } \quad I_{0}<+\infty ; \\
w \in C([0, l]) \quad \text { if } \quad I_{0}=+\infty, \quad I_{1}<+\infty \tag{1.10}
\end{gather*}
$$

(provided, f is bounded with its derivative in some neighbourhood $] 0, \varepsilon]$ of 0); in this case $\left(I_{0}=+\infty, \quad I_{1}<+\infty\right) w_{, 2}$ is bounded as $x_{2} \rightarrow 0+$ iff (if and only if)

$$
\begin{equation*}
K_{1}(0)=0, \tag{1.11}
\end{equation*}
$$

i.e., in virtue of (1.5), (1.8), iff $M_{2}(0)=0$, otherwise it will be unbounded.

If $I_{1}=+\infty$ (hence $I_{0}=+\infty$), $\quad I_{2}<+\infty$, then w is bounded (provided, $D_{2} \in$ $C^{3}([0, l]), \quad f$ is continuous in 0 , and has bounded first and second derivatives in $] 0, \varepsilon]$) iff (1.11) is fulfilled, otherwise w will be unbounded.

If $I_{2}=+\infty$, then w will be bounded (provided, for fixed $k \geq 2$

$$
\begin{gather*}
I_{k}=+\infty, \quad I_{k+1}<+\infty \tag{1.12}\\
\left.f^{(j)}(0)=0, \quad j=0,1, \ldots, k-2, \quad f^{k-1}\left(x_{2}\right) \quad \text { is continuous in } 0\right) \tag{1.13}
\end{gather*}
$$

iff (1.11) is fulfilled, and

$$
\begin{equation*}
K_{2}(0)=0, \tag{1.14}
\end{equation*}
$$

i.e., in virtue of (1.4), (1.9), $Q_{2}(0)=0$, otherwise, i.e. either $K_{1}^{2}(0)+K_{2}^{2}(0) \neq 0$ or $I_{k}=+\infty \quad \forall k, w$ will be unbounded;

If $I_{1}=+\infty$, then $w_{, 2}$ is bounded (provided, (1.12) and (1.13) are fulfilled, when $k \geq 2$, and, when $k=1$, (1.12) is fulfilled and $f\left(x_{2}\right)$ is continuous in 0) iff (1.11), (1.14) are fulfilled, otherwise, i.e. either $K_{1}^{2}(0)+K_{2}^{2}(0) \neq 0$ or $I_{k}=+\infty \quad \forall k, w_{, 2}$ will be unbounded.

PROOF. Let $I_{0}=+\infty, \quad I_{1}<+\infty$. Then

$$
\begin{align*}
& \left|x_{2} \int_{x_{2}}^{l} K_{1}(\tau) D_{2}^{-1}(\tau) d \tau\right|=\left|\int_{x_{2}}^{l} K_{1}(\tau) \frac{x_{2}}{\tau} \tau D_{2}^{-1}(\tau) d \tau\right| \leq \tag{1.15}\\
& \left.\left.\leq C \int_{0}^{l} \tau D_{2}^{-1}(\tau) d \tau<+\infty \quad \text { for } x_{2} \in\right] 0, l\right]
\end{align*}
$$

because of

$$
\left.\left.\left|K_{1}(\tau)\right| \leq C, \quad \tau \in[0, l] ; \quad\left|\frac{x_{2}}{\tau}\right| \leq 1, \quad x_{2} \in\right] 0, l\right], \quad \tau \in\left[x_{2}, l\right] .
$$

Further, in virtue of (1.8),

$$
\lim _{x_{2} \rightarrow 0+} x_{2} \int_{x_{2}}^{l} K_{1}(\tau) D_{2}^{-1}(\tau) d \tau=\lim _{x_{2} \rightarrow 0+} \frac{x_{2}^{2} K_{1}\left(x_{2}\right)}{D_{2}\left(x_{2}\right)}=\lim _{x_{2} \rightarrow 0+} \frac{2 x_{2} K_{1}\left(x_{2}\right)-f\left(x_{2}\right) x_{2}^{3}}{D_{2}^{\prime}\left(x_{2}\right)}=
$$

$$
=\left\{\begin{array}{l}
0 \quad \text { if } D_{2}^{\prime}(0) \neq 0 \quad \text { or } D_{2}^{\prime}(0)=+\infty \\
\lim _{x_{2} \rightarrow 0+} \frac{2 K_{1}\left(x_{2}\right)-2 x_{2}^{2} f\left(x_{2}\right)-f^{\prime}\left(x_{2}\right) x_{2}^{3}-3 f\left(x_{2}\right) x_{2}^{2}}{D_{2}^{\prime \prime}\left(x_{2}\right)}=\quad\left(\text { if } D_{2}^{\prime}(0)=0\right)
\end{array}\right.
$$

$=\left\{\begin{array}{l}0 \quad \text { if } D_{2}^{\prime \prime}(0)=+\infty \\ \frac{2 K_{1}(0)}{D_{2}^{\prime \prime}(0)}=-\frac{2 M_{2}(0)}{D_{2}^{\prime \prime}(0)}=\frac{2\left(C_{1} l-C_{2}-\int_{l}^{0} f(t) t d t\right)}{D_{2}^{\prime \prime}(0)} \text { if } D_{2}^{\prime \prime}(0) \neq 0 \\ \infty \quad \text { if } D_{2}^{\prime \prime}(0)=0, \quad K_{1}(0) \neq 0\end{array}\right\}$ when $D_{2}^{\prime}(0)=0$
But $D_{2}^{\prime \prime}(0)$ can not be equal to 0 , when $K_{1}(0) \neq 0$, otherwise (1.15) and (1.16) will contradict each other.

If $K_{1}(0)=0$, then

$$
\begin{align*}
& \left|\int_{x_{2}}^{l} K_{1}(\tau) D_{2}^{-1}(\tau) d \tau\right|=\left|\int_{x_{2}}^{l} \frac{K_{1}(\tau)}{\tau} \tau D_{2}^{-1}(\tau) d \tau\right| \leq \\
& \left.\left.\leq C \int_{x_{2}}^{l} \tau D_{2}^{-1}(\tau) d \tau \leq C \int_{0}^{l} \tau D_{2}^{-1}(\tau) d \tau<+\infty, \quad x_{2} \in\right] 0, l\right], \tag{1.17}
\end{align*}
$$

since

$$
\lim _{\tau \rightarrow 0+} \frac{K_{1}(\tau)}{\tau}=-\lim _{\tau \rightarrow 0+} f(\tau) \tau=0
$$

and hence

$$
\left.\left.\left|\frac{K_{1}(\tau)}{\tau}\right| \leq C, \quad \tau \in\right] 0, l\right] .
$$

Thus,

$$
\lim _{x_{2} \rightarrow 0+} x_{2} \int_{x_{2}}^{l} K_{1}(\tau) D_{2}^{-1}(\tau) d \tau=0 .
$$

In (1.7), obviously, other terms have limits when $x_{2} \rightarrow 0+$, and (1.10) has been proved.

If (1.11) is fulfilled, then in view of (1.17), obviously, $w_{, 2}$ is bounded on $\left.] 0, l\right]$. Otherwise, if $K_{1}(0) \neq 0$, it will be unbounded since in this case, without loss of generality, we can take $K_{1}(0)>0$, and therefore $K_{1}(\tau)>\tilde{C}=$ const> 0 in some right neighbourhood $[0, \varepsilon]$ of 0 , and if we suppose that

$$
\left.\left.\left|\int_{x_{2}}^{\varepsilon} K_{1}(\tau) D_{2}^{-1}(\tau) d \tau\right|<+\infty \quad \text { for } \quad x_{2} \in\right] 0, \varepsilon\right],
$$

then

$$
\tilde{C}\left|\int_{x_{2}}^{\varepsilon} D_{2}^{-1}(\tau) d \tau\right| \leq\left|\int_{x_{2}}^{\varepsilon} K_{1}(\tau) D_{2}^{-1}(\tau) d \tau\right|<+\infty .
$$

Hence

$$
\begin{equation*}
\left.\left.\left|\int_{x_{2}}^{\varepsilon} D_{2}^{-1}(\tau) d \tau\right|<+\infty, \quad \text { for } \quad x_{2} \in\right] 0, \varepsilon\right], \tag{1.18}
\end{equation*}
$$

which would be contradiction with $I_{0}=+\infty$.
Let $I_{1}=+\infty, \quad I_{2}<+\infty$. Then

$$
\begin{align*}
& \left|x_{2} \int_{x_{2}}^{l} K_{2}(\tau) \tau D_{2}^{-1}(\tau) d \tau\right|=\left|\int_{x_{2}}^{l} K_{2}(\tau) \frac{x_{2}}{\tau} \tau^{2} D_{2}^{-1}(\tau) d \tau\right| \leq \tag{1.19}\\
& \left.\left.\leq C \int_{0}^{l} \tau^{2} D_{2}^{-1}(\tau) d \tau<+\infty, \quad \text { for } \quad x_{2} \in\right] 0, l\right]
\end{align*}
$$

because of

$$
\left.\left.\left|K_{2}(\tau)\right| \leq C, \quad \tau \in[0, l] ; \quad\left|\frac{x_{2}}{l}\right| \leq 1, \quad x_{2} \in\right] 0, l\right], \quad \tau \in\left[x_{2}, l\right] .
$$

Further, in virtue of (1.9),

$$
\begin{aligned}
& \lim _{x_{2} \rightarrow 0+} x_{2} \int_{x_{2}}^{l} K_{2}(\tau) \tau D_{2}^{-1}(\tau) d \tau=\lim _{x_{2} \rightarrow 0+} \frac{x_{2}^{3} K_{2}\left(x_{2}\right)}{D_{2}\left(x_{2}\right)}=\lim _{x_{2} \rightarrow 0+} \frac{3 x_{2}^{2} K_{2}\left(x_{2}\right)+x_{2}^{3} f\left(x_{2}\right)}{D_{2}^{\prime}\left(x_{2}\right)}= \\
& \quad=\left\{\begin{array}{l}
0 \quad \text { if } \quad D_{2}^{\prime}(0) \neq 0 \quad \text { or } D_{2}^{\prime}(0)=+\infty \\
\lim _{x_{2} \rightarrow 0+} \frac{6 x_{2} K_{2}\left(x_{2}\right)+6 x_{2}^{2} f\left(x_{2}\right)+x_{2}^{3} f^{\prime}\left(x_{2}\right)}{D_{2}^{\prime \prime}\left(x_{2}\right)}=\quad\left(\text { if } D_{2}^{\prime}(0)=0\right)
\end{array}\right.
\end{aligned}
$$

$=\left\{\begin{array}{l}0 \quad \text { if } \quad D_{2}^{\prime \prime}(0) \neq 0 \quad \text { or } \quad D_{2}^{\prime \prime}(0)=+\infty \\ \lim _{x_{2} \rightarrow 0+} \frac{6 K_{2}\left(x_{2}\right)+18 x_{2} f\left(x_{2}\right)+9 x_{2}^{2} f^{\prime}\left(x_{2}\right)+x_{2}^{3} f^{\prime \prime}\left(x_{2}\right)}{D_{2}^{\prime \prime \prime}\left(x_{2}\right)}=\left(\text { if } D_{2}^{\prime \prime}(0)=0\right)\end{array}\right\} \begin{aligned} & \text { when } \\ & D_{2}^{\prime}(0)=0\end{aligned}$
$=\left\{\begin{array}{l}0 \quad \text { if } \quad D_{2}^{\prime \prime \prime}(0)=+\infty \\ \frac{6 K_{2}(0)}{D_{2}^{\prime \prime \prime}(0)}=-\frac{6 Q_{2}(0)}{D_{2}^{\prime \prime \prime}(0)}=-\frac{6\left[C_{1}-\int_{l}^{0} f(t) t d t\right]}{D_{2}^{\prime \prime \prime}(0)} \text { if } D_{2}^{\prime \prime \prime}(0) \neq 0 \\ \infty \quad \text { if } D_{2}^{\prime \prime \prime}(0)=0, \quad K_{2}(0) \neq 0\end{array}\right\} \begin{aligned} & \text { when } D_{2}^{\prime \prime}(0)= \\ & =D_{2}^{\prime}(0)=0 .\end{aligned}$
But $D_{2}^{\prime \prime \prime}(0)$ can not be equal to 0 when $K_{2}(0) \neq 0$, otherwise (1.19) and (1.20) will contradict each other.

