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Abstract

On a compact closed manifold with edges live pseudodifferential operators
which are block matrices of operators with additional edge conditions like
boundary conditions in boundary value problems. They include Green, trace
and potential operators along the edges, act in a kind of Sobolev spaces and
form an algebra with a wealthy symbolic structure. We consider complexes
of Fréchet spaces whose differentials are given by operators in this algebra.
Since the algebra in question is a microlocalization of the Lie algebra of
typical vector fields on a manifold with edges, such complexes are of great
geometric interest. In particular, the de Rham and Dolbeault complexes
on manifolds with edges fit into this framework. To each complex there
correspond two sequences of symbols, one of the two controls the interior
ellipticity while the other sequence controls the ellipticity at the edges. The
elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional coho-
mology. Using specific tools in the algebra of pseudodifferential operators we
develop a Hodge theory for elliptic complexes and outline a few applications
thereof.

AMS subject classification: primary: 58G05; secondary: H58A14, 58G10.
Key words and phrases: manifolds with singularities, pseudodifferential
operators, elliptic complexes, Hodge theory.
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Introduction

De Rham [dR55] was the first to give a representation of the singular ho-
mologies of a differentiable manifold by means of the cohomology of closed
differential forms. He combined the theory of differential forms of E. Cartan
with the idea of a distribution of Sobolev and Schwartz to identify singu-
lar cycles with closed currents on the manifold. When completed with the
standard regularisation, this leads to a representation of singular cycles by
smooth closed differential forms modulo coboundaries.

The de Rham theory highlighted the classical result of Hodge [Hod41]
according to which the cohomology of the complex of differential forms on
a smooth compact closed manifold can be represented via harmonic forms.
Though being of analytical nature, the harmonic forms proved thus to bear
information on the topology of the manifold. Afterwards this aspect of the
de Rham theory entered into the Atiyah-Singer index theorem.

In 1970, Singer [Sin71] presents a program aimed at extending the the-
ory of elliptic operators and their index to “non-smooth manifolds of special
type and to a context where it is natural that integer (index) be replaced
by real number.”

A problem from Singer’s program is to produce a Hodge theory on
manifolds with singularities and on pseudomanifolds. The starting difficulty
consists of the proper definition of differential forms, exterior derivatives and
Laplacians under singular structures. The major contributions to Hodge
theory are those of Teleman [Tel79, Tel83] by using a combinatorial method
and of Cheeger [Che80, Che83] by using a geometric approach.

Unlike these techniques, Shaw [Sha83] developed a Hodge theory on do-
mains with conical points on the boundary by studying an elliptic boundary
value problem, so-called d-Neumann problem. Using arguments similar to
those of Kondrat’ev [Kon67] he proved the existence and compactness of the
Neumann operator that solves this problem. In addition, his set up yields
information on the regularity of harmonic forms near singularities.

It was in the spirit of this idea that Schulze [Sch88a] studied complexes
of Fréchet spaces on a compact closed manifold with conical points, whose
differentials belong to an algebra of pseudodifferential operators living on
the manifold. For the topological cone over a smooth compact closed man-
ifold, this algebra was before introduced by Rempel and Schulze [RS86]. Tt

contains typical differential operators on the cone which are of Fuchs type,
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Introduction 3

and bears a symbol structure allowing parametrix construction on the sym-
bol level. As order reductions, adjoints and parametrices to elliptic elements
are available within the algebra, the matter is reduced to a single operator,
the Laplacian of the complex. Schulze [Sch88a] proved a Hodge decompo-
sition theorem for elliptic complexes and showed asymptotic expansions of
harmonic sections close to conical points.

When applied to the de Rham complex on a manifold with conical
points, this provides us with proper function spaces and highlights the na-
ture of involved classes of pseudodifferential operators. The function spaces
in question are weighted Sobolev spaces, the weights being powers of the
distance function to the singular points. The connection of the cohomol-
ogy of the de Rham complex in weighted Sobolev spaces with the singular
homologies of the manifold is a more delicate problem.

Yet another approach to the analysis on manifolds with conical sin-
gularities is Melrose’s calculus of totally characteristic pseudodifferential
operators (cf. [Mel93]). These operators live on a smooth compact mani-
fold with boundary obtained by blowing up a closed manifold with conical
points at each singular point. The Fuchs-type differential operators are to-
tally characteristic because the Fuchs derivative proves surprisingly to be
tangential to the boundary. Melrose gave an exposition of Hodge theory
in the analytic framework of his calculus and proved an analogue of the de
Rham theorem (ibid., 6.4).

As one might expect, the Hodge theory carries over to an arbitrary
manifold with singularities had we a calculus for single operators so that
all the formal manipulations such as compositions, adjoints and so on be
controlled within the given class of operators and also on the symbol level.
However, it seems to be difficult to establish a meaningful abstract Hodge
theory because there is no unified approach to the calculus on singular
varieties. Fach algebra of pseudodifferential operators so far known proves
to bear a specific symbolic structure which results in various definitions of
ellipticity.

With this as our starting point, we examine in this paper elliptic com-
plexes on a compact closed manifold with edges. Close to an edge, such a
manifold is a fibre bundle over the edge whose fibre is the topological cone
over a smooth compact closed manifold. In particular, the product of a
smooth compact closed manifold and a compact closed manifold with coni-
cal points is a manifold with edges. This concept also encompasses manifolds
with boundary, the boundary being an edge of the lowest codimension. An
algebra of pseudodifferential boundary value problems without transmission
property was first introduced by Rempel and Schulze [RS82b] who enriched
considerably the results of Boutet de Monvel [BAM71] and Eskin [Esk73].
In 1990, Schulze [Sch92, Sch94] combined this theory with the calculus on
the cone of [RS86] to define an algebra of pseudodifferential operators on a
closed manifold with edges. It starts with typical differential operators on
the manifold, such as the products of differential operators along edges and



4 Introduction

Fuchs-type operators in the fibres, the Laplacians for warped wedge met-
rics, and so on. The operators in the algebra are block matrices similar to
those in Boutet de Monvel’s algebra, with the usual principal homogeneous
symbol over the cotangent bundle to the manifold as well as an additional
symbol over the cotangent bundle to each edge. This latter takes its values
in the cone algebra in fibres and controls the generalised Lopatinskii con-
dition. The ellipticity of a single operator refers to both the symbol levels
and extends in a natural way to the definition of an elliptic complex. In this
setting, we establish the Fredholm property of elliptic complexes in natural
weighted Sobolev spaces and present a Hodge theory for them.

Let us finally mention that the school of Melrose [Mel96a] also devel-
ops general pseudodifferential calculi on manifolds with corners (stratified
spaces). The definition of a manifold with corners is based on the model
spaces which are products of half-lines and lines. It thus encompasses in par-
ticular manifolds with boundary and manifolds with simple conical points
and edges on the boundary. The principal significance of the class of man-
ifolds with corners lies in the fact that passage ‘to the boundary’ and ‘to
the product’ stays within the class. This theory has some intersection with
our operator algebra for edge singularities (or more generally with the cor-
ner algebra of Schulze [Sch89a, Sch92]), as far as it concerns the allowed
classes of degenerate interior symbols or certain blow-up and invariance
aspects. On the other hand, there are specific differences, in particular,
with respect to the nature of weighted Sobolev spaces, the various ideals of
smoothing operators with asymptotics, the additional conditions along the
lower-dimensional skeletons, and so on. While a manifold with edges (even
on the boundary) can be desingularised to a manifold with corners under a
blow-up along each edge, our approach to the calculus involves much more
analytical ingredients than that in [Mel96a].

Acknowledgments. The authors are indebted to B. Fedosov for numer-
ous discussions which often opened new aspects of the theory.



Chapter 1

Manifolds with Edges

1.1 % structures

The concept of a manifold with edges starts with a model space bearing
edges. As such we take the wedge W = R? x Cy(X), where Cy(X) is the

topological cone over a compact closed manifold X of dimension n, i.e.,

Ry x X
{0} x X7

and R? or, more precisely, £ = R? x {tip of C;(X)} stands for the edge.
We give C}(X) the natural quotient topology, and W the product topology.
Then, W is a Hausdorff topological space.

The important point to note here is the form of W close to the edge.

Cy(X)

In general, W is not a topological manifold of dimension g+ 1+ n, as shows
the fairly obvious example where n = 0 and X consists of at least three
different points on the unit circle in R2

A general continuous mapping has no relation to the edge of the wedge
W it maps. To keep the wedge structure of W, we will consider only those
continuous mappings between open sets (g, 5 in W which obey the pair
(W, E). More precisely, we require f: Qy — Qs to satisfy f(QNE) C Q2NE,
provided that ©; N E # (). In particular, a mapping f: Q; — €, is said to
be a homeomorphism on the wedge if it a homeomorphism and restricts to
a homeomorphism of ; N £ onto Q5 N K.

Our next task is to endow W with a € structure with edges which
amounts to defining C'* functions on W. The cone cross-section X is always
assumed to be a ("> manifold, hence W bears a natural C'*° structure away
from the edge. Moreover, W has the standard C'* structure along the edge
E. When looking for a O with edges on W, one wishes to take into account
both the structures. However, there is no canonical way to do this unless
W is embedded into an Euclidean space R", smoothly away from the edge.
In the sequel we think of W as being embedded.

If such is the case, by a C'™ function on an open set 3 C W one might
mean the restriction, to 2, of a C'* function on a neighbourhood of € in

5



6 1 Manifolds with Edges

RY. If Q does not meet the edge, this concept proves to agree with the
purely intrinsic description in terms of local coordinates. For ) intersecting
the edge, there is no intrinsic description of C'*°() in general though there
may be such characterisations for particular embeddings W — RV,

Having fixed a €' structure with edges on W, we are in a position
to define diffeomorphisms of W. Namely, if €1,y C W are open, then a
mapping d: Q; — €, is said to be a diffeomorphismif it is a homeomorphism
on the wedge with inverse §71: Qy — Q; and the components of § and §~1
are in C°°(€y) and C*°(y) respectively.

It immediately follows that any diffeomorphism §: Q; — €, restricts
to a diffeomorphism 6: O, N E — Q, N E.

If ¢ is a diffeomorphism of open sets €2y, {2y C W, then there exist open
sets Ql,ﬂg C RN with Q; = Q1 NW, Q, = Qg N W, and a diffeomorphism
6: Q1 — Q, such that § = d]g, (cf. Lemma 1.5.1 in Melrose [Mel96a]).

Now, the definition of a manifold with edges follows precisely along
classical lines.

Definition 1.1.1 By a manifold with edges is meant a pair (M,S), M
being a Hausdorff topological space and S a closed subspace of M, such that
both M \ S and S are manifolds and each point p € S has a neighbour-
hood O on M homeomorphic to an open set Q C W, the restriction of the
homeomorphism to O NS being onto QN E.

The space S is said to be the set of edges of M. It is allowed to consist of
a finite number of connected components of various dimensions, S = U5,
where 5; is a manifold of dimension ¢;. The model wedge W does vary
together with p € S, however W is required to be the same along each
component 5;. A familiar topological argument shows that this assumption
involves no loss of generality.

We will abbreviate (M, S) to M when no confusion can arise, and call
M the manifold with edges.

If W, = R% x Cy(X;) is the model wedge for S;, then the number
¢; + 1+ dim X; is equal to the dimension of M \ S and thus independent of
¢. This number is called the dimension of M.

Close to an edge 5;, the manifold M gives rise to a cone bundle whose
base is S; and whose fibre is C}(X;).

As mentioned, M is not necessarily a topological manifold unless all
the cone cross-sections X; are homeomorphic to spheres. However, we call
M a manifold for the analytical objects will be considered on M \ S.

The structure of charts with edges on a manifold with edges M is clear
from the Definition 1.1.1. When speaking on charts h: O — W on M, one
specifies the domains O of these. Namely, O is allowed to meet at most one
of the edges 5;. If O intersects S;, then A maps O to W, and the image
of ONS; by & lies on the edge of W;. If O is away from the edges, then
as target space for h we can take either any one of the wedges W; or the
Euclidean space RY™M (cf. Fig. 1.1).
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W c RV

Fig. 1.1: A chart with edges.

Two charts with edges (h1,01) and (hs, Oz) are said to be compatible if
either O;NO0y = P or hyohy': hi(01N03) — ha(O1N0O3) is a diffeomorphism
of open sets on a model wedge or in R4mM

We emphasise that if O; N Oy intersects S, then both O, and Oy meet
the same component of S, S; say, and so hy 0 h' is required to be a dif-
feomorphism of open sets on the wedge W;. On the other hand, if O; N Oy
does not meet 5, then O; and Oy may intersect different components of S
or lie away from S at all. In any case hy o h{' is a diffeomorphism of open
sets lying outside the singularities.

An atlas on M is a system of charts (h,,0,),.; which are compatible in
pairs and which cover M, i.e., M = U,;0,.

A O structure with edges on M is a maximal atlas, i.e., an atlas which
contains any chart compatible with each element of the atlas.

By a coordinate system on a manifold M, with a C'® structure with
edges, we shall mean a pointed chart, i.e., a chart (h,O) and a point p € O
such that h(p) = 0.

If M has a C* structure with edges, we denote by C'*°(M) the space
of all functions u: M — C such that wo h™' is €' on h(O), for each chart
(h,O).

Definition 1.1.2 A C* manifold with edges is a pair (M,F), where
M is a paracompact manifold with edges and F = C*(M) for some C>
structure with edges on M.

The concept of a €' manifold with edges encompasses in particular
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the class of smooth manifolds with boundary. Each boundary hypersurface
is regarded as an edge of minimal codimension, with the inward-pointing
normal bundle as cone bundle.

Definition 1.1.2 can be easily generalised to the case when the cone bases
X; are smooth compact manifolds with boundary. This would correspond
to manifolds with edges on the boundary.

On the other hand, there may be fairly artificial C'*® structures with
edges.

Example 1.1.3 Let M be a (" manifold of dimension ¢ + 1 + n and
S a ¢-dimensional C'*° submanifold of M. For each point p € S, there
are a neighbourhood O on M and a diffeomorphism A& of O onto an open
subset Q of R? x B, B being the unit ball of centre 0 in R'™™, such that
RO NS) = QN (R?x {0}). Since B can equally well be regarded as
the topological cone over the unit sphere in R'*" i.e. B = ((S"), these
diffeomorphisms £ give rise to a C'* structure with edges on M, with S an
edge. It is clear that this > structure with edges in fact coincides with
the original C'* structure of M.
O

1.2  Vector bundles

Let M be a O manifold with edges. The differential geometry of M will be
developed by straightforward extension from the singularityless case, which
is first recalled succinctly.

We begin with the construction of the tangent bundle of a manifold
with edges. In the singularityless case this construction is direct and is
followed by that of the cotangent bundle via invoking the functor of the dual
bundle. For manifolds with singularities, however, a direct construction of
the cotangent bundle has proved to survive rather than that of the tangent
bundle (cf. Melrose [Mel96a, 1.10]).

The manifold M comes equipped with its algebra of C'* functions,
C>(M), of which we are going to make use. Localising this leads to the
cotangent bundle. Thus, for p € M, let Z,(M) = {u € C*(M): u(p) = 0}
be the ideal of smooth functions vanishing at p. We define the cotangent
space at p by T*M = T,(M)/I}(M) where I2(M) is the linear span of
products of pairs of elements in Z,(M). It is clear that Ty M bears a natural
linear structure inherited from Z,(M).

If p lies on the smooth part of M, then it is easy to see, by reference to
local coordinates and use of Taylor’s formula, that T>*M is a vector space of
dimension equal to that of M. However, this is no longer true for singular
points p, i.e. those lying on the edges of M. Clearly, the dimension of Ty M
does not exceed N provided p belongs to an edge with the model wedge
embedded to RY. The following example shows that the dimension of M
can in fact vary from dim M to N.
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Example 1.2.1 Pick N —q points @; on the unit sphere S¥=¢1in RV,
ie.

a; = (@1, ,ain-g), 1=1,...,N—gq,

and put X = {ay,...,an}. Then, X is a manifold of dimension 0 and the
topological cone over X allows an embedding to RV~7 by

Ci(X)={ta;:teRy, i=1,...,N —q}

(a hedgehog-like manifold with a conical point at the origin). The wedge

W =R? x C4(X) is thus embedded to R”Y and has a natural C'* structure
with edge ££ = R? x {0}. It is a simple matter to see that

dimT;W = g+r foreach pe€FE,

where r = rankg (a;;). Hence it follows that the dimension of T;W over the

edge may be any integer in the interval [¢+ 1, N]|. There are essentially two

cases where this dimension is precisely ¢ + 1. One of the two corresponds

to X consisting of two antipodal points on the sphere S¥=77! and thus to
dif.

W = R?x (—1,1) (the case of C* manifolds). The other case corresponds

dif. _
to X consisting of a single point on SV~¢~! and thus to W = R?x R (the

case of C* manifolds with boundary).

4

The cotangent spaces T)M over all p € M combine to give rise to the
cotangent bundle of M,

M= J TIM,

peEM

with the natural projection 7: T*M — M mapping Ty M to p. We check at
once that T*M is still a manifold with edges, though of subtler structures.
Namely, to an edge S; in M with model wedge R% x C}(X;) there corresponds
an edge in T*M with model wedge R#%+4mM 5 (X, US"~2), where r; > 1.
Moreover, we have r; > 1 unless the singularity of M along .S; is artificial.

Ifue C®M)and p e M, then u — u(p) € Z,(M). Thus, the class of
u —u(p) in T; M defines a section of T*M, i.e., a mapping du: M — T*M
satisfying 7 o du = Id.

Using these explicit sections of T*M we introduce the following space
of functions on T*M,

F=Af:T"M — C such that fodu e C*(M) for all u € C=(M)}.
(1.2.1)

Proposition 1.2.2 (T*M,F), with F defined by (1.2.1), is a C*° man-
ifold with edges.
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Proof. See Proposition 1.10.1 in Melrose [Mel96a].

O

It is easy to check that 7: T*M — M is a smooth mapping of manifolds
with edges. If h: O — RY™M is a non-singular chart on M and p € O,
then each u € Z,(M) can be written as u = E;h:nIM cjdh;(p) modulo T (M),
where ¢; € C are constant. Hence (dh;(p)) is a basis in each cotangent space
TrM, p € O. Tt varies smoothly in p € O, which leads to a diffeomorphism
§: 77 HO) = O x RY™ given by (p,[u]) = (p,c), where ¢ = (¢;) are the
coordinates in 1M with respect to (dh;(p)). Moreover, the restriction of
§ to each fibre 771(p) = TrM is a linear mapping. However, the linear
structures in the fibres 7=!(p) C T*M fail to vary smoothly close to edges
where the dimension of 7~!(p) jumps. Thus, the cotangent bundle to a
manifold with edges does not fit in the usual concept of a vector bundle.
The singular structure of M near edges forces the cotangent bundle to bear
new features such as jumps of fibre dimensions. Rather than to modify
the concept of a vector bundle to meet these pecularities we will blow up
M along the edges, thus confining the discussion to C'°° manifolds with
boundary and standard vector bundles. The first approach would perhaps
better suit to differential geometry while the second one is suggested by the
analysis of partial differential operators.

Similarly the dual spaces T,M = (Tp*M>* fit together to form the
tangent bundle TM = U,emT,M, which is also naturally a €' manifold
with edges. For a manifold with edges, the elements of C*(M,TM) are
called smooth vector fields. Each element v € C*(M,T M) acts on C*(M),
essentially by definition,

vu(p) = (v(p), du(p)), we C™(M), (1.2.2)

(-,-) being the pairing between T, M and T>M. In particular, vu = 0 if u
is constant. Moreover this action shows that C*(M,T'M) is a Lie algebra
with Poisson brackets [vy, va]u (p) = (v1vg — vavy)u (p), for u € C°(M).

We finish this section by recalling the standard notion of a vector bundle
over a C'* manifold with edges. As mentioned, it relies on the C* structure
of M induced by an embedding, and so it is not sufficient to cover natural
geometric bundles unless the singularities have been blown up.

Note that a mapping f: M; — M; between C'* manifolds with edges is
smooth, i.e. C if the pull-back f*u = wo f belongs to C°°(M;) whenever
u € C™(M,).

For open sets O C My and Oy C M,, we call a mapping §: O; — O,
the diffeomorphism if it is €', has a ('™, two-sided, inverse and restricts
to a diffeomorphism of the pieces of Oy and O, along the edges.

Definition 1.2.3 Let m: V — M be a smooth mapping of manifolds with
edges. We say that (V,m) is a fibre bundle with typical fibre Vy if there are a
covering of M by open sets O, and diffeomorphisms 6,: 771(0,) — O, x V}
such that m: 771(0,) — O, is the composition of 6, with projection onto the
first factor O, in O, x V;.
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It follows from this definition that 7~!(p) is diffeomorphic to V; for all
p € M; we will call V; “the” fibre of V. We require V; to be a "™ manifold,
and so M x V; is a C° manifold with edges {edges of M} x V.

A section of a fibre bundle V over M is a mapping s: M — V such
that ws(p) = p for all p € M.

We denote by C*(M, V') the set of all smooth, i.e. C, sections of
V over M. It does not bear any structure but those induced pointwise by
hypothetical structures in the fibres 77'(p), p € M. Such is the case, in
particular, for vector bundles V', where C*°(M, V') is a vector space.

Consider the diffeomorphism &; 067! of (O, NO;) x V; which we obtain
from the definition of a fibre bundle. It is a mapping from O, N O; to the
group of diffeomorphisms of the fibre V.

Definition 1.2.4 A fibre bundle w: V. — M is said to be a vector bundle
if its typical fibre is a vector space Vy and if the diffeomorphisms §, may be
chosen in such a way that the diffeomorphisms ;06 t: {p} xV; — {p} xV;
are invertible linear mappings for all p € O, N O;.

If f: My — M, is a smooth mapping of manifolds with edges and V' is a
fibre bundle over M;, we denote by f*V the fibre bundle over M; obtained
by pulling back V. More precisely, f*V is the smooth fibre bundle given by
restricting the fibre bundle M; x V over M; x M, to the graph I'y of f, so
that

Vo= (Idx )y
= {(p.v) € My x V:m(v) = f(p)}.

The induced mapping on sections, f*u = w o f, will be referred to as

the pull-back mapping; it maps C*(My, V) to C*(My, f*V).

1.3  Blowing up edges

In order to simplify various analytic constructions it proves to be helpful to
blow up the manifold M along edges.

The main idea of blowing up a manifold at a singular set S is to replace
the manifold by a bigger set in which some information concerning the
direction of approach to S is included. Directions are associated to curves
with only their endpoint on S and which are not “tangent” to S. The set of
equivalence classes of such curves is in many cases specified as the inward-
pointing spherical normal bundle to S. For more details we refer the reader
to Melrose [Mel96a, Ch. 5].

Let S; be a connected component of the set of edges of M. By Definition
1.1.1, this amounts to saying that each point p € 5; has a neighbourhood O
in M which bears the structure of a fibre bundle over ONS;, with Cy(X;) as
a typical fibre. Indeed, having fixed a diffeomorphism i: O — W;, one can
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set m(p) = h™!(y), for p € O, where y is the projection of i(p) on the edge in
W,. However, there need not exist any neighbourhood O of the entire edge
S; which is a fibre bundle over S; whose typical fibre is Cy(X;). While this
is the case for Riemannian manifolds with edges, in general the existence of
such a neighbourhood should be postulated.

Recall that we think of Cy(X;) as being embedded as a conic set in an
Euclidean space RN~% where ¢; stands for the dimension of S;. The usual
way to achieve such an embedding is as follows. Let e: X; < R¥-%71 be
an embedding of X; as a compact submanifold in RV=%~! with N large
enough, which does exist by the Whitney theorem. Then,

Ci(X;) = {tSP (e(x)) € RN"%: t € Ry, x € X;}, (1.3.1)

SP being the stereographic projection of RV ~%~! onto the upper hemisphere
SYT% " in RN-4

SP (Z) — ﬂ7 7 € RN-a—1
vz +1
Blowing up the tip 0 in C¢(X;) simply amounts to the introduction of
polar coordinates (¢,2). Namely, we define Cy(X;) blown up at 0 to be
[C(X;); {0}] = Ry x X; (cf. the notation of Melrose [Mel96a, 5.1]) together
with the associated blow-down mapping b: [Cy(X;); {0}] — Ci(X;) given by

b(t, ) = ¢ SP (e(x)). (1.3.2)

This is a diffeomorphism of [C(X;); {0}]\ ({0} x X;) onto C(X;)\ {0} and
has rank 1 at the boundary 9[Cy(X;);{0}] = {0} x X;, which projects to
the tip 0.

We blow up M along the edge S; by blowing up the tip at each fibre
of M over 5;, close to S;. Namely, let 7: O — 5; be a fibre bundle of some
neighbourhood O of S; in M, with typical fibre Cy(X;). Given any point
p € S;, the fiber 77*(p) is diffeomorphic to Cy(X;), the diffeomorphism
being locally C* in p. We define the fibre #7!(p) blown up at the tip
to be Ry x X; along with the associated blow-down mapping Ry x X; —
7~!(p) obtained by composing (1.3.2) and the inverse of the diffeomorphism
7 p) — Cy(X;). Once again this is equivalent to introducing the polar
coordinates at each fibre of O over ;.

Denote by [M; S;] the topological space constructed from M by replac-
ing the neighbourhood O by S; x Ry x X; via gluing with any one of the
above diffeomorphisms. What we have done is we attached a cylindrical end
along the edge S;.

We now apply this construction again, thus blowing up M along each
of the edges. The resulting topological space is denoted by

[M; 8] = [...[[M;5:];9] .. .];

it is immaterial which order of edges we choose to define [M; S] as long as
the edges are disjoint.
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Remark 1.3.1 The space [M; 5] is referred to as the ‘stretched mani-
fold’ associated to the manifold with edges M (cf. Schulze [Sch98, 3.1.1]).

From the construction of [M;S] it is immediate that [M;S] is a C*™
manifold with boundary. Moreover, the corresponding blow-down mapping
b: [M;S] — M is C* and restricts to a diffeomorphism of [M; S]\ 9[M; S]
onto M \ S.

Note that the boundary of [M; S] has as many connected components
as the number of edges of M. In fact,

8[]\/[,5] = U; SZ X {0} ><Xi

under the identification above. The component S; x {0} x X; of the boundary
has the structure of a fibre bundle over S; whose typical fibre is X;, a C'*
compact closed manifold. Thus, the boundary of [M;S] is a fibre bundle
over the set of edges,

I[M; S]

lb (1.3.3)
g

the typical fibre varying along with the component of S.

The analysis on a manifold with edges has been proved to refer to the
associated stretched manifold.

We finish this section with a brief discussion of the pull-backs of vector
bundles over M under the blow-down mapping b: [M;S] — M. If V is a
C* vector bundle over M, then the fibre of b*V over a point p € J[M; 9]
is Vi(p). As b blows down entire fibres of (1.3.3), it follows that 6*V should
be “constant” along the fibres of the boundary fibration. Hence, vector
bundles of interest over [M;S] seem at first sight to obey the fibration
(1.3.3). The cotangent bundle T*M to a manifold with edges, however, gives
some suggestive evidence to the contrary. Indeed, as defined in Section 1.2,
T*M does not meet Definition 1.2.3 while being of great importance in the
analysis on M. As a substitute for the pull-back of T*M under the blow-
down mapping b: [M;S] — M one would like to have just the cotangent
bundle to [M; S]. Since this latter need not be “constant” along the fibres
of (1.3.3), we have thus to permit arbitrary C'* vector bundles over [M; 5],
i.e., including those which do not respect the boundary fibration.

1.4  Distributions on manifolds with edges

Suppose (M, S) is a C* manifold with edges. On the non-singular part
M\ S of M all the usual function spaces are well-defined. So, we restrict
our attention to the behaviour of functions close to edges.

If w e C*(M), then the pull-back of « under the blow-down mapping
[M;S] — M belongs to C*([M;S]). The converse is not true because
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a function u € C([M;5]) can be lifted to a continuous function on M if
and only if it is constant along the fibres of (1.3.3). Thus the store of C'*
functions on [M; S] is much richer than that on M.

On the other hand, denote by COO(M) the subspace of C*(M) consist-
ing of functions which are flat on 5, i.e., vanish up to the infinite order on 5.
Then, the pull-back of COO(M) under the blow-down mapping [M; S] = M
coincides with the subspace of C*([M; S]) consisting of functions which are
flat on the boundary of [M; S].

Let C>([M; 5],9) stand for the space of ¢ densities on [M; S] which
are flat on 9[M; S]. From what has already been said, we deduce that the

dual space
!

CT([M; 8]) = (C([M3 5], 9)) (L4.1)
is of great importance in the analysis on manifolds with edges.

Proposition 1.4.1 The elements of C~>([M; S]) are extendible distri-
butions in the sense that, given any C* manifold M extending [M; S], the
restriction mapping E[’M;S](./\/l) — C=([M; S]) is surjective with null space
consisting of distributions supported on O[M; S].

Proof. Indeed, by the Hahn-Banach theorem, each continuous linear
functional on C’OO([M; S1,9) extends to the space C*([M; S], ), of which
the dual is just E[’M;S](./\/l). Hence the surjectivity of the restriction map-
ping E[’M;S](./\/l) — C~%([M;S]) is immediate. On the other hand, the
characterisation of the null space of this mapping follows from the fact that
C’OO([M; S1,8) is the closure in C*([M; S], Q) of the subspace of C* den-
sities supported away from the boundary in [M;S]. This completes the
proof.

O

In the next chapter we introduce a scale of weighted Sobolev spaces
on [M; 5], with the distance to the boundary as a weight factor, which
“connects” C°([M;S]) and C=>([M; S]).

Note that similar arguments apply to define generalised sections of a
vector bundle V over [M; 5], to be denoted C’OO([M; S, V), C==([M; S],V),

etc.



Chapter 2

Sobolev Spaces with
Asymptotics

2.1 “Tunsted” Sobolev spaces

To organise a calculus of pseudodifferential operators on a manifold with
edges, it proves to be helpful to reformulate the standard Sobolev spaces
on the smooth part of the manifold in anisotropic terms, close to edges.
Namely, when restricted to a fibred neighbourhood of an edge, they can be
described as Sobolev spaces along the edge of functions taking their values in
suitable Sobolev spaces in fibres. Moreover, some actions on the cotangent
spaces to the edges turn out to be involved, a fact clarifying the use of
“twisted” in the specification of the spaces.

We begin with a general concept of a “twisted” Sobolev space. For this
purpose, let S be a C'™ compact closed manifold of dimension ¢ and V' — S
a Banach bundle over S, with typical fibre V}.

Fix a strictly positive C* function n — (1) on R?, such that (n) = ||
for all || > ¢ with some ¢ > 0. In this way we obtain what is known as a
‘smoothed norm function’. The following property of such a function proves
to be extremely useful in the sequel.

Lemma 2.1.1 (Peetre’s inequality) There is a constant C' > 0 such
that, given any s € R, we have

(<l =00y for all 5,0 € R

Proof. The proof is elementary.
O
Denote by m: T*S — S the cotangent bundle of S and by 7#*V the
pull-back of V under 7. As defined in Section 1.2, 7*V" is a Banach bundle
over T*S and the fibre of 7*V over a point (p,n) € T*S is V,, the fibre of
V over p € 5. Though being independent of n € T(5) as a Banach space,
the fibre H, might bear a Banach structure varying along with 7. Our next

15



16 2 Sobolev Spaces with Asymptotics

concern will be the behaviour of Banach structures allowed under varying
n.
Proposition 2.1.2 The following are equivalent:
1) There is a family (|| - ;)

non-zero v € Vi, we have
l min Q @ el max Q @ E or a 9
C ( <9>7<77>> = l|v]|s SC( <9>’<77>> forall n,0 € RY,

with constants € and C independent of v and n, 0.
2) There is a family (A(1)),crq of isomorphisms of V; such that

IAGDA™ O)llziry < € <max % %) for all 4,0 € RY,

with constants € and C independent of n, 0.

— of norms on V; such that, given any

Proof. 1) = 2) Pick an arbitrary isomorphism 7' of V;. Given n € R,
let

Al = %TU for veVy\{0} (2.1.1)

and A(n)0 = 0. It is clear that A(n) is an isomorphism of V; and

-1 . HQH -1
M= g T

unless g # 0. Hence it follows that

1T gl |lgll

NN Ol = = g,

9]l

for v # 0, and consequently

A @)z < sup
showing 2).
2) = 1) Given any n € R, set
[olly = [[A(m)oll for v eV,
as follows from (2.1.1). If , 6 € R?, then
[olls_ [AG)ATT(0)A(0)o]

_ (
1ollo [A()]

< [AMAT () lzvy
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which establishes the right estimate in 1). Interchanging n and 6 yields
immediately the left estimate in 1), as desired.
O

Note that the family of isomorphisms (A(n)) in 2) also satisfies

neR?

A7+ A ()|, < e () forall 0 € RY, (2.1.2)
as is easy to see from Lemma 2.1.1 (cf. [RST97]).

Example 2.1.3 As but one example of (A(n)) satisfying 2) we show

nER?
AMn) = /<;<_77l>, n € RY, where (kg),., is a group action on V.

4

We are now able to introduce “twisted” Sobolev spaces H*(S,7*V),
s € R,on S. Let (A(%)),cpq be a family of isomorphisms on the typical fibre
Vi of V, fulfilling condition 2) of Proposition 2.1.2. This family goes to be
involved into the definition of “twisted” Sobolev spaces. For this reason we
speak on sections of the induced bundle 7*V" over S rather than on sections
of V. Though 7*V is a Banach bundle over T*S, we may identify S with
the zero section of T*S and hence the designation H*(S, 7*V') will cause no
perplexity.

We begin with a local situation where a section u € D'(S,V) is sup-
ported in the domain of some chart on S and V' is trivial over the domain.

Definition 2.1.4 For s € R, the space H*(R?%, 7*V) is defined to consist
of all uw € S'"(R%, V) such that Fu € Li, (R%, V) and

loc

1/2
—— ( / <n>2w<n>fwuu2vfdn) < .

If we replace || - |[v, by another equivalent norm on V}, then we get an
equivalent norm on H*(R% 7n*V'). Furthermore, this norm is independent of
the concrete choice of n — () modulo equivalence of norms.

The space H*(R?,7*V) is easily checked to be a Banach space and
even a Hilbert space provided V; is Hilbert. For further properties of these
spaces we refer the reader to [ST95], here confining ourselves merely to a
motivation of “twisted” Sobolev spaces.