If $K_{2}(0)=0$,

$$
\begin{align*}
& \left|\int_{x_{2}}^{l} K_{2}(\tau) \tau D_{2}^{-1}(\tau) d \tau\right|=\left|\int_{x_{2}}^{l} \frac{K_{2}(\tau)}{\tau} \tau^{2} D_{2}^{-1}(\tau) d \tau\right| \leq \tag{1.21}\\
& \left.\left.\leq C \int_{0}^{l} \tau^{2} D_{2}^{-1}(\tau) d \tau<+\infty, \quad x_{2} \in\right] 0, l\right],
\end{align*}
$$

since

$$
\lim _{\tau \rightarrow 0+} \frac{K_{2}(\tau)}{\tau}=\lim _{\tau \rightarrow 0+} f(\tau)=f(0)
$$

and hence

$$
\left.\left.\left|\frac{K_{2}(\tau)}{\tau}\right| \leq C, \quad \tau \in\right] 0, l\right]
$$

Thus,

$$
\lim _{x_{2} \rightarrow 0+} x_{2} \int_{x_{2}}^{l} K_{2}(\tau) \tau D_{2}^{-1}(\tau) d \tau=0
$$

The boundedness of other terms of (1.7) on $] 0, l]$ is clear (see below (1.22), (1.23) by $k=1$), as well as validity of other assertions of statement 1.1 which are either obvious or should be shown in analogous way as above taking into account that, if $K_{i}(0)=0, \quad i=1,2$, and (1.12), (1.13) are fulfilled, then

$$
\begin{align*}
& \left|\int_{x_{2}}^{l} K_{2}(\tau) \tau D_{2}^{-1}(\tau) d \tau\right|=\left|\int_{x_{2}}^{l} \frac{K_{2}(\tau)}{\tau^{k}} \tau^{k+1} D_{2}^{-1}(\tau) d \tau\right| \leq \\
& \left.\left.\leq C \int_{0}^{l} \tau^{k+1} D_{2}^{-1}(\tau) d \tau<+\infty, \quad x_{2} \in\right] 0, l\right] \tag{1.22}
\end{align*}
$$

since

$$
\begin{align*}
\lim _{\tau \rightarrow 0+} \frac{K_{2}(\tau)}{\tau^{k}} & \left.\left.=\lim _{\tau \rightarrow 0+} \frac{f^{(k-1)}(\tau)}{k!}=\frac{1}{k!} f^{(k-1)}(0), \text { i.e. }\left|\frac{K_{2}(\tau)}{\tau^{k}}\right| \leq C, \tau \in\right] 0, l\right] \\
& \left|\int_{x_{2}}^{l} K_{1}(\tau) D_{2}^{-1}(\tau) d \tau\right|=\left|\int_{x_{2}}^{l} \frac{K_{1}(\tau)}{\tau^{k+1}} \tau^{k+1} D_{2}^{-1}(\tau) d \tau\right| \leq \\
& \left.\left.\leq C \int_{0}^{l} \tau^{k+1} D_{2}^{-1}(\tau) d \tau<+\infty, \quad x_{2} \in\right] 0, l\right] \tag{1.23}
\end{align*}
$$

since

$$
\left.\left.\lim _{\tau \rightarrow 0+} \frac{K_{1}(\tau)}{\tau^{k+1}}=\lim _{\tau \rightarrow 0+} \frac{-f(\tau) \tau}{(k+1) \tau^{k}}=-\frac{f^{(k-1)}(0)}{(k+1)(k-1)!}, \quad \text { i.e. }\left|\frac{K_{1}(\tau)}{\tau^{k+1}}\right| \leq C, \tau \in\right] 0, l\right] ;
$$

from (1.23), (1.22) follows, correspondingly,

$$
\begin{equation*}
\lim _{x_{2} \rightarrow 0+} x_{2} \int_{l}^{x_{2}} K_{i+1}(\tau) \tau^{i} D_{2}^{-1}(\tau) d \tau=0, \quad i=0,1 \tag{1.24}
\end{equation*}
$$

and also convergence of

$$
\int_{l}^{x_{2}} K_{i+1}(\tau) \tau^{i+1} D_{2}^{-1}(\tau) d \tau, \quad i=0,1 .
$$

If $I_{k}=+\infty \quad \forall k$, and $K(\tau):=K_{1}(\tau)+\tau K_{2}(\tau)$ is analytic in a right neighbourhood of $\tau=0$, then, obviously, w and $w_{, 2}$ are unbounded when $x_{2} \rightarrow 0+$. Indeed, e.g. (1.6) can be rewritten in the following form (let it be bounded when $x_{2} \rightarrow 0+$, and $K_{i}(0)=0, \quad i=1,2$; the last conditions are necessary for it)

$$
w_{, 2}\left(x_{2}\right)=\int_{l}^{x_{2}} K(\tau) D_{2}^{-1}(\tau) d \tau+C_{3}
$$

where $K(0)=0$. Since analytic $K(\tau) \not \equiv 0$, there exists such k that

$$
K^{(j)}(0)=0, \quad j=0,1, \ldots, k-1, \quad K^{(k)}(0) \neq 0 .
$$

Further

$$
w_{, 2}\left(x_{2}\right)=\int_{l}^{x_{2}} \frac{K(\tau)}{\tau^{k}} \tau^{k} D_{2}^{-1}(\tau) d \tau+C_{3}
$$

where

$$
\lim _{\tau \rightarrow 0+} \frac{K(\tau)}{\tau^{k}}=\frac{K^{(k)}(0)}{k!} \neq 0 .
$$

Then, taking into account boundedness of $w_{, 2}$, similarly to (1.18) we can show

$$
\left.\left.\left|\int_{x_{2}}^{\varepsilon} \tau^{k} D_{2}^{-1}(\tau) d \tau\right|<+\infty \quad \text { for } \quad x_{2} \in\right] 0, \varepsilon\right]
$$

which would be contradiction with $I_{k}=+\infty \quad \forall k$.

From the statement 1.1. follows that on the cusped edge $x_{2}=0$ admissible are only four different pairs of the boundary data as follows:

$$
\begin{gather*}
w(0)=w_{0}, \quad w^{\prime}(0)=w_{0}^{\prime} \quad \tag{1.25}\\
w^{\prime}(0)=w_{0}^{\prime}, \quad Q_{2}(0)=Q(0) \\
w(0)=w_{0}, \quad M_{2}(0)=M_{0} \quad \\
\text { iff } I_{0}<+\infty ; \\
I_{1}<+\infty ;
\end{gather*} \quad \begin{array}{ll}
M_{2}(0)=M_{0}, \quad Q_{2}(0)=Q_{0} \quad \text { always, } & \text { i.e. if } I_{i} \leq+\infty, \quad i=0,1,
\end{array}
$$

where w_{0}, w_{0}^{\prime},

$$
\begin{aligned}
& M_{0} \begin{cases}\text { is arbitrary } & \text { if } I_{0}<+\infty, \\
=0, & \text { if } I_{0}=+\infty,\end{cases} \\
& Q_{0} \begin{cases}\text { is arbitrary } & \text { if } \quad I_{1}<+\infty, \\
=0, & \text { if } \quad I_{1}=+\infty,\end{cases}
\end{aligned}
$$

are given constants.
On the edge $x_{2}=l$ we always can give each of the above four boundary data taking into account peculiarities of cylyndrical bending (see (1.4), (1.5)) that by arbitrary load f, Q_{2} can be given only on a one edge; from $Q_{2}(0)$ (or $Q_{2}(l)$), $M_{2}(0), M_{2}(l)$ only two can participate in boundary conditions on the both edges (these peculiarities are not caused by cusps they arise already in case of cylyndrical bending of a plate of a constant thickness). If we choose f corrispondingly (see (1.4), (1.5)), we could avoid these peculiarities but restriction on choice of f would be artificial. Nevertheless also such posed problems can have practical sense. Obviously, solutions of all these problems can be constructed in the explicite forms. Some of them are unique, some defined either up to rigid translating or rigid rotating or general rigid motion.

Let $I_{0}<+\infty$, and e.g. solve BVP with boundary conditions (1.25), and

$$
\begin{equation*}
w(l)=w_{l}, \quad w^{\prime}(l)=w_{l}^{\prime} \tag{1.26}
\end{equation*}
$$

where w_{l}, w_{l}^{\prime} are also given constants.
In view of (1.6), (1.7), from (1.26) follow

$$
C_{4}=w_{l}, \quad C_{3}=w_{l}^{\prime} .
$$

For determination of constants C_{1}, C_{2}, from (1.25) we have the algebraic system as follows:

$$
\begin{aligned}
& C_{1} \int_{0}^{l} \tau(\tau-l) D_{2}^{-1}(\tau) d \tau+C_{2} \int_{0}^{l} \tau D_{2}^{-1}(\tau) d \tau=\int_{0}^{l} \tau D_{2}^{-1}(\tau) \int_{l}^{\tau} f(t)(\tau-t) d t d \tau- \\
& -l w_{l}^{\prime}+w_{l}-w_{0} \\
& -C_{1} \int_{0}^{l}(\tau-l) D_{2}^{-1}(\tau) d \tau-C_{2} \int_{0}^{l} D_{2}^{-1}(\tau) d \tau= \\
& =-\int_{0}^{l} D_{2}^{-1}(\tau) \int_{l}^{\tau} f(t)(\tau-t) d t d \tau+w_{l}^{\prime}-w_{0}^{\prime}
\end{aligned}
$$

which is solvable as its determinant

$$
\Delta:=\left[\int_{0}^{l} \tau D_{2}^{-1}(\tau) d \tau\right]^{2}-\int_{0}^{l} \tau^{2} D_{2}^{-1}(\tau) d \tau \cdot \int_{0}^{l} D_{2}^{-1}(\tau) d \tau<0
$$

since Hoelder inequality is strong because $\tau D_{2}^{-\frac{1}{2}}(\tau)$ and $D_{2}^{-\frac{1}{2}}(\tau)$ are positive on $] 0, l[$, and $\tau^{2} D_{2}^{-1}(\tau)$ and $D_{2}^{-1}(\tau)$ differ from each other with nonconstant factor τ^{2}.

Other problems can be solved in analogous way taking into account (1.16), (1.20) and (1.24) in corresponding cases.

2- BENDING IN THE ENERGETIC SPACE

Let $D_{i} \in C^{2}\left(\Omega \cup \Gamma_{2}\right), \quad i=1,2,3,4$. Let us consider the operator J (acting in $\left.L_{2}(\Omega)\right)$ on D_{J} :

1. $w \in C^{4}\left(\Omega \cup \Gamma_{2}\right)$;

$$
J w \in L_{2}(\Omega)
$$

$w\left\{\begin{array}{l}\in C(\bar{\Omega}) \quad \text { when } \quad I_{1 i}<+\infty \text { in case }(0.3)(0 \leq \varkappa<2 \text { in case }(0.4)), \\ =O(1), \quad x_{2} \rightarrow 0+, \quad \text { when } \quad I_{1 i}=+\infty \quad(\varkappa \geq 2)\end{array}\right.$
$w_{,_{\alpha}}\left\{\begin{array}{l}\in C(\bar{\Omega}) \quad \text { when } \quad I_{0 i}<+\infty \quad(0 \leq \varkappa<1), \\ =\mathrm{O}(1), \quad x_{2} \rightarrow 0+, \quad \text { when } \quad I_{0 i}=+\infty \quad(1 \leq \varkappa<+\infty), \quad \alpha=1,2 ;\end{array}\right.$

$$
\begin{gather*}
I_{k i}:=\int_{0}^{l} x_{2}^{k} D_{i}^{-1}\left(x_{1}, x_{2}\right) d x_{2}, \quad i=1,2,3,4, \quad k=0,1, \ldots \\
\left(D_{2}-D_{3}\right)^{\frac{1}{2}} w_{, 22} \in L_{2}(\Omega) \tag{2.3}
\end{gather*}
$$

(this restriction can be avoided when we consider only solutions with finite energy); the bending moment, and the generalized shearing force

$$
\begin{gather*}
M_{2}=-\left(D_{2} w,{ }_{22}+D_{3} w,{ }_{11}\right) \in C(\bar{\Omega}) \tag{2.4}\\
Q_{2}^{*}=-\left[\left(D_{2} w,{ }_{22}+D_{3} w,_{11}\right),_{2}+4\left(D_{4} w,{ }_{12}\right),_{1}\right] \in C(\bar{\Omega}) \tag{2.5}
\end{gather*}
$$

2.

$$
\begin{equation*}
\left.w\right|_{\Gamma_{2}}=0,\left.\quad \frac{\partial w}{\partial n}\right|_{\Gamma_{2}}=0 \tag{2.6}
\end{equation*}
$$

where n is the inward normal;
3. On Γ_{1} one of the following pairs of boundary value conditions (BVCs) is fulfilled:

$$
\begin{array}{r}
w=0, \quad w,_{2}=0 \quad \text { if } \quad I_{0 i}<+\infty, \quad i=1,2,3,4, \quad(0 \leq \varkappa<1) \\
w, 2=0, \quad Q_{2}^{*}=0 \quad \text { if } \quad I_{0 i}<+\infty, \quad i=1,2,3,4, \quad(0 \leq \varkappa<1) \\
w=0, \quad M_{2}=0 \quad \text { if } \quad I_{1 i}<+\infty, \quad i=1,2,3,4, \quad(0 \leq \varkappa<2) \\
M_{2}=0, \quad Q_{2}^{*}=0 \quad \text { if } \quad I_{0 i} \leq+\infty, \quad i=1,2,3,4, \quad(0 \leq \varkappa<+\infty) \tag{2.10}
\end{array}
$$

REMARK 2.1. How it follows from the case of cylindrical bending (see section 1, and also [2], p. 96), the BVCs (2.7)-(2.9) can not be posed (in sense of correctness)
for other values of \varkappa except of indicated ones, or in general case (0.3) if $I_{0 i}=+\infty$, and $I_{1 i}=+\infty$, correspondingly.

STATEMENT 2.1. The operator J is linear, symmetric, and positive on the lineal D_{J}, and

$$
\begin{align*}
& (J w, v):=\int_{\Omega} v J w d \Omega=\int_{\Omega}\left[D_{1} v,{ }_{11} w,{ }_{11}+D_{2} v,{ }_{22} w,{ }_{22}+D_{3}\left(v,{ }_{11} w,{ }_{22}+\right.\right. \\
& \left.\left.+v,{ }_{22} w,{ }_{11}\right)+4 D_{4} v,{ }_{12} w,,_{12}\right] d \Omega=: \int_{\Omega} B(v, w) d \Omega \quad \forall v, w \in D_{J} . \tag{2.11}
\end{align*}
$$

In particular, if $v=w$,

$$
\begin{align*}
&(J w, w):=\int_{\Omega}\left[D_{1}\left(w,{ }_{11}\right)^{2}+D_{2}\left(w,,_{22}\right)^{2}+2 D_{3} w,{ }_{11} w,{ }_{22}+\right. \\
&\left.+4 D_{4}\left(w,{ }_{12}\right)^{2}\right] d \Omega=\int_{\Omega}\left[D_{3}\left(w,{ }_{11}+w,{ }_{22}\right)^{2}+\left(D_{1}-D_{3}\right)\left(w,{ }_{11}\right)^{2}+\right. \tag{2.12}\\
&\left.+4 D_{4}\left(w,,_{12}\right)^{2}+\left(D_{2}-D_{3}\right)\left(w,,_{22}\right)^{2}\right] d \Omega .
\end{align*}
$$

PROOF. It is obvious that J is linear operator on the lineal D_{J} (the latter about D_{J} easyly follows from the linearity of J on $\left.C^{4}\left(\Omega \cup \Gamma_{2}\right)\right)$. Since $D_{J} \subset L_{2}(\Omega)$ and $J w \in L_{2}(\Omega)$, we can consider the following scalar product in $L_{2}(\Omega)$

$$
(J w, v):=\int_{\Omega} v J w d \Omega=\lim _{\delta \rightarrow 0} \int_{\Omega_{\delta}} v J w d \Omega_{\delta}, \quad \forall v, w \in D_{J},
$$

where

$$
\Omega_{\delta}:=\left\{\left(x_{1}, x_{2}\right) \in \Omega: x_{2}>\delta=\text { const }>0\right\} .
$$

After integration by parts twice and using formulas (d), (c) on page 87 of [1] we have

$$
(J w, v):=\lim _{\delta \rightarrow 0}\left[\int_{\partial \Omega_{\delta}}\left(v Q_{n}-\frac{\partial v}{\partial n} M_{n}+\frac{\partial v}{\partial s} M_{n s}\right) d s+\int_{\Omega_{\delta}} B(v, w) d \Omega_{\delta}\right],
$$

where $d s$ is the arc element, Q_{n} is the shearing force, M_{n} is the bending moment, $M_{n s}$ is the twisting moment.

But

$$
\int_{\partial \Omega_{\delta}} \frac{\partial v}{\partial s} M_{n s} d s=\int_{\partial \Omega_{\delta}} \frac{\partial v M_{n s}}{\partial s} d s-\int_{\partial \Omega_{\delta}} v \frac{\partial M_{n s}}{\partial s} d s=-\int_{\partial \Omega_{\dot{\delta}}} v \frac{\partial M_{n s}}{\partial s} d s
$$

as $v, M_{n s} \in C\left(\bar{\Omega}_{\delta}\right)$. Hence

$$
\begin{equation*}
(J w, v):=\lim _{\delta \rightarrow 0} \int_{\partial \Omega_{\delta}}\left(v Q_{n}^{*}-\frac{\partial v}{\partial n} M_{n}\right) d s+\lim _{\delta \rightarrow 0} \int_{\Omega_{\delta}} B(v, w) d \Omega_{\delta}, \tag{2.13}
\end{equation*}
$$

where

$$
Q_{n}^{*}:=Q_{n}-\frac{\partial M_{n s}}{\partial s} .
$$

In view of (2.6)

$$
\int_{\partial \Omega_{\delta}}\left(v Q_{n}^{*}-\frac{\partial v}{\partial n} M_{n}\right) d s=\int_{\Gamma_{1}^{\delta}}\left(v Q_{2}^{*}-v,{ }_{2} M_{2}\right) d s
$$

where

$$
\Gamma_{1}^{\delta}:=\left\{\left(x_{1}, x_{2}\right) \in \Omega: x_{2}=\delta=\text { const }>0\right\} .
$$

In virtue of (2.1), (2.2), (2.4), (2.5), (2.7)-(2.10), $\forall \varepsilon=$ const $>0 \quad \exists \delta(\varepsilon)=$ const >0 such that

$$
\left|v Q_{2}^{*}-v,{ }_{2} M_{2}\right| \leq|v|\left|Q_{2}^{*}\right|+\left|v,,_{2}\right|\left|M_{2}\right|<\varepsilon, \quad \text { when } 0<x_{2}<\delta,
$$

i.e., taking into account (2.6),

$$
\left|\int_{\Omega_{\delta}}\left(v Q_{n}^{*}-\frac{\partial v}{\partial n} M_{n}\right) d s\right|=\left|\int_{\Gamma_{1}^{\delta}}\left(v Q_{2}^{*}-v,_{2} M_{2}\right) d s\right|<\varepsilon\left|\Gamma_{1}^{\delta}\right|<\varepsilon\left|\partial \Omega_{\delta}\right| \leq \varepsilon|\partial \Omega|
$$

($|\partial \Omega|$ is the length of the curve $\partial \Omega$). So that

$$
\lim _{\delta \rightarrow 0} \int_{\partial \Omega_{\delta}}\left(v Q_{n}^{*}-\frac{\partial v}{\partial n} M_{n}\right) d s=\lim _{\delta \rightarrow 0} \int_{\Gamma_{1}^{\delta}}\left(v Q_{2}^{*}-v, 2 M_{2}\right) d s=0 .
$$

Therefore, because of existence of integral on the left side of (2.13), limit of the second addend on the right hand side of (2.13) also exists, and (2.11) is valid. (2.12) is obvious.

From (2.11) follows

$$
(J w, v)=(J v, w)=(w, J v), \quad \forall v, w \in D_{J} .
$$

Hence the operator J is symmetric.
From (2.12), taking into account (0.2), we have

$$
(J w, w) \geq 0
$$

But

$$
(J w, w)=0, \quad w \in D_{J},
$$

iff

$$
w,{ }_{11}=0, \quad w,{ }_{22}=0, \quad w,{ }_{12}=0 \quad \text { in } \Omega,
$$

i.e.

$$
w=k_{1} x_{1}+k_{2} x_{2}+k_{3}, \quad k_{i}=\text { const, } i=1,2,3, \quad \text { in } \Omega .
$$

The latter, in virtue of (2.6), should be zero on Γ_{2} and therefore on $\bar{\Omega}$, because of its linearity.

STATEMENT 2.2. The operator J is positive definite if only $D_{0}>0(0 \leq \varkappa \leq 4)$,

$$
0 \leq D_{0}:=\inf _{\Omega} \frac{D_{2}-D_{3}}{x_{2}^{4}}
$$

PROOF. Let $D_{0}=0$, and consider particular case (0.4). Hence

$$
D_{0}=\inf _{\Omega}\left(\tilde{D}_{2}-\tilde{D}_{3}\right) x_{2}^{\varkappa-4}=0 \text { if only } \varkappa>4
$$

Then J is not positive definite. Indeed, let the rectangle

$$
\Pi_{0}:=\left\{\left(x_{1}, x_{2}\right): a<x_{1}<b, 0<x_{2}<\delta\right\}
$$

be cut out from Ω. Let (see [3])

$$
w_{\delta}\left(x_{1}, x_{2}\right):= \begin{cases}\left(\delta-x_{2}\right)^{5} \sin ^{5} \frac{\pi\left(x_{1}-a\right)}{b-a} & \text { when }\left(x_{1}, x_{2}\right) \in \Pi_{0} \\ O & \text { when }\left(x_{1}, x_{2}\right) \in \Omega \backslash \Pi_{0}\end{cases}
$$

Obviously $w_{\delta} \in D_{J}$, and because of $\varkappa>4,(2.10)$ should be and, in fact, is fulfilled by w_{δ}. It is easy to see that

$$
0 \leq \frac{\left(J w_{\delta}, w_{\delta}\right)}{\left\|w_{\delta}\right\|_{L_{2}(\Omega)}^{2}} \leq \stackrel{*}{C} \delta^{\varkappa-4}, \quad \stackrel{*}{C}=\text { const }>0
$$

since

$$
\left\|w_{\delta}\right\|_{L_{2}(\Omega)}^{2}=\frac{1}{11} \frac{b-a}{\pi} \frac{1}{2^{10}}\binom{10}{5} \pi \delta^{11}
$$

and, in view of (0.4),

$$
\begin{gathered}
0 \leq\left(J w_{\delta}, w_{\delta}\right) \leq \int_{\Pi_{0}} \max _{i \in\{1,2,3,4,\}}\left\{D_{2 i}\right\} x_{2}^{\varkappa}\left[\left(w_{\delta, 11}\right)^{2}+\left(w_{\delta, 22}\right)^{2}+\right. \\
\left.+2 w_{\delta, 11} w_{\delta, 22}+4\left(w_{\delta, 12}\right)^{2}\right] d x_{1} d x_{2} \leq{ }_{C}^{* *}\left(\delta^{\varkappa+11}+\delta^{\varkappa+7}+\delta^{\varkappa+9}\right) \\
C=\mathrm{const}>0
\end{gathered}
$$

Hence J is not positive definite on D_{J}.
Now let us return to the general case (0.3). Further $D_{0}>0(0 \leq \varkappa \leq 4)$, and prove that J is positive definite.

From (2.12), taking into account (2.3), (0.2) and (0.3), we obtain

$$
(J w, w) \geq \int_{\Omega}\left(D_{2}-D_{3}\right)\left(w,{ }_{22}\right)^{2} d \Omega \geq D_{0} \int_{\Omega} x_{2}^{4}\left(w,{ }_{22}\right)^{2} d \Omega=D_{0} \int_{\Pi} x_{2}^{4}\left(w,{ }_{22}\right)^{2} d x_{1} d x_{2}
$$

where

$$
\begin{equation*}
\Pi:=\left\{\left(x_{1}, x_{2}\right): a<x_{1}<b, 0<x_{2}<1\right\}, \tag{2.14}
\end{equation*}
$$

and without loss of generality, is supposed that the domain Ω lies inside of the rectangle Π, and a definition of the function w is completed assuming w equal to zero outside of Ω. Then w will be continuous in Π with its first derivatives, and its derivatives of second order, in general, will have discontinuity of first kind on the $\operatorname{arc} \Gamma_{2}$. Further

$$
\begin{aligned}
(J w, w) & \geq D_{0} \int_{a}^{b} \int_{0}^{1} x_{2}^{4}(w, 22)^{2} d x_{1} d x_{2} \geq \frac{9 D_{0}}{16} \int_{a}^{b} \int_{0}^{1} w^{2} d x_{1} d x_{2}= \\
& =\gamma \int_{\Pi} w^{2} d x_{1} d x_{2}=\gamma \int_{\Omega} w^{2} d w=\gamma\|w\|_{L_{2}(\Omega)}^{2}
\end{aligned}
$$

where

$$
\gamma:=\frac{9}{16} D_{0} .
$$

In the previous reasonings we have used the following
LEMMA 2.1. Let $w\left(x_{1},.\right)$ be real function of x_{2} for fixed x_{1} satisfying the following conditions:
1.) w and $w,{ }_{2}$ are absolutly continuous on $\left.[\delta, 1] \quad \forall \delta \in\right] 0,1[$;
2.) $w, w,_{2}=0(1)$ when $x_{2} \rightarrow 0+$;
3.) $x_{2}^{2} w,{ }_{22} \in L_{2}(] 0,1[)$;
4.) $w\left(x_{1}, 1\right)=w, 2\left(x_{1}, 1\right)=0$.

Then

$$
\begin{gather*}
\int_{0}^{1} x_{2}^{4}\left(w,{ }_{22}\right)^{2} d x_{2} \geq \frac{9}{16} \int_{0}^{1} w^{2} d x_{2} \tag{2.15}\\
\int_{0}^{1} x_{2}^{4}\left(w,{ }_{22}\right)^{2} d x_{2} \geq \frac{9}{4} \int_{0}^{1} x_{2}^{2}\left(w,{ }_{2}\right)^{2} d x_{2} \tag{2.16}
\end{gather*}
$$

PROOF is similar to one used in [3] for the case $\delta=0$ but we have to consider all integrals from δ to 1 and then let δ tend to zero.

Let H_{J} be the energetic space (see e.g. [3,4]) corresponding to the operator J defined on D_{J} and acting in $L_{2}(\Omega)$.

THEOREM 2.1. Let $f \in L_{2}(\Omega)$. if $D_{0}>0(0 \leq \varkappa \leq 4)$, there exists unique generalized solution of (1.1) in the energetic space H_{J}. If $D_{0}=0(\varkappa>4)$, and $f\left(x_{1}, x_{2}\right)=0$ in $\Omega \backslash \Omega_{\delta}$ then there exists unique generalized solution of the finite energy.

PROOF. Firstly let us prove that the solution with the finite energy exists for $D_{0} \geq 0(x \geq 0)$, if $f=0$ in $\Omega \backslash \Omega_{\delta}$ (the last restriction of f can be weakened). Let $w \in D_{J}$. Then

$$
\left.w\right|_{\Gamma_{2}}=0,\left.\quad \frac{\partial w}{\partial n}\right|_{\Gamma_{2}}=0
$$

and exist continuous on Γ_{2} from inside derivatives $w,{ }_{\alpha \beta}$. Let us put again the domain Ω inside of the rectangle (2.14) and complete a definition of the function w assuming it equal to zero outside of Ω.