Example 2.1.5 Let V; = H*(RY~%). Consider the group action (xg)
on Vy given by

>0

Kou(z) =07 u(0z), we (RN,
and set A(n) = /<;<_771>, for n € R%. Then H*(RY 7 H*(RN=9)) = H*(RY)
(cf. Schulze [Sch9l, 3.1.1]). In order to extend this equality to Sobolev
spaces on product manifolds, it is necessary to fall outside the limits of
group actions on fibres and allow general actions meeting the conditions of

Proposition 2.1.2.
O
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To carry over the definition of “twisted” Sobolev spaces to the case of
Banach bundles over S, we need the following lemma.

Lemma 2.1.6 Suppose (A(n)) is a family of isomorphisms on V;

neR?
satisfying
sup IN)TA () |lpv,) < 00 for all T € L(V;). (2.1.3)
neR

Then, for each T € C*(RY, L(V})) with values in invertible operators on
Vi, the norms of u and Twu in H*(RY,7*V) are equivalent on sections u
supported in a fired compact subset of R,

Proof. Indeed, the condition (2.1.3) implies that both the operator-
valued symbol a(y,n) = T'(y) and its pointwise inverse belong to the sym-
bol space S°(T*R%7*V) (cf. Section 3.2 below). As a pseudodifferen-

tial operator with a symbol in this space extends to a continuous mapping

Henp(RE TV — HE (R, 7*V), for each s € R, the lemma follows. See

also Proposition 5 in [Sch91, 3.1.2].
O

It is worth pointing out that the action of Example 2.1.5 fulfils condition
(2.1.3) while its inverse does not.

Pick a covering (O) of S by open sets, each O! lying in the domain
of some chart y = h!(p) on S and V being trivial over O/, and choose
a subordinate partition (¢,) of unity on S. Moreover, fix trivialisations
8,1 Vl]or = O) xV of the bundle V over O] and denote by ¢, the composition
of §, with the projection to the second factor in O x V;.

Given s € R, the space H*(S,7*V) is defined to consist of all sections
u € D'(S,V) such that (h!).t,ou € H(RY,7*(R? x V})) for each ¢. The

norm in this space is defined by

1/2
lullrseev) = (Z / <n>25HA(n)fw<hz>muu2vfdn) .

Proposition 2.1.7 If (A(1)),cp. satisfies condition (2.1.3), then the
space H?(S,m*V') is independent of which partition of unity on S, local co-
ordinates on S and trivialisations of V we choose to define it.

Proof. It suffices to use Lemma 2.1.6 together with the fact that the
space H{ (R9 7*(R? x V})) is invariant under changes of coordinates in R?
(cf. Behm [Beh95, 1.2.7]).

0

As is shown in [FST98b], we have H*(S,n*H*(F)) = H*(S x F) for a
suitable family (A(n)) of isomorphisms on H*(F'), F' being a '™ com-
pact closed manifold.

neRY
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2.2 Sobolev spaces on manafolds with edges

Let (M,S) be a C* closed manifold with edges. By abuse of language we
introduce Sobolev spaces on M in case S consists of merely one connected
component of dimension g. Generalisation to the case of a finite number of
components is fairly straightforward.

As mentioned above, the analysis will take place on an associated
stretched manifold M = [M; S] rather than on M. This latter is a smooth
manifold with boundary, the boundary being the total space of a fibration
b: OM — S with a compact typical fibre X. Namely,

O X 0 x X
lb / broj
0,

(cf. (1.3.3)), for a finite covering (O) of S.

We now invoke the fact that each manifold with compact boundary has
a ‘collar’, i.e., the boundary dM possesses a neighbourhood O in M which
is diffeomorphic to 9M x R,. When combined with boundary fibration
(2.2.1), this gives rise to a fibration of the whole manifold M near the

boundary. Namely, letting § denote a diffeomorphism of a neighbourhood
of OM onto OM x R, we arrive at a fibre bundle

SL(bH0) xRy) 25 0 x (Ry x X)
lF  proi (2.2.1)
O/
with base S and typical fibre R, x X. Here,

I' = boprojod;
A, (6, x 1)od.

In turn fibre bundle (2.2.1) enables us to introduce various Banach
bundles over S relevant to function spaces on M. Namely, given a function
space V; on the semicylinder Ry x X, we might consider a fibre bundle V/
over S whose fibre over a point p € O/ consists of all functions u on the
fibre F'~!(p), such that the push-forward (A,).u of v under A, belongs to V;.
Were the space V; invariant under the diffeomorphisms A, (p) of Ry x X
induced by A;A™! this would allow us to conclude that V' is a fibre bundle
over S with typical fibre V.

We thus turn to Sobolev spaces on R, x X to be used. These are
H*Y(Ry x X), for s, € R. We begin with the case of non-negative integer
s.

Let s € Z; and v € R. Denote by H*"°(Ry x X) the set of all distri-
butions « on R4 x X whose derivatives up to order s are locally integrable
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and satisfy

o 1 4 dt
s = [ 3 MEDPuliyag g < .
0 j+A<s

This norm is intended to control the behaviour of functions near ¢ = 0.
On the other hand, away from ¢t = 0 we wish to model the pull-back of
the usual Sobolev spaces under polar coordinates (1.3.2). It proves to be
helpful to incorporate an additional weight factor ¢°, § € R, into the norm
expression. Thus, for s € Z; and § € R, we define H**9(R, x X) to consist
of all distributions v on R} x X whose derivatives up to order s are locally
integrable and make finite the norm

) § n
HUH%S,O,é(R_l_XX) ::/0 tz ~ 7t2(]+A)H(tDt)]uH?—IA(X)t dt7
A<

n being the dimension of X.

The definitions then extend to arbitrary s € R by interpolation and
duality (cf. [ST95]).

The spaces H*7°(R, x X) allow an equivalent formulation in terms of
the Mellin transform along R,. The analysis on the cone employs the Mellin
transform and weight factors only near the vertex which corresponds to a
neighbourhood of ¢ = 0. The weight factor 77 affects the space also for
t — oo. It will be advantageous to introduce another variant of spaces on
R, x X that refers to the Mellin transform and to weight factors only close
to ¢ = 0. For this purpose, we multiply H*"°(R, x X) by a cut-off function
w E ngmp(R+) and add (1 —w)H*% (R4 x X). Thus, for 5,7,d € R, we set

H3 (R x X) = wH O Ry x X) 4 (1 - 0) HOU(Ry x X), (2.2.2)

where the right-hand side is regarded as a non-direct sum of Fréchet spaces.
For § = 0, we abbreviate H*"°(R, x X) to H*"(Ry x X).

The most important property of spaces (2.2.2) is that C'* functions of
compact support are dense in H*7*(R, x X), for each s,7,d € R.

It is easy to see that the spaces H*"¥(R, x X) are invariant under
those diffeomorphisms of R, x X which behave properly at ¢ = oo (cf.
Schrohe [Sch96]). Hence we may apply the above scheme to the space
Vi = H*"3 (R, x X), thus arriving at a Banach bundle over S to be denoted
1o (F1()),

We endow the fibre H*7 (R4 x X) with the group action (r4),., given
by keu (t,z) = Ggi_nu(et,x), and set A(n) = /<;<_771>, for n € R? (cf. Exam-
ple 2.1.5).

The ‘twisted” Sobolev space H*(S,7*H*7(F~1(-))) bears informations
on the behaviour of functions close to the edge S on M. It gives rise to
weighted Sobolev spaces on M.
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Proposition 2.2.1 Assume that u is a distribution with a compact sup-
port in O\ M, O being a collar neighbourhood of the boundary. Then
u € H*(S, 7 H*"(F~1(+))), for s,7,d € R, if and only if u € H*(M).

Proof. It suffices to combine Propositions 2.1.4 and 2.1.20 in [ST95].
O

From this proposition we deduce that the localisation of the space
H*(S,m*H*7(F~'(-))) to each compact subset of O\ dM coincides with
that of the usual Sobolev space H*(M). Hence we can paste together these
spaces just in the same way as in (2.2.2).

We say that a distribution on M\ dM is supported close to the bound-
ary of M if it vanishes away from a compact subset of O. Fix a C'* function
w on M that is supported close to the boundary and is equal to 1 in a smaller
neighbourhood of M. Then, each distribution u in the interior of M can
be written as u = uy + uy where uy = wu is supported close to the boundary
and the support of uy = (1 — w)u does not meet the boundary.

Definition 2.2.2 For s,y € R, the space H*7(M) is defined to consist
of all distributions u on M\ OM such that wu € H*(S,7*H*7(F~1(-))) and
(1 —w)u e H*(M).

By Proposition 2.2.1, the space H*7(M) is independent of which cut-
off function w we choose to define it. It is a Banach space and even a Hilbert
space under the norm

1/2

lallzocany = (Ioulldrs oo + 10— @ulln)  (223)

which does depend on w modulo equivalence.

The crucial point of Definition 2.2.2 is the particular choice of the family
of isomorphisms (A(7)),cg, on the typical fibre H*"(R, x X). For the
definition to be correct, this family should be so chosen that the ‘twisted’
Sobolev space H*(S,7*H*7(F~'(-))) agree with the usual Sobolev space
H?(M) on compact subsets of O\ M. No further conditions are required.
Yet another choice of this family is discussed in Section 2.4.

As the spaces H*7(M) are invariant under multiplication by C'* func-
tions, the definition of weighted Sobolev spaces on M carries over to sections
of smooth vector bundles on M. We will write H*7(M, V), etc. for the
corresponding spaces, V' being a C'* bundle over M.

2.3 The nature of asymptotics

When constructing a parametrix to an elliptic operator close to an edge on
M, one reformulates the operator as a Fourier pseudodifferential operator
along the edge with a symbol taking its values in the ‘cone algebras’ on the
fibres. Then, the parametrix construction starts by looking for a precise
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parametrix in each fibre. Recall that the fibres are locally identified with
the semicylinder Ry x X and the operators on the fibres are of Fuchs-type
in t € R,. The parametrices of such operators are known to bear so-called
‘conormal’ asymptotic expansions at ¢t = 0. The asymptotics of solutions
to the Fuchs-type differential equations on the semiaxis are simply pull-
backs of Euler exponential solutions to ordinary differential equations with
constant coefficients under the mapping Ry — R given by ¢ — r = —log .
When having given Sobolev spaces with asymptotics in the fibres of M close
to 5, we may define Sobolev spaces with asymptotics on M just in the same
way as in Definition 2.2.2. We therefore restrict our attention to spaces with
asymptotics on the semicylinder Ry x X.

In the Mellin transform picture, the asymptotics of solutions to elliptic
equations of Fuchs type on Ry x X are related to analytic functionals of
the form

uHZZfMa]pu ue A((pu)),

u=1 7=0

where (p,) are some points in the complex plane, j, non-negative integers,
and f,; smooth functions on X. Such functionals are carried by discrete
sets (p,) which, in turn, prove to coincide with the spectrums of the conor-
mal symbols of the corresponding equations. The spectrum in a fibre may
vary along the edge S which causes serious difficulties when one works in
the framework of discrete asymptotic types. However, the ‘general position’
corresponds to the case where the spectrum varies within a closed set away
from the weight line in the complex plane, whose intersection with each hor-
izontal strip of finite width remains compact while the fibre varies along the
edge. To handle such asymptotics, Schulze [Sch88b] introduced continuous
asymptotic types.

For a compact set K C C, we denote by Aj the space of all analytic
functionals having K as a carrier. If the Complement of K is connected,
then Ay = A(K), A(K) being the space of analytic functions on K with
the usual inductive limit topology.

The space Al is known to be a nuclear Fréchet space. Therefore,
we may consider the space A} (C,C* (X)) = A @ C*(X) of analytic
functionals with values in C°°(X) carried by K.

Pick a cut-off function w € €5, (R4), i.e., any function with w(?) =1
near t = 0.

Suppose K lies below from a weight lineI'_, = {z € C: Jz = —~}, i.e,,
Sz < —v for all z € K. Then, for any f € A (C,C*(X)), the potential
w(t)(f(x),t*) is easily verified to be in H=7 (R, x X).

We want to introduce subspaces of H*V(R, x X) consisting of the
functions which have a gain in the weight up to elements of certain spaces
of potentials. For this purpose, we need some preliminaries.

A weight datum w = (v,(—[,0]) consists of a number v € R and an
interval (—/,0] on the real axis, with 0 < [ < co. By abuse of language,
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we will consider only weight data with finite weight intervals, i.e., [ < oo,
referring the reader to [ST98a] for the general case.

A set o C C is called a carrier of asymptotics if o is closed, has con-
nected complement and if the portion of ¢ in each strip {¢' < 3z < '} is
compact.

By an asymptotic type related to a weight datum w = (v,(—[,0]) is
meant any pair as = (0, %), where

e o is a carrier of asymptotics contained in the strip —y —1 < 3z < —~;
and

e Y is a closed subspace of A (C,C*(X)).

Let us denote by As(w) the set of all asymptotic types related to w.
We are now in a position to introduce our spaces with asymptotics.

Definition 2.3.1 For an asymptolic lype as = (0,%) related to a weight
datum w = (v, (=L, 0]), the space HY(Ry x X) is defined to consist of all
u € H*(Ry x X) such that u — w (f, %) € H*"M-9(R, x X), for some
feX.

The elements of

H57’V+I—O(R+ X X) = m H57’V+Z—E(R+ X X)

e>0

may be regarded as being flat of order [ — 0 relative to the weight ~.

Note that Definition 2.3.1 is independent of the particular choice of the
cut-off function w.

To topologise the space H2Y (R4 x X), we denote by A, (R, x X) the
space of all potentials u(t,z) = w(t)(f(z), ) in H*7 (R, x X), such that
fex.

By the Kéthe-Grothendieck duality, A’ (C, C*° (X)) tg. A(C\O‘, C>*(X))
has a Fréchet topology which is nuclear. Then, we endow the subspace ¥ by
the induced topology. Moreover, the mapping ¥ — A, (R, x X) given by
= w()(f(x),t) is easily checked to be injective and surjective. Thus, we
can give A, (R, x X) the topology induced by this algebraic isomorphism.

We make H" (R, x X) a Fréchet space by endowing it with the topology

of the non-direct sum of Fréchet spaces,
HE(Ry x X) = Au(Ry x X)) 4+ PR, x X). (2.3.1)
Moreover, if e NT_,_; = (), then the sum (2.3.1) is direct.
If u(t,z) = w(t)(f(x),t*) is an element of A,s(R; x X), with as =
(0,%), then

kou (1, ) = w(0) (051 (), 1), 6> 0.
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For each fixed 6 > 0, the function w(t) is again of cut-off nature and so
does not affect the property of being in A,;(R; x X)) modulo elements of
HoH=9(R, x X). Further,

gtz exp (( H'T” + zz) log (9)

is an entire function of z, hence the product (952-_”"'”]6(:1;) is again an analytic
functional with values in C'*(X) and carrier 0. Whether this functional
belongs to ¥ or not, would be a property of ¥ itself. A kind of this property
is that X is invariant under multiplication by entire functions. If such is the
case, then rpu € Au(Ry x X) modulo H®" =R, x X), for all § > 0.
Hence it follows that the space HZ"(R, x X) is invariant under the group
action (£g)gsg-

On the other hand, it is obvious that the representation of a function
in the form u(t,z) = w(t) (f(z),t”*) modulo H*"*°(R, x X) depends on
the particular choice of coordinates. We next look for conditions on an
asymptotic type as = (o, %), such that the space H2"(R,; x X) is invariant
under diffeomorphisms of Ry x X.

First, for any p € C, we have

Put,e) = w(t)(fe), 1) |
= w(t) ((w— w+ip)"f(x), ")

where (w +— w + ip)*f is the pull-back of f under the biholomorphism
w — w + 1p of the complex plane. Thus, the product is of asymptotic type
(w = w+ip)*as = (o —ip, (W= w4+ ip)*X).

We say that an asymptotic type as = (0, %) satisfies the shadow con-
dition if, for each v = 0,1,..., the intersection of ¢ — 1 with the strip
—~v — 1 < 3z < —v belongs to ¢ and the restriction of (w — w + iv)*¥ to
this intersection is a subspace of X.

If ‘as’ satisfies the shadow condition, then the space Hz"(R, x X) is
invariant under multiplication by functions of Cfgmp(R+). However, this

condition is not yet sufficient to ensure the invariance under changes of
coordinates. Indeed, a diffeomorphism of R, x X is of the form

{r = 7(t,7),

X = X(t,l‘)

in a neighbourhood of ¢ = 0, where 7(¢, ) = te?®) for some C* function

#on [0, R) x X. Hence a potential w(7){f(x), 7*) pulls back to

w <t€¢(t,1’)> <ezz¢(t,1’)f(x(t7 l’)), tzz>
N1 . ' '
=w <t€¢(t,x)> Z t” <J ay ewb(t’x)f(x(t, x))‘tzo, t”>
v=0

modulo H*"*N (R, x X), for any N = 0,1,.... Note that the function
w (te¢(t’x)> is of cut-off nature near ¢ = 0. Thus, when taking N > [, we
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should be able to carry out the operations f + 97 2 f(y(t,2)) li=o
within the space ¥. Such a property of X has to be postulated.

Example 2.3.2 Let ¥’ be a closed subspace of A’ invariant under mul-
tiplication by entire functions. Then, ¥ = ¥’ @, C*(X) meets all the
conditions above.

4

Applying the general construction of Section 2.1 to V; = HZ" (R, x X)
yields ‘twisted” Sobolev spaces with asymptotics H*(S, 7 H:Y(F~1(+))), for
s,7 € R and an asymptotic type ‘as’. In turn, gluing together these spaces
with the usual Sobolev spaces H*(M) away from the boundary leads us to
Sobolev spaces with asymptotics on M, H:"(M) (cf. Definition 2.2.2).

For natural asymptotic types ‘as’, the spaces H:"(M) are invariant
under multiplication by smooth functions on M. A familiar argument then
shows that they extend as well to sections of smooth vector bundles over
M. In the sequel, H:"(M, V) stands for a Sobolev space with asymptotics
of sections of a C'* bundle V over M.

2.4 Invariance

Let (M,S) be a C* closed manifold with an edge S and let M = [M; 5]
be an associated stretched manifold. As described above, the boundary of
M has the structure of a fibre bundle over S, with a blow-down mapping
b: OM — S. The typical fibre of b is a ' compact closed manifold
X. It follows that M bears a distinguished class of smooth vector fields
which are unrestricted in the interior and which lie tangent at the bound-
ary to the leaves of the fibration. If denoting this space by Vj, b standing
for the blow-down mapping, we will be aimed at finding an appropriate
microlocalisation of V), which contains all differential operators on M man-
ufactured from elements of Vy, and parametrices to elliptic differential op-
erators. The operators in question are intended to act continuously on the
weighted Sobolev spaces H*Y(M) introduced in Section 2.3. From this we
deduce that, when discussing the invariance of the spaces H*7(M) under
changes of coordinates, we must restrict our attention to those mappings
f: M — M which preserve the class Vj. In other words, these mappings
should obey the boundary fibration b: M — S in the sense that there is a
commutative diagram

oM L om
lb lb (2.4.1)
N

with fs a mapping of 5. This diagram means simply that f preserves the
fibres of b and thus restricts to a mapping of S. Evidently, if f is smooth,
then so is fs.
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Let us now turn to describing the vector fields of V, and mappings f
with property (2.4.1) in local coordinates of M. We restrict ourselves to a
collar neighbourhood O of M which is diffeomorphic to M x R,. Then,
we may take (y,t,2) € S x Ry x X as local coordinates in O, where y
restricts to M to coordinates lifted from S, t is a defining function for
IM and z restricts to M to coordinates on each fibre b™'(y) = X. In
terms of these coordinates, V; is a complete natural Lie algebra on M, with
a local basis at a point of O, as a '™ module,

tD,, tD,, D,. (2.4.2)

Given open sets 01,02 € O, a C* mapping f: Oy — Oz can be
written in terms of the coordinates as (y,t,z) — (v, 7, x) where v, 7 and x
are smooth mappings of (y,¢,x) € O;.

Lemma 2.4.1 Fach mapping f: Oy — Oz meeting (2.4.1) is of the form

vo= fs(y)ﬁ't?l)(y,t,l'),
T = texp(d(y,t,x)), (2.4.3)
X = x(y.t, ),

with fs, ¥, ¢ and x smooth fort € [0, R), R > 0.

Proof. Indeed, if f maps O; N dM to OM, then a simple analysis
yvields 7(y,t,x) = te?@4) where ¢ is a C* function of (y,t,2) € Oy and
t bounded. On the other hand, if f preserves the fibres of the blow-down
mapping b, then v(y,t,z) = fs(y) + t(y,t, x), with fs and ¢» smooth on
the same set, as is clear from the Taylor formula. This completes the proof.

O

By the above, the pull-back of a differential operator in 7D, D, and
7D, under a diffeomorphism Oy — O of the form (2.4.3) is a differen-
tial operator in the vector fields (2.4.2). In other words, the algebra V is
invariant under those diffeomorphisms of M which satisfy (2.4.1).

To control the behaviour of functions v on O under actions of vector
fields (2.4.2), the natural weighted Sobolev spaces are described as follows.
We first take u with a support which projects to a coordinate patch on .
When identifying this patch with an open set 0 C R?, we are thus reduced
to functions given on the stretched wedge W = R? x R, x X.

Suppose s € Zy and v € R. Denote by H*7"°(W) the set of all dis-
tributions ©w on R? x Ry x X whose derivatives up to order s are locally
integrable and satisfy

= : dt dy
lfeoomi= [ [ 3 MDD i T < o

|B|+i+A<Ls

The factor t77 in front of dy is included by purely aesthetic reasons to
keep in mind the relation to the usual Sobolev spaces under the change of
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variables
t — —logt,
T =,
y =ty
The norms || - ||z=~0(w) allow one to describe the behaviour of functions

close to ¢t = 0. However, the weight factor t=%7 affects the space also for
t — oo. For this reason, we single out the contribution of such a factor at
t = oo and glue together resulting spaces, just as in (2.2.2).

Namely, for s € Zy and § € R, let H*%9(W) consist of all distributions
u on W, such that the derivatives of u up to order s are locally integrable
and make finite the norm

2 o 26 5] 2 n
[ull3ge00 ) := /R/O Y Sl (D) (1D ul gyt dtdy,
[B]4+7+A<s

n being the dimension of X.
To integer s < 0, the definitions of H*"°(W) and H>"%(W) extend by
duality and then, to fractional s, by complex interpolation.

We now fix a cut-off function w € €22 (R, ) neart = 0. For s,7,§ € R,

comp
set

H P (W) = wH O OW) + (1 — w) H (W) (2.4.4)

where the right side is thought of as a non-direct sum of Fréchet spaces.
Moreover, we abbreviate H*7"°(W) to H*7(W).

Once again C'* functions of compact support are dense in H*7*(W),
for each s,7v,6 € R.

Lemma 2.4.2 Given any s,v,8 € R, the norm in H*"3(W) is equiva-
lent to

| om0 0wy ~ Nlwu|lgemo oy + ||(1 —w)ul[2:00 o).

Proof. Cf. (2.2.1) in [ST95].
O
We will touch only a few aspects of the theory of spaces H*7*(W),
for & = 0. A remarkable feature of these spaces is the invariance under

diffeomorphisms of the wedge W which fulfil (2.4.1).

Proposition 2.4.3 Let § be a diffeomorphism of W of the form (2.4.3).
Then §*u € H*V(W) for each uw € H*7(W) vanishing away from a compact
subset of W.

Proof. The proof consists of a straightforward verification as in The-
orem 1.2.3 of [ST95].

O

From (2.4.4) and Proposition 2.2.1 we deduce immediately that the

spaces H*(R%,m*H*"(R, x X)) and H*Y(W) agree on compact sets away

from the boundary in W. Moreover, this is still true on all subsets of W
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of the form {t > ¢}, where ¢ > 0 (cf. Proposition 2.1.20 ibid.). As for
the behaviour of functions at ¢ = 0, simple examples show that the spaces
H* (R, 7 H*"(R; x X)) and H*Y(W) are different. Our next objective is
to rewrite spaces (2.4.4) as ‘twisted’ Sobolev spaces on the edge S = R

Proposition 2.4.4 For each s € Zy and v,6 € R, it follows that
5,7,8 r\I;) 5 * 775, v+ 1.6 /o
H>" (W) =2 H(RY,7"H*"T2°(Ry x X)),

the Banach structure in fibres being

28

n
oIl = D e 1ol 7€ R (2.4.5)
|6]<s

Proof. We have

[ullzremsomy ~ Iwtlliemomy + 10 = @)ulliosm)

/Rq Z lw(tDy) UH =187+ £.0 (R XX)dy

[3<s

/R Z (1 = @) (EDy) ull3e—is0.5-1 (®yxx) Y

[3<s

the first equality being a consequence of Lemma 2.4.2. The same reasoning
applies to (2.2.2), thus giving

HUH%IW / Z [(tDy) UH s=18l7+ $.-181 (& XX)dy

|B]<s
812
-~/ 3 N5 e

Since H¥73(R, x X) is a Hilbert space, we may invoke Parseval’s for-

mula to obtain

lalBisom ~ [ 3 1Tt s

1B1<s
= [ 1l
q
Finally, from the elementary inequality

|
< (L4 [nP?) <> < (14’ (2.4.6)
181<s

we conclude that

1

Il oy < Il < const Ity
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where the constant is independent of v € H*"*t#5(R, x X) and 5 € R

Hence (2.4.5) is really a family of norms on H*'t3%(R, x X), and the
proposition follows.

0

We next claim that the family (|| - ||;) fulfils the first item of Propo-

sition 2.1.2.

neR?

Lemma 2.4.5 Given any 1,0 € RY, we have

ot < € (max 2 O oy for an et ),

with C' a constant independent of v and n, 0.
Proof. Indeed,

HUH% - Z Z 25 H H2 s=1Blv+ % - Iﬁlé(R xX)

B=0 |ﬁ| B
S
S ) s
B=0 \|8<B (m)** HemBTH B R x X))

the latter equality being due to the fact that

< C ol

HUH F-1,5+ 4 — 16(R+><X s 5+ 4,6 R+><X)

where the constant C' depends only on w (C' =1 if suppw C [0, 1]). Com-
bining this with (2.4.6) we arrive at the following equivalent expression for

the family (2.4.5):

S

1
2 2
HUHU ~ E <77>2(5—B) HUHHS—B,V+%—B,6(R+XX)'

B=0
Now it is easy to see that

2 (0)*") 2
[v]|;; < const B, ()7 B [Iv][3

for all ,8 € R?, whence the lemma follows.
O
Applying the general construction (2.1.1), we get a family of isomor-
phisms (A(77)),epq in H*"*33(R, x X), such that

[0l = A0l ot gs @, o x)

for all v € HS’W*'%";(R_F x X). Moreover, this family satisfies estimates like
those in the second item of Proposition 2.1.2. However, it does depend on
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many parameters entering into the definition of the space HS’W*'%";(R_F x X),
such as s, v, d, etc. To highlight the family (A(7)), ¢, We need a modification
of the space H*"°(R, x X) which does not affect the behaviour of function

near t = 0, but only ¢t = oo. Namely, we replace the norm || - ||3s7.0 &, xx)
by the norm
o0 1 .
] 502 x / Z (14 )72 (E D) | Fpax
]—I—A<s

for s € Z4. It is a simple matter to see that equality (2.2.2) remains valid
with H*"? (R, x X) replaced by H*"°(R, x X).

Lemma 2.4.6 If s € Z, and v,6 € R, then
—s+y+% i
folly ~ [+ 2w (o) e

T H(l —w(t)) () F <ﬁ,x>

‘7—{57075(]&+XX) ’
the constants of the equivalence estimates being independent of n € RY.

Note that this lemma enables us to extend the definition of the family
(- H”)neRq to all real values s.

Proof. By a variant of Lemma 2.4.2,

ol2~ S

e (1810 10 = 000050

1p1<s
and so
dt
vl ~ Z / o PENED Y wullacy 7
151<s +A<s 1
e 2
P D1 )l

|51<s +A<s 18
Interchanging the sums in 3 and j, A and taking into account that
Z n?ﬁﬁlﬁl ~ <tn>2(s—J—A)
|B]<s—j—A
(cf. (2.4.6)), we obtain
tn (s=j=4) : di
ol ~ [ (D Pl

J+A<s

/ 12 Z o (D) (1= w)ul[fyax) " dt.

]—I—A<s
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Let us make use of the change of variables ¢ = t(5). To this end we
note that tD; = 9Dy and

W)~ O+w(%f>

~ (1497

[T

on the support of w << >> Indeed, (n) = |n| for || > ¢ and, moreover, the
set {19 7 € supp w} is bounded uniformly in |n| < ¢. Hence it follows that

s+y+2 t
[olly,  ~ H<77> ! (wu)<<n>’x> ‘ﬁsw,O(RerX)

H l—w)u) <<;—>,:1;

> HH&OV&(R_FXX) ’

To complete the proof, it suffices to observe that the support of the
function (1 — w) <<%> is bounded away from ¢ = 0 uniformly in n € R
Thus, we may replace it by 1 —w(9) up to an equivalent norm.

O

Were it possible to replace also w << >> by w(¥) modulo an equivalent

norm, Lemma 2.4.6 give us [[v|l;, ~ [[A(n)vll, .10 provided that

) 27 (R.FXAX)7
—5—%:7—%%—3, where

o ) = ()0 ().

This latter family of isomorphisms enters into the definition of ‘twisted’
Sobolev spaces H*(.S, 7*H*7(F~1())) of Section 2.2. In contrast to Proposi-
tion 2.4.3 it is unknown at present whether the spaces H*(.S, 7*H*7(F~1(+)))
are invariant under diffeomorphisms of M of the form (2.4.3). In [ST95]
this question is reduced to an L*-estimate for Calderon-Zygmund operators
(cf. Lemma2.2.12 ¢bid.). This estimate is easily verified for those diffeomor-
phisms (2.4.3) which fulfil ¢» = 0. Thus, the spaces H*7(M) are invariant
under the diffeomorphisms of M, which obey the fibration (2.2.1) of M

close to the boundary.



Chapter 3

Operator Algebras on a
Manifold with Edges

The theory of elliptic differential operators on compact manifolds without
boundary is well understood in the setting of standard pseudodifferential
operators. We have a concept of ellipticity which says, e.g., for classical
pseudodifferential operators, that when the principal homogeneous symbol
is bijective outside the zero section of the cotangent bundle, then A is a Fred-
holm operator between the corresponding Sobolev spaces (the ellipticity is
even necessary). And we find a parametrix within pseudodifferential oper-
ators belonging to the inverse of the principal homogeneous symbol. The
analysis of differential operators on spaces with piecewise smooth geometry,
which is necessary in various applications in physics and engineering, leads
to the necessity to do the same for manifolds with singularities, e.g., for man-
ifolds with edges. As before, we need the calculus for single operators in such
a way that all the formal manipulations such as compositions, adjoints, and
so on be controlled within the given class of operators and also on symbolic
level. An algebra of this sort was constructed in Schulze [Sch92, Sch91].
Unfortunately, the theory of operators on wedges is not so standard as
the “usual” calculus of pseudodifferential operators which may be found in
classical papers of Hormander and other authors and in a number of mono-
graphs. The recent development for operators with singularities has created
various schools that emphasise rather different aspects. This chapter gives a
brief introduction to the theory of Schulze [Sch92, Sch91], where we arrange
a number of things in a more transparent way and also formulate some new
results.

3.1 Typical symbols

Let (M,S) be a C* manifold with edges. Throughout this chapter we
assume that S consists of the only component which is a C*° closed compact
manifold of dimension g. All the results carry over to the case of S’ consisting

32
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Zn41
Zn4l = 1
C
T = -J
e J
RO i

Fig. 3.1: Stereographic projection.

of a finite number of such components, the extension being straightforward.

As M is smooth apart from S, we restrict our attention to what happens
close to S. By Definition 1.1.1, each point p € 5 lies in the domain of some
chart h: O — W on M, with W = R? x Cy(X) a wedge. We regard Cy(X)
as being embedded in an Euclidean space RY~7 as in (1.3.1). Moreover,
given a sufficiently small coordinate patch 2 on X, we may always assume
that

e: V' = {z ¢ RV-=L o = = ZN—g—1 =0}

where n stands for the dimension of X. Indeed, C;(X) is defined up to a
diffeomorphism in RV ~? and we can organise such a diffeomorphism so that
the above condition is fulfilled. When thinking of the first n components of

z as being local coordinates in ", we obtain a diffeomorphism of the part
R? x Cy(2") of W onto an open set in R?*'*+" where

Cy(Q") = {tSP(x,0): t € Ry, x € e(Q)}

(cf. Fig. 3.1).

More precisely, the restriction of SP: RN-4~1 — Sﬁ_q_l to the subspace
R™x {0} is naturally identified with the stereographic projection of R™ onto
the upper hemisphere S% in R'". Thus, we can take (y,z’) € R? x R
as local coordinates in R? x Cy(Q"), with 2/ = ¢tSP(x). To express the

derivatives in z’ in terms of polar coordinates (¢, 2) € Ry x ", we need the
following lemma.

Lemma 3.1.1 Let SP be the stereographic projection of R"™ onto ST} and
let z=1SP (x). Then,

0z "
det —— = (-1)" ————.
(o2 +1)%

Proof. Immediate.
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From this lemma it follows that

0 0 10
_ 2 -
5, = SP (x) o + Vx| + 1P(x) e (3.1.1)

where P(z) is an ((n + 1) X n)-matrix of polynomials in R”. Hence, smooth
vector fields close to the edge of M are lifted to vector fields on the stretched
manifold M = [M; S] spanned by

1
Dy, Dy, ;Dl,

in local coordinates close to the boundary of M. The universal enveloping
algebra of these vector fields consists of those differential operators on M
which may be expressed locally as finite sums of their products, i.e.,

~ . 1 o
A = Z Aﬁd"a(y,t,l') DyﬁDi (;Dls)

|8 +5+]a|<m

1 ,
= Y Agjaly,ta) (6D, (tD) DS, (3.1.2)

|8 +5+]a|<m

the coefficients Ag ; , being smooth up to ¢ = 0. In this way we obtain what
will be referred to as ‘typical’ differential operators on a manifold with edges.