We have

$$
\begin{align*}
& |(w, f)|^{2}=\left|\int_{\Omega} w f d x_{1} d x_{2}\right|^{2}=\left|\int_{\Omega_{\delta}} w f d x_{1} d x_{2}\right|^{2} \leq \tag{2.17}\\
& \leq \int_{\Omega_{\delta}} f^{2} d x_{1} d x_{2} \int_{\Omega_{\delta}} w^{2} d x_{1} d x_{2}=C \int_{\Pi_{\delta}} w^{2} d x_{1} d x_{2} \quad \forall w \in D_{J},
\end{align*}
$$

where

$$
\begin{gathered}
C:=\int_{\Omega} f^{2} d x_{1} d x_{2} \geq 0 \\
\Pi_{\delta}:=\left\{\left(x_{1}, x_{2}\right) \in \Pi: x_{2}>\delta=\text { const; } 0\right\} .
\end{gathered}
$$

Obviously, when $x_{2}>0$

$$
\begin{equation*}
\int_{a}^{x_{1}} w,{ }_{1} d x_{1}=w\left(x_{1}, x_{2}\right)-w\left(a, x_{2}\right)=w\left(x_{1}, x_{2}\right) \tag{2.18}
\end{equation*}
$$

since $w\left(a, x_{2}\right)=0$ as $\left(a, x_{2}\right) \in \Pi \backslash \Omega$. Acording to Cauchy - Bunyakovskii inequality, from (2.18), we have

$$
w^{2} \leq \int_{a}^{x_{1}} 1^{2} d x_{1} \int_{a}^{x_{1}}\left(w,{ }_{1}\right)^{2} d x_{1} \leq(b-a) \int_{a}^{b}\left(w,{ }_{1}\right)^{2} d x_{1} .
$$

Integrating both sides in limits $a \leq x_{1} \leq b, \delta \leq x_{2} \leq 1$,

$$
\begin{gather*}
\int_{\Pi_{\delta}} w^{2} d x_{1} d x_{2} \leq(b-a)^{2} \int_{\Pi_{\delta}}\left(w,{ }_{1}\right)^{2} d x_{1} d x_{2} \leq \tag{2.19}\\
\leq(b-a)^{4} \int_{\Pi_{\delta}}(w, 11)^{2} d x_{1} d x_{2}=(b-a)^{4} \int_{\Omega_{\delta}}\left(w,{ }_{11}\right)^{2} d x_{1} d x_{2}=
\end{gather*}
$$

(in the second inequality the first inequality is applied to $w,{ }_{1}$)

$$
\begin{gathered}
=(b-a)^{4} \int_{\Omega_{\delta}} \frac{\left(D_{1}-D_{3}\right)\left(w,{ }_{11}\right)^{2}}{D_{1}-D_{3}} d x_{1} d x_{2} \leq \\
\leq \\
\leq \frac{(b-a)^{4}}{D_{\delta}} \int_{\Omega_{\delta}}\left(D_{1}-D_{3}\right)\left(w,{ }_{11}\right)^{2} d x_{1} d x_{2} \leq \\
\leq \frac{(b-a)^{4}}{D_{\delta}} \int_{\Omega_{\delta}}\left[\left(D_{1}-D_{3}\right)\left(w,{ }_{11}\right)^{2}+\right. \\
\left.+D_{3}\left(w,{ }_{11}+w,{ }_{22}\right)^{2}+4 D_{4}\left(w,{ }_{12}\right)^{2}+\left(D_{2}-D_{3}\right)\left(w,{ }_{22}\right)^{2}\right] d x_{1} d x_{2} \leq \\
\leq \\
\leq \frac{(b-a)^{4}}{D_{\delta}}(J w, w)=\frac{(b-a)^{4}}{D_{\delta}}\|w\|_{H_{J}}^{2}, \\
D_{\delta}:=\min _{\Omega_{\delta}}\left(D_{1}-D_{3}\right) .
\end{gathered}
$$

From (2.17) and (2.19) follows

$$
|(w, f)|^{2} \leq \frac{C(b-a)^{4}}{D_{\delta}}\|w\|_{H_{J}}^{2}
$$

i.e. (w, f) can be considered as a linear bounded functional with respect to the energetic norm. But then, according to the well-known theory [3], there exists solution of the finite energy.

In case $D_{0}>0(0 \leq \varkappa \leq 4)$, moreover, according to the general theory [3,4], there exists generalized solution since J is positive definite (see statement 2.2).

REMARK 2.2. In particular case (0.4):

$$
I_{0 i}\left(x_{1}\right) \int_{0}^{l} \tilde{D}_{i}^{-1}\left(x_{1}, \tau\right) \tau^{-\varkappa} d \tau \leq\left. D_{2 i} \frac{\tau^{1-\varkappa}}{1-\varkappa}\right|_{0} ^{l}=D_{2 i} \frac{l^{1-\varkappa}}{1-\varkappa}<+\infty \quad \text { if } \varkappa<1,
$$

and, when $x \geq 1$,

$$
I_{0 i}\left(x_{1}, x_{2}\right) \geq D_{1 i} \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{l} \tau^{-\varkappa} d \tau=+\infty
$$

Similarly

$$
I_{1 i}\left(x_{1}\right)\left\{\begin{array}{lll}
<+\infty & \text { if } \quad & \quad \ll 2 \\
=+\infty & \text { if } \quad & \quad x \geq 2
\end{array}\right.
$$

3. ON A MODIFICATION OF THE LAX-MILGRAM THEOREM

The section deals with a modification of the Lax-Milgram theorem as follows:
THEOREM. 3.1. Let V be a real Hilbert space, and $J(u, v)$ be a bilinear form defined on $V \times V$. Let there exist a constant $k>0$ such that

$$
\begin{equation*}
|J(u, v)| \leq k\|u\|_{V}\|v\|_{V} \quad \forall u, v \in V \tag{3.1}
\end{equation*}
$$

and let

$$
\begin{equation*}
J(v, v)=0 \Rightarrow v=\theta \text { in } V \tag{3.2}
\end{equation*}
$$

(θ is the zero element of V). Then for any bounded linear functional F defined on V there exists the unique functional $F_{z_{0}} \in V^{*}$ (V^{*} is the space conjugate to V) such that

$$
\begin{equation*}
F v=F_{z_{0}} v:=\lim _{k \rightarrow \infty} J\left(z_{k}, v\right) \quad \forall v \in V, \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{k}:=C^{-1} t_{k} \tag{3.4}
\end{equation*}
$$

for any sequence $t_{k} \in C(V) \subset V$ converging to t_{0} uniquely defined by F in view of Riesz theorem. C^{-1} is the inverse operator of the bounded linear operator C :

$$
\begin{equation*}
t=C z \tag{3.5}
\end{equation*}
$$

defined in the space V by the relation

$$
\begin{equation*}
J(z, v)=(v, t) \quad \forall v \in V, \tag{3.6}
\end{equation*}
$$

and fixed $z \in V$.
PROOF. In view of Riesz theorem, it is possible to express every bounded linear functional F in V in the following form

$$
\begin{equation*}
F v=\left(v, t_{0}\right) \quad \forall v \in V, \tag{3.7}
\end{equation*}
$$

where the element $t_{0} \in V$ is uniquely determined by the functional F and $\left\|t_{0}\right\|_{V}=$ $\|F\|_{V^{*}}$.

If $z \in V$ is fixed, then the bilinear form $J(z, v)$ represents, obviously, a linear functional in V. This functional is bounded since by (3.1)

$$
\begin{equation*}
|J(z, v)| \leq \tilde{k}\|v\|_{V}, \quad \tilde{k}=K\|z\|_{V}=\text { const }>0 . \tag{3.8}
\end{equation*}
$$

Then according to above Riesz theorem, there exists a unique $t \in V$ such that holds (3.6), and also, in virtue of (3.6), (3.8),

$$
\begin{equation*}
\|t\|_{V} \leq K\|z\|_{V} \tag{3.9}
\end{equation*}
$$

By the relation (3.6) to every $z \in V$ a unique $t \in V$ is assigned. This defines by (3.5) an operator C in $V . C$ is, obviously, linear one, and, in view of (3.9), also
bounded. The range $L \equiv C(V)$ of this operator C is a certain linear set in V.More precisly, let L be the metric space whose elements are the elements of that linear set L with the metric of the space V.

We will prove that the mapping (3.5) from V onto L is one-to-one, i. e. $L \sim V$. To this end it is sufficient to prove that to the zero-element of L there corresponds the zero-element of V. Thus, let $\theta=C z$, i. e., in virtue of (3.6),

$$
\begin{equation*}
J(z, v)=(v, \theta)=0 \quad \forall v \in V . \tag{3.10}
\end{equation*}
$$

In particular, for $v=z,(3.10)$ yields

$$
J(z, z)=0 .
$$

But then, according to (3.2), $z=\theta$. Hence $\exists C^{-1}$:

$$
\begin{equation*}
z=C^{-1} t \tag{3.11}
\end{equation*}
$$

Let $\left\{t_{k}\right\}$ be a fundamental sequence in L, and thus also in V. Since V is complete, $\exists t_{0} \in V$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} t_{k}=t_{0}, \text { in } V . \tag{3.12}
\end{equation*}
$$

Therefore complete \bar{L} is subspace of V.
Now we will prove that $\bar{L} \equiv V$. The proof will be performed by contradiction. Let $\bar{L} \neq V$. Then there exists an element $w \neq \theta$ in V orthogonal to the subspace \bar{L}, so that

$$
\begin{equation*}
(w, t)=0 \tag{3.13}
\end{equation*}
$$

holds $\forall t \in \bar{L}$. Since $w \in V$, in view of (3.6), a unique $t_{*} \in L \subset \bar{L}$ exists such that

$$
J(w, v)=\left(v, t_{*}\right) \quad \forall v \in V .
$$

In particular, for $v=w$, we have

$$
J(w, w)=\left(w, t_{*}\right)=0
$$

because of (3.13). Therefore, in virtue of (3.2), w=t in V, which is contradiction with assumption $w \neq \theta$. Hence $\bar{L} \equiv V$.

For any bounded linear functional F in V we have (3.7), where $t_{0} \in V \equiv \bar{L}$ is uniquely determined by F. For the above $t_{0} \in \bar{L}$ there exists sequence $t_{k} \in L$ which is convergent to t_{0} in V. According to (3.11) $\forall t_{k} \in L \exists z_{k} \in V$ such that

$$
\begin{equation*}
J\left(z_{k}, v\right)=\left(v, t_{k}\right) \quad \forall v \in V . \tag{3.14}
\end{equation*}
$$

Functionals $J\left(z_{k}, v\right)$ and $\left(v, t_{k}\right)$ are bounded linear functionals from V^{*} for fixed k. Now tending $k \rightarrow \infty$ in (3.14), since, in view of (3.12), there exists limit (which is equal to (v, t_{0}) because of continuity of scalar product) in the right hand side, the limit of the left side will also exist, and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} J\left(z_{k}, v\right)=\left(v, t_{0}\right) \quad \forall v \in V . \tag{3.15}
\end{equation*}
$$

Then, in virtue of an immediate corollary of the Banach-Steinhaus theorem (see e. g. [5], p. 277, Corollary 1), linear form

$$
\begin{equation*}
F_{z_{0}}: v \rightarrow \lim _{k \rightarrow \infty} J\left(z_{k}, v\right) \tag{3.16}
\end{equation*}
$$

is bounded linear functional on V , which does not depend on choise of $\left\{z_{k}\right\}$, i.e. of $\left\{t_{k}\right\}$ since for any sequence $t_{k} \rightarrow t_{0}$ in V, on the right hand side of (3.15) we have the same limit (v, t_{0}). Thus, from (3.7), (3.15) and (3.16) follows (3.3).

REMARK 3.1. If the sequence $\left\{z_{k}\right\}, z_{k} \in V$, corresponding to $\left\{t_{k}\right\}\left(t_{k} \in L\right.$ is from (3.12)) is fundamental in V, then because of completness of $V \exists z_{0} \in V$ such that

$$
\lim _{k \rightarrow \infty} z_{k}=z_{0} \text { in } V
$$

Therefore, taking into account (3.1), we have

$$
F_{z_{0}} v:=\lim _{k \rightarrow \infty} J\left(z_{k}, v\right)=J\left(z_{0}, v\right)
$$

(this is justification of notation $F_{z_{0}}$), and from (3.3) follows that there exists unique $z_{0} \in V$ such that

$$
F v=J\left(z_{0}, v\right) \quad \forall v \in V
$$

which coincides with the assertion of the Lax-Milqram theorem (see e. g. [6], chapter III, $\S 7$, and section 4 below). Therefore $F_{z_{0}} \in V^{*}$ can be identified with $z_{0} \in V$. If the sequence $\left\{z_{k}\right\}$ is not fundamental in V (let us note that the number sequence $\left\{J\left(z_{k}, v\right)\right\}$ is fundamental for fixed $\left.v \in V\right)$, then $F_{z_{0}} \in V^{*}$ will be identified with the ideal element z_{0} which does not belong to V. Let us denote by V_{i} set of the ideal elements z, and by $\tilde{V}:=V \cup V_{i}$.

Under product $\lambda z_{0}, \lambda \in R, z_{0} \in \tilde{V}$, we understand the ζ_{0} identified with the functional

$$
F_{\zeta_{0}} v:=\lim _{k \rightarrow \infty} J\left(\lambda z_{k}, v\right)=\lim _{k \rightarrow \infty} \lambda J\left(z_{k}, v\right)=: \lambda F_{z_{0}} v
$$

Under sum $z_{0}^{\prime}+z_{0}^{\prime \prime}$ of $z_{0}^{\prime}, z_{0}^{\prime \prime} \in \tilde{V}$ we understand ζ_{0}, identified with the functional

$$
F_{\zeta_{0}} v:=\lim _{k \rightarrow \infty} J\left(z_{k}^{\prime}+z_{k}^{\prime \prime}, v\right)=\lim _{k \rightarrow \infty} J\left(z_{k}^{\prime}, v\right)+\lim _{k \rightarrow \infty} J\left(z_{k}^{\prime \prime}, v\right)=: F_{z_{0}^{\prime}} v+F_{z_{0}^{\prime \prime}} v,
$$

where

$$
\begin{gathered}
z_{k}^{\prime}:=C^{-1} t_{k}^{\prime}, \quad z_{k}^{\prime \prime}:=C^{-1} t_{k}^{\prime \prime}, \\
\lim _{k \rightarrow \infty} t_{k}^{\prime}=t_{0}^{\prime}, \lim _{k \rightarrow \infty} t_{k}^{\prime \prime}=t_{0}^{\prime \prime} \text { in } V
\end{gathered}
$$

t_{0}^{\prime} and $t_{0}^{\prime \prime}$ are uniquely defined, in view of Riesz theorem, by bounded linear functionals $F^{\prime}:=\left(v, t_{0}^{\prime}\right)$ and $F^{\prime \prime}:=\left(v, t_{0}^{\prime \prime}\right)$ corespondingly. Obviously \tilde{V} is linear vector space.

Now introducing in \tilde{V} a norm as

$$
\begin{equation*}
\left\|z_{0}\right\|_{\tilde{V}}:=\left\|F_{z_{0}}\right\|_{V^{*}}, \tag{3.17}
\end{equation*}
$$

\tilde{V} will be Banach, and moreover Hilbert space since such is V^{*}. Indeed,

$$
\begin{gathered}
\left\|z_{0}^{\prime}+z_{0}^{\prime \prime}\right\|_{\tilde{V}}^{2}+\left\|z_{0}^{\prime}-z_{0}^{\prime \prime}\right\|_{\tilde{V}}^{2}:=\left\|F_{z_{0}^{\prime}}+F_{z_{0}^{\prime \prime}}\right\|_{V^{*}}^{2}+\left\|F_{z_{0}^{\prime}}-F_{z_{0}^{\prime \prime}}\right\|_{V^{*}}^{2}= \\
=2\left(\left\|F_{z_{0}^{\prime}}\right\|_{V^{*}}^{2}+\left\|F_{z_{0}^{\prime \prime}}\right\|_{V^{*}}^{2}\right)=: 2\left(\left\|z_{0}^{\prime}\right\|_{\tilde{V}}^{2}+\left\|z_{0}^{\prime \prime}\right\|_{\tilde{V}}^{2}\right) .
\end{gathered}
$$

Therefore scalar product can be defined as

$$
\left(z_{0}^{\prime}, z_{0}^{\prime \prime}\right)_{\tilde{V}}:=4^{-1}\left(\left\|z_{0}^{\prime}+z_{0}^{\prime \prime}\right\|_{\tilde{V}}^{2}+\left\|z_{0}^{\prime}-z_{0}^{\prime \prime}\right\|_{\tilde{V}}^{2}\right) .
$$

Completness of \tilde{V} is obvious from (3.17).
REMARK 3.2. If C^{-1} is bounded operator then from (3.11), (3.12) follows that $\left\{z_{k}\right\}$ is fundamental sequence.

REMARK 3.3. If J is coercive, i. e.

$$
|J(v, v)| \geq c\|v\|_{V}^{2}, \quad c=\text { const }>0, \quad \forall v \in V
$$

then C^{-1} is bounded operator (see above reference on [6]).
REMARK 3.4. If (3.2) then either $J(v, v) \geq 0 \quad \forall v \in V$ or $J(v, v) \leq 0 \forall v \in V$.
PROOF (belongs to S.S. Kharibegashvili). Let us take arbitrary fixed $v_{0} \in V$, $v_{0} \neq \theta$, from $J\left(v_{0}, v_{0}\right) \neq 0$ we have either

$$
\begin{equation*}
J\left(v_{0}, v_{0}\right)>0 \tag{3.18}
\end{equation*}
$$

or

$$
\begin{equation*}
J\left(v_{0}, v_{0}\right)<0 \tag{3.19}
\end{equation*}
$$

Let us now show that if (3.18) then from $\forall v \in V, v \neq \theta$ follows $J(v, v)>0$, but if (3.19) then $J(v, v)<0$.

Let first $v \in V, v \neq \theta$ be not lineary dependent on v_{0} then for $\left.\forall t \in\right]-\infty,+\infty[$, we have

$$
\begin{equation*}
0 \neq J\left(v_{0}+t v, v_{0}+t v\right)=J\left(v_{0}, v_{0}\right)+\left[J\left(v_{0}, v\right)+J\left(v, v_{0}\right)\right] t+J(v, v) t^{2} \tag{3.20}
\end{equation*}
$$

since $\left.v_{0}+t v \neq \theta \quad \forall t \in V\right]-\infty,+\infty[$. Therefore according to well-known property of quadratic trinomial

$$
\begin{equation*}
J\left(v_{0}, v_{0}\right) \cdot J(v, v)>\frac{1}{4}\left[J\left(v_{0}, v_{0}\right)+J(v, v)\right]^{2} \geq 0 \tag{3.21}
\end{equation*}
$$

But if (3.18), then in view of (3.21), obviously $J(v, v)>0$, for arbitrary $v \in$ $V \backslash\{\theta\}$, which is lineary independent of v_{0}; if (3.19) then from (3.21), we get similary $J(v, v)<0, \forall v \in V \backslash\{\theta\}$, which is lineary independent of v_{0}.

Let now $v \in V, v \neq \theta$, and be lineary dependent on v_{0}, i.e. $\left.\exists t_{0} \in\right]-\infty,+\infty[$, such that $v_{0}+t_{0} v=\theta$. Obviously, such t_{0} is unique, i.e. the equation $v_{0}+t v=\theta$ with respect to t has unique solution $t=t_{0}$. On the other hand from

$$
J\left(v_{0}+t v, v_{0}+t v\right)=0 \Leftrightarrow v_{0}+t v=\theta
$$

follows that the trinomial (3.20) has unique zero $t=t_{0}$. This is equivalent with the assertion that the discriminant of the trinomial (3.20) is equal to zero:

$$
\begin{equation*}
J\left(v_{0}, v_{0}\right) J(v, v)=\frac{1}{4}\left[J\left(v_{0}, v\right)+J\left(v, v_{0}\right)\right]^{2}>0 \tag{3.22}
\end{equation*}
$$

(the last equality is strong since $\left.J\left(v_{0}, v_{0}\right) \neq 0, J(v, v) \neq 0\right)$. Finaly from (3.22) follows $J(v, v)>0$ and $J(v, v)<0$ when correspondingly (3.18) and (3.19) are fulfilled. Thus the remark is proved.

4 - BENDING IN THE WEIGHTED SOBOLEV SPACE

Let us consider for the equation (0.1) the inhomogenuoes BVCs as follows: on Γ_{2}

$$
\begin{equation*}
w=g_{12}, \quad \frac{\partial w}{\partial n}=g_{22}, \tag{4.1}
\end{equation*}
$$

and on Γ_{1} either

$$
\begin{equation*}
w=g_{11}, \quad w,{ }_{2}=g_{21} \quad \text { if } \quad I_{0 i}<+\infty \quad(0<\varkappa<1), \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
w,_{2}=g_{21}, \quad Q_{2}^{*}=h_{2} \quad \text { if } \quad I_{0 i}<+\infty \quad(0<\varkappa<1), \tag{4.3}
\end{equation*}
$$

or

$$
\begin{gather*}
w=g_{11}, \\
M_{2}=h_{1}\left\{\begin{array}{lll}
\neq 0 & \text { when } \quad I_{0 i}<+\infty(0 \leq \varkappa<1),
\end{array} \quad \text { if } I_{1 i}<+\infty \quad(0 \leq \varkappa<2),\right. \tag{4.4}
\end{gather*}
$$

or
$M_{2}=h_{1}\left\{\begin{array}{l}\not \equiv \equiv 0 \text { when } I_{0 i}<+\infty \quad(0 \leq \varkappa<1), \\ \equiv 0 \text { when } I_{0 i}=+\infty(1 \leq \varkappa<+\infty),\end{array}\right.$

$$
\begin{equation*}
\text { if } I_{0 i} \leq+\infty(0 \leq \varkappa<+\infty) . \tag{4.5}
\end{equation*}
$$

$Q_{2}^{*}=h_{2}\left\{\begin{array}{l}\not \equiv 0 \text { when } I_{1 i}<+\infty(0 \leq \varkappa<2), \\ \equiv 0 \text { when } I_{1 i}=+\infty(2 \leq \varkappa<+\infty)\end{array}\right.$
Let

$$
\begin{equation*}
g_{\alpha \beta}, h_{\alpha} \in L_{2}\left(\Gamma_{1}\right), \quad \alpha, \beta=1,2, \tag{4.6}
\end{equation*}
$$

and $g_{11}, g_{21}, g_{12}, g_{22}$ be traces of certain given function $u \in W_{2}^{2}(\Omega, \tilde{D})$ (see below (4.7), (4.10)).

REMARK 4.1. Conditions $h_{\alpha}=0, \alpha=1,2$, in (4.4), (4.5) are necessary conditions (see section 1) of boundedness of deflection w and $w, 2$ correspondingly when $I_{1 i}=+\infty(2 \leq \varkappa<+\infty)$, and $I_{0 i}=+\infty(1 \leq \varkappa<+\infty)$. The demand of boundedness of w and $w, 2$ is natural in mechanical point of view since we do not consider the case of concentrated shearing forces and moments, when w and $w,_{2}$ should be, in general, unbounded.

REMARK 4.2. In particular case (0.4), let

$$
\begin{gathered}
g_{12} \in W_{2}^{\frac{3}{2}}\left(\Gamma_{2}\right), g_{22} \in W_{2}^{\frac{1}{2}}\left(\Gamma_{2}\right) ; g_{11} \in W_{2}^{\frac{3-\varkappa}{2}}\left(\Gamma_{1}\right), \\
g_{21} \in W_{2}^{\frac{1-\varkappa}{2}}\left(\Gamma_{1}\right), \quad h_{1}, h_{2} \in L_{2}\left(\Gamma_{1}\right),
\end{gathered}
$$

and $g_{11}, g_{21}, g_{12}, g_{22}$ be traces of certain given function $u \in W_{2}^{2}(\Omega, \tilde{D})$ (see below (4.15), and remark 4.5) and its derivative of first order (if $\partial \Omega$ is of the class C^{3}, they exist, on Γ_{2} always, and on Γ_{1} when $0<\varkappa<2$ and $0<\varkappa<1$ respectively (see [7.8], and [9], section 10).

Let further

$$
\begin{equation*}
W_{2}^{2}(\Omega, D) \tag{4.7}
\end{equation*}
$$

be the set of all measurable functions $u=u\left(x_{1}, x_{2}\right)$ defined on Ω which have on Ω generalized derivatives $D_{x_{1}, x_{2}}^{\left(\alpha_{1}, \alpha_{2}\right)} u$ for $\alpha_{1}+\alpha_{2} \leq 2, \alpha_{1}, \alpha_{2} \in\{0,1,2\}$ such that

$$
\begin{equation*}
\int_{\Omega}\left|D_{x_{1}, x_{2}}^{\left(\alpha_{1}, \alpha_{2}\right)} u\right|^{2} \rho_{\alpha_{1}, \alpha_{2}}\left(x_{1}, x_{2}\right) d \Omega<+\infty \tag{4.8}
\end{equation*}
$$

for $\rho_{0,0}:=1, \rho_{2,0}:=D_{1}\left(x_{1}, x_{2}\right), \rho_{1,1}:=D_{4}\left(x_{1}, x_{2}\right), \rho_{0,2}:=D_{2}\left(x_{1}, x_{2}\right) . D_{i}, i=$ $1,2,3,4$, are bounded measurable on Ω functions satisfyng (0.2),(0.3). Therefore, since $D_{\alpha} \geq D_{3}$ in $\bar{\Omega}$,

$$
\begin{equation*}
\int_{\Omega} D_{3}\left(u,_{\alpha \alpha}\right)^{2} d \Omega \leq \int_{\Omega} D_{\alpha}\left(u,_{\alpha \alpha}\right)^{2} d \Omega<+\infty, \quad \alpha=1,2, \tag{4.9}
\end{equation*}
$$

$$
\begin{gathered}
\int_{\Omega} D_{3}\left(u,,_{11}+u,,_{22}\right)^{2} d \Omega \leq \int_{\Omega} D_{1}\left(u,{ }_{11}\right)^{2} d \Omega+2 \int_{\Omega} D_{1}^{\frac{1}{2}} u,{ }_{11} \cdot D_{2}^{\frac{1}{2}} u,{ }_{22} d \Omega+ \\
+ \\
\int_{\Omega} D_{2}\left(u,{ }_{22}\right)^{2} d \Omega \leq\left\{\left[\int_{\Omega} D_{1}\left(u,,_{11}\right)^{2} d \Omega\right]^{\frac{1}{2}}+\left[\int_{\Omega} D_{2}\left(u,,_{22}\right)^{2} d \Omega\right]^{\frac{1}{2}}\right\}<+\infty
\end{gathered}
$$

Let

$$
D:=\left\{\rho_{0,0}, \quad \rho_{2,0}, \rho_{1,1}, \rho_{0,2}\right\}
$$

and

$$
\tilde{D}:=D \cup\left\{\rho_{0,1}:=x_{2}^{2}\right\}
$$

Then, in view of (4.7), (4.8), the sense of the notation $W_{2}^{2}(\Omega, \tilde{D})$ is clear. Obviously,

$$
\begin{equation*}
W_{2}^{2}(\Omega, \tilde{D}) \subset W_{2}^{2}(\Omega, D) \tag{4.10}
\end{equation*}
$$