Since the multiplicative singular factor ¢~ might be traced back to the
Sobolev norm, we are left with the task of studying the universal enveloping
algebra of the Lie algebra V}, on M (cf. (2.4.2)). To this end, the concept of
a compressed cotangent bundle *T* M of M proves to be of use (cf. Melrose
[Mel96b]). Namely, the maximality and independence of the set (2.4.2)
means that there is a bundle *T'M naturally associated to V;, such that
V, = C°(M,*TM). This bundle comes equipped with a mapping to the
ordinary tangent bundle ¢, : *T'M — T'M induced by the proper inclusion
Vi — C(M,TM). Evidently, ¢} is an isomorphism over the interior of M
because V, consists of all smooth vector fields there, but is neither injective
nor surjective on the boundary where it has range of rank n, the fibre
dimension of b, in TAM. Then, *T' M is defined by simply demanding that
the vector fields (2.4.2) be a spanning set of sections. Namely, any v € V),
may be uniquely expressed as

q n
v = E €,,0,0 tayL + €0,1,0 tat + E €0,0,5 al,],
=1

i=1

and then the coeflicients ¢, 0, ¢o1,0 and ¢g o ; evaluated at p € M are linear
coordinates in the fibre *T, M. The dual to *T'M, denoted by *T*M, is
spanned locally by the 1-forms

dy, dt
ty, T dr, (3.1.3)
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which are singular as forms in the usual sense but smooth as sections of
PT*M.
There is a symbol mapping on the set of typical differential operators

on M. For A as in (3.1.2) set

bO'm(A)(y7t7$;f/77N'7§) = Z Aﬁ,j,a(y7t7$) ﬁﬁ%jfa- (314)
|B1+i+]ol=m

It is easy to see that ®c™(A) is an invariantly defined homogeneous
polynomial of degree m on the fibres of *T*M. As usual, A is said to be
elliptic if *o™(A) does not vanish away from the zero section of *T* M. In
this global context, by ¢ is meant a defining function of the boundary of M.

The key examples of typical differential operators on M are the Lapla-
cians of metrics in the class

{g € C*(Sym*(*T*M): g > 0 on "T* M}.
The following is due to Mazzeo [Maz91].

Proposition 3.1.2 For any metric g of the above class, the Laplacian
A, s elliptic.

Proof. This is easy to check.
O
We next strengthen the above argument by looking at the pull-backs of
the usual pseudodifferential operators near the edge of M under the blow-
down mapping b.
Consider a geometric wedge

W=0x{tSP(x) e R'"™: t >0, xe Q"}

in R7+7 where € is an open set in R? and Q" stands for a coordinate
patch on X which we identify with an open subset of R™. Write w = (y, z)
for the coordinates in R4t1*" where y runs over R? and z runs over R!*",

Let m € R. Our objective will be the behaviour of W (W) under the
change of coordinates

{(t,xy) : ivztSP(X) (3.1.5)

defining a smooth mapping b: W — W, where W = ¥ x R, x Q" is the
associated stretched wedge.
Given any A € U (W), this leads to the diagram

ce (W) - o (W)

com loc

CzLv) L cEow),

comp loc
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b* meaning the pull-back operator on functions. The pull-back A of A
under b is defined so as to make this diagram commutative, i.e., b*A =
b* Ab,. As b restricts to a diffeomorphism of the interior of W onto the
interior of W, a standard result is that b induces a bijection of the spaces
of pseudodifferential operators in the interiors of W and W.

Lemma 3.1.3 For each a € ST(W x R there exists a symbol
a € ST (W x R such that

1
bop (a) = t—mop( aly, t,x;tn,t7,€))  mod U™ (Q x Ry x Q). (3.1.6)

Proof. Indeed, we have the following asymptotic formula for the com-
plete symbol b*a of b op (a):

b (y,t,l’ n,T 7£)|ytx )=b—1(w)

N Z_’aza (w <ab 1> (777 7§)> < - (w/)—b—l(w)_ﬁg;l (w/_w),(n,v,g))> |w/:w7
")/.
~

!
where w stands for the covariable of w and <%> is the transpose of the
tangent mapping % (see [Hor85, 18.1.17]).

By induction in ||, we can assert that

DZ;' <€i(b—1(w/)_b—1(w)_ag;1 (w'—w), (7777'75)>> |w,:w — t—|W| pw(x; t7—7 f) |(y,t,x):b—1(w)7

where p, is a polynomial of degree < |v|/2 in (¢7,&) and coefficients in

C(2"). On the other hand,
Y o\ !
<8w> (7777—7 5) = (W) |(y,t,x):b_1(w) g
I, 0 ’ .
0 SP !
N (aSP((X)))_1 =i | 7
0 % < axx > 5

1 (1, 0 tn
= 7l SP (x <as > tg |(y.t,0)=b=1 ()}

ISP (x)

Az

for QSPx( x) (it is of the form /|| + 1 P(x), cf. (3.1.1)).

Write .
w) ~ Z Ui (W, w
7=0

here I, is the identity (¢ x ¢)-matrix and < > is the left inverse matrix
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with a,,_; € C

22 (W x RIT1*7) homogeneous of degree m — j in w away from

a ball. Pick an excision function y on R¢T'*” By the above,
ba(y,t,e;n, 7€)

~ ZZ%alam—j (w, <ab 1> (n, ,§)>Iwzb(%m)t—lwl%(I;tT7 6
v 5"

tn
szn, ,f a8 | (y, P (x)), T(x) tg Py, 17, 6),

()

where @, ;(w,w) is the unique homogeneous extension of J)a,,;(w,w)

from large w to w # 0, and

I, 0 0
T(x)= U I
([L’) 0 SP (X) <asgx(x)>
Rearranging the summands on the right-hand side with respect to the
degree of homogeneity, we get

b (y,t,l’ n,T 75 ~ T ZX n,T 75) Um— L(yvtvx “77” 5) (317)

with @,,—,(y,t,2;7,7,&) € C22(W x (R7*7\ {0})) homogeneous of degree
m—uin (5,7,6)

By a familiar argument from the theory of pseudodifferential operators,
there exists a symbol a(y, t,z;7,7,£) € C22(W x R7*7) with the property
that @ ~ >~y X @m—,. Combining this with (3.1.7) yields (3.1.6), and the
lemma follows.

O

Equality (3.1.6) gives rise to a class S™(*T*M) of symbols on M which
bears information on the boundary fibration. More precisely, it consists of
those symbols of order m € R on M which are of the form

aly,t,e;n, 7, &) = aly,t,x;in, i1, §) (3.1.8)

in local coordinates close to the boundary of M, where a(y,t,x;7,7,&) is
a symbol of order m smooth up to ¢ = 0. Symbols (3.1.8) are said to be
typical in the analysis on manifolds with edges.

Thus, S™(*T* M) is a subspace of S™(T*M); we endow it with a canon-
ical Fréchet topology.

We use the symbol S7(*T*M) to denote the subspace of S™(*T*M)

which originates from S7(7*M) in the same way. As usually, we set

ST M) = () ST(PT*M).

meR
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Whether the multiplicative singular factor ¢ can be handled sepa-
rately by attributing it to the Sobolev norm or not, does depend on the
weighted spaces we use. Such is certainly the case for spaces (2.4.4) but
not for those of Definition 2.2.2. For this reason, we introduce also symbol
spaces t~™ 8™ (*T* M) and those consisting of classical symbols, for m € R.
As mentioned, in this global context ¢ stands for a defining function of 9 M.

Lemma 3.1.3 is nothing but the statement that the pull-back of any
symbol a € ST(T*W) under the blow-down mapping b: W — W belongs
to t=™ 87 (*T*W) modulo smoothing operators in the interior of W which
are anyway negligible. The important point to note here is that the symbols
of t=™ 87 (*T* M) are much more general than those induced by the blow-
down mapping.

In the sequel we will restrict our discussion to classical symbols in
t= S™(*T*M). In local coordinates close to the boundary, each symbol
a € 7" ST(W x R7™H™) may be written in the form

L.
Cl(y,t,l’; n,T, 5) = ﬁ a(yvtvx;tnvtTv 5)

with @ € ST(W x R Write a ~ > X Gm—j, where y is an excision
function and a,,_; € C2(W x (R?*7\ {0})) are homogeneous of degree
m — j. Set

Yo (a)(y, b a3, T E) = amly. b, 7€) (3.1.9)
(cf. (3.1.4)).

Though defined in local coordinates on M, the principal homogeneous
symbol (3.1.9) behaves like a function on the compressed cotangent bundle
"T*M. Thus, the following definition makes sense

Definition 3.1.4 A symbol a € =" ST (*T*M) is called elliptic if

bo"(a)(y, b, s, 7€) £ 0 for all (y,t, 230, 7,€) € "T"M\ {0}

The ellipticity of a ‘typical’ symbol subtends the non-singularity of t"a
up to the boundary of M. Astis different from zero away from the boundary
of M, each ‘typical’ symbol elliptic in the sense of Definition 3.1.4 is so in
the usual sense in the interior of M.

From the point of view of parametrix construction, the crucial property
of typical symbols on M is that the Leibniz inverse to an elliptic typical
symbol is again of the same type. To explain this in detail, let us write

W = Q' xR, x Q" for the interior of W. Recall that by a Leibniz inverse for
a symbol @ € §™(W x R7*") is meant any symbol p € S™™(W x RI+1+7)

with the property that poa = aop =1 modulo ST (W x R?™*") where
a o b denotes the Leibniz product of symbols @ and b in local coordinates
of W. The standard theory of pseudodifferential operators states that a

symbol a € ST(W x R7T*") possesses a Leibniz inverse if and only if a is
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elliptic. Moreover, this Leibniz inverse is unique modulo ™ (W x Re+1+7)
(see for instance [Hér85, 18.1.9]). It is customary to write a(=") for the
Leibniz inverse of a symbol a.

Lemma 3.1.5 Suppose a € ST(W x R4 s elliptic. Then the Leib-
niz inverse of a has the asymptotic expansion

a =Y~ Z(l —poa)”op,
v=0

where p = y o™ (a)™t, with x an excision function on RIT'*" and the expo-
nent ov means the vth power with respect to the Leibniz product.

Proof. See ibid.
O
Having disposed of this preliminary step, we can now return to typical
symbols (3.1.8). From what has already been said it follows that each
elliptic ‘typical’ symbol a € t=™ ST (*T*W) has a Leibniz inverse a=Y in
Sc_lm(VOV x Roti+n),

Proposition 3.1.6 For any elliptic symbol a € t=" ST (*T*W), it fol-
lows that a\=Y € " ST (*T*W).

Proof. Since a is elliptic, the symbol

ply,t, e, 7€) = x(n,7,6) (™ (a)(y, t,a5m,7,€)) "
= " x(n,7,6) Co™(a)(y, b, ; tn, tr,6))

is in " S (OTW).
By Lemma 3.1.5, we shall have established the proposition if we prove
that, given any
ay € 7™ ST(TW),
as € 172 ST (PT*W),

the Leibniz product of a; and ay belongs to =172 S(Tl—l'mz) (*T*W) modulo

S_OO(VK/ x R71+%)  Indeed, the Leibniz product itself is defined up to
elements of this space.

Fori = 1,2, write a;(y, t,x;n,7,£) =
symbols @, € ST (*T*W). Then

a;(y,t,x;tn, tr, &) with suitable

tml

Cl106l2(y7t751?'777 75)
1 : 1
~ B VDD [ — &
> i ,a,a o, (tm a1> DD D2 (tm a2>.

B
Let us examine the ¢- and 7-, 7-powers of the summands on the right-

hand side. The derivative aﬁafaa (— 1) 1s of the form

tm1

(I8 GBI (g e, tr, €),
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with EL( ) ¢ S:fl_W'_j_la'(W x R7T1*7) On the other hand, the derivative
DﬁD] D2 (— a2> produces a sum of symbols of the form

$m2
ek G (bt b, €) (Y40 < — k),

where a(zw,a e S b= ‘W x RO What remains is sy (1) (17)"
up to a multlphcatlve factor ¢V, with N a non-negative integer.
Summarizing, we can assert that

a1 ©ds (y,t,l‘; n,T, 5)
1

SERER N ]
57‘77

where al®*)(y, t, 2;7,7,¢) € S$1+m2_|ﬁ|_j_|a|(w x R7TH7) . Finally, let us
find a symbol a in S (W x R;’?tlg'n), whose asymptotic expansion is
> e #:32) Then

L ]

a1 0 dy (yvtvx;nﬂ—vg) =

{mitme

which gives the desired conclusion.
O
It is worth pointing out that the proposition does not assert, for an
elliptic typical symbol a, that every Leibniz inverse of a in the symbol
algebra on the wedge is a typical symbol. In fact, a{~ itself is defined

up to elements of S™(W x R4T'*"). Thus, Proposition 3.1.6 ensures only
the existence of a typical symbol within the equivalence class of (=1 in
STm(W x Rotitn),

The condition that a is elliptic with respect to the symbol bo™ (i.e.,
up to the boundary) is essential to the proof. It cannot be weakened

-1 -

because otherwise the “crude” parametrix p = x o™ (a)™" is no longer in

ST TEW).

It V, V are " vector bundles over M, then the space of typical sym-
bols taking their values in bundle homomorphisms V' — V can be defined
by

m(*T* M, Hom(V,V)) = ST("T*M) Qo) C (M, Hom(V, V),

where Hom(V, V) is the bundle over M with fibre Hom(V,, V).

3.2  Quantisation
As described in Section 3.1, the space
= Sy("TM) = J T SE(TM)

meR
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of all typical symbols on M is closed under the Leibniz product on coor-
dinate neighbourhoods in M. In this section we are interested in finding a
suitable quantisation of the typical symbols, i.e., in showing how each typ-
ical symbol on M defines a bounded operator in weighted Sobolev spaces
on M. There is no canonical way to do this; in particular, the quantisation
does depend on the spaces we use. If these are the spaces H*7(M) modelled
on (2.4.4) close to the boundary, the standard way of assigning an operator
HY (M, V) — Hs_m”(./\/l,f/) to a symbol a € (T(bT*./\/l,Hom(V,\N/)) is
to invoke a partition of unity on M and oscillatory integrals in local coor-
dinates. This still works for the symbols slowly oscillating at the boundary

(cf. [RSTI7]), i.e., those of the form (3.1.8) with @ € S:f(T*./\O/l, Hom(V,V))

meeting the symbol estimates

‘(tDy)ﬁ(tDt)ngDgﬁ,ga(yata51/'3 777%75)‘ < Cjany <(7777:7§)>m_h|

uniformly in (y, ¢, x) on compact subsets of coordinate neighbourhoods close
to the boundary, for all multi-indices (3, j, o and ~. While this is a natural
way in the case of spaces (2.4.4), it is no longer so for the spaces of Def-
inition 2.2.2. These are given from the very beginning as ‘twisted’ spaces
along the edge, and so the natural way of quantising a typical symbol as an
operator on the spaces in question is to assign a pseudodifferential operator
on the edge to this symbol. This idea was developed by the first author in
[Sch89b, Sch90]; the corresponding calculus of pseudodifferential operators
with operator-valued symbols on the edge is known as ‘edge calculus’. The
core of the approach is to reformulate a given typical symbol close to dM
as a symbol along the edge taking its values in the symbol algebras in fibres
of M over S.

We begin by localising the problem of quantisation to a collar neigh-
bourhood of the boundary. To this end, pick such a neighbourhood O =
OIM xRy in M. Let g, € € (Ry) be a cut-off function at ¢ = 0. Via
the above identification we may regard ¢, as being defined on the whole
manifold M. Set ¢; = 1 — ¢y, then ¢; € C°°(M) vanishes in a neighbour-
hood of dM. We now choose (> functions ¢, and ; on M, such that
supp ¥, C O, suppty; C M\ dM and ¢, “covers” ¢,, i.e., 1, = 1 on the
support of ¢,. To each symbol a € t=™ 87 (*T*M, Hom(V,\N/)) we can as-
sign a classical pseudodifferential operator op(a) of order m in the interior
of M, as usually. In fact, op(a) is determined uniquely up to a smooth-
ing operator in the interior of M. It is easy to see from the pseudolocality
property of pseudodifferential operators that op(a) = @rop(a)i, +wiop(a)y;

holds modulo smoothing operators on M. Indeed,

op(a) — wrop(a)ty — wiop(a)y = wrop(a)(l — ¥n) + wiop(a)(1 — 1),

and for the proof it suffices to note that the supports of ¢, and (1 — )
are disjoint. As the supports of ¢; and ; do not meet the boundary,
the operator ¢;op(a)iy is well-defined on the standard Sobolev spaces and
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thus extends to a continuous mapping HISOC(./\O/l,V) — Hcsomp(./\o/l,f/), for
each s € R. The operator wyop(a)iy, has in general no extension to the
weighted Sobolev spaces H*Y (M, V). However, it is supported in the collar
neighbourhood of dM where the manifold M is stratified over S, with
R, x X as a typical fibre. We make use of this fibration to reformulate,
modulo smoothing operators in the interior of O, the restriction of op(a) to
O as a pseudodifferential operator along 5 with a symbol taking its values
in the cone algebras in the fibres of M over S. To this end, we observe from
the very beginning that the action pyop(a)iy, does not include the values of
the symbol a for ¢ large enough, with the exception of those entering into
the covariables ¢t7 and tn. We can therefore modify @ in ¢t away from the
support of ¢, without affecting the operator ¢rop(a)iy. In the sequel we
often assume that the symbols in question vanish for ¢ > 0 large enough. As
explained, this assumption actually contains no loss of generality. Moreover,
we restrict our attention to scalar symbols; the extension to the general case
is straightforward.

We first demonstrate these techniques by those typical symbols which
are polynomials in 7. Let A be a typical differential operator of order m in

the stretched wedge W = Q' x Ry x X, i.e.,

1

A= Y Assly ) (D) (D)
|Bl+i<m

where Ag; € C2 (Y x Ry, Diff = 1P=i(X)).

loc
In this case,

o ( Ay, s, &) = T 3 oI (AR )yt s €) (tn) (i),
|Bl+i<m

o (A)y s, 7,6 = 3 oA )yt ) 7
|8]+5<m
(3.2.1)
Given a symbol a € ff(Vi/ x R4H147)  we may assign a pseudodifferen-
tial operator to a, which acts in several of the variables ¢, x and y. In order
to indicate the variables to which the pseudodifferential action refers with
respect to the Fourier transform, we write opy; (@), 0Py (s,s,4)(@), and so
on.
Write A = op(a(y,n)), where

alym) = o 3 Assly ) () (DY
[B]+5<m

It is easy to check, for each s,v € R, that aly,n) induces a family of con-
tinuous mappings a(y,n): HJ(RyxX) — Hp ™7™ (R4 xX) parametrised

by (y,n) € ' x R% Moreover, if the coefficients Ag; are independent of ¢
for t > 0 large enough, then

a(y,n) € S™(V x RY, LIH(Ryx X), H=™7 ™ (Ry x X))
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for each s,y € R, the symbol spaces in question being defined in Section
3.3.

Fix a cut-off function w on Ry, so that w(t) = 1 for t < r and w(t) =0
for t > R, where 0 < r < R < oo. Then ¢y = w and ¢, =1 —w give the
partition of unity on the semiaxis subordinate to the covering Iy = [0,2R),
I, = (3r,00).

We now choose g, 1o, € C22(Ry) such that suppp, C 1, and ¢, =1
near supp ¢, .

Lemma 3.2.1 Under the above assumptions, it follows that a« = ap+ac.,

aogy,n; = wolt(n) aly,n) Yo(t(n)),

aco(y,n Poo (L)) aly, n) oo(t(n))-
Proof. Indeed,

aly,n) = wolt(m)aly,n) + veo(tin) aly,n)
= wolt(n)) aly,n) o(t(m)) + wo(t(m)) aly,n) (1 = o(t(n)))
+ 9%o( () aly; n) oo () + @oo (L{n)) aly, n) (1 = oo (t(n))),

which gives the desired equality because a(y,n) is differential, and so local,

where

in t.
O
For each s,y € R, we still have

aoly,n) € S™( ><quﬁ(Hsﬂ(H:%-l-XX)vHs_mﬁ_m(]l:%-l-XX)))v
Goo(yaﬁ) S Sm(Q/ ><Rq7£(HSW(R+><X)7Hs—mﬁ—m(R_l_xX)))?

provided that the coefficients Ag; are independent of ¢ for ¢ > 0 large
enough.

The next task is to rewrite a(y,n) as a pseudodifferential operator in ¢
with respect to the Mellin transform, thus making ao(y,n) more prepared
to act in the cone Sobolev spaces close to the singularity ¢ = 0. Recall that
by a Mellin operator with a symbol s(¢,z) € C*(R4, L7(X;T_,)) we mean

1 .
P~ (8)u(t) = g/r t"“s(t,z)Mu(z)dz, t>0, (3.2.2)
defined on functions u € €25, (R, C*°(X)). Here,

Mu(z) :/ t_izu(t)ﬂ
0 t
stands for the Mellin transform of wu.

Lemma 3.2.2 For every v € R, we have

1 ~
a(y: 1) = oo 0Py <h(y,t;th)> on Cmp(R+xX),

where ﬁ(y,t;ﬁ,Z)Z > Agy(y, ) ptal.
|B]+5<m
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Proof. If u € C2 (R4 x X), then by the properties of the Mellin

comp
transform

1
a(y,n)u = o OPm <h(y,t;th)> u,

with % given in the lemma. This corresponds to our statement for v = 0.

On the other hand, from v € C22 (R4 x X) it follows that the Mellin

comp
transform of u is an entire function in the complex plane, satisfying

sup (1 + |z))" |Mu(z,2)| < o0, v=0,1,...,

1<)

uniformly in 4 on finite intervals of R. (We fix # € X here.) Since his a
polynomial in z, the Cauchy theorem shows that

1 s~
opMW(h)u (t,x) = 2—/F t“h(y, t;tn, z) Mu(z,x) dz

s

is independent of 4. This completes the proof.

O
Combining Lemmas 3.2.1 and 3.2.2 yields a precise representation
aly,n) = aoly,n) + awly,n) on ijmp(]R+ x X), (3.2.3)

with

aolyn) = 7 po(t ) opaa, (Bt 00,2)) wolt(n)),
sa(y;m) = Peo(t(n)) aly, n) Peo(t(n))

and h a polynomial in z.

Conversely, from such a representation for a family a(y,n) we could
easily conclude that a(y,n) is a typical symbol with values in the cone
algebra on Ry x X. In fact, equality (3.2.3) allows one to extend the family
a(y,n), first defined on functions supported away from ¢ = 0, to the weighted
spaces H*"(R;xX), s € R. Recall that the definition of H*"(RxX) close
to t = 0 refers just to the Mellin transform on the weight line I'_,. Therefore,
in the sequel we shall derive a similar representation for arbitrary typical
symbols.

For arbitrary typical symbols, it is no longer possible to obtain a precise
representation like (3.2.3). When studying arbitrary symbols we should look
for such a representation modulo “smoothing” operators.

Let a € 7™ 8™(*T*W) be a typical symbol of order m in a stretched
wedge W = ' xR,y x X, ie.,

L.
Cl(y,t,l’; n,T, 5) = ﬁ a(yvtvx;tnvtTv 5)

with some a(y,t,x;7,7,&) € S™(W xR+,
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We may assign a pseudodifferential operator to a, which acts in several
of the variables y, ¢ and x. For indicating the variables to which the pseu-
dodifferential action refers with respect to the Fourier transform, we write
opr, .(a), opg, (a), and so on. Thus,

I .
opz, (2) (V:1) = 5 Frleyo ol 6 U147, ) F (1.0

the operator family belonging to €

loc

(Q, U™ (R4 x X; RY)).
Lemma 3.2.3 Under the above assumptions, we have
opg,  (a) = ag +as mod Cpi (V, U™ (Ry xX;R})),

where
ao(y,n) = @olt{n))opg (a)(y,n) Yo(t(n))

aco(y,n) = @a(t(m))ops, (@) (v, 1) Yoo (t(n))-

Proof. It is sufficient to imitate the proof of Lemma 3.2.1 and take
into account that

po(t(m)) oz, () (y,n) (1 = o(t(n))) € Cro(&, U™ (R xX; RY),
poo(L(m)) 0Pz, (@) (v, 1) (1 = oo (t(n))) € O, W= (R x X5 RY)

because the supports of ¢,(t(n)) and 1 — ¢, (¢(n)) are disjoint.
O
The task is now to find a suitable Mellin reformulation of the operator
family ao(y,n). To this end, we make use of the following result which will
be referred to as the Mellin quantisation.

Theorem 3.2.4 For cvery a € ST(*T*W) there exists an entire func-
tion f(y,t,x;ﬁ,z,f) of z € C with values in ST (W x R%En), such that
1) f(y,t,:z;;ﬁ,r —17,€) € ST(W x R%ﬁ;};—n) uniformly in v on finite
intervals of R; and
2) set f(y,t,x;n,z,8) = f(y,t,x;tn,z,f), then, for each v € R, we
have the mixzed Mellin-Fourier representation

o () (y21) = 0B s (09, (1) (vm)  mod CRL (60,0 (Rx X; RY)).
(3.2.4)

Proof. Let us assume for a moment that (3.2.4) holds for some single
v € R. As f(y,t,a;m,2,€) is holomorphic in z € C and of polynomial
growth in each strip ¢ < Sz < ¢’ with finite ¢ < ¢”, it follows from the
Cauchy theorem that

OP .ty <0Pfx (f)> = OP s <0Pfx (f)>

for all 6 € R. Hence it is sufficient to prove (3.2.4) for a convenient weight
~v. We take v = 0.
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Given a symbol a € ST (*T*W), we find an a € ST(W x R+H7) with
the property that a(y,t,a;n,7,£) = a(y,t,x;tn, t,§).
Set
smly, b w0, 7, 6) = aly, L a0, 7, €);
then s, € ST (W xR?!*") and a straightforward analysis shows that

Op}‘w( (a(Y7 tv X3 777 tT? 5)) — OP m <0pfx (Sm(Y7 tv X3 7~77 T, 5)))
= 0Py, , (Am-1(y, 6, x37,t7,8))  mod C (', U™ (R4 x X; R))

for some a,,_1 € Sff_l(W XR%:I;?%)

We now proceed by induction. For j = 1,2,..., there is a symbol
Sm—j € ST (WxRIH) such that

Op}}yx (am—j (Y7 tv X5 7N77 tT? 5)) Y <Opfx (Sm—j(Y7 tv X5 777 T, 5)))
= opgr,, (Am—j—1(y, t,x;7,t7,€))  mod CP(Q, U™ (R4 xX; R3))
(3.2.5)
with some @p,—j_1 € Sg?_j_l(W X R%—;l;n)
For @, := a, we thus obtain the sequences (a,,—;) and (s,,—;), as above.
Let

S(yv tv €T, 7N77 T, 5) ~ Z Sm—j(yv tv €T, 7N77 T, 5)7
7=0
the asymptotic sum being taken in SJ (W x ><]Rq+1+”).
It follows from (3.2.5) that

Op}}yx (C:L( ) tv X5 7~77 tT? 5))

J—-1

= Z OP.m <Op}-X (Sm—j(Y7 t,x;1, 7, 5))) + OPF, . (am—J(}U t, x5 7, b7, f))
7=0
modulo O,

(Q, UT(Ry x X5 RY), for each J = 1,2,..., whence

OPF (a(Y7 t,x; 7, t7, 5))
— opas (0pn, (53, i 6)  mod O, U7 (Ryx XiRY)).

We now invoke a kernel cut-off construction of Schulze (see for instance
[Sch98, 2.2.2]) which ensures that every Mellin pseudodifferential operator
can be written, modulo smoothing remainders, as a Mellin operator with a

symbol which extends to an entire function in the covariable. Thus, there
is a new function f(y,t,x;n,2,£) € A(C,, ST (W x R%—En)) such that

fly, toasn,,6) = s(y, t, a0, 7,) mod S™(W x ch+1+n)‘

Ts8

Hence

OP <opfx (s(y,t,x;7, T, f))) = 0P\ <opfx <f(y,t,x; ﬁ,z,f)))
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modulo O,

(O, U=°(Ry x X; RY).

Finally, substituting 77 = ¢n and interpreting ¢ as an action from the
left we get

ops,, (a) (y.n) = opg , (&(y,t,x;tn,t7,))
= opuy (opz, (s(y, t,x3t0,7,€)))  mod CF(Q, U™ (Ry x X;RY))

= 0Py <0pr <f’(y,t,X;th7§)>> mod  Cp (@, U7 (R x X; RY),

which completes the proof.
O

The theorem is still true if we drop the assumption that « is classical.
For a refined proof in the case of non-classical symbols we refer the reader
to Gil, Schulze and Seiler [GSS97]. They even show explicit formulas for the
holomorphic symbol f and for the remainder, thus arriving at a topological
isomorphism between the symbol classes involved.

We can now return to reformulating the operator family ag of Lem-
ma 3.2.3. Denote by M(C, U™ (X;R3)) the subspace of A(C, W™ (X;R3))
consisting of all functions h(z) such that h(r—ivy) € P™(X; R%j’;l) uniformly
in 4 on finite intervals of R.

~ Corollary 3.2.5 Given anya €™ S™("T*W), there is a C°° function
h(y, 157, 2) of (y,1) € U xRy with values in M(C, W™ (X;R3)), such that

! —00
0p 7, (a) (¥.1) = £ 0Pt (0) (v,1)  mod G (@, 07 (R x X5 RY))

for all v € R, where h(y,t;n,z) = ﬁ(y,t;tn,z).

~ Proof. From Theorem 3.2.4 it immediately follows that there is an

fly,t, a7, 2,6) € A(C, 8™ (W xR¥*")) such that
o fly,t,e; 7,7 —i7,&) € S™(WxRITF™) uniformly in 4 on finite seg-

) XS
ments in R; and

o for each v € R, we have

1
Op]:t,x (EL) (Y7 77) = t_m OP M 1y <Opfx (f(Y7 tv X3 t777 Z, 5)))

modulo O,

(0, 07 (R, % X R).
The lemma now follows with

h(y7 ta 7N77 Z) = Opfx (f(Y7 tv X5 7N77 Z, 5))

O
Of course, the reader has recognised the explicit formulas of the proof

of Lemma 3.2.2 beyond the abstract framework of the proof of Corollary
3.2.5 .
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Combining Lemma 3.2.3 and Corollary 3.2.5 we can assert that

opr, .(a) =ap +as mod Chae (VU™ (R x X5 RY)), (3.2.6)
where
ao(y,n) = 17" o(t(n)) op.ue, (B(y, t; 1, 2)) to(t(n)),
aco(y,n) = Poo(tn)) oz, () (v, 1) Yoo (t{m).

Proposition 3.2.6 Assume that a vanishes fort > 0 large enough. For
each s,y € R, it follows that

aoly.n) € S™(UxRL LU (Ryx X), H7m 77 (Ry x X))
aolyn) € S (xR L (Ryx X), H="7="(Ry x X)) .

Note that the restriction on the support of @ in ¢ is needed only in the
proof of symbol estimates for a..(y,n).

Proof. We give the proof only for ag(y,n); the proof for a.(y,n) is
similar (cf. [FST98a]).

Pick u € H*"(R; x X). Our task is to find a suitable estimate for the
norm of /<;<_771> (D;Dgao(y,nD Kyu in H7™7 ™Ry x X). By duality and
interpolation, we might even assume that s — m is a non-negative integer.

Since (n) coincides with |n| for n away from a ball, a homogeneity
argument shows that

|D” (n)| < e, <77>1_M for all n e RY, (3.2.7)

the constant ¢, being independent of 7. Hence D;Dgao(y,n) is a sum of
terms of the form

)Pt opan, (Rl 150m,2)) (5

modulo bounded factors depending only on 71, where ¢ € C2 (R,) is

comp
supported on the support of g, ¥ € Cfgmp(R+) is supported on the support

of ¥y and iL(y,t;ﬁ,z) is a C™ function of (y,t) € Q' x Ry with values in
M(C,B™(X; ).

We are thus reduced to proving the desired estimate for « = 3 = 0. To
do this, we note that

M. <¢O(t<77>)’i(n)u> = M. <’i(77>(¢0u)>
= () Mo, (ou)

and so
(e ol ) gy ) (1)
1 1 : t
= " ol g [0 (o it ) Mot
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Using this equality, we check at once that

163 @0(Ys )6yl [3ge=mamm@ pxy < € ()™ [[ote|lan@px), 1 € RY,
(3.2.8)
uniformly in y on compact subsets of ), the constant ¢ being independent
of n and w.
By (2.2.2), the norms [[ul|g:~@,xx) and [[ullye~@,«x) are equivalent
on functions u supported in ¢ < R', for any fixed R’ < oo. Hence (3.2.8)
implies
17 S0 )l )~ 17 S0 )l
< c(p” WOUHH V(R 4xX)
~ ()" WOUHH A (R4xX)
< O )" ullgen@ ) n € RY

uniformly in y on compact subsets of ', with €' a constant independent of
n and wu.

Summarizing we deduce that, for each compact set K C 2 and multi-
indices «, 8 € ZY, there is a constant ¢ o g such that

H%ﬁ (D3 Dy aoly,n)) k()

whenever y € K and n € R?% This is the desired conclusion.

< CK,a8 <77>m_|ﬁ|

C(H*Y (R yxX),Hs=m7=m (R xX))

O
Up to now we have tacitly assumed that the support of the symbol
a €t~ 8™(*T*W) with respect to z lies in the domain of some chart on X.
We will now show how to dispense with this assumption. For this purpose
we fix a finite atlas (A7, 07);e; on X, A7 being a diffeomorphism of O onto
an open set 07 in R™. Let (¢%);es be a partition of unity on X subordinate
to this covering. For each j, we choose a ¥7 € Cg,  (O7) which is equal
to 1 on the support of ¢%. Let a; € 7™ S™("T=(Q x Ry x Q7)) be a local
representation of a over O7. For every a;, we find, by Corollary 3.2.5, a C*°
function iLj(y,t; i, z) of (y,t) € ¥ x Ry with values in M(C, W RY)),
such that
0P, (35) (1) = 0 ey By 1 0,2)) mod G0, U—(R <) R3))
for all v € R. Set

h(y, i, z) = Djes #5 (R) hi(y, t i, 2)(RY).
h(yat;mz) = h(y,t,tn, )

It is a simple matter to see that & is a ¢ function of (y,t) € Q' x R with
values in M((C, U(X;R3)). Moreover,

= > (L x hopg, (ai(y, tyxsm, 7, 8)) (1 x hf). !
JEJ
|

= 7 P, () (1)
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modulo CP= (', U™ (R x X;R)), for each v € R. Thus, £ is the desired
Mellin quantisation of a.

Evidently, equality (3.2.6) and Proposition 3.2.6 remain valid under this
more general setting. Yet another point to note here is that the extension

to the case of symbols a € t~" S™(*TW, Hom(V,V)) is straighforward.

3.3  Green operators

By Proposition 3.2.6 we can assert that each typical interior symbol in a
collar neighbourhood of O M gives rise to an operator-valued symbol on the
edge S. This latter symbol fulfils certain ‘twisted” symbol estimates rather
than the usual ones; they include specific families of isomorphisms in fibres.
Our next concern will be a brief exposition of the theory of corresponding
pseudodifferential operators along S. This suggests a reformulation of the
standard calculus in anisotropic terms, according to the anisotropic descrip-
tion of the Sobolev spaces on R+ ag H*(RITH") = H5(RY, 7*H*(R'*T™)).
An abstract theory should contain both the calculus of pseudodifferen-
tial operators with operator-valued symbols and a correspondence to some
“isotropic” background. Such a theory can be formulated independently
and has also applications to more complicated singularities. In particular,
we introduce Green operators on a manifold with edges, which are defined
via the mapping properties of their ‘edge’ symbols.