From (0.3), it is clear that

$$
\rho_{\alpha_{1}, \alpha_{2}}^{-1} \in L_{1}^{l o c}(\Omega)
$$

Hence according to $[10] W_{2}^{2}(\Omega, D)$ and $W_{2}^{2}(\Omega, \tilde{D})$, in virtue of (4.8), (4.9), will be a Banach spaces under the norms

$$
\begin{align*}
\|u\|_{W_{2}^{2}(\Omega, D)}^{2} & :=\int_{\Omega}\left[u^{2}+D_{3}\left(u,,_{11}+u,{ }_{22}\right)^{2}+\right. \tag{4.11}\\
+\left(D_{1}-D_{3}\right)\left(u,{ }_{11}\right)^{2} & \left.+4 D_{4}(u, 12)^{2}+\left(D_{2}-D_{3}\right)(u, 22)^{2}\right] d \Omega \\
\|u\|_{W_{2}^{2}(\Omega, \tilde{D})}^{2} & :=\|u\|_{W_{2}^{2}(\Omega, D)}^{2}+\int_{\Omega} x_{2}^{2}(u, 2)^{2} d \Omega \tag{4.12}
\end{align*}
$$

respectively, and moreover, Hilbert spaces under the scalar products

$$
\begin{aligned}
&(u, v)_{W_{2}^{2}(\Omega, D)}:= \int_{\Omega}\left[u v+D_{3}\left(u,{ }_{11}+u,,_{22}\right)\left(v,{ }_{11}+v,{ }_{22}\right)+\left(D_{1}-D_{3}\right) u,{ }_{11} v,{ }_{11}+\right. \\
&\left.+4 D_{4} u,,_{12} v,{ }_{12}+\left(D_{2}-D_{3}\right) u,_{22} v,{ }_{22}\right] d \Omega \\
&(u, v)_{W_{2}^{2}(\Omega, \tilde{D})}:=(u, v)_{W_{2}^{2}(\Omega, D)}+\int_{\Omega} x_{2}^{2} u,_{2} v,_{2} d \Omega
\end{aligned}
$$

respectively. Let further $f \in L_{2}(\Omega)$, and

$$
\begin{equation*}
V:=\stackrel{0}{W}_{2}^{2}(\Omega, \tilde{D})=\overline{C_{0}^{\infty}(\Omega)} \text { in the norm of } W_{2}^{2}(\Omega, \tilde{D}) \tag{4.13}
\end{equation*}
$$

Since $\rho_{\alpha_{1}, \alpha_{2}} \in L_{1}^{\text {loc }}(\Omega)$ we have $C_{0}^{\infty}(\Omega) \subset W_{2}^{2}(\Omega, D)$, and (4.13) has the sense. In particular case (0.4), we can take as V also

$$
\begin{aligned}
V & :=\left\{v \in W_{2}^{2}(\Omega, \tilde{D}):\left.v\right|_{\Gamma_{2}}=0,\left.\quad \frac{\partial v}{\partial n}\right|_{\Gamma_{2}}=0, \quad\right. \text { and either } \\
\left.v\right|_{\Gamma_{1}}=0, \quad v,\left.\right|_{\Gamma_{1}}=0 & \text { if (4.2) or } v,\left.\right|_{\Gamma_{1}}=0 \quad \text { if (4.3) } \\
\text { or }\left.v\right|_{\Gamma_{1}}=0 & \text { if (4.4) in sense of traces }\} .
\end{aligned}
$$

In case (0.4) we could introduce weights and norm as follows:

$$
\rho_{0,0}:=1, \quad \rho_{2,0} \equiv \rho_{1,1} \equiv \rho_{0,2}:=x_{2}^{\varkappa},
$$

$$
\begin{equation*}
\|u\|_{W_{2}^{2}\left(\Omega, x_{2}^{2}\right)}^{2}:=\int_{\Omega}\left\{u^{2}+x_{2}^{\kappa}\left[\left(u,{ }_{11}+u,{ }_{22}\right)^{2}+\left(u,{ }_{11}\right)^{2}+\left(u,{ }_{12}\right)^{2}+\left(u,{ }_{22}\right)^{2}\right]\right\} d \Omega \tag{4.15}
\end{equation*}
$$

It is obvious, in view of (0.4), that the latter norm and (4.11) are equivalent in $W_{2}^{2}(\Omega, D)$. But we prefer (4.11) since the above resonings are valid for the more general case (0.3).

DEFINITION 4.1. A function $w \in W_{2}^{2}(\Omega, \tilde{D})$ will be called a weak solution of the BVP $(0.1),(0.3),(4.1)-(4.5)$ in the space $W_{2}^{2}(\Omega, \tilde{D})$ if it satisfies conditions as follows:

$$
\begin{equation*}
w-u \in V, \tag{4.16}
\end{equation*}
$$

and $\forall v \in V$

$$
\begin{equation*}
J(w, v):=\int_{\Omega} B(w, v) d \Omega=\int_{\Omega} v f d \Omega, \tag{4.17}
\end{equation*}
$$

where defined in (2.11)

$$
\begin{gather*}
B(v, w):=D_{3}\left(w,{ }_{11}+w,{ }_{22}\right)\left(v,{ }_{11}+v,{ }_{22}\right)+ \\
+\left(D_{1}-D_{3}\right) w,{ }_{11} v,_{11}+4 D_{4} w,{ }_{12} v,{ }_{12}+\left(D_{2}-D_{3}\right) w,{ }_{22} v,{ }_{22}, \tag{4.18}
\end{gather*}
$$

or corespondingly, for particular case (0.4),

$$
\begin{equation*}
J(w, v):=\int_{\Omega} B(w, v) d \Omega=\int_{\Omega} v f d \Omega+\gamma_{2} \int_{\Gamma_{1}} h_{2} v d x_{1}-\gamma_{1} \int_{\Gamma_{1}} h_{1} v,{ }_{2} d x_{1}, \tag{4.19}
\end{equation*}
$$

where $\gamma_{1}=\gamma_{2}=0$ if (4.2); $\gamma_{1}=0, \gamma_{2}=1$ if (4.3); $\gamma_{1}=1, \gamma_{2}=0$ if (4.4); and if (4.5) then $\gamma_{1}=1$ when $0 \leq \varkappa<1$, and $\gamma_{1}=0$ when $1 \leq \varkappa<+\infty ; \gamma_{2}=1$ when $0 \leq \varkappa<2$, and $\gamma_{2}=0$ when $2 \leq \varkappa<+\infty$.

REMARK 4.3. The BVCs (4.1), (4.2), the firsts of (4.3), (4.4) and (4.5), the seconds of (4.3), (4.4) are specified in (4.16) and (4.17), (4.19) correspondingly.

REMARK 4.4. Obviously, if the solution of above problem exists in the classical sense then (4.16), (4.17) and (4.19) will be fulfilled.

THEOREM 4.1. In case (0.3), if $D_{0}>0$, under other above conditions there exists the unique weak solution of the BVP (0.1), (0.3), (4.1)-(4.5). This solution is such that

$$
\begin{equation*}
\|w\|_{W_{2}^{2}(\Omega, D)} \leq \tilde{C}\left[| | f\left\|_{L_{2}(\Omega)}+\right\| u \|_{W_{2}^{2}(\Omega, D)}\right], \tag{4.20}
\end{equation*}
$$

where constant \tilde{C} is independent of f, u.
THEOREM 4.2. In case (0.4), if $0<x \leq 4$, under other above conditions there exists the unique weak solution of the BVP (0.1), (0.4), (4.1)-(4.5). This solution is such that

$$
\begin{equation*}
\|w\|_{W_{2}^{2}(\Omega, D)} \leq \tilde{C}\left[\|f\|_{L_{2}(\Omega)}+\|u\|_{W_{2}^{2}(\Omega, D)}+\gamma_{1}\left\|h_{1}\right\|_{L_{2}\left(\Gamma_{1}\right)}+\gamma_{2}\left\|h_{2}\right\|_{L_{2}\left(\Gamma_{1}\right)}\right], \tag{4.21}
\end{equation*}
$$

where constant \tilde{C} is independent of f, u, h_{1}, h_{2}.
PROOF of the theorems 4.1 and 4.2. First of all, let us prove that V is a subspace of $W_{2}^{2}(\Omega, \tilde{D})$. In case (0.3), it is obvious. In case (0.4), for it we have to show its
completeness. Because of linearity of the trace operators and operators in (4.1)-(4.4), obviously, V is a lineal. Since $u \in W_{2}^{2}(\Omega, \tilde{D})$ has the traces [7-9]

$$
\begin{gathered}
\left.u\right|_{\Gamma_{1}} \in W_{2}^{\frac{3-\varkappa}{2}}\left(\Gamma_{1}\right) \text { for } 0 \leq \varkappa<2, \\
\left.u\right|_{\Gamma_{2}} \in W_{2}^{\frac{3}{2}}\left(\Gamma_{2}\right) \text { for } 0 \leq \varkappa<+\infty \\
u,\left.2\right|_{\Gamma_{1}} \in W_{2}^{\frac{1-\varkappa}{2}}\left(\Gamma_{1}\right) \text { for } 0 \leq \varkappa<1, \\
\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{2}} \in W_{2}^{1 / 2}\left(\Gamma_{2}\right) \text { for } 0 \leq \varkappa<+\infty,
\end{gathered}
$$

then $\exists C_{1}=$ const >0 such that

$$
\begin{align*}
& \|u\|_{W_{2}^{\frac{3-\varkappa}{2}}\left(\Gamma_{1}\right)} \leq C_{1}\|u\|_{W_{2}^{2}(\Omega, D)} \text { for } 0 \leq \varkappa<2 \tag{4.22}\\
& \|u\|_{W_{2}^{\frac{3}{2}}\left(\Gamma_{2}\right)} \leq C_{1}\|u\|_{W_{2}^{2}(\Omega, D)} \text { for } 0 \leq \varkappa<+\infty \tag{4.23}\\
& \|u, 2\|_{W_{2}^{\frac{1-\varkappa}{2}}\left(\Gamma_{1}\right)} \leq C_{1}\|u\|_{W_{2}^{2}(\Omega, D)} \text { for } 0 \leq \varkappa<1, \tag{4.24}\\
& \left\|\frac{\partial u}{\partial n}\right\|_{W_{2}^{\frac{1}{2}}\left(\left(\Gamma_{2}\right)\right.} \leq C_{1}\|u\|_{W_{2}^{2}(\Omega, D)} \text { for } 0 \leq \varkappa<+\infty \tag{4.25}
\end{align*}
$$

Let $v_{m} \in V$ be fundamental sequence. It will be also fundamental sequence in $W_{2}^{2}(\Omega, \tilde{D})$. But the latter is complete set, i. e. $\exists v \in W_{2}^{2}(\Omega, \tilde{D})$ such that

$$
\left\|v_{m}-v\right\|_{W_{2}^{2}(\Omega, D)} \quad \underset{\rightarrow+\infty}{ } \quad \underset{\rightarrow}{0} .
$$

Then, in virtue of (4.22)-(4.25), respectively,

$$
\begin{array}{ll}
\left\|v_{m}-v\right\|_{W_{2}^{2}}^{\frac{3-\varkappa}{2}}\left(\Gamma_{1}\right) \\
\left\|v_{1}\right\| v v_{m}-v \|_{W_{2}^{2}(\Omega, D)} & \text { for } 0 \leq \varkappa<2, \\
\| w_{2}^{\frac{3}{2}}\left(\Gamma_{2}\right) \\
\leq C_{1}\left\|v_{m}-v\right\|_{W_{2}^{2}(\Omega, D)} \text { for } 0 \leq \varkappa<+\infty, \\
\left\|v_{m, 2}-v,_{2}\right\|_{W_{2}^{\frac{1-\varkappa}{2}}\left(\Gamma_{1}\right)} \leq C_{1}\left\|v_{m}-v\right\|_{W_{2}^{2}(\Omega, D)} & \text { for } 0 \leq \varkappa<1, \\
\left\|\frac{\partial v_{m}}{\partial n}-\frac{\partial v}{\partial n}\right\|_{W_{2}^{\frac{1}{2}}\left(\Gamma_{2}\right)} \leq C_{1}\left\|v_{m}-v\right\|_{W_{2}^{2}(\Omega, D)} & \text { for } 0 \leq \varkappa<+\infty .
\end{array}
$$

Therefore

$$
\begin{array}{r}
\left\|v_{m}-v\right\|_{W_{2}^{\frac{3-\varkappa}{2}}\left(\Gamma_{1}\right)} \overrightarrow{m \rightarrow+\infty} 0 \quad \text { for } 0 \leq \varkappa<2, \\
\left\|v_{m}-v\right\|_{W_{2}^{\frac{3}{2}}\left(\Gamma_{2}\right)} \overrightarrow{m \rightarrow+\infty} 0 \\
\left\|v_{m, 2}-v,_{2}\right\|_{W_{2}^{\frac{1-\varkappa}{2}}\left(\Gamma_{1}\right)} \quad \text { for } 0 \leq \varkappa<+\infty \\
\| \frac{0}{m} \quad \text { for } 0 \leq \varkappa<1, \tag{4.29}\\
\left\|\frac{\partial v_{m}}{\partial n}-\frac{\partial v}{\partial n}\right\|_{W_{2}^{\frac{1}{2}}\left(\Gamma_{2}\right)} \underset{m \rightarrow+\infty}{0} \quad \text { for } 0 \leq \varkappa<+\infty
\end{array}
$$