The theory of pseudodifferential operators with operator-valued sym-
bols is a natural extension of the scalar case, and the reader can recognise
the basic ideas of the ordinary calculus.

Let V and V be Banach spaces endowed with families of isomorphisms

(A7), era and <5\(77)> , respectively. We assume that these families
neRY

meet condition 2) of Proposition 2.1.2. In particular, we can take

An) = Ky,
where (kg)y, and (fg)ys, are group actions on V' and V, respectively (see
Example 2.1.3).

In the sequel, the objects under consideration will depend on the con-
crete choice of these families of isomorphisms, but they are fixed once and
for all in any concrete case. For this reason, we suppress indices ‘A" and %
in the notation when no confusion can arise.

Definition 3.3.1 Let O be an open sel in R? and s € R. Denote by
S™O x R LV, V) the space of all a € C2(O x R4LL(V,V)) with the

property that, for each K CC O and a € Zg, p € Z%, there is a constant
CK,ap Such that

M) (D5 Dyaly, ) A )| eviiy < eras ()7 Jor y € K, n € RY.
(3.3.1)
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The elements of S™(O x R4, L(V,V)) are called ‘twisted’ operator-
valued symbols of order m.

The best constants cx o5 in (3.3.1) form a system of seminorms on
S™O x R L(V, ‘N/)) under which this space is Fréchet.

Denote by S™(R?, L(V,V)) the subspace of S™(O x R% L(V,V)) con-
sisting of the elements which are independent of y. Obviously, this subspace
is closed.

Proposition 3.3.2 For each m € R, it follows that
Sm(O X quﬁ(vv ‘N/)) = Cl%?:(Ovsm(qu'C(vv ‘N/)))

Proof. The proof is straightforward while being rather long. We refer
the reader to Treves [Tre80].
O
This result applies in an evident way to introduce the spaces of symbols
defined in y on ‘poor’ subsets of R?.

Corollary 3.3.3 Let m € R. Assume that o is a Borel subset of R%.
Then ) )
Sm(a X quﬁ(vv V)) = Cl(zi:(o-) Qn Sm(quﬁ(vv V))

Proof. This follows from Theorem 6 of Grothendieck [Gro55, Ch.2]
once we notice that €2 (o) is a nuclear Fréchet space.
O
Many elements of the scalar theory may be obtained analogously also
in the operator-valued case. In particular, we mention that the asymptotic
sums of symbols of decreasing orders can be carried out within the symbol
classes modulo

S(0 x R%LL(V,V)) =) S™(0 x RY, L(V,V)).

m

One can see that S™(0 x R L(V, ‘N/)) = C2(0,S(Re, L(V, ‘N/)))
where & stands for the space of rapidly decreasing functions. Thus, the
space S™(0 x R%, L(V,V)) is independent of the particular choice of the

families of isomorphisms.

Proposition 3.3.4 For each sequence a; € S™(0 x R4 L(V,V)) with
m; N\ —oo, there is a symbol a of order mg such that a — E;]:_Ol

order my, for all J =1,2,....

a; is of

Proof. Pick compact sets K,,, v = 1,2,..., such that K, C K, and
U, K, = 0. Fix x € C°(R?) with the property that x(n) = 0 for || < :

and x(n) = 1 for [n| > 1. Take a of the form a = 32 x(¢;n)a;, where ¢;
are chosen so small that

IA(n) (D DEx(em)a(y, ) A ()l gy < 277 () 171!
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fory € K, and |a|+ |3|+v < j. It is easy to verify that the series defining
a is convergent and that a possesses the desired property.
0
Obviously, the symbol « is unique modulo §™>(0 x R4 L(V, ‘N/)) We
write @ ~ Y 27 a;

Example 3.3.5 As but one example of operator-valued symbols satis-
fying ‘twisted” symbol estimates we show those of Proposition 3.2.6. In
this case both A(n) and A(n) are given by the group action /<;<_771>, where
rou (t,2) = ng;ﬂu(et,x) for 4 > 0.

O

Now we define the subspace of classical symbols of order m, which
have asymptotic expansions into functions homogeneous in 7 of decreasing
degrees m — j, j € Z,. The concept of homogeneity may be introduced in
the framework of arbitrary families of isomorphisms. Namely, a C'"* function

a(y,n) on O x (R?\ {0}) with values in £(V, V) is called homogeneous of
degree m for large n if

aly,0n) = 0™ A=H(0n)A(n) aly,n) (A~ (0n)A(n)) ™" (3.3.2)

for all |n| > ¢ and @ > 1, ¢ being a positive constant. However, a function

€ C2 (0 x R L(V, V)) homogeneous of degree m for large n fails to
f;ulﬁl symbol estimates (3.3.1) with 3 # 0, unless both A~'(0n)A(n) and
A=H(On)A(n) are independent of 5 for || > ¢. This makes definition (3.3.2)

inefficient. In case A(n) and )\( ) correspond to group actions on V and V/

“HOn)A(n) = ke,
oA = ke

provided || > ¢ and § > 1, and so the above condition is satisfied. This is

we have

A
A

just a relevant choice of A(n) and A(n) in the calculus of pseudodifferential
operators on a manifold with edges, as is developed by the first author
[Sch92, Sch94]. We thus confine our attention to the model case of group
actions.

Proposition 3.3.6 Leta € C22(Ox(RN\{0}), L(V, V) be homogeneous
of degree m in n # 0, and let x(n) be an excision function in R?. Then
x(n)aly,n) € S™(O x R, LV, V)).

Proof. Differentiating the equality a(y,0n) = 0™&ga(y,n)x; " in 1 we
deduce that a derivative of a(y,n) in 1 is homogeneous of degree m — 1.
Hence it suffices to verify (3.3.1) for 5 = 0 in which case the proof is
straightforward.

O

A symbol a € S™(O x R4 L(V. ‘N/)) is said to be classical if there are
functions a,,_; € C22(0 x (R?\ {0}), £(V,V)) homogeneous of degree m — j
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inn # 0, such that a ~ E;io X Um—; for any excision function y. We denote

by S7(0O x R4, L(V,V)) the space of all classical symbols. The components
ap,—; are uniquely determined by «a. In fact,

am(y,n) = lim 077 &7 a(y, On)ke

f— 00

in the operator norm of L(V, ‘N/) By iteration we then get a,;(y,7)
for all 7 > 0. As usually, for ¢ € S7(O x R%L L(V,V)), the component
0li,e(a) (y,n) = an(y,n) is called the principal symbol of a.

Example 3.3.7 The symbol a(y,n) of a typical differential operator
A of order m in a stretched wedge is classical if the coefficients of A do
not depend on ¢. In this case a(y,n) is homogeneous of degree m, and so

0lage(@) (y,m) = aly,n), as is easy to check.
0

Our next example demonstrates rather strikingly that the property of
being classical is too strong in applications.

Example 3.3.8 Let V =V = L%(Ry) and let a(y,n): u — pu be the
operator of multiplication by a non-zero function ¢ € C2_(R;). Then

N comp
a € 80 x R%L L(V,V)) is not classical.
0

More appropriate is the class of symbols which possess a principal sym-
bol only. An ¢ € §™(O x R4 L(V,V)) has principal symbol if it is of the

form a = a’' + a”, where

a € STO xRy LIV, V)),
a" € S™(0 xRLLV,V))

with some m"” < m. Then o7}, (a)(y,n) = oli,.(a’)(y,n) is called the prin-
cipal symbol of a. By the above, the classical symbols meet this condition.
Let ' be an open set in R%. To any symbol a € S™(2' x R, L(V, ‘N/))
we assign an operator A = op(a) by
1
(2m)

Au(y) = / e a(y, n) Fu(n) dn

first defined on v € C°

comp
induces a continuous mapping C,, (2, V) — C.(Y, V).

For m € R, we denote by U™(Q';V, V) the space of all operators op(a)
corresponding to symbols a(y,n) € S™(Q x R% L(V,V)). The elements
of \I/m(ﬂ’;\/,\N/) are said to be pseudodifferential operators of order < m
with operator-valued symbols. We write \I/S(Q’;V,\N/) for the subspace of
U v, \N/) determined by classical symbols a(y,n). As in the scalar the-
ory, U™ (5 V, \N/) coincides with the space of all integral operators whose

kernels are in C2(Q x Q, L(V,V)).

(€, V). It is a simple matter to see that op(a)
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Theorem 3.3.9 Fuvery operator op(a) € \I/m(NQ’;V,\N/) extends to a con-
tinuous mapping H: (V. 7*V) — HZ "(Q,7*V), for any s € R.

comp loc

Proof. For a proof in the case of group actions we refer the reader to
Theorem 1.3.51 in Schulze [Sch98]. For a treatment of the general case use
(2.1.2) and Proposition 1.6.3 of [RST97].

O

The basic elements of scalar pseudodifferential calculus have suitable
analogues in the operator-valued case. This concerns, in particular, com-
positions with the Leibniz product on the symbolic level, etc., everything
modulo W™ (Y, V,\N/).

A more complete theory in the case of Fréshet spaces V and V may be
obtained by introducing a so-called weak symbol topology on symbol classes.
This topology behaves well under tensor products and it allows one to prove
continuity of pseudodifferential operators in various situations by invoking
function-analytic properties of V and V. For a deeper discussion of the ap-
proach the reader may consult the original papers of Witt [Wit96b, Wit96a].

We are now in a position to introduce Green operators on a stretched
wedge W = ' x Ry x X to be simply classical pseudodifferential operators
along the edge " whose symbols take their values in continuous mappings
of Sobolev spaces with asymptotics in the fiber R, x X. The designation
‘Green operator’ is motivated by the structure of the Green function of
a classical elliptic boundary value problem. Such a function is, up to a
fundamental solution of the elliptic operator, a pseudodifferential operator
with a special Green symbol along the boundary. In this interpretation the
boundary corresponds to the edge and the inner normal of the boundary to
the model cone of the wedge.

Fix a weight datum w = (4, (—{,0]). For an asymptotic type as related
to w, the space Hz™°(Ry x X) can be written as a projective limit of
Banach spaces invariant under xg. This is also the case for H2*(R, x X),
which gives us symbol spaces ST (9 x RY, L(H*"(Ry x X), HZ? (R, x X)).

For any element a € L(H*" (R, x X), H**(Ry x X)), we can define the
formal adjoint a* as an element of L(H > (Ry x X), H™577(R, x X)) via
the non-degenerate pairings H*" (R, x X) x H=>™Y(R; x X) — C induced
by the inner product in H*°(R, x X). Namely, we set

(au,v)poom,xx) = (U, " V)poom,xxy for w,ve CF (Ryx X).

comp

Thus, to any a(y,n) €ST QxR L(H*" (R xX), HZ* (R, x X)) there corre-
sponds pointwise a formal adjoint a*(y,n) and we may require this operator-
valued function to be in ST(Q' x R%, L(H*> 5 (Ryx X), HX 7V (Ryx X)) for
another asymptotic type das related to a weight datum @ = (—v, (—=/,0]).
Since we are aimed at the analysis near ¢ = 0, we shall replace both

H2Y(Ry x X) and HZ 7"(R, x X) by the subspaces
SRy x X) = wH (Ry x X) + (1 —w) S(Ry x X),

ST(Ry x X) = wHZ Ry x X)+ (1 —w) SRy x X),
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respectively, where w is a cut-off function and S(Ry x X) = S(Ry, C=(X)).
It is easily seen that S2 (R4 x X) and S.” (R, x X) are actually independent
of the concrete choice of w.

Definition 3.3.10 An operator-valued function g(y,n) on Q' x R? is
called a Green edge symbol of order m with asymptotics if there are asymp-
totic types

as € As(é4,(=1,0]),

s € As(—y,(=L0)) (3.3.3)

such that

g(yﬂ?) € (Mser SCT?(Q/ X Rq7£(HSW(R:|_ X X)7S§S(R_|:>< X)))v
g (Y.m) € Naer SH(Q X RLLIH*(Ry x X), S (R4 x X)),

It is worth pointing out here that the space of Green edge symbols
depends on the particular choice of the scalar product in H%°(R; x X).
Other allowed scalar products may be obtained by different Riemannian
metrics on R4 x X related to the original one by diffeomorphisms which are
smooth up to ¢t = 0.

To specify Green edge symbols with asymptotics one introduces double
weight data which are triples w = (v, 4, (—[,0]) consisting of real numbers
v and ¢ and an interval (—/,0] with 0 < [ < co. For such a weight datum
w, denote by SZ () x R%w) the set of all Green edge symbols of order m
and with asymptotic types satisfying (3.3.3).

Theorem 3.3.9 shows that the operator op(g) corresponding to a Green
symbol g(y,n) € SE(Y x R%w) extends to a continuous mapping

HE 7P (R, X)) = HEZ™ (€, 7SRy % X)),
for each s € R. Hence it follows that op(g) is smoothing in the interior
of the wedge W. We also note that any Green operator of order —oo is
compact.

The following characterisation of Green edge symbols via their Schwartz
kernels is the key to understanding the asymptotic expansions of solutions
to elliptic edge problems.

Theorem 3.3.11 If k € SF(V xR @, (SL(R4x X)@,S5" (Ry x X)),
then the operator family

] dt/ -
u / / E(y,m; t(n), z,t'(n), 2" u(t', 2" 7d:1;', u € HY' (R x X),
0o Jx

is a Green edge symbol of order m with asymptotic types as and as. Con-
versely, every Green edge symbol of order m with discrete asymptotic types
as and as has such a representation.
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Proof. The proof of the first part of the theorem is immediate by using
a familiar argument of topological tensor products. The proof of the second
part is substantially subtler (cf. [ST98a]). O

To complete the local operator algebra close to edges, it remains to
add the so-called smoothing Mellin operators in the wedge W. On the
other hand, they highlight a natural way in which Green operators with
asymptotics appear.

A standard asymptotic summation allows one to invert, up to smooth-
ing Mellin edge symbols, the Mellin edge symbols with invertible conormal
symbol. Smoothing Mellin edge symbols are used in explicit form mainly
for a finite weight interval (—/,0], with { = 1,2,.... By a smoothing Mellin
symbol of order m € R, is meant a family

o) = 30 37 o eult) (1 0bacs, (i) ) dolttn)). (334

where g, 1 are cut-off functions close to t = 0, and h;.(y;z) are C*
functions of y € ' with values in A(C\ 0;,, V"(X)), every o, being a
closed set in the complex plane. Moreover, for any o, ,-excision function y
in the plane, the restriction of y h; , to each horizontal line I'_, is required to
be a parameter-dependent pseudodifferential operator on X with parameter
7 = Rz, uniformly for v varying in finite segments of R (cf. Corollary 3.2.5).

Proposition 3.3.12 Suppose that pg and 1o are arbitrary cut-off func-
tions, h(y;z) € C2(Q, A(C\ 0, U~ (X))) is pointwise a parameter-depen-
dent pseudodifferential operator on X, and I'_, No = (. Then the operator
family

1 4 N
o po(t(m) (¢ 0p g, (h(y3 2)) ™) wo(t(n))

belongs to SCT?_HM(Q’ x RE L(H*Y(RyxX), H®"™" (R, x X)), for each
s € R.

Proof. The proof is similar to that of Proposition 3.2.6. The symbol
in question actually proves to be homogeneous of degree m — j + |« for
large 7.

O

Returning to family (3.3.4) we assume that each set o, is a carrier of
asymptotics. It is also possible to introduce the concept of asymptotic types
for Mellin symbols, but we will not develop this point here. For details, the
reader is referred to Subsection 3.3.2 in Schulze [Sch98].

Furthermore, we choose the weights v;, in such a way that the line
I'_,, . is free from the singularities of h;q, i.e., I'_,, . No; o = 0. The family
m(y,n) is thought of as acting from H*"(R, x X) to H**(Ry x X), for
any s € R. To ensure these mapping properties, by Proposition 3.3.12, the
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exponents m and v, , involved must satisfy

Vi =7
ﬁ)/j,oz —m —I_,] 2 5
for all 7 and a. Under these conditions, (3.3.4) proves to be an operator-

valued symbol in ST(Q x R L(H*(Ryx X), H* (R, x X))), for every
s € R. Note that

i) =Y Z - polthnl) (1 opey (b)) ") (el

:0 a :]

Let us denote by Sjj(€ x R%w) the space of all smoothing Mel-
lin edge symbols of order m and with respect to a double weight datum
w = (v,0,(—1,0]).

It is easy to see that Sy x R4Gw) C SE(Q x R%w) provided
that [ < v —m — 4. As the operator of multiplication by ¢ decreases
the order m by 1, it follows that, for each smoothing Mellin edge symbol
m(y,n) of order m, the composition " m(y,n) is a Green edge symbol of
order m — N, provided N is large enough (precisely, N > [ —~ + m + 9).
This is one of the motivations for introducing Green edge symbols. On the
other hand, changing the cut-off functions o and g in (3.3.4) results in
perturbing m(y,n) by a Green edge symbol of order m related to the same
double weight datum w. For this reason smoothing Mellin symbols are not
considered separately but along with Green edge symbols.

In order to define Mellin pseudodifferential operators we need gaps in
the carriers of asymptotics of the Mellin symbols (so-called quasi-discrete
asymptotic types). In general o;, may consist of an infinite band without
such gaps. This cannot happen in the case of discrete asymptotic types.
For this reason it is convenient to represent an arbitrary carrier of asymp-
totics as the union of quasi-discrete ones, which results in considering the
sums m(y,n) = mi(y,n) + ma(y,n) of smoothing Mellin symbols of the
form (3.3.4), each m,(y,n) being of quasi-discrete asymptotic type. Once
again, the representation of an arbitrary m(y,n) in such a form is indepen-
dent of the particular partition of the carrier of asymptotics modulo Green
operators.

Remark 3.3.13 As defined above, the edge pseudodifferential operators
with symbols g(y,n)+m(y,n) form together an algebra, in which the subspace
of Green operators is an ideal.

3.4 The operator algebra

In this section we introduce an algebra of pseudodifferential operators on a
C* closed manifold with edges, (M, 5). As above, there is no loss of gen-
erality in assuming that S is connected. Then, the corresponding stretched
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manifold M is a compact smooth manifold with boundary, the boundary
being a C'* bundle over S. We fix a collar neighbourhood O =2 M x R,
of the boundary in M.

We begin with a local algebra of pseudodifferential operators in a wedge
W = x Ry x X, where { is an open subset of R% Let m,~v € R and let
w = (y,vy —m,(=1,0]), where [ > 0. Denote by S” (' x R%w) the set of
all operator-valued functions

a(y,n) = ao(y,n) + as(y,n) + m(y,n) + g(y,n) (3.4.1)
on ) x R, where

e ay and a,, originate from a typical symbol a € t~"ST(*T*W) via
(3.2.6), a vanishing for ¢ large enough;

e m(y,n) is a smoothing Mellin symbol of order m related to the weight
datum w, as in (3.3.4); and

e g(y,n) is a Green edge symbol of order m with asymptotics related to
w.

In a recent paper by Gil, Schulze and Seiler [GSS98] a new represen-
tation of complete edge symbols (3.4.1) is shown. It has the advantage of
reducing the use of cut-off aggregates like ¢, (t(n)), ¥, (¢(n)), etc., to cutting
off by functions depending on ¢ only, up to Green edge symbols.

For the same double weight data w, we may obviously consider the
symbol spaces S™7() x R%w), too, j being any non-negative integer.

Proposition 3.4.1 Let w = (v,y — m,(=[,0]), where [ > 0. Then, for
each f =m —j, 7 € Zy, we have

SV x R w) = () SHY x RLL(H* Y (Ryx X), H=#7~™ (R4 x X))).

s€ER

Proof. This follows from (3.4.1), Propositions 3.2.6 and 3.3.12 and the
definition of Green operators.
O
We next introduce the principal symbols of order p for an element
aly,n) € S x R%w). Write a(y,n) in the form (3.4.1) with m replaced
by p. From (3.2.6) it follows that the sum ao(y,n) + aco(y,n) possesses a
principal homogeneous symbol of order p in the interior of W. In fact, it
is given by the homogeneous component of order p of the typical symbol
a(y,t,x;n,7,€) occurring in (3.2.6). Set

ot(a) = o"(ap + awo) (3.4.2)

thus obtaining a homogeneous function of degree y defined away from the

zero section of T*W. As a¢ and a,, originate from a typical symbol on W,
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we deduce that
Yot (a)(y, b, a7, 7, E) = ot(a)(y, b, a0, T, EE)

= o (wtal Te) By

is C* up to t = 0 (cf. (3.1.9)). By the above, o#(a) is a function on the
compressed cotangent bundle *I*W. We thus obtain two symbol mappings
which control the usual ellipticity of a in the interior of W. When compared
with a#(a), the symbol *o#(a) has the advantage of being defined up to the
boundary. However, the definition of *o#(a) relies on a global coordinate
t measuring the distance to the boundary. We call either of the symbols
o#(a) and *a#(a) the principal homogeneous interior symbols of a(y,n).

Yet another symbol mapping of great importance in the characterisation
of elliptic edge problems is the principal edge symbol Ugdge(a). As mentioned,
complete edge symbols (3.4.1) are not classical as operator-valued symbols.
However, they possess principal edge symbols as is clear from the following
lemma due to Behm [Beh95] (cf. Lemma 2.3.2.2 therein).

Lemma 3.4.2 Fach complete edge symbol a(y,n) € S*(' x R% w) pos-
sesses a principal symbol given by

O-gdge(a) = O-gdge(ao) + O-gdge(aoo) + O-gdge(m) + O-gdge(g)7 (344)
where

otyelao) = t7oo(t[n])op g (B(y, 05 tn,2z)) tho(t]n]),
O-gdge(aoo) = t_ﬂS‘QOO(HUDOP}},X(ENL(}]vaXatnvtTvg))¢w(t|n|)

Proof. By Definition 3.3.10 and Proposition 3.3.12 it suffices to show
that each of the symbols ag(y,n) and a(y,n) possesses a principal symbol
of order p. We give the proof only for the symbol ag(y,n); the arguments
for ao.(y,n) are similar. To this end, pick an excision function y(n) in R?
such that (n) = |n| on the support of x. We have

x(1) (ao - Uﬁdge(%))

= (1) 5 olt0n)) 0baa (1 09, 2) = By, 05 1 2)) vl )

for (y,n) € T*Q'. Choose R > 0 such that both ¢q and ¢ vanish away
from the interval (0, R] on the semiaxis. Then

o(L(n))
do(t(n))

for all t > R', where R' = R/ min(n). On the other hand, since ZL(y,t; M, 2)
is C* in t up to t = 0, we deduce that

Wy, t;7,2) — h(y, 0;4, 2) = Ly, {37, 2)

0,
0
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for t € [0, R'], where ¢(y,t;7, z) is a C function of (y,t) € ' x Ry with
values in M(C, *(X;R3)) independent of ¢ for ¢ large enough. If moreover
w is a cut-off function on Ry equal to 1 on the interval [0, k'], then we
obtain

0 — 0agela0) = (1) 1 ol Hn)) o e (At 10, 7)) ol )

for n in the support of y. Summarising, we can assert that

X(n) (a0 = olyg(ao)) = (tw) ap’,

where aél) lies in S*(Q' xR, L(H*"(Ryx X ), H*=#77#(Ry x X))) for each
s,7 € R. As the operator of multiplication by tw belongs to

N S (xR, L(H> (Ryx X)),
5,y

I

edge(a0)> is an edge symbol of order p — 1.

we conclude that x(n) (o — o
From this the lemma follows.
0
This lemma ensures the existence of a principal homogeneous edge sym-
bol oly,.(a), for each symbol a € S#(€ x R%w). This is a €™ function on
Q' x (R7\ {0}) taking its values in Ny L(H*7 (R x X), H*=#7 (R x X)).
As defined by (3.4.4), the function of,,.(a) is homogeneous of degree 1 in
n # 0. It can be written (at least formally) as a limit

Oeage(@) (y,1) = JTim 07" &5 aly, On) g
for (y,n) € T\ {0}. In fact, the limit is achieved in the strong operator
topology of L{H®*" (R4 x X), H*=#"~™(R, x X)), for each s € R.

Every a(y,n) € S*(Q xR% w) gives rise to a pseudodifferential operator
with respect to the variable y. As described in Section 3.3, we will write
it simply A = op(a) when no confusion can arise. As but one application
of Theorem 3.3.9 we show that the operator op(a) extends to a continuous

mapping

op(a): Hiomp(Q’,W*HS’W(R+><X)) — Hy MY, 7B ™ (R x X)), (3.4.5)
for each s € R.

For weight data w = (y,y—m,(=0,0]) and p = m—j, j € Zy4, let
U#(W;w) stand for the space of all operators op(a) corresponding to sym-
bols a € S*(Y x R% w).

Our next aim is to define pseudodifferential operators on a compact
manifold M with fibred boundary. The idea is to glue together local oper-
ators from W*(W); w) near the boundary and the usual classical pseudodif-
ferential operators in the interior of M.
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Fix a finite covering of the collar neighbourhood O of dM by charts
with edges (h,, 0,),c; on M. Without loss of generality we can assume that
each coordinate patch is of the form O, = O/ x Ry x X, with O/ an open
subset of S. Moreover, &, is a diffeomorphism of O, onto a stretched wedge
W, = Q x Ry x X where Q/ is an open subset of R% Let (¢,),.; be a
partition of unity on O subordinate to the covering (O,),;, in other words,
©, € C2(0) satisfy suppp, C O, and >, ¢, = 1 on O. For each ¢, we
choose a function ¢, € C2.(0) with a support in O,, such that ¢, = 1 on
the support of ¢,. Then, to every system of operators A, € U*(W,;w) we
can assign a global operator

Ay =) @ hfA Y, (3.4.6)

on O, where hBAb = h*A,h,, stands for the operator pull-back under %,. The
question of whether the definition of A, is invariant under various choices of
the atlas (h,,0,),; on O lies beyond the range of the paper. Suffices it to

note that if i, reduces to a diffeomorphism O’ 5 2 which does not touch
the variables t and x, then the invariance is a standard fact from the calculus
of pseudodifferential operators with operator-valued symbols along R? (cf.
Theorem 3.4.43 in [Sch98]). In the general case the invariance just amounts
to saying that the space U#(W;w) is invariant, modulo reasonable “small”
operators, under the diffeomorphisms 6: W — W of the form (2.4.3). Such
is easily verified to be the case for those diffeomorphisms which fulfil ¢» = 0.
However, it is to be expected that W*(W;w) is invariant in the above sense
under arbitrary diffeomorphisms (2.4.3) of W.

Definition 3.4.3 For weight data w = (y,y—m,(—=(,0]) and p = m—7j,
J € Zy, denote by U"(M;w) the set of all operators

on M, where
o Ay is of the form (3.4.6) close to OM, ¢, € C2 (O) being a cut-off

comp

function near the boundary and o, € CZ,, (O) covering @y ;

o A, is a classical pseudodifferential operator of order p in the interior
of M, pi =1~y and ; € CZ5, (M) covering p;; and

o S is a “small” global operator on M to be defined via its mapping
properties.

To describe more precisely “small” operators in (3.4.7) we note that the
elements of W*(M;w) are supposed to act as H*V(M) — H* #7777 (M),
for any s € R, possibly also in Sobolev spaces with asymptotics on M.
Thus, the “small” operators in question should be regularising relative to
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this scale of spaces. Apart from being smoothing this involves a gain in the
weight exponent v — m. The latter property can be achieved by requiring
asymptotics in the image because the carrier of asymptotics has a gap away
from the weight line. In this way we obtain what fits in the concept of a
smoothing Green operator (cf. Definition 3.3.10). Namely, let W™ (M;w)
stand for the space of all operators S in weighted Sobolev spaces on M with
the property that there are asymptotic types

as € As(’y—m,(—]l 0]),

as € As(—v,(-1,0))
such that
S € Nser »C(HS’W(M)aH;sW_m(M))v
S c msER ,C(HS’_W-I_m(M), OO’_W(M)),

the ‘asterisk’ referring to the formal adjoint with respect to the conjugate
linear pairing H*"(M)x H=>7"(M) — C induced by an inner product in
H?(M). In this notation the condition on the operator S in (3.4.7) is just
S eUT( M;w).

The elements of U*(M;w) are said to be pseudodifferential operators
of order p on M with respect to the weight data w. From what has already
been proved it follows that the space W*(M;w) is invariant under those
diffeomorphisms of M which obey the fibration (2.2.1) of M close to the
boundary.

The dual objects of functions are densities unless a Riemannian metric
on M is tacitly fixed. Therefore, to discuss transposes of pseudodifferential
operators on M we must make some comments on pseudodifferential oper-
ators between sections of vector bundles over M. We first observe that a
vector bundle 7: V' — M over a manifold with fibred boundary is required
to obey the boundary fibration b: dM — S in the sense that there is a
commutative diagram

Viewm — Vs

E E (3.4.8)

oM s

with Vs a vector bundle over S and h a bundle homomorphism. This dia-
gram means simply that the restriction of V' to the boundary of M allows
a push-forward b, V|spm = Vs under the blow-down mapping b. By working
over sets where a given pair of vector bundles, V and V| is trivial the space
of operators W"(M;V, V; w) from sections of V' to sections of V can be de-
fined in a standard way. Since the space U*(M;w) is a C*(M) module it
is sufficient to assume any one covering of M by coordinate patches where
both V and V are trivial, and any one trivialisation of the bundles.

Theorem 3.4.4 Let A € \I/“(M;V,\N/; w). For each s € R and asymp-
totic types as € As(y,(—1,0]) and as € As(y—m,(—1,0]), the operator A
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induces continuous mappings

AL H (M) = H8 (ML V),
At HE(MV) = HT9 (MY,

Proof. This is an immediate consequence of the corresponding results
from the local theory (cf. (3.4.5)). It merits mentioning here that the
interior symbol of A does not contribute to asymptotics. On the other
hand, the smoothing Mellin operators transform asymptotics occurring in
the domain to other asymptotics in the range while the Green operators
produce new asymptotics.

O

Every A € U"(M;V, V; w) possesses two principal symbols. These are
bundle homomorphisms

ba“(A) : 7T*V—>7T*‘N/,

- (349
TeagelA) o T HP(FTH()) @ Vs — m* HZ0mm (7)) @ Vs, (3:4:9)

for s € R. The first of the two is the principal homogeneous interior symbol
of order pu, the homogeneity in the covariables being understood in the
usual sense (cf. (3.4.3)). The second one is the principal homogeneous edge
symbol of order p, the homogeneity in the covariables referring to the group

actions in the fibres H*7(F~'(-)) over S (cf. (3.4.4)).

Theorem 3.4.5 Suppose A € WMV, Viw). [f bot(A) = 0 and
Olage(A) = 0, then the mapping A+ H*'(M,V) — H*7#77" (M, V) is
compact for all s € R.

Proof. Indeed, from *c#(A) = 0 and o/

edge(A) = 0 we conclude at

once that A € \I/“_I(M;V,\N/; w). Hence it follows that A really maps
HM(M,\N/) to H;S_“"'l”_m(./\/l,f/), for some as € As(y—m,(—1,0]). This
gives the desired conclusion when combined with the fact that the embed-
ding Hizwtto=m( M, ‘N/) — Hs=Hmm (M, ‘N/) is compact, for each s € R.
O
This theorem ensures the existence of a parametrix construction on the
symbol level in the algebra U*(M;V, V; w). The ellipticity should refer to
the pair of principal symbols (ba“(A), Ugdge(A)>. These symbols behave in
the usual way under compositions of operators and taking transposes and
formal adjoints.

Theorem 3.4.6 Let my —py € Zy, mo— pi2 € Ziy and let | be a positive
integer. If

A€ U (M VL VEw), wr = (v, y—mu, (=1,0]),
Ay € U (M; V2 V3 w,), wy = (y—my,y—my—my, (—1,0]),

then Ay Ay € UM (M VE V3 wyow, ) with wyow, = (v, y—mi—my, (=1, 0])
and

bo-m-l-w(AzAl) — 60'“2(142)60'“1(141),
Olied? (A2Ar) = olf (Ar) ol (A1),

edge edge
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Proof. The proof is rather technical and it exceeds the scope of this
paper. We refer the reader to Theorem 3.4.56 in [Sch98]. As mentioned,
the new approach of [GSS98] allows one to avoid a number of voluminous
calculations in the precise analysis of operator-valued edge symbols by a
new quantisation of typical interior symbols in which a part of inconvenient
combinations of the edge covariable and the distance to the boundary is
dismissed.

O

Denote by Wy, ¢(M; V,V; w) the subspace of U*(M; V,V; w) consist-
ing of those operators for which the operator A; in the representation (3.4.7)
vanishes as well as the operators ao(y,n) and as(y,n) in the local descrip-
tions (3.4.1) of the edge symbol near the boundary. If in addition all in-
gradients m(y,n) in (3.4.1) vanish, we obtain what will be referred to as
\Ilé(M;V,\N/; w). By Remark 3.3.13, the spaces \IIK/HG(M;V,\N/; w) fit to-
gether to form an algebra in the sense of Theorem 3.4.6, wherein the sub-

spaces W, (M; V,V; w) form an ideal.

Theorem 3.4.7 Fach operator A € \I/“(M;V,\N/; w) allows a formal
adjoint A* € U*(M;V,V;w*), where w* = (—y+m, —v,(—(,0]). Moreover,

lot (A7) = ("o"(A)),
Teage A7) = (00qge(A))".

Proof. Cf. Theorem 3.4.55 in [Sch98]. We emphasise that the formal

adjoint is understood with respect to the inner product of H*?(M).
O
We omit discussion of the transpose A’ just noting that it is related to

the formal adjoint by the equality

A = *V A* *‘;1,
where xy: V' — V' and *y : V — V' are conjugate linear bundle isomor-
phisms induced by Hermitian metrics on V' and V' and a positive volume

form on M (cf. [Tar95, 2.1.3] for more details). For the purpose of this
paper, the formal adjoint proves to be more important than the transpose.



Chapter 4

Elliptic Edge Problems

Similarly to boundary value problems where the Fredholm property de-
pends on elliptic boundary conditions (in the pseudodifferential case of trace
and potential type), the theory of edge problems requires elliptic conditions
along the edges. These are also of trace and potential type in general, both
occur even for differential operators when the cone fibres over the edge do
not reduce to Ry, i.e., each fibre is a topological cone over a manifold of
dimension at least 1. Moreover, the number of edge conditions depends on
the chosen weights.

4.1 The concept of ellipticity

Let (M, S) be a C* compact closed manifold with a connected edge S of
dimension ¢, and let M be an associated stretched manifold. By definition,
M is €% compact manifold with fibred boundary close to which M is
described by a stretched wedge W = ¥ x R4 x X, with ' an open subset
of R? and X a compact closed manifold of dimension n.

Recall that, given any s,y € R, we define the Sobolev space H*7(M)
to consist of all u € H/

IOC(./\O/l) such that ou € H*7(W) in the corresponding
local coordinates near dM, for every ¢ € C*(M) supported close to the
boundary (cf. Definition 2.2.2). Note that the transition diffeomorphisms
for M near M are assumed to satisfy (2.4.3).

On M live typical differential operators (3.1.2) which give rise to an
“algebra” U™ (M; w) of pseudodifferential operators on M, equipped with a
principal symbol structure (bam(A), Ugﬁge(AD (cf. Section 3.4). The algebra

[e]

U™(M;w) is a subalgebra of ¥ (M) and the ‘compressed’ symbol ®o™(A)
substitutes the usual principal homogeneous symbol of order m, o™(A),
close to the boundary of M. Every operator A € U™ (M;w) extends to a
continuous mapping A: H*Y(M) — H*="7="(M), for all s € R.

It is now a natural question whether this mapping is a Fredholm op-

erator, for any one s € R, once A is elliptic with respect to the symbol
ba™(A), i.e., '™ (A) is invertible away from the zero section of *T*M. The

65
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answer is negative in general. A result of Schulze [Sch91] is that the Fred-
holm property requires the bijectivity of the operator-valued edge symbol,
namely

0lage(A) () H(Ry x X) — H*7™ ™™ (Ry x X)), (4.1.1)

for each y € S and n € R?\ {0} (cf. (3.4.9)). However, the ellipticity with
respect to *o™(A) implies only that (4.1.1) is a Fredholm operator for the
weights v € R such that the line I'_, does not meet the spectrum of the
conormal symbol of o3 .(A)(y,n). This shows that we may expect excep-
tional weights where the Fredholm property of (4.1.1) is violated. Moreover,
these weights s vary along with y € S and they may fill out the entire real
axis. On the other hand, the Fredholm property of (4.1.1) itself is not
sufficient.

The idea from Rempel and Schulze [RS82b], Schulze [Sch89b, Sch9l],

etc., is now to enlarge the class of operators by allowing matrices
H*" (M) He=m=m (M)

AP
: @ @ : (4.1.2)
<T B> He(S, W) - = (8, 7)

where W and W are smooth vector bundles over S. The meaning of the
additional operators P, corestriction or potential operator with respect to
S, T, trace operator with respect to S, and B, pseudodifferential operator
on S, is analogous to that from pseudodifferential boundary problems (see
Vishik and Eskin [VE65, VE67], Boutet de Monvel [BAMT71], etc.). These
operators will also be called edge conditions. They can be generated in
local terms over the wedge W as pseudodifferential operators along ' with
operator-valued symbols.

Our notion of ellipticity of edge problems A defined by (4.1.2) will refer
(as it ought to be) to the leading symbols *c™(A) and 0lage(A). As such
it reflects a more general principle of establishing concepts of ellipticity in
operator algebras with symbolic structures over manifolds with singularities.
In those cases it will be natural to have more complicated hierarchies of
leading symbolic levels, with interior compatibility conditions between the
components. The ellipticity is the bijectivity of every component. Recall
that for manifolds with conical singularities the hierarchy consists of two
symbols *0™(A) and o(A), the latter being a so-called conormal symbol.
In edge problems we also have a leading conormal symbol oa(A) := o (A).
It is subordinate here to the other components of the hierarchy, namely
to ol (A). In fact, the bijectivity of o7j .(A) implies, in particular, the
Fredholm property of (4.1.1), which is in turn equivalent, by the cone theory,
to the ellipticity of Ugﬁlge(A) in the sense of the cone algebra. In other words,
oM (Ug’ége(fl)) (y,z) # 0, for all y € Q" and z € I'_,, is necessarily satisfied.
As well, the Fredholm property of (4.1.1) uses “exit nature” of the operators,
when ¢t — oo. Thus, Ugﬁlge(.ﬁl)(y, n), for n # 0, controls the subordinate cone
conormal symbol as operators along X and exit symbols for ¢ — cc.
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Example 4.1.1 Let Q' be an open set in R? Consider the Laplace
operator A = Df + <D§1 + ...+ D;q) in the cylinder Q' x ]R_|_. This cor-
responds to an one-point cone base X, i.e., n = 0. It is easy to see that
A =op(a(y,n)), where

) = 75 (LD + (D) + (1))

a being actually mdependent of y. Moreover, the edge symbol of a coincides
with a itself, i.e., 024,.(a)(y,n) = D} +|n|*. For any integer s > 2 and v € R,
this defines a family of continuous operators

Oeagel@)(y: ) = H™(Ry) = H*77*(Ry)

parametrised by the point (y,n) € T*Q. For n # 0, the ordinary differential
equation Uezdge(a)u = 0 has two solutions u®(t) = el
the behaviour of u® at ¢ = oo, we deduce that only «~ may belong to the
domain of O'edge( a)(y,n). Such is really the case for v < 0, otherwise neither

of the two lies in H*?(Ry). Hence it follows that

. Taking into account

1 if v<0;
dlmkeraedge( )(%77) = { 0 if z> 0.

On the other hand, we have

< edge(a)(yvn)> (t7 ) = 7:27
oM Uedge(a)(yvn) (Z) = 22 + in
0%, exit (Teage(@)(y, ) (7)) = 72+ Inf?,

o’ Uﬂ,exn( 0 aeel @) (Y, ) () = 72

hence Uezdge(a)(y, n) is elliptic in the sense of the cone algebra on Ry x X,
for each n # 0, provided that v # 0,1. Note that the spectrum of the
conormal symbol of Uedge(a) consists of two points, namely z = 0 and z = —1.
Thus, v = 0 and 7 = 1 just correspond to those values v for which the
weight line I'_, meets the spectrum. Theorem 2.4.38 of [Sch98] now implies
that o2;,.(a)(y,7) is a Fredholm mapping H* (R, ) — H*=2772(R,) for all
s € R, unless n = 0 or v = 0,1. In particular, the range of o2y .(a)(y,n)
is 1som0rphlc to the orthogonal complement of the null-space of the formal
adjoint operator. Since the formal adjoint of O'edge( a)(y,n) with respect to

the inner product of H%~ (R+) is actually given by the same differential
expression, we deduce from what has already been proved that

1 if v e(1,00);
dim coker 024,.(a)(y,n) = 0 if vé&(—o00,0)U(0,1);
oo if 4 =0,1.

For definiteness, consider the case v < 0. Denote by #(y,n) the family of
linear functionals on H*7(R) given by

=0 [ (rge @) ult) i, we HORY, (113)
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v € H*=7"Y(R,) being a fixed function and xgv (¢) = Q%U(Qt) for 0 > 0. A

trivial verification shows that

)k = () / (e (1)) (g (£)

for each n € RY, whence

[0l gr—cmv-1q4) | D DY (n)?
cp (n)* 1

H(DZ“th(y, n)) ’43(77>H,c(st(R+),<C)

IAIA

with ¢z a constant independent of i (cf. (3.3.1)). We thus arrive at a family
of isomorphisms

2 HS_QW_Q(R-I—)
Teagel@)W:1) \ | pron (i
( t(%n) ) : H (R+) — % )

(y,n) € T*'\ {0}. Were the elements of H*7(R,) continuous up to ¢t = 0,
one impose the local condition ¢(y,n)u = u(0) and another way of stating
these isomorphisms be to say that the Dirichlet problem for the Laplace
equation is an elliptic or coercive boundary value problem.

4

This example demonstrates rather strikingly that the bijectivity of
(4.1.1) is a generalisation of the classical Lopatinskii condition for bound-
ary value problems. From this point of view, the following theorem shows
that elliptic typical interior symbols are the best adapted to elliptic edge
problems.

Theorem 4.1.2 Suppose that a € t=™ ST (*T*W) is polynomial in 7.
If

"o (a)(y, 0,27, 7,6) #0 forall (y,0,2;7,7,¢) € "T W\ {0}, (4.1.4)

then lo every y € Q' there corresponds a discrele setia’(y) on the real axis,
such that o3 (a)(y,n): H*V(Ry x X) — H*=™"""(Ry x X) is a Fredholm
operator, for each n € R4\ {0} and for each s € R, v € R\ ¢/(y).

For the proof we need an auxiliary result. Recall that, for a cone symbol

h(t;z) € C2 (R4, M(C, ¥™(X))), the conormal symbol of the Mellin opera-
tor A =17 op 4, (h) follows by putting t = 0in &, i.e., om(A)(2) = h(0; 2).
This behaves like a parameter-dependent pseudodifferential operator of or-

der m on X.



4.1 The concept of ellipticity 69

Lemma 4.1.3 Under condition (4.1.4), for every y € Q' there is a dis-
crete set o(y) C C such that every horizontal strip of finite width in C meets
o(y) only at a finite number of points, and

om (0dagela)(y,m)) (=) + H(X) — H™"(X) (4.1.5)
is an isomorphism for all z € C\ o(y) and s € R.
Proof. Write

1
Cl(y,t,l’; 7—75777) = ﬁ a(yvtvx;tnvh—v 5)7
where a(y,t,z;7,7,£) € ST(W x R7*%) is polynomial in 7. By Lem-
ma 3.2.2, we get

o (0l (a)(y,m)) (2) = ops, (a(y,0,x;0,2,£)),

and so

0" (o (0lage(@)(y,0)) (2)) (25 R2,6) = am(y,0,2;0,Rz, )
= bam(a)(y,(),x;(),%z,f)

whenever y € ' and z € C. Combining this equality with (4.1.4) we see
that, for any fixed v € R, the operator o (nglge(a)(y, 77)) (z) is parameter-
dependent elliptic of order m on X, with z € I'_, and Rz as parameter. By a
well-known property of parameter-dependent elliptic operators, to any finite
segment [a,b] C R there corresponds a constant ¢ such that (4.1.5) is an
isomorphism for all s € R, provided |Rz| > ¢ and Sz € [a,b]. To finish the
proof it suffices to make use of the following abstract result on holomorphic
Fredholm families (cf. Blekher [Ble69] and elsewhere). Let a(z): V — V be
a holomorphic family of Fredholm operators between Hilbert spaces defined
for z in a domain = C C, and let a(z) be invertible at some point zo € =.
Then there is a discrete set ¢ C = such that a(z): V — V is an isomorphism
forall z € =\ 0.
O
Proof of Theorem 4.1.2. Pick an y € Q. Let o(y) C C be the set
given by Lemma 4.1.3, and let v € R satisfy I'_, No(y) = . As the operator
0lage(@)(y, 1) belongs to the cone algebra on R, x X, the Fredholm property
of (4.1.1) will be established once we prove the ellipticity of o7, .(a)(y,n)
with respect to the symbols *62 | o, 0%, oxiv and 0% 0%, i, the latter two
being exit symbols. Lemma 4.1.3 just amounts to saying that O rage(@)(y, 1)
is elliptic with respect to the conormal symbol oxs. As for the other three
symbolic levels, an easy computation shows that

ol (ohel)y,n) (t,2;7,6) = PoR . (a)(y,0,2;0,7,€),
0%, exit (Oldge(@)(ys)) (5 7,6) = Yo (a)(y,0,25,7,0),

U}nt Ug},exit <0-Zcnge(a)(y7 77)) (t7 l’, T? 5) = ba}nymm (Cl)(y, 07 l’, 07 T7 0)7
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hence they are subordinate to (4.1.4).
0
Note that Theorem 4.1.2 makes sense also in the context of arbitrary
symbols a € §™(QV xR w) where w = (y,vy—m, (—(,0]) (cf. Theorem 3.5.1
in [Sch98]). This is a crucial step towards edge problems.
In all cases when

Oagel @)y, ) H(Ry x X) — H7™777 Ry x X)
is a Fredholm mapping, there are finite-dimensional subspaces

S(y.my) C wH (R x X)+ (1 —w)S(Ry, O (X)),

SN(y,m7) € SRy, Cp(X))
such that

Sy,my) = kerofg(a)(y,n),
Hmmmm(Ry x X)) = imogg (a)(y,n) © Sy, n;7)

for each y € ' and n # 0.
Setting
L= dimS(y,m7),
[ = dimS(y,m7),

we find a matrix of operators

m H57’V(R+ X X) Hs—m,'y—m(R_l_ X X)
( i) p) : ® — = (4.1.6)

C! C!

which is an isomorphism for the given fixed (y,n).

For obtaining p and ¢ it is sufficient to choose arbitrary isomorphisms
p: C 5 S(y,m:7) and t: S(y, 15 ) 5 C', respectively. Moreover, we may
set b= 0.

The edge calculus will require a choice of p, t and b such that (4.1.6)
smoothly depends on y € " and 1 # 0, and that

(2 Y=o (5 8) (B DY (54

(4.1.7)
for all § > 0. By the above, this homogeneity relation is satisfied for the
upper left corner anyway. For the remaining entries it suffices to have an
isomorphism (4.1.6) for arbitrary y and || = 1, and then to define the
values of p, t and b at n # 0 via (4.1.7) by putting # = |n| and replacing n
by |Z—|

[t remains to choose p, t and b smoothly in y and n with |n| = 1. The
existence of such a choice for y varying over a compact set K C Q' is actu-
ally an easy consequence of generalities on families of Fredholm operators
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parametrised by a compact parameter set which is here K x S9! (see for
instance [Sch91, 2.2.5]). The restriction to compact K will be sufficient for
our purposes, since €)' below plays the role of a piece from a ("> compact
manifold S (the edge). Since the dimensions [ and [ may jump in general
under varying y, we finally get operator families

( ol @)(y,n) ply,n) ) | H*(Ry x X)  H™™(Ry x X)

) — )
t(y,n by, n ’
( ) ( ) V(ym) V(ym)

V and V being vector bundles over K xS?"! and dim \N/(ym) —dim Vi, ) = [—1.
Here, the subscript (y,n) indicates the fibre over (y,n). Then, we have to
allow b # 0 in general.

It is now a topological condition on the original symbol a that V' and
V may be chosen as the local representatives of some vector bundles over
S, i.e., the dependence on n disappears. Under this condition, we arrive at
a family

. H*"(Ry x X) He=m=m(Ry x X)
( Uedgte(a) ’ > (y,1) : ® o = (4.1.8)
vy vy

which is then to be used below as the principal symbol of some edge problem
associated with A = op(a).

We now proceed with the study of families (4.1.8) in the framework
of “twisted” operator-valued symbols. Let us agree to consider the finite-
dimensional spaces C' and C' with the identity group actions.

Definition 4.1.4 An operator-valued function p(y,n) on Q' x R? is said
to be a potential edge symbol of order m with asymptotics if there is an
asymptolic type

as € As(d, (—1,0])
such that
ply.n) € SHQ x R%L(C, Sy (Ry x X)),
P (y,m) € Neer ST x qu'/:(H&_S(R-I- x X),C)).
For double weight data w = (v, 4, (—/,0]), we denote by Sp (¥ x R"; 5)

the space of all potential edge symbols of order m with asymptotics, as
above.

Definition 4.1.5 An operator-valued function t(y,n) on Q' xR is called
a trace edge symbol of order m with asymptotics if there is an asymptotic

type
as € AS(_77 (_17 0])

such that

ty,n) € Nser ST x quﬁ(HS?(R+ x X),C)),
y,m) € ST xRLLC S (R4 x X))).
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We write S7/ () x R4 w) for the space of all trace edge symbols of order
m with asymptotics, as above.

Note that it is typical for the edge pseudodifferential calculus that the
trace objects occur in integral form, in contrast to the case of standard
boundary value problems. In other words, the traces which restrict the
argument functions to the edges, possibly after differentiating them with
respect to the t-variable (i.e., those of the form t(y,n)u = Dl |i—o, with
J € Zy4), do not belong to the trace operators here. This would be im-
possible anyway, because in elliptic edge problems we cannot expect the
solutions to have such traces on the edges. We will get in fact more general
(e.g. discrete) asymptotics that are just the reason for our framework with
arbitrary asymptotic types.

It follows directly from these definitions that p(y,n) is a potential edge
symbol if and only if the formal adjoint p*(y,n) is a trace edge symbol. For
this reason, potential edge symbols are sometimes called corestriction edge
symbols.

The composition of a potential edge symbol and a trace edge symbol is
a Green edge symbol. Moreover, these concepts fit together to be treated
from a uniform point of view. Namely, an operator-valued function ¢(y,n)
on ' x R? is said to be a generalised Green edge symbol of order m with
asymptotics if there are asymptotic types

as € As(é4,(=1,0]),
-

as € As(—7,(=10)
such that
glym) € () SHQ xR LHD (R x X) @ € SL(R4x X) & C)),
g (y,n) € EWE B X R LU (R x X) @ CL ST Ry x X) @ C)).

An important point to note here is the form of group actions in fibres which

are kg b Id. Writing

a(y,n) = ( ?((y: 77)) p(y’ns ) (4.1.9)

we see at once that ¢g(y,n) is a Green edge symbol in the proper sense of
Definition 3.3.10, p(y,n) is an [-tuple of potential edge symbols, ¢(y,n) is
an I-tuple of trace edge symbols, and b(y,n) is simply an (ZN x [)-matrix of
classical scalar symbols of order m along the edge. i

For weight data w = (7,6, (=1,0]), let SZ(¥ x R% Hom(C!,C"); w)
stand for the space of all Green edge symbols of order m with asymptotics,
as above.

We are able to describe the edge conditions which substitute the bound-
ary conditions for the case of edge problems. When restricted to a collar
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neighbourhood of the boundary, these are simply Fourier pseudodifferen-
tial operators along the edge with the operator-valued symbols g(y,n) in
SE(Y x R, Hom(@l,(ci);w) that have 0 in the upper left corner. Using
edge conditions (4.1.9), one corrects edge symbols originated with elliptic
typical symbols in the wedge, thus attaining an isomorphism of the principal
homogeneous edge symbol.

Our next objective is to introduce an algebra of edge problems on a
manifold with fibred boundary. This follows by the same scheme as in
Section 3.4. Fix weight data w = (v, — m, (—[,0]), where m,v € R and [
is a positive integer. We first define a local algebra W™(W; W, W; w) on the
wedge W = 0 x Ry x X, where

W = Sxd,

W o= Sxd
are trivial bundles over S. To do this, denote by S (' x R% Hom(W, W), W)

the space of all operator-valued functions

a(y,n) 0 ) ( 0 ply.m) )
1) = +
w>m) ( 0 0 t(y,n) by, n)
on ' x R?, where a(y,n) € S™(Q x R%w) and the latter matrix belongs
to SE (Y x R Hom(W,W);w) (cf. (3.4.1)). Since the edge conditions
are classical operator-valued symbols by the very definition, each symbol

a(y,n) € S™(Q x R% Hom(W, W), w) possesses two principal homogeneous
symbols of order m, namely

o (a) = b<0m(ﬂ?)a( — )) o
ol J(a) = Tedgel Ujggep 1.

edse O-ZCnge(t) Uedge(b)

(cf. (3.4.3) and (3.4.4)). Note that o7}, (b) = o™ (b), the latter being the
usual principal homogeneous symbol of b. Just as in Section 3.4, every
symbol a(y,n) € S™(V x R% Hom(W, W); w) gives rise a pseudodifferential
operator A = op(a) with respect to the variable y. For each s € R, it
extends to a continuous mapping
Hjomp(ﬂ’,w*Hs’W(R+><X)) HE™M (Y o He~ 0~ (Ry x X))
A ® — ST
H g, (@, 0)
(4.1.11)
(cf. (3.4.5)). We write U™(W; W, W; w) for the set of all operators A with
symbols in S™( x R% Hom(W, W); w).
To complete the algebra of edge problems on M it remains to glue
together all the local algebras on M. For this purpose we fix a covering of

the collar neighbourhood O of dM by charts with edges (h,,0,),er on M.
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We may take O, to be diffeomorphic to O x Ry x X, with O a coordinate
patch on 5, and &, to be a diffeomorphism of O, onto a stretched wedge
W, = @ x Ry x X, with Q' an open set in R% Pick a partition of unity
(¢.),e; on O subordinate to the covering (O,),.;. For each ¢, choose a
function ¢, € C2(0) such that suppt, C O, and ¢, = 1 on the support
of ¢,. Then, to every system of local edge problems A, € U*(W,; W, W; w)
we can assign a global operator

Ay, = Z P hBAL Y,

on O, where h'A, = h*A,h,, is the pull-back of A, under h,. As each local
diffeomorphism of M near the boundary acts trough a local diffeomorphism
of S (cf. (2.4.1)), the invariance of A4, under local coordinates in O actually
reduces to that for the operator in the upper left corner of A,. By the
above, if h, does not touch the variables ¢t and z, then A; is independent
of the various choices involved modulo smoothing Green operators in the
generalised sense. These should be incorporated in the algebra anyway
because they appear as remainder terms in the parametrix construction
for elliptic edge problems. More precisely, denote by \II_OO(M;W,W;W)
the space of all edge problems § on M with the property that there are
asymptotic types
as € As(y—m,(-1,0]),
as € As(—v,(-1,0))
such that
S € Nuer LIH* (M) @ H*(S, W), HZ™™(M) & H*(S,W)),
S* € Nyer LIH (M) @ H (S, W), HZ (M) @ H>(S,W)),

the ‘asterisk’ meaning the formal adjoint with respect to the conjugate linear
pairing induced by an inner product in H*%(M) & HO(S).

Definition 4.1.6 Given weight data w = (v,y—m,(—,0]), denote by
U (M; W, Wi w) the set of all operators

A, 0
A= c,ob.Ab;/Jb + @i ( 0 0 ) Vi + S (4.1.12)

on M, where A, is an operator near OM as above; A; is a classical pseu-

dodifferential operator of order m in ./\O/l; and § € U= (M; W, W; w).

The elements of \I/m(M;W,W;W) are said to be edge problems of or-
der m on M with respect to the weight data w. As mentioned, the space
U M; W, W; w) is invariant under the diffeomorphisms of M which pre-
serve the fibration (2.2.1) of M near the boundary.

An analogous definition makes sense in the case where the upper left
corner of A is an operator between sections of vector bundles V and V over
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M. Moreover, we may consider arbitrary vector bundles W and W over S
instead of the trivial bundles W = S x ClNand W =5 x W, respectively.
This yields the operator classes U™(M; V, V; W, W:w). The details are left

to the reader.

Theorem 4.1.7 Let A € U™(M;V,V: W, W:w). For each s € R and
asymptotic types as € As(y, (—1,0]) and a&s € As(y—m, (—1,0]), the operator
A induces continuous mappings

A H(MV) @ (S, W) — H=0=m(M, V) @ H=" (8, W),
A s HZ(MV) @ H (S, W) = B (MV) @ H" (S,W).

Proof. This follows immediately from the corresponding results of the
local theory (cf. (4.1.11)). We emphasise once again that it is generalised
Green operators only that contribute to asymptotics.

O

Every edge problem A € \Ilm(M;V,\N/;W,VNV;W) bears two principal
symbols. These are bundle homomorphisms

o (A) ™V =V,

H (7)) @ Vs Hemm = (FHC) @ Vs
Ugﬁge(.ﬁl) ot &) — 7 b )
W W (4.1.13)

over "I"* M and TS, respectively, for s € R. We keep the terminology of
the previous sections and call *6™(A) the principal interior symbol of A,

and o7, (A) the principal edge symbol of A (cf. (3.4.9)).

Theorem 4.1.8 Suppose A € U™(M;V,V;W, W;w). IfPo™(A) =0
and Ugﬁlge(.,él) = 0, then the mappings of Theorem 4.1.7 are compact for all
s € R.

Proof. Indeed, from *0™(A) = 0 and O'(Zrélge(fl) = 0 it follows easily that
A e U™ (M;V,V; W, W;w). Thus, A acts trough the compact embedding

Hs—m—l—l,w—m—l—l (M7 ‘N/) Hs—m,w—m (M7 ‘N/)
© — ST ;
o=+ (S, W) oo (S, W)

and the proof is complete.
O
Theorem 4.1.8 makes it transparent that the pair of principal sym-
bols (ba“(A), Ugdge(AD allows one to construct a parametrix on the symbol

level in the algebra \I/m(M;V,\N/;W,VNV;W). We only need to show that
this “algebra” is really closed under compositions of edge problems. By a
composition of edge problems A; and A, on M, we mean the composition
of the corresponding mappings from Theorem 4.1.7. Of course, this tacitly
assumes a compatibility of vector bundles and weight data.
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Theorem 4.1.9 As defined above, the composition Ay A; of any two
operators

Al € q}ml(M;vlvvz;lewz;wl)v Wy = (Vvv_mlv(_lvo])v
A,y € \I’m(M;VzaVS;WlaWZ;Wz)a wy = (y—my,y—mi—ma,(—(,0]),

belongs to U™+ (M V1 V3 W W2 wyow,). Moreover, il obeys the sym-
bolic structure in the sense that

byt (A Ay) = b ym2 (As) bo'ml(Al)v
0_m1-|—m2 (AQAI) — Unge('Az) U(:lege(Al)‘

edge

Proof. This is actually a consequence of Theorem 3.4.6. For a fuller
treatment, see Theorem 3.4.56 in [Sch98].

O

We may also distinguish two “subalgebras” of great importance

within U™(M; V,V; W, W; w), namely

UEM; V. VW, Wiw),

Roughly speaking, they consists of those edge problems A on M for which
the operator A in the upper left corner belongs to \Ill\m/HG(M;V,\N/; w) or
\IIE(M;V,\N/; w), respectively. Just as in the “scalar” case of operators in
the upper left corner, the latter algebra in (4.1.14) is an ideal in the former.

Theorem 4.1.10 Fach edge problem A € MV, V; W, Wi w) al-
lows a formal adjoint A* € U™(M;V,V; W, W;w*). Moreover,

bo.m(A*) — (bo.m(A))*7
O-ZCnge(A*) = (Ugrcllge(A))*‘
Proof. Cf. Theorem 3.4.55 in [Sch98]. Note that the formal adjoint is
understood with respect to the inner product of H*°(M) @& H?(S).
O
We are now prepared to formulate a concept of ellipticity on a manifold
with fibred boundary.

Definition 4.1.11 An edge problem A € U™(M;V.V; W, W;w), for
w = (y,v —m,(=1,0]), is said to be elliptic if
1) the principal interior symbol *a™(A) is invertible away from the zero
section of *T* M
2) the principal edge symbol Ugﬁge(./l) is tnvertible away from the zero
section of T*S, for any one s € R.

The condition 1) of Definition 4.1.11 means nothing but the interior
ellipticity of A up to the boundary. In fact, it is the ellipticity of the
upper left corner of A on M in the sense of typical symbols, which is
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independent of the weight . The condition 2) is an analogue of the classical
Lopatinskii condition in boundary value problems. It is known from the
theory of pseudodifferential operators on the infinite stretched cone Ry x X
that the condition 2) is satisfied for all s € R as soon as it holds for a
particular sy € R. Moreover, this condition is known to depend essentially
on v € R. The index of o3, .(A)(y,n), A being the upper left corner of A,
depends on v, and it may happen that, for a particular vy € R, the operator
A cannot be completed to a matrix A satisfying 2) (cf. Lemma 4.1.3). In
contrast to the case of boundary value problems, the ellipticity of an edge
problem A for a typical differential operator A requires in general both
trace and potential conditions. In other words, (4.1.1) will be a family of
Fredholm operators with non-trivial kernels and cokernels whose dimensions
depend on ~.

When applied in the interior of M, the condition 1) means nothing
but the usual ellipticity of the upper left corner A of A with respect to the
principal interior symbol 0™ (A). The compressed principal interior symbol
o™ (A) is intended for substituting c™(A) on the boundary of M where the
latter symbol is not defined. On the other hand, we have some control of
ba™(A) over M via the condition 2). Indeed, this condition implies that
Orage(A)(y, 1) is a Fredholm mapping between weighted Sobolev spaces over
an infinite stretched cone R, x X, provided that n # 0. It follows that
0lage(A) Y, ), m # 0, is an elliptic operator in the corresponding cone alge-
bra, and so several relevant symbols of A at ¢ = 0 must be invertible. One
may ask whether or not, in the presence of condition 2), the condition 1)
is fulfilled automatically over the boundary. Were such the case, the defini-
tion of an elliptic edge problem A on M be equivalent to the invertibility of

the principal symbols 0™ (A) over T M \ {0} and o,.(A) over TS5\ {0},
i.e., the compressed principal interior symbol 6™ (A) be not needed in the
definition of elliptic edge problems on M. The following example highlights
this question.

Example 4.1.12 Consider the stretched wedge W = R' x R, x R! and
the typical differential operator

1
A= = ((tDy —tD,)* + (tDy — D,)* + (tDy)?)
of second order on W. As
1
(A, 7, ) = (1 =) + (1= 2"+

for t > 0, we conclude at once that A is elliptic in the interior of W. Further,
we get

Page M) = 75 (1D = ) + (1D, D.)?)
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whence

60-2 <0-2dge(A)> (%7
oM <0e2d e(A)> (
U}} exit ( 2dge )) (t;
o’ U}} ex1t< 2dge )(t
(

This shows that O'edge( )(y,n) is an elliptic operator in the cone algebra over

3
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\]
o g S N
Il
/\TNM
|+
Yy
S
_|_
3
o 8
Y N

[\™)

= 272

\]

R, x R, provided that 1 # 0. However, the compressed principal interior
symbol

(A0, 7, 6) = (T =)+ (7= €7+ (1)
vanishes on the entire line J
v
=

Y

Y

My S
I

(W €R)if t = 0.

4.2  Parametriz construction

Assume that (M, S) is a compact closed C'°® manifold with an edge S, and
M is the corresponding stretched manifold.

Let A € \Ilm(M;V,\N/;W,VNV;W) be an edge problem on the manifold
M, with w = (y,v7 —m, (=[,0]). By Theorem 4.1.7, A extends to a contin-
uous mapping

H(M, V) Hm=m (M, V)
A & = & (4.2.1)
H(S, W) o= (S, W)

for each s € R. The Fredholm property of (4.2.1) is equivalent to the
existence of a so-called regulariser to A, i.e., an inverse up to compact
operators. In the context of weighted Sobolev spaces compact operators are
those which improve both the interior smoothness and the weight. We can
attain a gain in the weight by requiring asymptotics in the range, for there
is a gap between the carrier of asymptotics and the weight line. We are thus
led to the following particular concept of a regulariser.

Definition 4.2.1 An operator P € U™™(M;V;V; W, W; w~!) where
w™t = (v —m,v,(=1,0]), is said to be a parametriz of A if

PA-1 € W_W(M;Y;W;w_low), (4.2.2)
AP -1 € U™(M;V;W:;wow™!). o
Note that

wlow = (v,7,(=,0]),
wow - = (’y—m,’y—ma(—lao])
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and the operators on the right-hand side of (4.2.2) are compact in the cor-
responding spaces, which is clear from Theorem 4.1.8.

Theorem 4.1.9 shows that if P € ™™ (M; ViV, W, W; w1} is a param-
etrix of A, then so is P+ S for any S € \I/_OO(M;\N/;V;VNV,W;W_I). Con-
versely, any two parametrices P; and P, of A differ by an element of

U= (M;V; V; W, W;w™) because
7)2 - ,Pl — (1 — 731./4)732 - ,Pl(l — A’]DQ)

Hence it follows that the parametrix of an edge problem A is defined
uniquely modulo W= (M;V;V; W, W;w™!). Moreover, equating the prin-
cipal symbols of the operators in (4.2.2) yields

() = (o (A
TedgelP) = (03g(A)) 7,
and so for a parametrix to exist it is necessary and sufficient that A be

elliptic in the sense of Definition 4.1.11. This condition proves to be also
sufficient.

(4.2.3)

Theorem 4.2.2 Fach elliptic operator A € (M V,V; W, W w) on
M has a parametriz P € ""(M;V; V; W, W w1,

We have divided the proof into a sequence of lemmas. The reader who
is more interested in the basic analytical ideas may confine himself to trivial
bundles V=V = M x Cand W = § x C', W = § x C'. Moreover, the
proof becomes considerably simpler if we impose the technical assumption
that the spectrum of o (U:Zlge(A)> (y,z), i.e., the set o(y) of Lemma 4.1.3,
is independent of y € S.

Lemma 4.2.3 Let a(y,n) € S™(Y x R4 w) satisfy (4.1.4). Then, there
exists a p(y,n) € ST™(Q x R4 w™) such that

O-e_dTge(p) O-ZCnge(a) = 1 mod Ugdge S](\)4—I—G(Q/ X Rg? w_l o U)), (4 9 4)
O-ZCnge(a) O-e_dTge(p) = 1 mod Ugdge S](\)4—I—G(Q/ X Rg? wo w_l)‘ o

Proof. Fix a finite covering (O”) of X by coordinate patches and charts
RO — QF with Q7 an open set in R”. Then 0™ («a) is represented locally
by homogeneous components of order m of symbols

tim ab(yv tv Ty t777 tT? 5)

in t=m STV x Ry x Q7)) which are compatible with respect to the
symbol pull-backs under transition diffeomorphisms in the z-coordinates,
modulo symbols of order —co. Condition (4.1.4) allows one to calculate the
Leibniz inverse of every symbol t=™ a,(y, 0, x;tn, tr,£) with respect to the
(t,x)-variables. Moreover, analysis similar to that in the proof of Propo-
sition 3.1.6 shows they are of the form ¢™ p,(y, x;tn,t7, ) modulo symbols
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of order —oo, for suitable p, € S7™((Y x Q) x R%";lg'n). Let (¢,) be a
partition of unity on X subordinate to the covering (O!). Choose functions

Y, € Coonp(OY) satisfying @20, = ¢, for all ¢, and set
pilysm) =1 > (Lx b)) opg,  (Buly,x;t, t7,€)) b,

~ According to the results of Section 3.2, there exists a (* function

h(y; 7, 2) of y € ' with values in M(C, W ™™ (X;R7)), such that
piy;n) =" 0ppiyom(h) (v,7)  mod Cig (', W7 (Ry x X5 RY)),

where h(y,t;n,z) = ﬁ(y;tn,z). Pick functions ¢y, p; and ¢, 1, as in
(3.4.1), and define

Py, 1) = @b (po(y, 1) + Poo (3, m)) s + wipi(y, 1) (4.2.5)

for (y,n) € @ x RY, where

po(y,m) = " wo(t(n)) 0P pgq—m(hy:tn, z)) Lo(t(n)),
Pool¥sn) = Poo(t(m)) pi(y,m) Yoo (t())

cf. (3.2.6)). From (4.2.5) we deduce easily that p(y,n) € ST (¥ x R4 w™!
Ui

and

Trdge(P) = 1" 00(t[n]) 0P pt y—in (M) (¥, 1) 0 (t10]) + oo (tIn]) Pily, 1) Yoo (tIn])-

It is now a simple matter to see that (4.2.4) holds. Indeed, because
of the homogeneity in 7 it suffices to insert |n| = 1 and to carry out the
compositions in the sense of cone pseudodifferential operators over Ry x X.
These compositions are smoothing in the interior of Ry x X, i.e., of classes

Ui (Ry x Xsw™how),
Unpa(Ry x Xswow™h),

respectively. For verifying (4.2.4) we can argue in a similar way, not-
ing that the symbols ™ p,(y, x;tn,t7,€) can be Leibniz composed with
=" a,(y,0,x;tn,t7, ) both from the left and from the right to yield 1 up to
remainders of the desired type. This finishes the proof.
O
In the following lemma we assume that the weight interval (—[,0] is
finite, which is essential to the proof.