But since

$$
\begin{gather*}
\left.v_{m}\right|_{\Gamma_{1}}=0 \quad \text { for } 0 \leq \varkappa<2 \tag{4.30}\\
\left.v_{m}\right|_{\Gamma_{2}}=0 \quad \text { for } 0 \leq \varkappa<+\infty \tag{4.31}\\
\left.v_{m, 2}\right|_{\Gamma_{1}}=0 \quad \text { for } 0 \leq \varkappa<1 \tag{4.32}\\
\left.\frac{\partial v_{m}}{\partial n}\right|_{\Gamma_{2}}=0 \quad \text { for } 0 \leq \varkappa<+\infty \tag{4.33}
\end{gather*}
$$

from (4.30) follows

$$
\left\|v_{m}\right\|_{W_{2}^{\frac{3-\infty}{2}}\left(\Gamma_{1}\right)}=0 .
$$

Then, taking into account (4.26),

$$
0 \leq\|v\|_{W_{2}^{\frac{3-x}{2}}\left(\Gamma_{1}\right)}=\left|\left\|v_{m}\right\|_{W_{2}^{\frac{3-x}{2}}\left(\Gamma_{1}\right)}-\|v\|_{W_{2}^{\frac{3-x}{2}}\left(\Gamma_{1}\right)}\right| \leq\left\|v_{m}-v\right\|_{W_{2}^{\frac{3-x}{2}}\left(\Gamma_{1}\right)} \xrightarrow[m \rightarrow+\infty]{ }
$$

i.e. almost everywhere (a.e.)

$$
\left.v\right|_{\Gamma_{1}}=0 \quad \text { for } 0 \leq \varkappa<2 .
$$

Similarly, in view of (4.27)-(4.29), (4.31)-(4.33), we have a.e.

$$
\begin{aligned}
& \left.v\right|_{\Gamma_{2}}=0 \quad \text { for } \quad 0 \leq \varkappa<+\infty, \\
& v,\left.2\right|_{\Gamma_{1}}=0 \quad \text { for } 0 \leq \varkappa<1, \\
& \left.\frac{\partial v}{\partial n}\right|_{\Gamma_{2}}=0 \quad \text { for } 0 \leq \varkappa<+\infty .
\end{aligned}
$$

Thus V is complete i.e. it is a Hilbert space and a subspace of $W_{2}^{2}(\Omega, \tilde{D})$.
Further the proof of theorems 4.1 and 4.2 will be realized by means of (see[4,6]) The Lax-Milgram theorem. Let V be a real Hilbert space and $J(w, v)$ be a bilinear form defined on $V \times V$. Let this form be continuous -i.e. let there exist a constant $K>0$ such that

$$
\begin{equation*}
|J(w, v)| \leq K\|w\|_{v}\|v\|_{V} \tag{4.34}
\end{equation*}
$$

holds $\forall w, v \in V-$ and V-elliptic -i.e. let there exist a constant $\alpha>0$ such that

$$
\begin{equation*}
J(w, w) \geq \alpha\|w\|_{V}^{2} \tag{4.35}
\end{equation*}
$$

holds $\forall w \in V$. Further F be a bounded linear functional from V^{*} dual of V. Then there exists one and only one element $z \in V$ such that

$$
\begin{equation*}
J(z, v)=<F, v>\equiv F v \quad \forall v \in V \tag{4.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\|z\|_{v} \leq \alpha^{-1}\|F\|_{V^{*}} . \tag{4.37}
\end{equation*}
$$

Obviously, for bilinear form (4.17), in view of (4.18),

$$
\begin{gather*}
|J(w, v)| \leq \int_{\Omega}\left(D_{1}-D_{3}\right)^{\frac{1}{2}}\left|w,{ }_{11}\right| \cdot\left(D_{1}-D_{3}\right)^{\frac{1}{2}}\left|v,_{11}\right| d \Omega+ \\
+\int_{\Omega}\left(D_{2}-D_{3}\right)^{\frac{1}{2}}\left|w,{ }_{22}\right| \cdot\left(D_{2}-D_{3}\right)^{\frac{1}{2}}\left|v,{ }_{22}\right| d \Omega+ \\
+\int_{\Omega} D_{3}^{\frac{1}{2}}\left|w,{ }_{11}+w,{ }_{22}\right| \cdot D_{3}^{\frac{1}{2}}\left|v,{ }_{22}+v,{ }_{11}\right| d \Omega+ \\
+4 \int_{\Omega} D_{4}^{\frac{1}{2}}\left|w,{ }_{12}\right| \cdot D_{4}^{\frac{1}{2}}\left|v,{ }_{12}\right| d \Omega \leq \\
\leq \tag{4.38}\\
+\left[\int_{\Omega}\left(D_{1}-D_{3}\right)\left(w,{ }_{11}\right)^{2} d \Omega\right]^{\frac{1}{2}}\left[\int_{\Omega}\left(D_{1}-D_{3}\right)\left(v,{ }_{11}\right)^{2} d \Omega\right]^{\frac{1}{2}}+ \\
\left.+\left[D_{2}-D_{3}\right)\left(w,{ }_{22}\right)^{2} d \Omega\right]^{\frac{1}{2}} \cdot\left[\int_{\Omega}\left(D_{2}-D_{3}\right)\left(v,{ }_{22}\right)^{2} d \Omega\right]^{\frac{1}{2}}+ \\
+\left[\int_{\Omega} D_{3}\left(w,{ }_{11}+w,{ }_{22}\right)^{2} d \Omega\right]^{\frac{1}{2}} \cdot\left[\int_{\Omega} D_{3}\left(v,{ }_{11}+v,,_{22}\right)^{2} d \Omega\right]^{\frac{1}{2}}+ \\
+4\left[\int_{\Omega} D_{4}\left(w,{ }_{12}\right)^{2} d \Omega\right]^{\frac{1}{2}} \cdot\left[\int_{\Omega} D_{4}\left(w,,_{12}\right)^{2} d \Omega\right]^{\frac{1}{2}} \leq 7\|w\|_{W_{2}^{2}(\Omega, D)}\|v\|_{W_{2}^{2}(\Omega, D)}
\end{gather*}
$$

and, in particular (see below remark 4.5),

$$
\begin{equation*}
|J(w, v)| \leq 7\|w\|_{V}\|v\|_{V} \quad \forall w, v \in V . \tag{4.39}
\end{equation*}
$$

Hence (4.34) is fulfilled.
Taking into account that $\left(D_{2}-D_{3}\right)\left(v,{ }_{22}\right)^{2} \in L_{1}(\Omega)$, because of

$$
\begin{equation*}
x_{2}^{4} \leq \frac{D_{2}-D_{3}}{D_{0}}, \tag{4.40}
\end{equation*}
$$

obviously,

$$
x_{2}^{4}\left(v,{ }_{22}\right)^{2} \in L_{1}(\Omega)
$$

Without loss of generality, we can suppose that Ω lies in Π (see (2.14)), and let $v \in V$ and $v \equiv 0$ in $R_{+}^{2} \backslash \Omega$. Then for fixed x_{1}

$$
\begin{gathered}
v\left(x_{1}, \cdot\right) \in W_{2}^{2}(] 0,1\left[, x_{2}^{4}\right),\|v\|_{W_{2}^{2}(] 0,1\left[, x_{2}^{4}\right)}^{2}:=\int_{0}^{1}\left[v^{2}+x_{2}^{4}(v, 22)^{2}\right] d x_{2}, \\
v\left(x_{1}, 1\right)=0, \quad v, 2\left(x_{1}, 1\right)=0
\end{gathered}
$$

and if we suppose that $\left(D_{2}-D_{3}\right)^{\frac{1}{2}}\left(v,{ }_{2}\right)^{2} \in L_{1}(\Omega)$, i.e. $x_{2}^{2}\left(v,{ }_{2}\right)^{2} \in L_{1}(\Omega)$ since $x_{2}^{2} \leq \frac{\left(D_{2}-D_{3}\right)^{\frac{1}{2}}}{D_{0}^{\frac{1}{2}}}$ because of (4.40), it is easy to show (see below lemma 4.1) that the inequalities (2.15), (2.16) are valid for such functions $v \in W_{2}^{2}(\Omega, \tilde{D}), \Omega \subset \Pi$.

REMARK 4.5. In viev of (2.16), (4.40), when $D_{0}>0$ the norms (4.12), and (4.11) are equivalent in $W_{2}^{2}(\Omega, \tilde{D}), \Omega \subset \Pi$. Consequently (4.38) holds also for $W_{2}^{2}(\Omega, \tilde{D})$.

LEMMA 4.1. If $v \in W_{2}^{2}(] 0,1\left[, x_{2}^{4}\right), x_{2}^{2}(v, 2)^{2} \in L_{1}(] 0,1[)$ and

$$
v\left(x_{1}, 1\right)=0, \quad v,_{2}\left(x_{1}, 1\right)=0,
$$

then (2.15), (2.16) are valid, i.e.

$$
\begin{gathered}
\int_{0}^{1} x_{2}^{4}\left(v,,_{22}\right)^{2} d x_{2} \geq \frac{9}{16} \int_{0}^{1} v^{2} d x_{2} \\
\left.\int_{0}^{1} x_{2}^{4}\left(v,{ }_{22}\right)^{2} d x_{2} \geq \frac{9}{4} \int_{0}^{1} x_{2}^{2}(v,)^{2}\right)^{2} d x_{2}
\end{gathered}
$$

PROOF. In the case under consideration $v\left(x_{1}, \cdot\right) \in W_{2}^{2}(] c, 1[)$ for $\left.\left.\forall[c, 1] \subset\right] 0,1\right]$. Therefore (see [4], Remark 29.6) $v\left(x_{1}\right.$,) and $v,_{2}\left(x_{1,},\right)$ are absolutely continuous on $[\varepsilon, 1]$ for arbitrarily small $\varepsilon=$ const >0. Now we have to repeat proof of lemma 2.1 considering all integrals in limits $\varepsilon \leq x_{2} \leq 1$, and then tending ε to $0+$ taking into account that from square summability of $v\left(x_{1}, \cdot\right)$ and $x_{2} v,,_{2}\left(x_{1}, \cdot\right)$ follows respectively

$$
\lim _{x_{2} \rightarrow 0+} x_{2} v^{2}\left(x_{1}, x_{2}\right)=0, \quad \lim _{x_{2} \rightarrow 0+} x_{2}^{3}\left[v, v_{2}\left(x_{1}, x_{2}\right)\right]^{2}=0 .
$$

Othervise if we assume $\lim _{x_{2} \rightarrow 0+} x_{2} v^{2}\left(x_{1}, x_{2}\right)=c_{0}\left(x_{1}\right)>0, \lim _{x_{2} \rightarrow 0+} x_{2}^{3}\left[v,_{2}\left(x_{1}, x_{2}\right)\right]^{2}=$ $c_{1}\left(x_{1}\right)>0$ then in some right neighbourhood of point ($x_{1}, 0$)

$$
v^{2}\left(x_{1}, x_{2}\right)>\frac{c_{0}\left(x_{1}\right)}{2 x_{2}}, \quad x_{2}^{2}\left[v,{ }_{2}\left(x_{1}, x_{2}\right)\right]^{2}>\frac{c_{1}\left(x_{1}\right)}{2 x_{2}} .
$$

But this is contradiction since on the left hand sides we have integrable functions while on the right hand sides we have nonintegrable functions.

In view of (2.15), as $0<D_{0} \leq \frac{D_{2}-D_{3}}{x_{2}^{4}}$, for $v \in W_{2}^{2}(\Omega, \tilde{D})$, we have

$$
\begin{gathered}
\int_{\Omega} v^{2}\left(x_{1}, x_{2}\right) d \Omega=\int_{\Pi} v^{2}\left(x_{1}, x_{2}\right) d x_{1}, d x_{2}=\int_{a}^{b} d x_{1} \int_{0}^{1} v^{2} d x_{2} \leq \\
\leq \frac{16}{9} \int_{a}^{b} d x_{1} \int_{0}^{1} x_{2}^{4}(v, 22)^{2} d x_{2} \leq \frac{16}{9 D_{0}} \int_{a}^{b} d x_{1} \int_{0}^{1} D_{0} x_{2}^{\varkappa}\left(v, 2_{22}\right)^{2} d x_{2} \leq \\
\leq \frac{16}{9 D_{0}} \int_{\Omega}\left(D_{2}-D_{3}\right)(v, 22)^{2} d \Omega
\end{gathered}
$$

Hence

$$
\begin{align*}
\|v\|_{V}^{2}:= & \int_{\Omega}\left[v^{2}+x_{2}^{2}(v, 2)^{2}+D_{3}\left(v,{ }_{11}+v,{ }_{22}\right)^{2}+\left(D_{1}-D_{3}\right)\left(v,{ }_{11}\right)^{2}+\right. \\
& \left.\quad+4 D_{4}\left(v,{ }_{12}\right)^{2}+\left(D_{2}-D_{3}\right)\left(v,{ }_{22}\right)^{2}\right] d \Omega \leq \tag{4.41}\\
\leq & \frac{16}{9 D_{0}} \int_{\Omega}\left(D_{2}-D_{3}\right)\left(v,,_{22}\right)^{2} d \Omega+J(v, v)=\stackrel{*}{C} J(v, v),
\end{align*}
$$

where

$$
\stackrel{*}{C}:=1+\frac{16}{9 D_{0}} .
$$

(4.41) means V-ellipticity of the bilinear form J. Thus (4.35) is also fulfilled.