Lemma 4.2.4 Let r(y,n) € Sy (' x RGw), for w = (v,7,(—1,0]).
Suppose that oa(r) = 0. Then there is an m(y,n) € Sy (Y x R4 w) such
that

(1+m(y,n)(L+r(y,n) = 1+gly,n),
(I +r(ym)(L+my,n)) = 1+gly,n),

Jor some g(y,n) € S x R%w).
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Proof. It suffices to take

M“
\_/
R

l—l—myn

]=0

for J large enough. Indeed, we get

(I +my, )X +r(y,n) = (1+7r(yn)1+my,n))
= 1+(_1)J(r(y777))J+17

and g(y,n) = (=1)7 (r(y,n))’** is a Green edge symbol with asymptotics for
sufficiently large J. This latter observation follows by invoking an additional
symbolic structure on Sy, () x R%w) given by a sequence of conormal
symbols (cf. Theorem 3.3.28 and Proposition 3.3.23 in [Sch98]), and the
proof is complete.
O
Using Lemma 4.2.4, we can improve the soft regulariser p(y,n) of Lem-
ma 4.2.3.

Lemma 4.2.5 Let a(y,n) € S™ (Y xR%G w) with w = (y,vy—m, (=[,0]).
Suppose a(y,n) satisfies (4.1.4), and let (4.1.5) be an isomorphism for each
yelY, zel'_, and some s€R. Then, there is a p(y,n) € ST (V' xR%Lw™)
such that

O-e_dTge(p) Ug?lge(a) = 1 mod Uedge SG(Q/ X Rq o w)

Ugﬁge(a) edTge(p) = 1 mod O'edge SO 9 (Q x R%Gwo w—1) (4.2.6)

and

eply,n)valy,n) = ¢ mod S xRLw™ ow),

, 4.2.7
ealy,n)vply,n) = ¢ mod SGHY x RGwow™), (427)

for suitable cut-off functions o(t) and (t) satisfying Y = .

Proof. Condition (4.1.4) implies that the symbol *c™(a) does not
vanish for all (y,¢,z;7,7,£) € *T*(¥ x [0,e) x X)\ {0}, with some & > 0.
In fact, we can achieve this by shrinking Q' if necessary, which does not
affect the conclusion. Thus, in the notation of Lemma 4.2.3 we can form
the Leibniz inverses of the local symbols t=™ a,(y, ¢, x; tn, t, £) with respect
to the (¢, x)-variables, for ¢ € (0,¢). In this way we get a tuple of symbols
" p(y,t, x5 tn, tr,€), for t € (0,¢), which are compatible with respect to
the symbol pull-backs connected with the transition diffeomorphisms in the
z-coordinates. Pick a cut-off function w(?) supported by [0, ), and set

pgl)(y, 77) =" Z ®, (1 X hil)ﬁw(t) OPr, , (IN)L(}UX; tn, tr, 5)) 03 (4'2'8)

with the charts A : O — Q7 and the functions ¢,, ¥, from the proof of
Lemma 4.2.3.
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Applying Corollary 3.2.5 we now find a € function iL(l)(y, t;n,z) of
(y,t) € ' x Ry with values in M(C, ¥ ™™ (X;RY)), such that

PO = 17 0pagy(h) (v2m) mod GRS (0, 0 (R x X RY)),

where A (y, t;n,2) = ﬁ(l)(y,t;tn,z). Moreover, this is compatible with
the constructions of Lemma 4.2.3 because the Leibniz inversion of interior
symbols followed by freezing at ¢t = 0 gives the symbol p;(y,n) modulo
symbols of order —oo. This implies in turn ﬁ(l)(y,();ﬁ,z) = ﬁ(y;ﬁ,z) up
to an element of CP (2, U™ (R4 x X;R{l)). We now construct a symbol
PN (y,n) € ST x R% w(~Y) analogously to (4.2.5), with p;(y,n) replaced
by (4.2.8) and ZL(y; 7, z) replaced by iL(l)(y,t; M, z).

Choosing cut-off functions ¢(¢) and () in such a way that w(t) = 1
on the supports of ¢, 1 and e = ¢, we obtain

ey, n)daly,n) = ¢ mod Stra(Q x RGw™ o w),
ealy,vpW(y.n) = ¢ mod Sy, o(V xREwow™).
Set 1
f(y,z) = <UM <Ug21ge(a)(y777)>> (Z - m)

fory € @ and z € I'_,4,,. Since o <0-(:rcnge(a)> = om(a) and

om(P)(y:2) = (Gp(a)(y, 2 =m))™ mod  oum Sypa(® x REwow™),
the last equality being a consequence of the above ones, we deduce imme-
diately that

om(PW)y, 2) = fly.2) + s(y, )

where s(y, z) is a C* function of y € ' with values in the space of smooth-

ing Mellin symbols with asymptotic information. More precisely, we have

s(y, z) € Mas(C, U™ (X)) for each fixed y € ¥, the subscript ‘as’ referring

to an asymptotic type of operator-valued Mellin symbols (cf. [Sch98, 2.3.4]).
Define

PP (y,n) = pM (. n) — 1" 0o(t(n)) 0P s 4 m(5(y,2)) tho(t(n))

for cut-off functions ¢o(t) and ¢o(t). Then

e (y.n)valy,n) =1+ r(y.n),

where r(y,1) € Siyra(Q x RGw™" o w) satisfies oa(r)(y, 2) = 0. By Lem-
ma 4.2.4 there is a symbol m(y,n) € Sy (' x RGw™ o w) with the
property that

(L4 m(y,m))(L+7r(y,n) = 1+ 9(y,n)
for some g(y,n) € SE(Q x RLw™! ow). Setting

ply,n) = (14 m(y,n)p® (y. n),
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we comply the first equality of (4.2.7). The same construction applies to
vield yet another symbol p(y,n) € S™™(Q x R%w™!) satisfying the sec-
ond equality of (4.2.7). Then, using the fact that the Green symbols form
an ideal, one shows by standard algebraic manipulations that each of the
symbols p(y,n) so obtained actually satisfies both equalities in (4.2.7). To
complete the proof, it suffices to use the observation that (4.2.7) implies
(4.2.6).
O
We wish to arrange the remainder terms in (4.2.7) to be as smoothing as
possible. For this purpose, we are going to make use of the second condition
in Definition 4.1.11.

Lemma 4.2.6 Let (gi;(y,n)) € UgdgeSg(Q’ x R% Hom(W); w), where
w = (7777 (—Z,O]) Suppose

H57’V(R+ X X) H57’7(]R+ X X)
921 922 ! !

is invertible for all (y,n) € T*Q' \ {0} and any one s e R. Then (4.2.9) is
invertible for all s and there is an (hi;(y,n)) € O'Sdge S2(QY xR% Hom(W); w)

such that .
L4911 g1z \ _ 14+ hi1 hia
921 922 ha1 hao '

Proof. That the invertibility of (4.2.9) for any one s € R implies that
for all s € R, is a consequence of the cone theory (cf. Proposition 2.4.40 in
[Sch98]). Thus, we can assume that s = 0. We next reduce the operator
(4.2.9) to the case of weight v = 0 by multiplying the block matrix from
the left and from the right by suitable invertible matrices which preserve
the class of Green edge symbols. Namely, when multiplied by an excision
function in R?, the symbol

(t_w 0 )(911 912><W 0)

0 |n|™ 921 G2z 0 ol

belongs to SE(Q' x R% Hom(W); (0,0, (—1,0])), which is clear from the def-
inition of Green edge symbols. In other words, without loss of general-
ity we may assume that v = 0. Since we are dealing with homogeneous
operator-valued functions of degree 0 for n # 0, it suffices to invert (4.2.9)
on the cosphere bundle S*QV = {(y,n) € T*Q: |n| = 1} and then to ex-

tend the obtained block matrix by homogeneity to all of T*Q"\ {0}. Set
V=H"R; xX)& C! and

1+
1+g(yﬂ7)=< o )
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by 1 being meant the identity operator in various spaces. Then the question
is to specify the inverse of 1+ g(y,n) € L(V) in the form 1 + h(y,n), where

hy,n) € Ci(S™,L(V,SL(Ry x X) 6 C),
h*(y,n) € Co(SV,L(V,SL(RL x X) & C')
for suitable asymptotic types as,as € As(0,(—1,0]). To do this, let us
observe, by assumption, that there is an operator g(y,n) € L(V') such that
(L+9g(y,n))~" = 14h(y,n). This yields (1+g(y,n))(1+h(y,n)) = 1 whence

hy,n) = —g(y,n)(1+ h(y,n)).

Thus, the continuity of g(y,n): V — S%(Ry x X)@C implies the continuity
of h(y,n): V — SR, x X) @ C'. For the formal adjoint we can argue
in an analogous manner. This gives us easily that both h(y,n) and h*(y,n)
are C'*° functions on S*Q0' with values in the continuous operators of the
required kind.
0

Until further notice we assume that €' is a relatively compact subset
of an open set U C RY.

Ifa(y,n) € S™(U xR% Hom(W, W), w) has an invertible principal edge
symbol over T*U \ {0}, then

Oragel @)y, )« H (R x X) = H7"77 Ry x X))

is a family of Fredholm operators parametrised by (y,n) € T*U\{0}. The in-
dex of this mapping is the same for all s € R and, by homogeneity, it depends
only on (y,n) € S*U. Thus, when restricted to the set S*' CC T*U, the
family o3, (a)(y,n) gives rise to an index element ind gsr 0, (a) € K(S*Q')
(cf. Atiyah [Ati67]). Moreover,

ind g+qr ogg,.(a) = T7[Q % C, 0 x C']

where m: S*Q" — ' stands for the canonical projection. Hence we deduce
that ind geor 0%, (a) € T K(). !

Lemma 4.2.7 Suppose a(y,n) € S™(U x R Hom(W,W);w) is an
elliptic edge symbol, w = (v, — m,(=(,0]). Then, for any cut-off function
w(t), there is a symbol p(y,n) € ST (Y x R% Hom(W, W); w™!) such that

wioT™(p) = w('o ())

edTge(p) = ( edge( ))

!This condition is necessary to allow the interpretation of a(y, n) as a upper left corner
of a block matrix a(y, n) with invertible principal edge symbol.
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It is worth emphasising that the ellipticity of a(y,n) merely means the
invertibility of the principal symbols (4.1.10). We also mention that p(y,n)
may depend on w.

Proof. The ellipticity of a(y,n) implies that the upper left corner
a(y,n) of a(y,n) meets the condition of Lemma 4.2.5 over U. Moreover, as
the symbol *0™(a) is now invertible not only for # = 0 but also over the
whole semiaxis R, the cut-off functions ¢(¢) and () with ¢ = ¢ may
have arbitrary supports. Thus, there is a p(y,n) € S™™(U x R%w™') such
that

O ige(P) Olige(a) = 1+ g (4.2.10)
for some g(y,n) € O'Sdge S2(U x R%w™ o w), and analogously for the com-

position in the reverse order.
This means that

ind U;&(P)(yw) = _indo-gége(a)(YNﬁ
= -1

for all (y,n) € T*U \ {0}, the last equality being due to the fact that
U:ége(a) is an isomorphism. The following constructions may be performed
over S*() which is a relatively compact set in T*U. Let us fix s = so. We
find a finite-dimensional subspace ¥ in H*7(R; x X) such that

H* V(R x X) = imo g7 (p)(y,n) & ¥

edge

for all (y,1) € S*V. Since C2 (R, x X) is dense in H*7(R, x X) we may

comp

(R4 x X). Letting d denote the dimension
of 3, we pick an isomorphism ¢: C* — ¥. Then, the mapping

actually choose ¥ within €'

comp

Hrommam(R, x X)

(TedaeP) (Y1), €) : <) — H*"(Ry x X)  (4.2.11)
(Cd
is surjective for all (y,n) € S*0'.
We have
ind g o ge (P)(y, 1) = —indswr ogg.(a)(y,n)

e TK(Q),

and so, by choosing d large enough, we can assert that the kernel of (4.2.11)
is a trivial subbundle of finite rank in S$*(/ x <H5°_m”_m(]1§+ x X) & @z).
We denote this bundle by X and the fibre dimension of X by d. Then,
d—d=1-1. 1Tt is a consequence of the cone theory (cf. Proposition 2.4.40
in [Sch98]) that the fibres of ¥ are subspaces of ST (R4 x X).

Using the conjugate linear pairing

Hoommmm (R, x X) x H™o0m =R, » X) — C
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induced by the scalar product of H*°(R, x X), we can also form a non-
degenerate conjugate linear pairing

(Hmr=n(R % X)) x (Hoommren (@, < X) 3 CT) - €
(4.2.12)

in an obvious manner by adding the scalar product of C?. This allows us to
form a subbundle ¥* of S*)/ x <H‘5°+m’”+m(R+ x X) & Cd>, such that the

fibre Z(*ym) of ¥* over a point (y,n) € S’ is isomorphic to the corresponding
fibre X, of ¥ via (4.2.12). We can choose a basis (e1(y,n),...,ei(y,n))

in Z(*ym)’ which smoothly depends on (y,n) € S*0'. Then the pairing
== Ry x X) (u®v, ey, n))
D Sudv— (4.2.13)
Cd (u@vv ed(yvn))

may be interpreted as an (y,n)-dependent family of mappings

Ho=mo=m (R, x X)
<) — ¢,

Cd

which induces a bundle isomorphism . 5 S x Using the density of
Coomp(Ry x X)) in H=s0Fm =74 (IR | % X') we may choose the vectors ¢;(y, 1)
by a suitable approximation as C'* functions of (y,n) € S*Q with values in

cx2 (Ryx X)& CJ, such that the pairing (4.2.13) still induces a bundle

comp

isomorphism ¥ = S*2' x C?. According to the splittings in (4.2.12) we
can write each €;(y,n) as a tuple e;(y,n) = (¢;(y,n), b;(y,n)) and form the
block matrices

ti(y,m) bi(y,n)
tHy,n) = \ bly,n) =
ta(y,n) ba(y,n)

When combined with (4.2.11), they yield a family of isomorphisms

o Hso—mﬁ—m(]R_l_ % X) Hso,’)/(R_l_ % X)
(50 £ MR
t b CJ (Cd
(4.2.14)
parametrised by (y,n) € S*Q'. We now extend (4.2.14) by homogeneity of

degree —m from S*(' to a symbol

o () (g ) = ( OcigeP) (s 1) ey, ) )
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defined on all of 7%\ {0} via

C(y, 77) = |77|—m Kn| €

= -m i -1 _ —m n

By abuse of notation, we use the same letters to designate the extensions
of ¢, p and b.

Having disposed of this preliminary step, we can now turn to construct-
ing a regularising symbol for a(y,n). Our task is to construct the inverse

of B _
H57’V(R+ X X) Hs—m,'y—m(R_l_ X X)
Oleel@) : e — @ (4.2.15)

edge

C o]

for s = sg. This will then be the inverse of (4.2.15) for each s € R. To this
end we recall that there is an integer N such that [ = d 4+ N and [ = CZ—I— N.
If N > 0, we choose in the above construction for (4.2.11) the number d
equal to [ from the very beginning. Then we have automatically d = [. For
N < 0, we enlarge both [ and [ by —N via replacing (4.2.15) by the direct
sum

Ugflge(a)(yv 77) D |77|m [—Nv
I_n being the identity (=N x —N)-matrix. If we construct the inverse of
0lage(@)(y, ) B [n|™ [-n, we get immediately also the inverse of o7y, .(a)(y, )
by omitting the superfluous entries. In other words, for simplicity of nota-

tion we may assume from now on that d = [ and d = I.
From (4.2.10) we get

- l+g g12

m ¢ (1) -m 1

o o a) = ,
edge(p ) edge( ) ( ga1 G22 )

where (g;;(y,n)) € edge S2(QY x R% Hom(W); w™tow). Since the operators
on the left are invertible, we deduce that also

Ho" (R, x X Ho" (R, x X
( 1 ‘I’gll gi12 ) ( 77) (@-I— ) — (@-I— )
g21 922 ’ ! !

is invertible for all (y, 77) e T\ {0}. Now Lemma 4.2.6 ensures the exis-
tence of (hj(y,n)) € S2(Y x R% Hom(W); w! o w) with the property
that

edge

m -1 1+hy h i
<Uedge(a)> = ( h21 B h;z ) Uedge(p(l))
over T*Q"\ {0}.

Finally, we fix an excision function y(7) on R? and set

2 o L x(haly,n) x(mh(y,n) \
Py = ( X(mha(y,n)  x(m)hea(y,n) )p( ()
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where
! _ py,m)  x(n)e(y,n)
W= (i e ).

Then, for any cut-off functions ¢(#) and ¢ (t) satisfying )¢ = ¢, the symbol

Ply-m) = ( 99(@ (1) )p(z)(y,n) ( ¢ét) (1) )

belongs to ST (2 x R Hom(W,W); w™1) and fulfils
plo™(p) = ("o ))

TcdgeP) = ( 0 ige(@)) !

as 1s easy to check. This proves the lemma.
O
Before formulating our next result let us mention that the “algebra” of
residual operators on a stretched wedge W = Q' x Ry x X,

T2 (W, W, W; w),

is introduced analogously to that in the case of a compact manifold with
fibred boundary, M. A slight change we have to do consists in invoking the
‘comp’ and ‘loc’ versions of weighted Sobolev spaces with asymptotics on

W (cf. Definition 3.4.1 in [Sch98]).

Lemma 4.2.8 Let a(y,n) € S™(U x R% Hom(W, W);w) be an elliptic
symbol, with w = (v,y —m,(=1,0]). Then, for any cut-off function w(t),
there exists an a'=Y(y,y',n) € STV x Q' x R4 Hom(W, W); w™!)  such
that

(w(()t) ?>Op(a(—1))op(a) _ (“(()t) ?) mod U™ (W; W;w™ o w),
(w(()t) ?)Op(a) op(al=) = (w(()t) (1)> mod U™ (W; Wiwow™?).

For a double symbol a=(y,y',n), we denote by op(al~") the operator
u(y') = ol Fona ™y, o' m)uly). N
Proof. Consider the symbol p(y,n) € S™™ (£ x R% Hom(W, W); w™)

that we constructed in Lemma 4.2.7. We have

ply,maly.n) = 1+r(y,n)

where r()(y, 1) € SO x R% Hom(W); w™' o w) satisfies both *o?(r(V) =0
for t € 10,T) and Uedge(r(l)) = 0. From the construction of Lemma 4.2.7 we
actually see that for every fixed T' > 0 there is an appropriate p(y,n) with
these properties. Letting o, denote the Leibniz product with respect to the
y-variables, we get

ply,n) oy aly,n) = 14r(y,n)



4.2 Parametrix construction 89

for a symbol r(y,n) € S°(Q x R%: Hom(W); w™low) satisfying ®o(r) = 0 for

t€0,7T) and O'Sdge(r) = 0. Pick a cut-off function w(?) which is supported

in [0,7") and equal to 1 in [0,7/2). Then the asymptotic sum

- Eror (4 onn)

v=0

can be carried out in S°(Q' x R% Hom(W); w™!ow), where o v stands for the
v th power with respect to o,. We now denote by a(="(y,y’,n) an element

of ST™(Q x O x R% Hom(W, W); w™1), such that
op(a™) =op(soyp) mod UTF(W; W, W;w )

and op(al™") is properly supported with respect to the y-variables. Then
we get

(w(()t) (1)> op(a™)op(a) = (w(()t) (1)> mod  UTF(W; Wiw ™l ow)

for each cut-off function w(¢) with suppw C [0,T/2). Similar arguments
apply to the composition in the reverse direction, and the lemma follows.
O
We are now in a position to complete the proof of Theorem 4.2.2. The
global invariant interpretations are straightforward, and we will tacitly use
this here without further comments.

Proof of Theorem 4.2.2. Let us write our edge problem A in the
form (4.1.12), where

Ay € U8 xRy x X;V,V; W, W:w),
S

T (M;V,V; W, W w).

For the parametrix construction we may neglect . The operator A; is ellip-

tic in the usual sense, hence it possesses a parametrix P, € W™ (M; \N/,V).
Let we be moreover granted an operator

Pye ™S xRy x X; V, VW, W;w™)
with the property that

Poop Aty = @pld mod  WTT(W;ViWiw™low),
er Ayty Py = @pld mod  WTFW; ViWiwow™),

Id being the identity operator in various spaces. We can assume, by mod-

ifying P; and Py if necessary, that P, is properly supported on M in the
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standard sense and Py is properly supported with respect to the y-variables
unless S itself is compact. Then,

P0
A = oy Pyipy + @i ( 0 0 > (o8 (4.2.16)

is a properly supported parametrix of A. Thus, we are left with the task of
constructing Pj.

To this end, let O be a coordinate neighbourhood on S and A': O" — ¢V
be a chart, with Q" an open set in R% The restriction of A, to O’ x R4y x X
may be written in the form

Ay =op(a) mod U™*(W;V,V:W,W;w),
where a(y,n) € S™() x R HOIH(V,\N/);HOIH(W,W);W). We may shrink

O’ to a relatively compact subset of a larger open set where all the ob-
jects are still defined. Thus, we can assume without loss of generality that
) CC U and our objects are given on U. Then we may apply Lemma 4.2.8
appropriately extended to the case of general vector bundles. This gives as
a symbol

a(_l)(y, n) € ST"(Q x RY Hom(\N/,V); Hom(W,W); W_l)

and op(a{™Y) is a local representative over O’ x Ry x X of a global operator
in U™™(S x Ry x X;\N/,V;VNV,W;W_I). In the pull-back of op(al=") under
Rolel: O x R_|_ x X — Q x ]R_|_ x X there are also involved local
trivialisations of the corresponding vector bundles. We now proceed by a
standard localisation procedure. Fix a locally finite open covering of S by
coordinate patches (O'). Let (p,) be a partition of unity on S subordinate
to this covering and let (¢,) be another system of C'* functions on 5, such
that supp ¥, C O and ¢, = ¢, for each ¢. For every ¢, denote by P, the
operator over O/ X R, x X constructed above. Then P, = >, @ Py, s
easily verified to have the desired property, and the proof is complete.
O
We emphasise that the parametrix P guaranteed by Theorem 4.2.2 is
modulo smoothing Green operators. These latter operators are known to be
of trace class in the appropriate weighted Sobolev spaces on M provided M
is compact (cf. [FST98a]). Hence it follows that each elliptic edge problem
on a compact manifold with fibred boundary has a parametrix modulo trace
class operators.

4.3  Fredholm property

It is just in the spirit of the classical elliptic theory that the existence of
a regulariser modulo compact operators implies the Fredholm property of
an edge problem as well as a specific regularity of solutions encoded in the
structure of the regulariser.
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Theorem 4.3.1 Suppose A € U™(M;V,V; W, W;w) is an elliptic edge
problem on M, with w = (v,v — m,(—(,0]). Then, the mapping (4.2.1) is
Fredholm for every s € R.

Proof. Indeed, as defined by (4.2.2), the parametrix is a regulariser
modulo trace class operators. Therefore, our result is a direct consequence
of Theorem 4.2.2.

O

By Theorem 4.1.8, for the proof of the Fredholm property of an edge
problem it suffices to have merely a regulariser modulo operators with van-
ishing principal interior and edge symbols. As mentioned, for the existence
of such a regulariser it is necessary and sufficient that the edge problem
be elliptic. Actually, for any one s € R, the Fredholm property itself is
necessary for the ellipticity, but we will not develop this point here (cf.
Corollary 4.2.2.8 in [Beh95] and [Dor98] for further elements).

Corollary 4.3.2 If A is an elliptic edge problem on M, then the equa-
tion Au = [ is solvable if and only if f is orthogonal to the null-space of
the formal adjoint edge problem A*.

Proof. Denote by A2Y the adjoint of A in the sense of Hilbert spaces,

le.,
H=m0 = (M, V) H¥ (M, V)
A o — &
H=m (S, W) He(S, W)

Since A is a Fredholm operator, it follows that im A4 = (ker Aadj>L, the
right-hind side being the orthogonal complement of the kernel of A4, On
the other hand, the formal adjoint is related to the true adjoint by the
equality

A = A2 1

where % stands for the topological isomorphism

HY(M,V)  H (M, V)
D = D
H(S, W) H=#(S, W)

defined via

(uv*v)Hoyo(M,V)eaHO(S,W) = (uvv)Hw(M,V)@Hs(s,W)v

for u,v € H*7(M, V)& H*(S,W). Clearly this isomorphism depends on s,
~ and the Riemannian metrics on V and W. It may be different in various
applications but we write it * for short. Hence it follows that the orthog-
onal complement of ker A2¥ in [*=™7=™ (M, ‘N/) & H*=" (9, W) coincides
with the annihilator of ker A* in H~sT™=7+7 (M ‘N/) @ H=s+7(S, W) This

completes the proof.
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O

Note that the formal adjoint of an elliptic edge problem is elliptic, which
is clear from Theorem 4.1.10.

Though Theorem 4.3.1 deals with elliptic edge problem, it highlights
also important mapping properties of the operators in W™ (M;V, V; w) that
are elliptic with respect to the mere principal interior symbol. As but one
example of this we show the following statement.

Corollary 4.3.3 Let A € \Ilm(M;V,\N/; w) be complemented to an ellip-
tic edge problem on M, with w = (y,v—m,(—(,0]). Then the restriction of

A HY (M, V) — H =79~ (M, V) to the null-space of the corresponding

trace operator has a closed range, for each s € R.

We shall have established this corollary if we prove the following ab-
stract result of functional analysis.

Lemma 4.3.4 Let

Ly L,
Az(?é): & — @
L2 L2

be a Fredholm operator in Fréchet spaces. Then the restriction of the map-
ping A: Ly — Ly to the null-space of T' has a closed range in L.

Proof. This is the content of Theorem 3.5.19 in [Sch98], however, for
the convenience of the reader we repeat the proof therefrom.
Let us first consider Fréchet spaces L and L and continuous operators

O : L1,
R L—L

satisfying RO = 1. Then (OR)® = OR, and so OR is a projection of L onto
the range of O. Hence it follows that im O is a closed subspace of I because
it coincides with the null-space of the complementary projection 1 — OR.

We now return to the original operator A and prove a reduced form of
the lemma under the assumption that A is an isomorphism. Let

L Ly
Pll P12
P = : —
( Py Py ) v

L2 L2

be the inverse of A. Setting

e
I
G B

Oz(?), R=(Pn Pn), L=1L,

=~z
[\]



4.3 Fredholm property 93

we get RO = 1. From what has already been proved it follows that the range
of O is a closed subspace of L. Letting m denote the canonical projection of
L onto Ly, we deduce that the range of A: kerT" — L, is naturally identified
with im O N ker 7. Hence our assertion follows.

We now turn to the general case. As A is Fredholm, we can complete
it to a surjective operator

Lo
i
Apolg‘i%@l
TBOn) T
C :

where [ is the codimension of the range of A, and then to an isomorphism

Ly Zl
A P O & D
T B Oy |: L, = Ly,
Os1 Osy Oss S, @
C ol

where [ is the dimension of the null-space of A. To reduce this to the case
of (2 x 2)-block matrices, we set

~ ~ T ~ B 023
< 1 > ’ ( 031 ) ’ ( 032 033 )

thus arriving at an isomorphism

L L

A P
(T B) @ — N@ B
LZ@(CI LQ@(CI

By the above, the restriction of A: L; — L; to the null-space of the operator
T has a closed range in L;. This is still true for the restriction of A to the
null-space of T because T and 7' differ by an operator of finite rank. The
proof is complete.
O
Our next result substitutes the classical elliptic regularity for the anal-
ysis on manifolds with edges.

Theorem 4.3.5 Suppose A € U™(M;V,V; W, W;w) is an elliptic edge
problem on M, where w = (y,y — m,(=0,0]). Then,

H= (M, V) Hom (M, 7) (M, V)
u € S5 , Au € D implies u € b
H=>(S, W) He=m (S, W) H (S, W)
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Proof. Indeed, let P € \I/_m(M;\N/,V;VNV,W;W_l) be a parametrix of
A. Then,
u=(1-=PAu+PAu

for each u € H=>Y(M,V)® H=>*(S, W). From Theorem 4.1.7 we conclude
immediately that (1 — PAju € H*Y(M, V)& H*(S,W). On the other
hand, if Au € H*=™"~"(M,V) & H*~"(S,W) for some s € R, then
PAu e H* Y (M, V)& H?(S, W), and the lemma follows.
O
The proof above gives more, namely the corresponding statement for
weighted Sobolev spaces with asymptotics. Since asymptotics are of great
importance in the analysis on manifolds with singularities, we formulate this
result separately.

Corollary 4.3.6 Under the assumptions of Theorem 4.3.5, for each
asymptotic type as € As(y —m,(=10]), 0 < [ < oo, there is an asymp-
totic type as € As(v,(—1,0]) such that

H=7(M,V) MY H (M, V)
u € S5 , Au € SIS implies u € b
H=>(S, W) He=m (S, W) H*(S, W)

Proof. This follows by the same method as in the proof of Theo-
rem 4.3.5, if we make use of the part of Theorem 4.1.7 concerning spaces
with asymptotics. The important point to note here is the form of the re-
mainder 1 — PA which is a smoothing Green operator with asymptotics.
It contributes even to asymptotics of solutions of the homogeneous edge
problem Au = 0.

O

Let us have a look at how the asymptotics of solutions are generated in
the case of elliptic edge problems A on a stretched wedge W = ¥ x Ry x X
where €)' is an open subset of RY. We restrict our attention to those A
which bear a typical differential operator in the upper left corner, that is
A=1m Elﬁl-l-jﬁm Agi(tD,)P(tDy)? where Ag;(y,t) is a C* function on
Q' x Ry with values in Diff™~1?1=(X)). The main contribution comes from
the conormal symbol of o, (A), which is

oM (Ugﬁlge(A» (2) = Z Ao ;(y,0) 2.

This is a polynomial function of z € C taking its values in elliptic differential
operators on X. These are thought of as acting in the usual Sobolev spaces
on X, and the non-bijectivity points of E;n:o Ao.;(y,0) 27 in the complex
plane are responsible for the exponents of the asymptotics. The set of
all non-bijectivity points along with their multiplicities is known as the
spectrum of the operator pencil E;n:o Ao.;(y,0) z7. The simplest possible
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case is when the spectrum is independent of y € €. This case can be
handled in the framework of discrete asymptotic types as = (0,%) where

.....

—7, and X is a finite-dimensional space of analytic functionals of the form
u Eﬁil ;‘;0 Ju;(0/02)u(p,), with f,;() aicoo function on X (cf.
Section 2.3). As defined above, the space A.(Ry x X) consists of the

functions 4
M n . .
= wlt) SO (log )y f(a)

u=1 j=0

where w(t) is a cut-off function on the semiaxis. A trivial verification shows
that

Rou (t,x) = Gﬁi_nu(et,x)
M Ju '
= w(0) > 1P (ilogt) f,(x)
n=1 j5=0
with 4
Ju .
4n 4, -]’ ¢
fule) = 075550 Y ey ({108 )™ fusfa)
7=t

belonging to the same coefficient space as f,;, for all § > 0. Hence it
follows that reu leaves A, (Ry x X) for § # 1, although it behaves like
an asymptotic of A, (Ry x X) up to a cut-off function. However, we may
introduce the space HP (', 7*A.(Ry x X)) by the following trick. Let
V' be a trivial Banach bundle over R? and let (A(7)), cra
isomorphisms in the fibres of 7*V'| as in Section 2.1. Then, the mapping

be a family of

i0ou— FL AN Fyagu

n—=y

is easily seen to be an isometrical isomorphism H*(R?, 7*V) 5 H*(R% V),
the latter space being defined with respect to the identity action in the fibres
of 7*V. This allows one to define the spaces H*(R?, 7*X) also for the bundles
Y C V that are no longer invariant under (A(n)), cp,- Suffices it to set
H*(RY, *Z) =~ H*(R%,Y). A typical exampleis V = H*7(Ry x X), with
Aln) = Ky Vand ¥ = A, (R, x X). Then the space H*(R% m* A (Ry x X))

can be characterised as the linear span of all distributions of the form

VY ot () (o)) fus () Fostt
Z ]_’ < ey 77>)<77>12n+ip“(10g<77>)a2fy'—>nuﬂj> e (logt)™" fui(x)

(4.3.1)

77'—>Z/<

with arbitrary u,;(y) € H*(R?). Localising in y € Q' yields the spaces
HE (Y, m* Aus(Ry x X)), for s € R. Furthermore, both H*"*=%(R, x X)
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and H%" (R, x X) are projective limits of Hilbert spaces which are invariant
under (kg). Hence we obtain the spaces HZ (', 7*H*"H=9(R, x X)) and
He (Y, 7 H2(Ry x X)) in a familiar way. The elements of the former
may be interpreted as distributions of edge flatness [ — 0 with respect to
the weight 7, whereas the elements of the latter are distributions with edge
asymptotics of type ‘as’. We next observe that if V =V} + V, in the sense
of non-direct sums, then H*(R% 7*V) = H*(R%, 7*Vy )+ H* (R, 7*V3) for all
s € R (cf. Proposition 1.3.35 in [Sch98]). Combining this with (2.3.1) we
deduce at once that
HNooW) = Hipo(Q, 77 Aus (R X X))

modulo distributions of edge flatness [—0. In this sense the edge asymptotics
of asymptotic type as are of the form (4.3.1). It is worth pointing out
that the smoothness of the coefficients of edge asymptotics (4.3.1) in y
depends on Jp,. From (4.3.1) it is clear that the investigation of asymptotics
becomes much more subtle when we drop the condition that the spectrum of
E;n:o Ao.;(y,0) 27 is independent of y. In general the non-bijectivity points
of this operator pencil may vary under varying y € 2’ and their multiplicities
do so. This requires a generalisation of the concept of asymptotics in terms
of analytic functionals in the plane, just as in Definition 2.3.1. It consists in
replacing meromorphic functions on the complex plane by Mellin potentials
of analytic functionals with values in C°°(X), i.e., by (f(z), ).

4.4  Reductions of orders

We begin by recalling a very popular now construction of an order reduc-
ing family on a C'* compact closed manifold X via parameter-dependent
pseudodifferential operators. Namely, let A(A) € UI(X;V;A) be an ellip-
tic pseudodifferential operator of order m with a parameter A € A, where
V is a vector bundle over X and A = R? for some d. Such an operator
is known to possess a parameter-dependent parametrix, i.e., there exists a

P(X) € U ™(X;V;A) with the property that

POAN) = 1— So(N),
AP = 1-S(\)

with S, 51 € U™(X; V;A). Since U™(X;V;A) = S(A,U™(X;V)), the
right-hand side being the space of rapidly decreasing functions on A with
values in U™ (X; V), it follows that the norm of the operator So(A) in each
Sobolev space H*(V) is infinitesimal when |A\| — co. Pick any one s = sq.
Then there is a number R = R(sg) such that the operator 1 — Sp(}) is
invertible in H** (V) for all |A\| > R. As the null-space of 1 — Sy(A) in
H* (V) consists of U sections and the same is true for the formal adjoint
1 — Sg(X), we actually deduce that 1 — Sp(A) is invertible in every space



4.4 Reductions of orders 97

H*(V) for |A] > R, R being independent of s. Moreover, the inverse is
given by the Neumann series

o0

(L=S(N)™ = Y (So(\)
7=0
= 1+ SO()‘)v
for [A\| > R. In fact, we get So(\) € U=(X;V;A), which is clear from

SO()\) = So(N)(1 — So()\)). Setting A ') = (1 + SO(A))P()\), we see
that A7'(\) € W;™(X;V;A) and Af ()\)A()\) =1 for all [A\| > R. In
the same manner we can conclude that AZYN) = PO)(1 + S1(A)7 s
a right inverse of A(\) for each || > R, whence A;'(\) = A7Y()) for
|A| > R. We can assume, be increasing the number of parameters is neces-

sary, that d > 2. Write A = (X, \;), where )’ varies over A’ = R%~1. Then,
RPN = A()\’ R + 1) belongs to U5 (X;V;A’) and extends to an isomor-

phism H*(V) 5 H (V) for each s € R and A € A’. In this way we
obtain what is referred to as an order-reducing family on X. This approach
still works in the calculus of pseudodifferential operators on a manifold with
edges.

The parameter-dependent calculus on a manifold with fibred boundary
M is analogous to that of Chapter 3, while it has some new features. The
interior symbols are parameter-dependent in the usual sense, with a param-
eter \ varying over the space of parameters A = R% Near the boundary we
restrict our discussion to typical interior symbols with parameter, i.e., those
of the form ¢ a(y,t, x;tn, tA, t1,€) in the splitting of coordinates (y,t,x)
over a stretched wedge W = Q' x Ry x X, with @ € ST(W x Rotdti+n)
smooth up to ¢ = 0. For this reason, close to the boundary we replace the
covariable n € R? in the operator-valued symbols along €' by (1, ), where
A € A. In this manner, given weight data w = (y,v — m,(=[,0]) and
smooth vector bundles V, V over M and W, W over S, we obtain symbol
spaces

S™(Q x R? x A; Hom(V, V); Hom(W, W); w)
as well as operator algebras
WV, VW, Waws A,
UMV, VW, Wiws A)
and those with subscripts M + G and . The details are left to the reader
(cf. for instance Behm [Beh95]). The parameter-dependent theory on a

smooth manifold suggests a proper choice of smoothing operators in the
parameter-dependent calculus on M. In fact, these are the elements of

S(A U™ (MV, Vi W, Wiw)) = S(A) @ U7 (M V, V; W, Wi w),
the algebras \I/_OO(M;V,\N/;W,VNV;W) being topologised via their symbol

spaces.
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Note that the edge problems with parameter may be handled in much
the same way as those without parameter. Thus, Theorems 4.1.7-4.1.10 re-
main valid in this more general context. We next sharpen Theorem 4.1.7 and
show explicit norm estimates of parameter-dependent operators in weighted
Sobolev spaces on M.

Theorem 4.4.1 Let M be a compact manifold with fibred boundary and
AX) € UMV, VW Wews A), where w = (v, v —m, (—=(,0]). Then, for

each (t > m, the norm of

H*'(M, V) Hs=#=m (M, V)
A(X) - D — ©
H* (S, W) H=(S, W)

is estimated by

¢ (N L R4 R > 0

A < { OV i Wt RAR<0 (4.4.1)

with ¢ a constant independent of A and s, v, p, where

R = max(|s| [y + ).

R = max<|5—/,L|,|’y—m—|—H'T”|>.

Proof. Using a familiar localisation argument and the norm estimates
of parameter-dependent pseudodifferential operators in the usual Sobolev
spaces on a compact closed manifold (cf. [Shu87]), we reduce Theorem 4.4.1
easily to the case of operators A(A) = op(a(y,n,A)) over R? with operator-
valued symbols a(y,n,A) € S™(T*R? x A, L(V,V)). Moreover, we can as-
sume that a(y,n, A) is independent of y for |y| large enough.

Let (kg)gso and (fg)yso stand for the group actions in the fibres of V
and V, respectively. It is a general property of group actions that

HIQQHL‘(V) < cmax(@,@‘l)R

. _ e
1ol ey < € max(6,077)

for all # > 0, the constants R, R and ¢, ¢ being independent of #. In our
application the spaces V' and V are

H57’7(]R+ X X) ~ HS—M7’V—W(R+ X X)
V= e , V= © ,
C! !

and so the exponents R and R are easily seen to coincide with those given
by the theorem.

We first consider the case where a(y,n, ) is independent of y € R%. An
easy computation shows that

Job (1 Ay < [ 027 15

<1 oy @ (1 AV Uz vy 18 oy 5o ey 15y Fumsn I3 dip
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for all w € H*(R% 7*V). The norm estimates for the group actions imply
immediately that

VAN
o)
N
—~|=
N—
n

% oy vy
~—] ~ ~ R
lFefamllery < @ (G2)"
whereas the symbol estimates give

H’%(_nlwa(nv )‘)K(%/WH,C(V,V) < C(n,A)"

for all n € R? and A € A, where C depends only on a. Combining all these
estimates we get

[[op(a(n, )‘))HL‘(HS(Rq,w*\/),HS—M(Rq,w*V) < const %%

(5" %

the constant being independent of A\. This implies (4.4.1) when combined
with the elementary inequality

<77,)\>m< c ™ if p>0;
(e — | eAmT* i pu <0,

which is a consequence of Peetre’s inequality (cf. Lemma 2.1.1).
The general case follows by a familiar trick with topological tensor

products (cf. Proposition 3.3.2).
O
The crucial fact is that, for sufficiently small negative m, the norm
tends to zero as |A| — oo.

Definition 4.4.2 An edge problem A(X) € U™(M;V,V: W, W:w; A) is

said to be elliptic with parameter if

1)

(AN e N V= Y,

is an isomorphism for each (p,c) € "T*M and X € A with (¢, \) # 0;

2)
HA (RN )@ (Vs)y,  H7™ 7 (F7 N (y)) @ (Vs),

— D

Teage( ANy, 1, A) : B |
W, W,

is an isomorphism for each (y,n) € T*S and A € A with (n,X) # 0, and for
any one s € R.

Since compositions and formal adjoints of edge problems with parame-
ter are available within the same parameter-dependent calculus on M, the
method of the proof of Theorem 4.2.2 carries over to elliptic edge problems
with parameter.
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Theorem 4.4.3 Let A()\) € U™(M;V,V:W, W;w:A) be an elliptic
edge problem with parameter on M. Then A(X) possesses a parameter-
dependent parametriz, i.e., there is a P(X\) € \I/_m(M;\N/;V;W,W;w_l;A)
such that

PAARN) =1 € U™(M;ViWiw™tow;A),
AMNPA) =1 € U(M;V;Wy;wow 5 A).

Proof. This follows by analysis similar to that in Section 4.3. For
details see [Beh95, 4.1.1] and [Dor98].
O
For reductions of orders we have to construct a parameter-dependent
elliptic element in the algebra U™ (M;V; W;w;A) and to prove that it is
invertible in the calculus for A € A large enough. In fact, we show that the
reductions of orders on M are available in the “diagonal” form

m RZ(N) 0
vir(A) = ( 0( ) R (M) > ; (4.4.2)

where R7(A) € U™(M; V;w; A) is parameter-dependent elliptic on M with-
out potential and trace conditions, and Ry, (A) € U™ (S; W; A) is parameter-
dependent elliptic on 5. As is described above, we can take as Ry} (\) any
one order-reducing family for the bundle W over S, for S is a C'* com-
pact closed manifold. It remains to construct an Ry/(A) with the desired
properties.

Theorem 4.4.4 For each weight data w = (y,v —m,(=[,0]) and vec-
tor bundle V' over M, there exists a parameter-dependent elliptic operator

AN) € UMV wi A) on M.

Proof. We restrict our attention to the case of a trivial vector bundle
V of rank 1, i.e., V = M x C, thus omitting V' in the notation. The same
proof still goes for general V.

Pick a collar neighbourhood O = § x Ry x X of M in M. We
construct A(A) in the form

A(X) = ep Ap(A) Uy + @ Ad( AN,
where
Ap(A) € U™(O;w;A),
AN € UM A)

and ¢, € C35 (Ry) is a cut-off function, ¢, € €5, (Ry) is equal to 1 on

the support of ¢s, ¢; = 1 — y is thought of as a €' function on the whole
manifold M, and +; € CZ5, (M) is equal to 1 on the support of ;.

We wish to arrange that A;(A) and A;(\) be compatible near the inter-
section of supp ¢y, and supp ;. In fact, it suffices that the principal interior
symbols of Ay(A) and A;(A) coincide close to supp e N supp ¢;. If such is
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the case, then the parameter-dependent ellipticity of A,(A) and A;(\) with
respect to the principal interior symbol implies that of A(X). Since the con-
struction of A;(A) requires much more efforts than that of A;(\), we begin
by discussing a suitable candidate for Ay(A).

To this end, let us fix a finite covering of O by charts with edges
(h,,0,)er on M. We require each O, to be of the form O/ x R, x X,
with O/ a coordinate patch on S. Thus, A, is a diffeomorphism of O, onto
a stretched wedge W, = O x Ry x X, where Q' is an open set in R% and
h, restricts to a diffeomorphism A : O] — Q]. Let moreover (h%,07);c; be
a finite atlas on X, with A7 a diffeomorphism of OF onto an open set Q7 in
R™. Having fixed ¢ € I, we consider, for every j € J, the typical symbol

m
2

1
ai(lm A 6 0) = oo (L i + [P + [ir P+ (€ +07%) = (44.3)
over ) x Ry x QF, where ¥ € R stands for an additional parameter to
be chosen below. Choose a partition of unity (¢%);es on X subordinate to
the covering (O7);es, and functions ¥ € CZ5,, (OF) with the property that
Pipt =l Set

a,(n, A, 0) = c,o;’(l X h;’)ﬁopfm (aj(t;n, A, 7,6,0)) L/JJ"

JjeJ

where (1 x A% )¥ means the operator pull-back under the diffeomorphism

1 x h%. As described at the end of Section 3.2, there exists a holomorphic
function ZLL(ﬁ, \, 2, V) of M(C, U™ (€ Rq+d+1)), such that

A0

1
@ (A, 0) = = op, (hu(t; 7, A, 2,0)) - mod TRy x X5 REL)

for all v € R, where h,(t;n, A, z,9) = ZLL(tn,t)\,z,ﬂ). Similarly to (3.2.6) we

introduce two edge symbols

= t_m990(t<777)‘>)OPM,w(hb(tnvt)‘7Z7ﬂ))¢0(t<777)‘>)7
= aa(t{, X)) au(n, A ) s (t(n, A))

GO,L(% )‘719
aoo,a(na )‘7 19

e’ N’

belonging to S™ (£ x RZKI;I; w). It is a simple matter to see that

bot (o, + oo )y by i N FLED) = |(, A, 6 0)™,
Ug},exit(aow—l_aoow)(t?T) = |(777)‘77—)|m7

in local coordinates over W,, and so ag, + aoo, is elliptic with parameters
A € A and ¥ € R with respect to the principal interior symbol. Moreover,
ap, + @, meets the condition of exit ellipticity for ¢ — oo, provided that

(n,A) # 0.
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Let us have a look at the principal edge symbol of ag, + ¢, which is
a family of operators in weighted Sobolev spaces over the infinite stretched
cone R x X. We check at once that

Trage( @0, F oo, ) (Y, m, A) = 17 0o(t]n, Al) op aq - (he(t, tA, 2,9)) dho(t]n, Al)
+ @oa(tn, Al) au(n, A, 9) Yoo (t]0, A])

whence

oM <0-(:rcnge(a076 + oo )y, m, A)) (z) = ZLL(O, 0,z,7), (4.4.4)
the right side being regarded as a family of operators in L(H*(X ), H* (X)),

for any one s € R. Were (4.4.4) an isomorphism for all z € I'_,, we would
conclude from the cone theory that

U:ége(aow + oo, ) (Y, my A) HS’W(]R_F x X) — Hs_m”_m(]R+ x X) (4.4.5)

is a Fredholm operator for each n € R?and A € A with (5, A) # 0. However,
this is not automatically the case. The conormal symbol ZLL(O, 0, z,9) may
have finitely many non-bijectivity points z on the weight line I'_,. To avoid
this, we make use of the additional parameter ¢ € R. Namely, ZLL(O, 0,z,v)
is, by construction, a parameter-dependent elliptic operator of order m on
X, with parameters 7 = Rz and . Hence there is a constant R > 0 such
that ZLL(O,O,Z,ﬁ) is an isomorphism for all z € I'_, and ¥ € R satisfying
|(Rz,e)| > R. Thus, by choosing || > R we arrive at a family of isomor-
phisms

1,(0,0,2,0) : H*(X) — H™™(X)

for all z € I'_, and for any s € R. From now on we make the assumption:
U > R.

The advantage of using typical symbols (4.4.3) lies is in the fact that the
principal edge symbol of ag, + @o, is independent of y € Q) and (n, A) lying
on the unit sphere of R?x A, i.e., [n|*+|A|* = 1. Indeed, this is immediate for
the symbols a,(n, A, ), and the symbols h,(¢;1, A, z,9) inherit this property
by the very construction of the Mellin quantisation (cf. Theorem 3.2.4).
Hence it follows that

ind gsg U?:lge(aoyb +as,) =TS X CI, S x Cl]

for some [,] € Z, where $*5 = {(y,n,A\) € T*S x A: |(n,A)| = 1} and
m:8*5 — 5 denotes the canonical projection.

It is now a consequence of the cone theory that the index of (4.4.5)
does not depend on the particular choice of s, for (n,A) # 0. Let us write
¢ for this index. According to Theorem 2.4.43 of [Sch98], there exists a
meromorphic Mellin symbol s(z) € M (C, U ™(X)) such that

L+ olt) op ag (5(2)) wolt) : (R x X) — H¥/(Ry x X)
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is a Fredholm operator of index 7, for all s € R. Set

m, (7, A) = po(t(1, A)) 0p u(s(2)) Po(t(n, A)), (4.4.6)
for (n,A) € R? x A. Then, m,(n,A) € Sy (2 X RTx A;w™" ow) and

Teage(L 1) (51, A) = 1+ @olt]n; Al) op.u., (3(2)) Yol ], Al)

is a Fredholm operator of index 7 in H/*"(R x X), provided that (, \) # 0.
Letting

afl)(m A, 19) = (CLO’L(U, A, 19) + aoo,b(nv A, 19)) (1 + mb(nv )‘))

we deduce at once that afl)(n, AY) € ST RZKI;I; w) and

ind ol (af)(y, 1. 3)
= lﬂd U?zlge(aovb —I_ aoo,a)(}’y 7, )\) —I_ lﬂd O-Sdge(l —I_ mb)(Y? 7, )\)
=0

for all (n,A) € R? x A different from zero. As the principal edge symbol of
m,(n, ) is actually independent of (y,n,A) € S*Q, it follows that

ind gsg agglge(afl)) = 7" [Ss x C,S x C']

for some | € Z.
Analysis similar to that in the proof of Lemma 4.2.7 shows that there
is a Green symbol

0 Ay A
90(777)‘) = ( tb(n,)\) }[ZLEZ, )‘s )

in SZ(Q x R? x A; Hom(C'); w) with the property that

(1) H*'(Ry x X) He=m7 (R, x X)
a, P A)
(y: 15 A) @ — B
ta ba (Cl (Cl
(4.4.7)
is an isomorphism for all non-zero (n,A) € R? x A and for each s € R.
Recall that g¢,(n, A) is first constructed on the sphere |n, A| = 1, extended
by the ‘twisted” homogeneity of order m to all of (R?x A)\ {0}, and finally
smoothed at 0 by multiplying by an excision function x(n, A). Since GL(I, C)
is dense in Hom(C'), we can always find b,(n,\) with the property that

0rage(0.)(y, 1, A) is invertible away from (17, A) = 0. The symbol

m -1
a£2)(777 A, 19) = afl)(m A, 19) - X(nv )‘) }%(777 )‘) <Uedge(bb)(yv 17, )‘)> t&(m )‘)

is easily verified to belong to S™ (2 x R? x A;w). Moreover,

m m m m -1 _m
Uedge(a£2)) = O-edge(agl)) - O-edge(pb) <Uedge(bb)> Uedge(tb)
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is an isomorphism H*7(R;xX) 5 He=m7=m (R, x X)) for all (n,)) € RIx A
with (n,A) # 0, and for each s € R. To see this, it suffices to use Proposi-
tion 1.2.31 of [Sch98] along with the fact that (4.4.7) is an isomorphism.
We are now in a position to introduce the operator A;(A). To do this,
1),er on S subordinate to the covering (0)),.;. For

fix a partition of unity (¢!
every ¢, we find a function ¢! € CZ (O') such that ¢/ =1 on the support

of ¢!. Set ’
Ay (A) =@l (h) op (a® (n, A, 9))
el
from what has already been proved it follows that A, € U™(O;w;A) is
parameter-dependent elliptic with respect to the principal interior and edge
symbols.

We are thus left with the task of determining the operator A;(\) in the
interior of M in a consistent way with Ay(A). Let us complete the atlas
(h.,0,).cr on the collar O to an atlas on the whole manifold M by adding
a finite number of charts (h,,0,),en, such that each O, lies along with
the closure away from the support of ¢, and M \ O C U,en0,. Here, h,
is a diffeomorphism of O, onto an open set £, in R *"  Fix a positive

C* function # on M which coincides with the global coordinate ¢ near the
support of ¢, and is equal to 1 on every O,, v € N. For ¢ € I, we consider
the local symbols

m
2

- 1 - - -
a(lim A 60) = = (1 + [in]* 4+ [EA? + Jir]? + (€] + 9?)

on ' x Ry x Q. These are slight corrections of (4.4.3) away from the
support of ¢, and we paste them together over the covering of X to get an
operator-valued symbol a,(n, A, 9) with values in U™(R; x X; Rg:;i;’l), as
above. For short, we keep the same notation for the corrected symbols. In
the intersections O, N O,, the factor { reduces to 1, and so, for any v € N,

we consider the symbol
ay (e M) = (1+ | + A +9°) 2 (4.4.8)

in the local coordinates of O,, where (p,c) stand for the coordinates in
T*0,. We see at once that (4.4.8) agrees with (4.4.3) after the coordinate
t has been reduced to 1. We now proceed by a standard way. Choose a
C* partition of unity (¢,).cr, (¢v)ven on M, subordinate to the covering
(0,).e1, (0,)ven, and functions ¢, € C=(0,), ¢, € CZ_(0,) such that

comp comp
¢L99L - S‘Qm 77Z}1/99y - S«Qy. Set
Ai(N) = Z @, h*op (a,(n, A\, 0)) v, + Z @, hf op (a,(c, A, 0)) ¥y,

el veN

the operator ‘op’ in the first sum being with respect to y €  while that
in the second sum being with respect to p € Q,. It is straightforward from

the construction, that A;(A) € UI(M;A) is parameter-dependent elliptic.
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We claim that A(X) = @ Ap(A) s + i A; (X)) is a parameter-dependent
elliptic operator in W™ (M;w;A). Indeed, the principal interior symbol of
A()) is invertible away from zero section of *T* M x A because the principal
interior symbols of Ay(A) and A;(A) agree close to supp ¢, N supp ;. On
the other hand, the principal edge symbol of A()) is invertible away from
the zero section of T*S x A, for the principal edge symbol of A;(A) does.
This proves the theorem.

O

We can now return to order reductions in the algebra of pseudodiffer-
ential operators on a manifold with edges. They are of great importance in
proving the necessity of ellipticity for the Fredholm property, and the so-
called spectral invariance, i.e., invertibility within the algebra. The strong
definition of an order reduction is as follows (cf. [Beh95, 4.2.1]).

Definition 4.4.5 An operator Ri?y(A) € W™ (M; V; Wi w; A) is said to
be a parameter-dependent order reduction of order m and with respect to
weight data w = (y,y —m,(=1,0]) if

H* " (M, V) He=ma=m (M, V)
T‘ZW(A) : e — e
Hs (S, W) Hs=™(S, W)

is invertible for each s € R, and R}y (A)~h € U7 (M; V; Wi w™ i A).

As described above, the crucial step in constructing reductions of or-
ders on M 1is the proof of the invertibility of parameter-dependent elliptic
operators on M for large values of the parameter. Before formulating this
result, we make more precise our requirement on the set of parameters.
Namely, it should be open and contain, along with any point A, the en-
tire ray {0X : 6 > 1}. In particular, given any R > 0, we may consider
Ar={X € A: |A] > R} instead of A.

Theorem 4.4.6 Suppose A(N) € U™(M;V,V:W, W;w;A) is a param-
eter-dependent elliptic operator on M, where w = (v, —m,(=[,0]). Then,
there exists an R > 0 such that

H*Y(M,V) H=m0= (M, V)
A(X) - D — ©
Hs (S, W) Hs=™(S, W)

is invertible for all X € A with |A| > R, and for any s € R. Furthermore,
the inverse belongs to W™ (M;V,V; W, W:w™t: Ag).

Proof. Let P(\) € U™(M;V;V: W, W;w ™ A) be a left parametrix
of A(X) guaranteed by Theorem 4.4.3. We thus have

PVAN) =1 —S(N)
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for some S(A\) € U~(M;V; W;w=!ow; A). Fix s = so. By the Schwartz
property of S(A) and Theorem 4.4.1, there exists an R > 0 such that

IS oM vy (s, <

[N

for all A € A satisfying |A| > R. Hence it follows that 1 — S()) is invertible
on
H*Y(M,V)
D
H*(S, W)

for each A with |A| > R, provided s = s5. On the other hand, the kernel
and the cokernel of 1 — S(\) are independent on s, which is clear from the
definition of U™*(M;V;W;w™! o w; A). Therefore, 1 — S()\) is actually
invertible for all [A| > R and for each s € R. Write (1—-8(A))™' = 1+G(X),
then (1+G(A))(1=8(N)) = 1L yields G(A) = (1-8 (1)) 'S(A). Consequently

IG(Al =S IS
(L= SIS

2 [|S]]

VANVANRVAN

for |A| > R, where || - || means the norm in L(H*7(M,V)$ H?* (S, W)).
The same reasoning applies to the derivatives of G(A) in A € A, showing
GA) e U™ (M; V; W;w ow; Ag) (cf. Lemma 1.2.3.2 in [Beh95]). Let

ATHN) = (1+G(V)P(N),

then A7*()) € \I/_m(M;\N/,V;W,W;W_l;AR) is a left inverse of A(X). In
just the same way we get a right inverse of A(A) from a right parametrix of
A()N), hence A7Y(A) is the inverse of A()) for [A| > R. This is the desired
conclusion.

0

The main result of this section is now a straightforward consequence of
Theorems 4.4.4 and 4.4.6.

Theorem 4.4.7 Let (M, S) be a C™ compact closed manifold with edges
and let V' and W be vector bundles over M and S, respectively. Then, for
each weight data w = (v,y — m,(=1,0]), there exists an order reduction
R¥w(A) € U™(M;V; Wiw; A). Moreover, it can be chosen without any

potential and trace conditions.

Proof. Indeed, Theorem 4.4.4 shows that there is a parameter-depen-
dent elliptic operator A(A,9) € U™(M;V;w; A x R). By Theorem 4.4.6,
we can find an R > 0 such that A(\,J) is invertible within the calculus for
all (A\,0) € A x R satisfying |(A, )] > R. Setting R7(A) = A\, R+ 1)

we get an invertible operator in W™ (M; V;w; A) whose inverse belongs to
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U™ (M;V;w ' A). The desired operator R¥w(A) is now given by (4.4.2),
Ry (A) € WE(S; Wi A) being an order reduction on S. The proof is complete.
U

In the next result, R}y, (A) stands for an order reduction on M guar-
anteed by Theorem 4.4.7.

Corollary 4.4.8 The mapping A(\) — jo;(A)A(A)R;}V(A) induces

an isomorphism
UMV, VW W ws A) S WMV VWL WS (0,0, (<1 0]); A)
preserving the class of parameter-dependent elliptic operators.

Proof. This follows from Theorem 4.1.9, for the principal interior and
edge symbols of Ry, (A) and R??—Wm()\) are invertible.
O
As an application of order reductions on M we extend to edge problems
the well-known formula of Agranovich and Dynin [AD62] which compares
the indices of two elliptic boundary value problems for the same differential
operator in a domain.

Theorem 4.4.9 Let

A€ UMMV VW WEw),
Ay € UMV, VW2 W2 w)

be two elliptic edge problems on M, whose upper left corners coincide. Then,
there is an elliptic operator B € W°(S; W& W2 W2@ W) such that ind Ay —
ind 4; = ind B.

The important point to note here is an explicit construction of the
operator B through A; and A,, given in the proof.

Proof. For j = 1,2, pick order reductions
Ry, € WM VWS (4,0, (=1,00)),
R, € UM ViW9 (3 —m, 0,(—1,0])),

V. Wi

as in (4.4.2), and define the operators A; so as to make the following diagram
commutative:

HO (V) HTm(V)

o -2 o
HS(W]) Hs—m(W])
[ R3w [R¥ .

H=OV) o HTO(V)
o - o .
H>= (W) Ho = (W)
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It follows that

V{ll S \IIO(M7V7\:/7W17\ZV17(0707(_170]))7
Ay € WMV, V; W2 W2 (0,0, (—1,0)))

are elliptic, the upper left corners of A; and A, coincide and ind ./le = ind A,
for y = 1,2. We are thus reduced to proving the theorem for operators of

_( A b
A]_<Tj Bj)’

for y = 1,2, and consider the operators

order m = (.

Write

H' (M, V) H¥ (M, V)
A P P S, D ~
Ol = T1 0 B1 . HS(S, W?) — HS(S, Wl) )
0 1 0 S%; S,
Ho(S, W) H*(S,W?)
H*" (M, V) H' (M, V)
A P P @ S,
02 = T2 B2 0 : HS(S, Wz) — HS(S, W?) .
0 0 1 S, S,
Ho(S, W) Ho(S, W)

Obviously, both

01 € V(M;V,ViW2p WHL W H Ww),
O € W(M;V,V; W2 WL W? & Whiw)

are elliptic and ind O; = ind A;, for j = 1,2.
Let
Py Pry
P —
( Py Py >
be a parametrix of A;. Then

Puy Py —Pu b
R = 0 0 1
Py Py — Py P

is a parametrix of Oy, and

1 0 0
OQR — T2P11 T2P12 —T2P11P2 —|— B2 (449)
P21 P22 _P21P2

modulo W™ (M; VWL g W2 W2 Whwo w1, which is due to the fact
that A;P = 1 modulo smoothing Green operators.
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Setting
B = ToP, —15P1 P+ By
Py — P Py ’

we deduce from (4.4.9) and the ellipticity of O,R that B is an elliptic
operator in U°(S; W! @ W2 W2 @ W1). Moreover,

indB = ind OyR
= ind 02 —ind 01
= ind A, —ind A,

and the proof is complete.
O
The method of proof carries over to elliptic complexes of edge problems
on M to be considered in the next chapter.



Chapter 5

Complexes over a Manifold
with Edges

In the analysis on manifolds with singularities it is natural to consider also
complexes of pseudodifferential operators. As but one reason of this we
mention that elliptic complexes of differential operators arise in geometry
rather than single elliptic operators. On the other hand, the parametrix
to such a complex derived from the Hodge theory is an elliptic complex of
pseudodifferential operators. Also in the construction of the tensor product
of elliptic complexes of differential operators it is useful to allow complexes
whose differentials are pseudodifferential operators. For obtaining paramet-
rices and other useful information for elliptic complexes it is necessary to
have an elliptic theory for single operators because essential questions lead
to the sequence of Laplacians. In this chapter we give explicitly applications
to the complexes on manifolds with edges. In order to arrange the theory
of elliptic complexes in a way which looks like a canonical extension of the
smooth case we emphasise those symbolic levels the bijectivity of which is
necessary and sufficient for the Fredholm property. In other words we dis-
tinguish a system of adequate principal symbols with internal compatibility
conditions, which determines the structure of the operators on a manifold
with edges modulo regular ones. These are just Green operators. As de-
scribed in the previous chapter, they are smoothing in the interior and map
distributions to functions with asymptotics close to the edges. We prove
an analogue of the Hodge decomposition and establish a general result on
the asymptotics of harmonic sections. Then we discuss external products
of elliptic complexes, which lead to higher singularities of the underlying
manifolds. For instance, if X is a manifold with conical singularities, then
the topological cone over X has a natural C'* structure with corners. It is
important for the concept of ellipticity that external multiplication of Fred-
holm complexes leads again to Fredholm complexes over the direct product.
A corresponding abstract result for Fredholm complexes of Fréchet spaces
may be found in the literature, cf. Grothendieck [Gro54], Mantlik [Man95],
etc. Here we reproduce another independent argument which applies also to

110
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more general cases. Complexes of differential operators on manifolds with
singularities were also studied by other authors, see Teleman [Tel79, Tel83],
Cheeger [Che80, Che83], et al. However, these papers deal with geometric
complexes and the analysis of the operators remains obscure in the sense of
parametrix construction on the symbol level and of the nature of associated
classes of pseudodifferential operators. This gap was filled by Shaw [Sha83]
and Schulze [Sch88a] for manifolds with conical singularities. Let us also
mention that elliptic complexes of boundary value problems were treated by
Dynin [Dyn72] and Pillat and Schulze [PS80]. In this chapter we develop
the theory for manifolds with edges.

5.1 Fredholm quasicomplexes

In the category of Fréchet spaces, a complex (L,d) is given by a sequence
of Fréchet spaces L', i € Z, and continuous linear mappings d;: L' — Lit!
such that d; o d;_; = 0. We will write it simply L when no confusion can
arise. A complex L is said to be finite if all the L' are of finite dimension;
elementary if there exists an index 7y such that L' = 0 unless ¢ = 49,19 + 1,
d; being an isomorphism; and bounded if L' = 0 for |i| large enough. When
considering bounded complexes we can certainly assume that L' = 0 for s
different from 0,1,..., N, for if not, we shift the indexing. Let Z‘(L) and
BY(L) stand for the spaces of cocycles and coboundaries of a complex L at
step 7 € Z. The quotient H'(L) = Z'(L)/B*(L) is called the cohomology of
L at step 1. It is separated if and only if B(L) is a closed subspace of L'. If
such is not the case, one often considers the so-called reduced cohomology of

L at step 7, that is H'(L) = Z{(L)/B‘(L). Finite complexes are objects of
homological algebra. There is a more general class of complexes of Fréchet
spaces, which are almost as easy to be handled as finite complexes. These
are Fredholm complexes, i.e., those complexes L of Fréchet spaces which
have a finite-dimensional (and hence separated) cohomology at every step
1 € Z. In particular, any elliptic complex of pseudodifferential operators on
a O compact closed manifold is known to induce Fredholm complexes of
Sobolev spaces or spaces of ('™ sections of vector bundles. The ellipticity
here is controlled by the sequence of principal symbols which inherits the
property of being a complex.

We note that the complexes, so defined, are cochain complexes, i.e.,
their differentials have degree +1 with respect to the grading. We will also
deal with chain complexes, i.e., those with differentials of degree —1 with
respect to the grading.

Replacing the relations d; o d;_y = 0 by requiring d; od;_; to be “small”
operators yields what will be referred to as a quasicomplex. As but one
example of this we show the sequence of covariant differentiations related
to a connection of a vector bundle V over a '™ manifold (cf. for instance
[Wel73, Ch. 3]). In this case the compositions d; o d;_; are identified with
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the curvature of the connection, which is a smooth differential form of de-
gree 2 with values in the endomorphisms of V. From the point of view of
analysis, quasicomplexes seem to be much more natural objects than com-
plexes. Indeed, “small” perturbations of Fredholm operators do not affect
the Fredholm property. In particular, perturbing a single Fredholm operator
by compact operators leads to a Fredholm operator. It would be desirable
to have the same property for Fredholm complexes but most of the per-
turbations lead out the class of ‘complexes’. For example, perturbing an
elliptic complex by lower order terms does not change the sequence of prin-
cipal symbols which remains to be exact away from the zero section of the
cotangent bundle. However, the operators no longer satisfy d; o d;_; = 0,
and so the standard theory does not apply to the deformed complex. We
are thus lead to a class of sequences [ = (Livdi)iez bearing the property
that the compositions d; o d;_; are small in some sense.

Definition 5.1.1 By a (cochain) quasicomplex (L,d) is meant any se-
quence of Fréchet spaces L', 1 € Z, and operators d; € L(L', L'*") satisfying
d; o d;_1 = 0 modulo compact operators.

The composition d; o d;_; is said to be the curvature of a quasicomplex
(L,d) at step 1.

Denote by K(L, L) the subspace of L(L, L) consisting of compact op-
erators. For my,my € ,C(L L) we write mq ~ my if mqy —my € K(L, L)

Let (L,d) and (L, d) be two quasicomplexes. By a cochain mapping

of (L,d) into (L d) is meant any collection of operators m; € L(L', LZ)
1 € Z, such that d;m; ~ m;11d; for all ¢« € Z. In particular, the families
0= (OLi)iGZ and 1 = (14 ), are cochain mappings of (L, d) into itself, and
so are all their compact perturbations.

Cochain mappings (mgl))iez and (mEZ))ieZ of (L,d) into (L, ci) are said
to be homotopic if there is a collection h; € L(L', f/_l), 1 € Z, such that
m? — M~ di_ ki + higad; for all i € Z.