Now let us consider the following functional

$$
\begin{equation*}
F v:=(v, f)-J(u, v)+\gamma_{2} \int_{\Gamma_{1}} v h_{2} d x_{1}-\gamma_{1} \int_{\Gamma_{1}} v,{ }_{2} h_{1} d x_{1}, \quad v \in V \tag{4.42}
\end{equation*}
$$

(For case (0.3) we have to take $\gamma_{1}=\gamma_{2}=0$).
Further

$$
\begin{equation*}
|(v, f)| \leq\|v\|_{L_{2}(\Omega)}\|f\|_{L_{2}(\Omega)} \leq\|v\|_{V}\|f\|_{L_{2}(\Omega)}, \tag{4.43}
\end{equation*}
$$

and, since in case (0.4) traces belonging to $W_{2}^{\frac{3-\varkappa}{2}}\left(\Gamma_{1}\right), 0 \leq \varkappa<2 ; W_{2}^{\frac{1-\varkappa \varkappa}{2}}\left(\Gamma_{1}\right)$, $0 \leq \varkappa<1$; are also traces belonging to $L_{2}\left(\Gamma_{1}\right)$,

$$
\begin{gather*}
\left|\int_{\Gamma_{1}} v h_{2} d x_{1}\right| \leq\|v\|_{L_{2}\left(\Gamma_{1}\right)}\left\|h_{2}\right\|_{L_{2}\left(\Gamma_{1}\right)} \leq C\|v\|_{V}\left\|h_{2}\right\|_{L_{2}\left(\Gamma_{1}\right)}, \tag{4.44}\\
C=\text { const }>0, \quad 0 \leq \varkappa<2, \\
\left|\int_{\Gamma_{1}} v, 2 h_{1} d x_{1}\right| \leq\|v, 2\|_{L_{2}\left(\Gamma_{1}\right)}\left\|h_{1}\right\|_{L_{2}\left(\Gamma_{1}\right)} \leq C\|v\|_{V}\left\|h_{1}\right\|_{L_{2}\left(\Gamma_{1}\right)}, \tag{4.45}
\end{gather*}
$$

$$
0 \leq \varkappa<1 .
$$

After substitution of (4.43), (4.38), (4.44), (4.45) in (4.42), we obtain

$$
\begin{gather*}
|F v| \leq\left[\|f\|_{L_{2}(\Omega)}+7\|u\|_{W_{2}^{2}(\Omega, D)}+C\left(\gamma_{2}\left\|h_{2}\right\|_{L_{2}\left(\Gamma_{1}\right)}+\right.\right. \\
\left.\left.+\gamma_{1}\left\|h_{1}\right\|_{L_{2}\left(\Gamma_{1}\right)}\right)\right]\|v\|_{v} . \tag{4.46}
\end{gather*}
$$

Let us note that by demonstration of boundedness of the functional F defined by (4.42), we did not use that $D_{0}>0(0 \leq \varkappa \leq 4)$, i.e. the assertion is true for $D_{0} \geq 0$ ($0 \leq \pi<+\infty$). Therefore the linear functional (4.42) is bounded in V. So in view of (4.39), (4.41), (4.46), according to the Lax-Milgram theorem $\exists z \in V$ - unique such that, in virtue of (4.36), we have

$$
J(z, v)=F v:=(v, f)-J(u, v)+\gamma_{2} \int_{\Gamma_{1}} v h_{2} d x_{1}-\gamma_{1} \int_{\Gamma_{1}} v,{ }_{2} h_{1} d x_{1} \forall v \in V
$$

i.e.

$$
\begin{equation*}
J(w, v)=(v, f)+\gamma_{2} \int_{\Gamma_{1}} v h_{2} d x_{1}-\gamma_{1} \int_{\Gamma_{1}} v,{ }_{2} h_{1} d x_{1} \forall v \in V, \tag{4.47}
\end{equation*}
$$

where

$$
\begin{equation*}
w:=u+z \in W_{2}^{2}(\Omega, \tilde{D}) . \tag{4.48}
\end{equation*}
$$

So

$$
w-u=z \in V,
$$

and (4.16) is fulfilled. (4.47) coincides with (4.19) (in case (0.3) with (4.17)). Thus the existence of the unique weak solution $w \in W_{2}^{2}(\Omega, \hat{D})$ of the BVP $(0.1),(0.4)$ or (0.3), (4.1)-(4.5), has been proved.

From (4.46) it follows that

$$
\begin{equation*}
\|F\|_{V^{*}} \leq\|f\|_{L_{2}(\Omega)}+7\|u\|_{W_{2}^{2}(\Omega, D)}+C\left(\gamma_{2}\left\|h_{2}\right\|_{L_{2}\left(\Gamma_{1}\right)}+\gamma_{1}\left\|h_{1}\right\|_{L_{2}\left(\Gamma_{1}\right)}\right) . \tag{4.49}
\end{equation*}
$$

In virtue of (4.48), (4.37), (4.49),

$$
\begin{gathered}
\|w\|_{W_{2}^{2}(\Omega, D)} \leq\|u\|_{W_{2}^{2}(\Omega, D)}+\|z\|_{V} \leq\|u\|_{W_{2}^{2}(\Omega, D)}+ \\
+\alpha^{-1}\left[| | f\left\|_{L_{2}(\Omega)}+7\right\| u \|_{W_{2}^{2}(\Omega, D)}+C\left(\gamma_{2}\left|h_{2}\left\|_{L_{2}\left(\Gamma_{1}\right)}+\gamma_{1} \mid h_{1}\right\|_{L_{2}\left(\Gamma_{1}\right)}\right)\right] \leq\right. \\
\leq \tilde{C}\left[| | f\left\|_{L_{2}(\Omega)}+\right\| u\left\|_{W_{2}^{2}(\Omega, D)}+\gamma_{1}\right\| h_{1}\left\|_{L_{2}\left(\Gamma_{1}\right)}+\gamma_{2}\right\| h_{2} \|_{L_{2}\left(\Gamma_{1}\right)}\right],
\end{gathered}
$$

where

$$
\tilde{C}:=\max \left\{7 \alpha^{-1}+1, \quad \alpha^{-1} C\right\},
$$

i.e. (4.20), and (4.21) are valid in cases (0.3) and (0.4) respectively.

REMARK 4.6. Instead of V defined by (4.14), we could consider the space

$$
\stackrel{0}{W_{2}^{2}}(\Omega, \tilde{D})
$$

Then taking into account that (2.15) is, obviously, valid for $v \in C_{0}^{\infty}(] 0.1[)$, the condition (4.41) will be fulfilled for $v \in C_{0}^{\infty}(\Omega)$ and hence for $v \in W_{2}^{2}(\Omega, D)$. The condition (4.39) will be also realized on $W_{2}^{2}(\Omega, \tilde{D})-$ subspace of $W_{2}^{2}(\Omega, \tilde{D})$. (4.46) (where $\gamma_{1}=\gamma_{2}=0$) will be also carried out for $v \in W_{2}^{0}(\Omega, \tilde{D})$. Therefore Theorem 4.2 will be valid if in the definition 4.1 the space V is replaced by the space $W_{2}^{0}(\Omega, \tilde{D}) \subset V$, and (4.19) by (4.17).

5- THE CASE $D_{0}=0(\varkappa>4)$
In this case only the BVP (0.1), (0.3), (4.1), (4.5), can be correctly posed. Let

$$
V \equiv \stackrel{0}{W_{2}^{2}}(\Omega, D):=\overline{C_{0}^{\infty}(\Omega)}
$$

with the norm of $W_{2}^{2}(\Omega, D)$.
DEFINITION 5.1. Let $u \in W_{2}^{2}(\Omega, D)$ be given, and

$$
\begin{equation*}
F v:=(v, f)-J(u, v), \quad v \in V, \tag{5.1}
\end{equation*}
$$

where J is defined by (4.17). $z_{0}+u$, where $z_{0} \in \tilde{V}$ is identified with $F_{z_{0}} \in V^{*}$ (see the modification of the Lax-Milgram theorem in section 3), will be called the ideal solution of the BVP (0.1), (0.3), (4.1), (4.5), if it satisfies condition as follows:

$$
\begin{equation*}
F_{z_{0}} v:=\lim _{k \rightarrow \infty} J\left(z_{k}, v\right)=\int_{\Omega} f v d \Omega-J(u, v) \quad \forall v \in V \equiv W_{2}^{0}(\Omega, D) . \tag{5.2}
\end{equation*}
$$

THEOREM 5.1. There exists the unique ideal solution of the BVP (0.1), (0.3), (4.1), (4.5).

PROOF. Obviously,

$$
\begin{aligned}
|F v| & \leq\|v\|_{L_{2}(\Omega)}\|f\|_{L_{2}(\Omega)}+7\|u\|_{W_{2}^{2}(\Omega, D)} \cdot\|v\|_{V} \leq \\
& \leq\|f\|_{L_{2}(\Omega)}\|v\|_{V}+7\|u\|_{W_{2}^{2}(\Omega, D)} \cdot\|v\|_{V},
\end{aligned}
$$

since (4.38) is all the more fulfilled for $v \in V \equiv W_{2}^{2}(\Omega, D) \subset W_{2}^{2}(\Omega, D)$. Hence F defined by (5.1) is a bounded linear functional on V. In view of (4.39), which is all the more valid for $V \equiv W_{2}^{0}(\Omega, D),(3.1)$ holds.

From $v \in V$ and

$$
J(v, v)=0
$$

follows

$$
v=k_{1} x_{1}+k_{2} x_{2}+k_{3}, \quad k_{i}=\text { const, } \quad i=1,2,3, \quad \text { a.e. in } \Omega,
$$

since from (4.17), (4.18) we have

$$
\begin{gathered}
J(v, v)=\int_{\Omega}\left[D_{1}\left(v,{ }_{11}\right)^{2}+D_{2}\left(v,,_{22}\right)^{2}+2 D_{3} v,{ }_{11} \cdot v,{ }_{22}+4 D_{4}\left(v,{ }_{12}\right)^{2}\right] d \Omega= \\
= \\
\int_{\Omega}\left[D_{3}\left(v,{ }_{11}+v,{ }_{22}\right)^{2}+\left(D_{1}-D_{3}\right)\left(v,{ }_{11}\right)^{2}+\right. \\
\\
\left.\quad+\left(D_{2}-D_{3}\right)\left(v,{ }_{22}\right)^{2}+4 D_{4}\left(v,,_{12}\right)^{2}\right] d \Omega=0
\end{gathered}
$$

and hence a.e. in Ω

$$
v,_{11}=0, \quad v,{ }_{22}=0 \quad v,{ }_{12}=0 .
$$

On the other hand, it is obvious that

$$
u \in W_{2}^{2}(\Omega, D) \Rightarrow u \in W_{2}^{2}\left(\Omega_{\delta}, D\right) \equiv W_{2}^{2}\left(\Omega_{\delta}\right)
$$

Hence u and $\frac{\partial u}{\partial n}$ have traces on $\Gamma_{2} \cap \bar{\Omega}_{\delta} \forall \delta>0$, and since $v \in V \equiv \stackrel{0}{W_{2}^{2}}(\Omega, D)$, similarly, in sense of traces,

$$
\left.v\right|_{\Gamma_{2} \cup \bar{\Omega}_{\delta}}=\left.\frac{\partial v}{\partial n}\right|_{\Gamma_{2} \cup \bar{\Omega}_{\delta}}=0 .
$$

Therefore $v=0$ a.e. in Ω i.e. $v \equiv \theta$ in V. Hence (3.2) is fulfilled.
Thus, we can apply the modified Lax-Milgram theorem. Which asserts the existence of the unique ideal element z_{0} such that (5.2) is fulfilled.

REMARK 5.2. If, in particular, $z_{0} \in V$ then $z_{0}+u \in W_{2}^{2}(\Omega, D)$, and on Γ_{2} the traces of $z_{0}+u, \frac{\partial z_{0}+u}{\partial u}$ and $u, \frac{\partial u}{\partial n}$ coincide.

Acknowledgments: This work was partly supported by Max-Planck-Gesellschaft and partly by Italian C.N.R. I would like to thank Prof. B.-W. Schulze, Prof. P.E. Ricci, and Dr. M. Korey for useful discussions. I also thank Prof. S.S. Kharibegashvili for proof of remark 3.4, and Mary Sharikadze and Valentina Tarkhanova for their careful typing of this paper.

REFERENCES

1. S. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and Shells, Mcgrawhill Book Company, INC, New York-Toronto-London (1959)
2. G. Jaiani: Solution of some Problems for a Degenerate Elliptic Equation of Higher Order and Their Aplications to Prismatic Shells. Tbilisi State University Press (in Russian, English and Georgian summaries) (1982)
3. S. Mikhlin: Variational Methods in Mathematical Physics, Pergamon Press, Oxford-Edinburgh (1964)
4. K. Rektorys: Variational Methods in Mathematics, Science and Engineering. D. Reidel Publishing Company, Dordrecht-Boston (1977)
5. R. Dautray, J.-L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology. V.2. Berlin-Heidelberg-New York-London- ParisTokyo: Springer-Verlag (1988)
6. K. Yosida: Functional Analysis, Berlin-Goettingen-Heidelberg: Springer-Verlag (1965)
7. S. M. Nikol'skii, P. I. Lizorkin: On Some Inequalities for Weight-Class Boundary Value Problems with a Strong Degeneracy at the Boundary, Dokl. Akad. Nauk SSSR, 159, 3 (1964)
8. S. M. Nikol'skii: On a Boundary Value Problem of the first kind with a Strong Degeneracy, Dokl. Akad. Nauk SSSR, 222, 2 (1975)
9. S. M. Nikol'skii: Approximation of Functions of Several Variables and Embedding Theorems. $2^{\text {nd }}$ edition. Nauka, Moskow (in Russian) (1977)
10. A. Kufner, B. Opic: The Dirichlet Problem and Weighted Spaces I, Casopis Pest. Mat., 108, 4 (1983)