The task is now to introduce the concept of a Fredholm quasicomplez.
Recall that an operator d € L(L, f/) in Fréchet spaces is Fredholm if and
only if its image in the Calkin algebra £(L,L)/K(L, L) is invertible. Thus,
the idea is to pass in a given quasicomplex to quotients modulo spaces of
compact operators and require exactness. To this end, we make use of a
functor ¢y studied by Putinar [Put82].

For Fréchet spaces L and ¥, set ¢x(L) = L(X, L)/K(X, L). Moreover,

(L)

given any d € L(L, L), we define ¢5(d) € L(¢s(L), ps(L)) by the formula

ps(d) (m +K(2, L)) =dm + K(%, L)

for m € L(X,L). Clearly, this operator is well-defined. It is easily seen
that ¢x(dady) = éx(d2)éx(dy) for all dy € L(L', [?) and dy € L(L?, L?).
If 15, is the identity operator on L, then ¢x(1z) is the identity operator on
¢x(L). These remarks show that ¢y is a covariant functor in the category of
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Fréchet spaces. The crucial fact is that ¢s vanishes on compact operators,
for every Fréchet space . Conversely, if d € L(L, L) and ¢x(d) = 0 for any
Fréchet space ¥, then d € K(L, L). Indeed, taking ¥ = L, we deduce from

the equality

or(d) (1 + K(L, L)) = d—I-IC(L )
= K(L, L)

that d € K(L, L).

Note that if (L,d) is an arbitrary quasicomplex, then (¢x(L), ¢s(d))
is a complex, for each Fréchet space . Thus, the functor ¢y transforms
quasicomplexes into ordinary complexes. Furthermore, cochain mappings
of quasicomplexes transform under ¢y5 into cochain mappings of complexes,
and ¢y preserves the homotopy classes of cochain mappings.

Definition 5.1.2 A quasicomplex (L,d) is called Fredholm if the com-
plex (ox(L), ps(d)) is exact, for each Fréchet space 3.

Let (L,d) and (L,ci) be two quasicomplexes, such that d; ~ d; for all
i € Z. Then the complexes (¢x(L), Ppn(d)) and (qbg(L),qbg(cZ)) coincide,
for every Fréchet space X. Therefore, (L,d) and (L, ci) are simultaneously
Fredholm. In other words, any compact perturbation of a Fredholm quasi-
complex is a Fredholm quasicomplex.

Theorem 5.1.3 A bounded above quasicomplex (L, d) is Fredholm if and
only if the identity mapping of (L,d) is homotopic to the zero one.

This theorem goes back at least as far as Putinar [Put82] wherein the
designation ‘essential complexes’ is used for what we call ‘quasicomplexes’
here.

Proof. Necessity. Let (L,d) be Fredholm and bounded above, i.e.,
L' = 0 for all but 7 < N. Our goal is to show that there are operators
m € L(L', L'7Y), 1 € Z, such that

di—lﬂ'i‘|‘ﬂ'i+1di = 1Li — C; (511)

for all 7 € Z, where ¢; € K(L*).

Set m; = 0 for all integers ¢« > N. If : = N, then from the exactness of
the complex (¢x(L), dx(d)), ¥ = LV, at step N if follows that there is an
operator my € L(LY, LV71) such that dy_17x ~ lpv. Denoting by cy the
difference 1;v — dy_17x, we thus get ey € K(LV).

We now proceed by induction. Suppose we have already found map-
pings

Ty Tihly ooy
Ciy  Cig1y ooy
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such that the equality (5.1.1) is satisfied at steps ¢,7+1,. .., for some ¢ < N.
Note that

dici (1pieo —mdiy) = dioy — (1pi — ¢ — miady) dicq
= c¢idiy + miprdidi4
~ 0

in virtue of (5.1.1). From the exactness of (¢x(L),¢x(d)), ¥ = L'7!, at
step ¢ — 1 if follows that there exists an operator m;_y € L(L"!, L*=%) such
that d;_om;—q ~ lpi-1 — mid;_1. Setting ¢;_1 = lpi-n — midi—y — d;j_omi_q, we
obtain ¢;_; € K(L™!) and (5.1.1) fulfilled at step 7 — 1. This establishes
the existence of solutions 7;, ¢; to (5.1.1) for each ¢ € Z, i.e., the homotopy
between the identity and zero cochain mappings of (L, d).

Sufficiency. If the identity mapping 1 = (1z:),., is homotopic to the
zero mapping 0 = (0z:),c5, on (L, d), then the identity mapping on the
cohomology H'(¢s(L), ¢u(d)) vanishes for all 7 € Z. In other words, the
complex (¢n (L), dx(d)) is exact for each Fréchet space ¥, as required.

O

Any solution m; € L(L', L'™Y), 1 € Z, to (5.1.1) is called a parametriz
of the quasicomplex (L,d). Thus, Theorem 5.1.3 just amounts to saying
that a bounded above quasicomplex is Fredholm if and only if it possesses
a parametrix. We will be mainly interested in those parametrices (L, )
which themselves are (chain) quasicomplexes. Obviously, a quasicomplex
(L,m)is a parametrix of (L, d) if and only if (L, d) is a parametrix of (L, ).

A standard way of constructing parametrices for Fredholm quasicom-
plexes is to reduce the matter to a single Fredholm operator. Recall that
an operator d: L — L between Hilbert spaces is Fredholm if and only if
both Laplacians d*d € £(L), dd* € £(L) are Fredholm operators, d* being
the Hilbert adjoint. In Fréchet spaces, the adjoint is no longer available,
however, we can generalise this in the following way. In order that an op-
erator d € ,C(L,f/) be Fredholm it is necessary and sufficient that there
be an operator § € £L(L, L) such that both éd € £(L) and d§ € L£(L) are
Fredholm. Thus, § substitutes the adjoint while dd and dé substitute the
Laplacians d*d and dd*, respectively. By choosing a suitable § it is some-
times possible to attain either of dd and dd to be of “good” structure. If go
is a left parametrix of dd, then ¢od is a left parametrix of d, and if ¢, is a
right parametrix of dé, then d¢; is a right parametrix of d.

To extend this idea to quasicomplexes, the basic algebraic ingredient
is the concept of an associated quasicomplex. More precisely, given two

quasicomplexes
(Lod): ... — L0 255 g Ay
‘ s o G (5.1.2)
(L,0): ... «— L — L' = ...,

we say that (L, d) is an associated quasicomplex for (L, d) if all the operators
A; = di_16; + di31d;, 1@ € Z, are Fredholm. The operators A; € /J(Li),
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1 € Z, are obvious generalisations of the Laplace operators from Hodge
theory. Vice versa, if (L,d) is an associated quasicomplex for (L,d), then
(L,d) is an associated quasicomplex for (L,d). Since compact operators
form an ideal in the algebra of all bounded operators and single Fredholm
operators are stable under compact perturbations, we deduce at once that
associated quasicomplexes survive under compact perturbations. Moreover,
the availability of an associated quasicomplex is equivalent to the existence
of a special parametrix.

Theorem 5.1.4 In order that a quasicomplex (L,d) have a parametriz
being a quasicomplex it is necessary and sufficient that (L,d) possess an
associated complex.

Proof. Necessity. Indeed, if a quasicomplex (L, ) is a parametrix of

)

(L,d), then it is an associated quasicomplex for (L, d), too, which is clear

from (5.1.1).

Sufficiency. This follows by the same method as in [AB67, Section 6].
Fix an associated quasicomplex (L,d) for (L, d). By definition,

A =di_16; + 0i11d;
is a Fredholm operator for each ¢ € Z. Moreover, we have

GA; ~ Ads,

S~ As (5.1.3)

so that the sequence of A; defines an endomorphism of both quasicomplexes
(L,d) and (L, §) modulo compact operators. Now, we can find a parametrix

g; € /Q(Li) for A; so that
gidi ~ 1,
Agi ~ 1. (5.1.4)
for each i € Z. Multiplying (5.1.3) on the left by ¢;41 and on the right by
g;, we then obtain

girrdi ~ digi,

5.1.5

gi-16; ~ dig; (5.1.5)

for any ¢ € Z. We now claim that m; = ¢g;_19; is the required parametrix for

L. Indeed,

T Tip1 gi—lgi—l(si(si-l-l
~ ()7

the first relation being due to (5.1.5). On the other hand, invoking (5.1.5)
and (5.1.4) we get

diymi + mipid; = dis1gi16i 4 Gidipad;
~  gidi—16; + Gidi41d;
= GA;
~ 1

Y
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and so d;_ym; + my1d; = 1 — ¢; with ¢; compact. The proof is complete.
O
Theorem 5.1.3 shows, given any Fredholm quasicomplex (L, d), that if
[ € Lisatisfies d; f = 0, then f = ¢;f+d;_ym; f, where (L, T) is a parametrix
for (L,d) as in (5.1.1). In other words the operator d;_; has a right inverse
m; on Z'(L) modulo compact operators. However, since the compositions
d;d;_ need not vanish for a quasicomplex L, the range of d"~! no longer lies
in Z¢(L). Tt follows that the usual cohomology does not make sense for L.
The question on a proper substitute of the cohomology for quasicomplexes
seems to be very subtle.

Example 5.1.5 Take an exact complex (L,d). Perturb the operator
d; in this complex by a compact operator Ad; € L(L', L'*'). What we
obtain in this way, is a Fredholm quasicomplex, the operator at step 7 being
d; + Ad;. Given f € L', the equation d;_ju = f is solvable if and only
if d;f = 0. To achieve this equality for an f satisfying (d; + Ad;)f = 0,
we must impose additional conditions on f guaranteeing that Ad;f = 0.
Hence it follows that the complement of B*(L) in the space of cocycles of
the quasicomplex at step 7 is infinite-dimensional unless the operator Ad; is
of finite rank.

4

For quasicomplexes with curvatures of finite rank a reasonable substi-
tute of the cohomology can be defined as follows. To have encompassed
the ranges of d;_y, let us look for a necessary condition of solvability of the
inhomogeneous equation d;_ju = f. If f = d;_yu for some u € L'"!, then
d; f should belong to the image of L'~! under the compact operator d;d;_.
Thus, for every ¢ € Z, we introduce the space of quasicocycles ZZ(L) of L
at step 7 to consist of all f € L' with the property that d;f € d;d;_ L*™'. Tt
is easy to see that ZZ(L) = Z'(L) + B'(L), the sum being non-direct, and
consequently B(L) C ZNZ(L) for each 1 € Z.

~ Lemma 5.1.6 Let the curvature of L at step i is of finite rank. Then,
ZU(L) is a closed subspace of L.

Proof. As the operator d;d;_; is of finite rank, there are elements
Ur,...,uy € L' such that d;d;_quq, ..., d;d;_quy are linearly independent
and span the range of d;d;_,. If [ € Zi(L), then d;f = E;]:l ¢;didi_yuj,
the coefficients ¢; € C depending continuously on f. Hence it follows that

J
f=1ro+ Z cjdi—1u; (5.1.6)
7=1

where fq € Zi(L). The differentials d;_quy,...,d;_juy are linearly indepen-
dent and d <EJ ¢; di_lu]) # 0 unless ¢; = ... = ¢j = 0, since otherwise

i=1
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the system d;d;_quq,...,d;d;_1uy be linearly dependent. Thus, the decom-
position (5.1.6) induces a topological isomorphism

AEIAIE: 1o

via f — fo @ (c1,...,cs), the space Z/(L) & C’ being equipped with the
product topology. To complete the proof it remains to note that Z*(L) is a
closed subspace of L', and consequently Z*(L) & C’ is complete.
O
We always regard ZZ(L) and BY(L) as subspaces of L* with the induced
topology. The quotient

_ ZU(L)+ BU(L)
= 5(0) (5.1.7)

Sy

is sald to be the quasicohomology of L at step 7. It is endowed with the
quotient topology. By Example 5.1.5, the quasicohomology of a Fredholm
quasicomplex may be infinite-dimensional, if arbitrary compact curvature is
allowed. However, any Fredholm quasicomplex whose curvature is of finite
rank bears a finite-dimensional quasicohomology.

Theorem 5.1.7 Suppose L is a Fredholm quasicomplex whose curvature
at steps v and 1 + 1 is of finite rank. Then,
1) dim Hi(L) < oo;
2) BY(L) is closed in L*; and
3) ZNZ(L) is a topological direct factor of L.

Proof. The proof is a slight modification of the proof of Proposition 6.5
in [AB67]. Let (L,7) be a parametrix for (L, m) so that (5.1.1) take place
with ¢; € £(L') compact. For u € L', we have

(1 — ¢ — 7Ti+1di)u = di_lmu

whence (1 — i — 7Ti+1di)NLi C BY(L). In particular, 1 — ¢; — m;y1d; restricts
to a mapping Z(L) — Z*(L).
We claim that the restriction of ¢; + m;41d; is a compact operator in

Zi(L). To prove this, pick a bounded set ¢ in Z‘(L). By (5.1.6), there are
bounded sets o’ in Z'(L) and o” in L'~! such that o C ¢/ +d;_;0”, the sum
of two subsets in L° being understood element-wise. Therefore, we have

(ci+mipidi)o C co+mipd; (o' +dizi0”)
C ¢ o+ miprdidioy o

because d; vanishes on ¢’. Since both ¢; and d;d;_; are compact operators,
the image of o under ¢; and the image of ¢” under m;;1d;d;_; are relatively
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compact subsets of L', then so is their sum. We thus deduce that the image
of o under ¢; + m;41d; lies in a relatively compact subset of L'. It follows
that this image is a relatively compact subset of Zi(L), for this subspace is
closed by Lemma 5.1.6. Hence, ¢; + m;11d; restricts to a compact operator
in Z'(L).

We can now assert that 1 —¢; — m;41d; 1s a Fredholm operator in ZNi(L),
and so (1 —¢; — 7T¢+1d¢)2i([/) is closed and of finite codimension in ZNZ(L)
The same is then true of BY(L) and, as ZNZ(L) is closed in L', we deduce 1)
and 2).

To prove 3), we consider the mapping
Ti: Z(L) & B*Y(L) = L'

given by T, (f & F) = f+ mip1 F. Then imT; D im (1 — ¢) and so imTj is

closed and of finite codimension. Also we have

(1 —cip1 — Migodip) FF = dimi F
= dT.(foF)—df
= dsz (f @ F) - E;jzl ¢ didi—luj7

the last equality being a consequence of (5.1.6). Thus, T;(f & F) = 0
implies that the image of F' under the mapping 1 — ¢;31 — m;12d; 41 belongs
to the finite-dimensional subspace d;d;_1 L'™' of L't'. As the restriction of
1 —¢ip1 — migadiyq to Zi‘"l([]) is a Fredholm operator, we conclude that the
space of all ' € B™Y(L) satisfying T (f & F') = 0 is of finite dimension.
However, T; (f & F') = 0 yields f = —m; 41 F showing that the null-space of
T; is finite-dimensional. Thus, 7T} is a Fredholm operator, and it induces an
isomorphism (algebraic and hence topological because all spaces are Fréchet)

of .
Bz-l—l (L)

i (Zi)) 0 B(L)

ZU(L)®

onto a closed subspace of finite codimension ¥ in L'. If %' denotes a
complement of Y, it follows that

_mnB(L) o
Zi(L) N mipa BH(L)

is a complement of Z(L) in L. This proves 3).
O
We now return to general Fredholm quasicomplexes. As mentioned
above, any single Fredholm operator d € L(L, L) can be thought of as a

Fredholm quasicomplex 0 — L 41— Conversely, to each quasicomplex
(L,d) possessing an associated quasicomplex there corresponds a sequence
of Fredholm operators A; = d;_1;+6;41d;. They are not canonically defined
by (L, d) itself and depend also on the choice of an associated quasicomplex
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(L,d). To avoid purely technical details related to infinite sums of Fréchet
spaces, we restrict our attention to bounded quasicomplexes. Set L = @ L.
The operator A = GA; in L admits the factorisation A = (d + §)? modulo
compact operators, where

d: dz—l 0 0 5 (S: 0 0 5i+1
0 d 0 o 0 0

(5.1.8)
are continuous operators in L. Indeed, from the definition of a quasicomplex
it follows that both d? and é? vanish modulo compact operators, whence

(d+38)* ~ d§+dd
= A

as required. Since A is a Fredholm operator, so is d + 4. Conversely, if d+ 6
is a Fredholm operators, then so is A. The index of d + ¢ is a half of the
index of A, which is zero in many interesting cases, for instance, if § is a
parametrix of d. To get Fredholm operators of non-zero index, we split L
into the sum

L _ Leven @ Lodd7
with Lever = L% and L°dd = L2+ Let now

(d_l_ 5)6: [even Lodd7
(d_l_ 5)0 . Lodd —y Jeven

denote the restrictions of d + 8 to L™ and L°%, respectively.

Lemma 5.1.8 As defined above, the operators (d+9). and (d+96), are
Fredholm, and

1
5 ind A =ind(d 4 d). + ind (d + §),.

Proof. Indeed, an easy computation shows that the operator d + ¢ is
represented by the matrix

d46= ( <df5>e <d+05>o>

with respect to the splitting L = L®*" @ L°dd, According to the above
remark,
d+6),(d+ ). 0
d+6)* = (
(d+9) ( 0 (d+8).(d+ ),
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coincides with A modulo compact operators. This make it obvious that
both (d+9). and (d+ ), are Fredholm operators. Furthermore, we deduce,
by the logarithmic property of the index, that

indA = ind(d+9d)o(d+ ) +ind(d 4+ d)e(d+ ),
= 2(ind(d 4+ é)e + ind (d + d),),

and this is precisely the assertion of the lemma.
0
The operators (d + 7). and (d + 7), are actually Fredholm for each
parametrix (L,7) of (L,d), not necessarily a quasicomplex. Indeed, we
have (d+7)? = 146 modulo K(L). As (L,d) is bounded, we deduce easily
that the operator 4 is nilpotent, i.e., some power of § vanishes. It follows
that 1 + 6% is invertible, and so

(1+6)"(d+m)* = 1,

(d+m)*(1+6%)7"
modulo K(L). Hence d+ 7 is a Fredholm operator on L, and analysis similar
to that in the proof of Lemma 5.1.8 shows that both (d + 7). and (d 4 7),
are Fredholm.

Were (L, d) a Fredholm complex of Hilbert spaces with the associated
complex (L, d*), df being the adjoint of d;, the Hodge theory would allow one
to conclude that the index of (d+ d*). is equal to the Fuler characteristic of
(L,d). This gives a hint on a reasonable definition of the Euler characteristic
for Fredholm quasicomplexes, which might be y (L, d) = ind (d + d).. What
is still lacking is an explicit description of the associated complex (L, d) to

be used.

Theorem 5.1.9 The index of (d+0). does not depend on the particular
choice of the associated quasicomplex (L,8) with the property that d;—16; +
dix1d; is linearly homotopic to 11 modulo compact operators, for all i € 7.

Proof. We first prove a reduced form of the theorem that the index of
(d+ ) is independent on the choice of a parametrix (L, ) for (L, d). Let
(L,7®) and (L,7™") be any two parametrices of (L, d). For t € [0,1], set
7T2(t) (1—t)m Z( )4 twfl). Then, (L, ) is easily seen to be a parametrix of
(L, d), for any ¢. By the above, (d4r(®), is a continuous family of Fredholm
operators on L, parametrised by ¢ € [0,1]. It follows that the index of
(d+ 7T )6 is independent of ¢. In particular, the indices of (d + 7(®). and
(d+ 7l )6 coincide, which is our claim.

Let now (L, d) be an arbitrary associated quasicomplex for (L, d), such
that (1 —¢)15:4+tA, is a Fredholm operator on L for all ¢ € [0, 1]. Denote by
Ti = gi—10i, 1 € Z,a parametrix of (L, d), as is constructed in Theorem 5.1.4.
We shall have established the theorem if we prove that the index of (d+ §).
is equal to that of (d + 7).. For this purpose, consider the family

8O = gl (1=l +tA) 6
~ (1—t>7‘[‘i—|—t5i
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of operators in L(L',L*"!), parametrised by ¢ € [0,1]. From (5.1.5) it
follows that 52(75)52(3_)1 ~ 0 for each i € Z, i.e., (L,6%) is a quasicomplex.
Furthermore, all the operators

dz’—15§t) + 52(_?1652' ~ (I =t)(dicym + mipadi) + £ (dim1 6 + 6i41d;)

are, by assumption, Fredholm, for any ¢ € [0, 1]. This means that (L,d®) is
an associated quasicomplex for (L, d). According to Lemma 5.1.8, (d4 "),
is a continuous family of Fredholm operators on L. the parameter ¢ varying
over [0, 1]. Hence the index of (d+46®), is independent of ¢ € [0, 1], and the
theorem follows.
O

As mentioned in the proof, any parametrix (L,m) of (L, d) meets the
condition of Theorem 5.1.9. If (L,d) is a complex of Hilbert spaces, then
the adjoint complex (L, d*) satisfies the condition of Theorem 5.1.9. Indeed,
in this case A; = d;—1d_; + d7d; is a non-negative Fredholm operator in L,
hence (1 — ¢)1p: + tA; is Fredholm for all ¢ € [0, 1].

For a recent account of the theory of quasicomplexes of Banach spaces
we refer the reader to Ambrozie and Vasilescu [AV95].

5.2  Elliptic quasicomplexes

We now want to study quasicomplexes of weighted Sobolev spaces over
a compact manifold with edges (M, S), whose differentials belong to the
algebra of edge problems on M we constructed in Chapter 4. Recall that
the analysis always takes place on an associated stretched manifold M which
is a compact C'* manifold with boundary. The boundary of M bears the
structure of a fibre bundle over S whose typical fibre is a compact closed
manifold X. Moreover the fibration of dM gives rise to a fibration of M in
a collar neighbourhood of the boundary, whose typical fibre is the stretched
cone Ry x X.

Let we be given sequences of vector bundles (V') , and (W"),_, over
M and S5, respectively. Assume that both V' and W"' are zero for all
but finitely many 2. Suppose that there is a sequence of pseudodifferential
operators A; € U™ (M; VI VIFL WU Wit wi) such that all compositions
A; o A;_; are well-defined. This means just the compatibility of weight
data w; = (vi,vit1, (=1, 0]) in the sense that v; = v;_1 — m;_; for all ¢, the
exponent v = 7o being arbitrary. Then (A;),.;, can be gathered together to

map as in the following sequence’:

H.Si—lﬂ/i—l(v’i—l) N H,S“'W(VZ)

(L, A): ... — @ e Ay (520)
Hsi—1 (Wi—l) Hsi (Wz)

! For simplicity we denote in this chapter H*Y(M, V) by H*7(V), not to be confused
with the weighted Sobolev space on V.
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with s; = s;_1 — m;_1, the exponent sy = s being chosen arbitrarily.

Recall that we have a distinguished class of “small” operators in the
calculus on M that are smoothing Green operators with asymptotics. Thus,
a sequence (L, A) of edge problems on M is said to be a quasicomplex if

AiAi € U (M VL VIR WImL Wit w0 wy ) (5.2.2)

for all 7 € Z. By Theorem 4.1.8, the composition A; o 4;_; of any two oper-
ators in a quasicomplex is compact. Hence the definition of a quasicomplex
of edge problems specifies that given in the preceding section.

Associated with the sequence (5.2.1) are the sequences of principal in-
terior and edge symbols. The first of these is a sequence of bundle homo-
morphisms over the compressed cotangent bundle of M, namely

o1 (Ai)
_> !

. o »bgmi i
bo™(L,A) L — V! O

TV (5.2.3)
where 7 : "I*M — M stands for the canonical projection. The second

sequence consists of homomorphisms of Hilbert bundles over the cotangent

bundle of 5,

H~ o Vet wl H Ve m
m * Uedge (‘Al—l) ¥ Uedge(‘Al)
Oggel Ly A) 1 o —— ® — o ® — .
Wit W

(5.2.4)
where H' = H*"(F~1(-)) and 7: T*S — S is the canonical projection.

If (L, A) is a quasicomplex, then it follows from (5.2.2) and the mul-
tiplicative property of a symbol mapping that both (5.2.3) and (5.2.4) are
complexes. Loosely speaking, the complex (5.2.3) controls the usual ellip-
ticity on the “smooth” part of M up to the edges. On the other hand, the
complex (5.2.4) controls the contribution of potential and trace conditions
on S to compensate the lack of ellipticity in the directions normal to the
edges.

Definition 5.2.1 A quasicomplex (L, A) is called elliptic if the asso-
ciated symbol sequences (5.2.3) and (5.2.4) are exact apart from the zero
sections of the corresponding cotangent bundles.

A single elliptic edge problem A € U™ (M; V,V; W, W; w) is a simple
example of an elliptic quasicomplex. Further examples are given by geo-
metric complexes on a manifold with edges to be discussed in a forthcoming
paper.

The symbol sequence (5.2.3) is irrelevant to the particular choice of
s and v in (5.2.1). This is not the case for the symbol sequence (5.2.4)
including both s and 7. The analysis of elliptic complexes on a manifold with
conical singularities makes it obvious that the exactness of (5.2.4) depends
essentially on v (cf. Schulze [Sch88a], Melrose [Mel93], etc.) However, it is
independent of the choice of s.
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Lemma 5.2.2 [f the sequence of principal edge symbols (5.2.4) is exact
for any one s = sqg, then it is exact for all s € R.

Proof. We give the proof only for those quasicomplexes which are el-
liptic in the interior of M up to the boundary. This setting will be sufficient
for our applications.

The proof is embedded in the context of elliptic complexes on the in-
finite stretched cone Ry x X over a smooth compact closed manifold X.
Indeed, if localised at a point (y,n) € T*S, n # 0, the sequence (5.2.4)
becomes

H~ Vit .. H @ Vi .
Y Sy 5 -1 A1)y, Y Sy O dve Ay,
C— ® wase )07 = el (5.05)
Wit Wi

where

H, = H""(F7(y))
= H*"(Ry x X).

The fibres Vsiy and W; are finite-dimensional vector spaces whose di-
mensions k; and [; are the ranks of the bundles V¢ and W', respectively.
Choosing local frames for these bundles near y, we identify Vsiy and W;
with C* and C', respectively.

For fixed (y,n) € T*S \ {0}, we denote by a; the upper left corner of
nglige(Ai)(y,n). Under the above identification, this is an element of the
algebra U™ (R, x X; Cki, Cki+1; w;) over the infinite stretched cone Ry x X
where we write C* instead of (R; x X) x C*¥ for short. Since (5.2.5) is a

complex, we conclude that
o HEEE(Ry e X )R 2L iRy o« XOR 2 L  (5.2.6)

is a quasicomplex of Hilbert spaces, whose curvature is a Green operator of
finite rank at each step ¢ € Z.

It is easy to see that (5.2.5) is a Fredholm complex if and only if (5.2.6)
is a Fredholm quasicomplex. In fact, if (7;),., is a parametrix for (5.2.6),

then
w5 0 )
(5.2.7)
( 0 0 €7
is a parametrix for (5.2.5).

The schema of the proof of the lemma is as follows. Suppose (5.2.5)
is exact for some s = sg. Then (5.2.6) is a Fredholm quasicomplex, for
s = sg. From this we deduce that (5.2.6) is actually an elliptic quasicomplex,
the ellipticity referring to the algebra of pseudodifferential operators over
R, x X. It follows that (5.2.6) has a parametrix within the algebra. We
can then transfer the parametrix to the complex (5.2.5), as explained above,
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and deduce from the mapping properties of this parametrix, by a standard
procedure, that the cohomology of (5.2.5) is independent of the particular
choice of s. Consequently, (5.2.5) is exact for all values of s.

Recall that elliptic quasicomplexes (5.2.6) in the algebra over R, x X
are characterised by the following four symbol sequences

— (Ck,'_l N Ckl /s RN
i (X)ki—l ch(ai—l)ﬁ(W—%‘q)) HS’(X)k’ ch(ai)ﬁ(w—%)) o

e g Cch il
ey
Mi—1 0 ( my 0 .
o o (aiz1) o to - (ai)
koo Fi Fprexit A0 ko Fy o~ Fpexit
e ress Cch ress

(5.2.8)
the first of these being exact over *T*(R, x X)\ {0}, the second one being
exact for all z € I'_,, the third one being exact over all of T*(R; x X), and
the fourth one being exact away from the zero section of T*(R; x X). We
thus see that merely the complex of conormal symbols in (5.2.8) includes
svia 8 =8 —mg— ... — m;_;. On the other hand, the exactness of the
other three complexes in (5.2.8) follows automatically from the exactness of
(5.2.3) in much the same way as in the proof of Theorem 4.1.2.

Note that the differentials of the second complex in (5.2.8) are matrices
of classical pseudodifferential operators on X, a C'* compact closed mani-
fold. From the compatibility of the principal interior and conormal symbols
we see that this complex is elliptic whenever the first complex (5.2.8) is
exact for all (0,z;7,&) € *T*(R, x X)\ {0}. Hence it follows that the coho-
mology of the second complex (5.2.8) is independent on the Sobolev spaces
where it is evaluated, i.e., on s.

For a fuller treatment of elliptic complexes on a manifold with conical
points we refer the reader to Section 3.1 in Schulze [Sch88a]. The only
fact from this theory we need here is that the exactness of the complex of
conormal symbols is necessary for the Fredholm property of (5.2.6) for any
one s = Sg.

We are now in a position to finish the proof. Let (5.2.5) be exact for
some s € R. Then, (5.2.6) is an elliptic quasicomplex. Consequently, (5.2.6)
possesses a parametrix within the calculus, i.e., there is a sequence

7 € UM Ry x X O, C 1 wi), €7,
such that
ai_1m + mipia; =1 mod  UTP(R, x X; Cki;wi_1 o wi),
for all 2. Now (5.2.7) yields a parametrix of (5.2.5) which behaves properly

in the weighted Sobolev spaces on Ry x X. This completes the proof.
O
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Let us apply cochain mappings of quasicomplexes to reduce the weights
in the weighted Sobolev spaces entered into (5.2.1). To this end, fix, for each
1 € Z, a pair of elliptic edge problems on M,

R: € UH(M;VLVEWL W (4,0, (—1,0])),
RV e U (M VE VEWE W (0,4, (<1, 0))),

such that Rg_l) is a parametrix of R;. The existence of a large number of
such pairs is guaranteed by Theorems 4.4.4 and 4.2.2. Set

A = Ripg ARTY (5.2.9)
and consider the diagram

HSi—ly'W—l(Vi_l) ) Hsz'm(vi) N
(LA : ... — © — S —
Hs,'_l(Wz—l) Hs,(Wz)

R<—1MR RE:})HRH RE‘UHRZ»

Hs—w,O(‘N/i—l) } Hs—%O(‘N/i)
1 Aioy
(LLA): ... — © — S —
Hs—w(Wi—l) Hs—w(Wi)
) (5.2.10)
The operators A; are defined so as to make this diagram commutative mod-
ulo smoothing Green operators on M.

Theorem 5.2.3 As defined above, the sequence (f/, ./Zl) is an elliptic qua-
sicomplex.  Moreover, the diagram (5.2.10) establishes an isomorphism of
quasicomplexes (L, A) and (L, A) modulo smoothing Green operators.

Proof. From (5.2.9) we conclude that
A; € UO(M VL VP W W (0,0, (-1, 0)))
and

Aidis = Ript AA R + Rt A <R£_1)Ri — 1> AR,

which makes it obvious that (i,fl) is a quasicomplex with entries in the
pseudodifferential calculus on M. Moreover, combining Theorem 4.1.9 with
equalities (4.2.3) yields

PO A) = Por (Rip)t o™ (Ay) (o (R:))
00l AD) = O (Risn)ol (A (00, (R)) T

edge edge

and so a trivial verification shows that the quasicomplex (f/,fl) is ellip-
tic.
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The quasicomplexes (L, A) and (L, A) are actually isomorphic modulo
smoothing Green operators. Indeed, multiplying (5.2.9) on the right by
R;, we obtain ./ZliRi = R;y1A; modulo smoothing Green operators, for each
i € Z,showing that R = (R;),.y, is a cochain mapping of (L, .A) into (f/, ./Zl)
The inverse of this mapping modulo smoothing Green operators is given by
RED = <R£_1)>' , and the proof is complete.

€L 0

Our next concern will be the Fredholm property of elliptic quasicom-
plexes and the parametrix construction within the pseudodifferential calcu-
lus on M. By a parametriz of a quasicomplex (L, .A) we mean any sequence

of edge problems P; € W™= (M; Vi Vi-L Wi Wi=biw—1) i € Z, such that
A P; + 732'4_1./42' =1-S; (5.2.11)
for all 1 € Z, where S; € U~>°(M; Vi Wi w! o w;). In other words, (7;)

1

€7
is a cochain homotopy between the identity and a smoothing Green endo-

morphisms of (L, A).

Corollary 5.2.4 Lel P; = R, PRV, fori € Z. Then, (P,),
parametriz of (L, A) if and only if <752> is a parametriz of (L, A).
€7

Proof. Indeed,

AiiPi+ P A = Ry <~»4¢—1R§j)73¢—177i + 73¢+1R£:)Ri+1v4¢> R§‘”
= Ri(Ai1Pi+ Piyr Ai) RE‘”,

the last equality being modulo smoothing Green operators. As R; is in-
vertible modulo smoothing Green operators, the inverse being Rg_l), this
proves the corollary.
O
We are left with the task of constructing parametrices for those elliptic
quasicomplexes (5.2.1) whose differentials are given by operators of order
zero on M. The advantage of using such a reduction lies in the fact that we
can invoke the sequence of Laplacians for the study of (f/, ./Zl) For general
quasicomplexes on M, the Laplacians are not available within the calculus
because the formal adjoint acts in the weighted Sobolev spaces of opposite
weights. Thus, it can be identified with the adjoint in the sense of Hilbert
spaces only for operators of order zero acting in Sobolev spaces of weight
zZero.

Lemma 5.2.5 A quasicomplex (f/,fl) of edge problems of order zero is
elliptic if and only if the Laplacian

A= A A+ LA (5.2.12)

is an elliptic operator in WO(M; Vi W (0,0,(—1,0])) at cach step i € Z.
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Proof. Indeed, the ellipticity of A; means that every of the principal
symbols

bUO(Ai) : W*\N/i—ﬂr*f/i,

N HOFEI) T HOFI) 6 T
edge(A ) oo = — 7" B
Wt Wt

is an isomorphism away from the zero section of the corresponding cotangent
bundle. Moreover, being an isomorphism for the edge symbol is independent
on the particular choice of s; we take s = 0. By Theorem 4.1.10, we get

(A = A (o)) (100 A)) oA,
(A) = 0%l i) (0% Ain)) + (00, (A) 0% A),

(5.2.13)
the ‘asterisk’ indicating the formal adjoint in the cone algebra. Further,
Lemma 5.2.2 shows that the complex of principal edge symbols O'edge(L, ./Zl)
can be equally evaluated in the spaces

edge edg

HOO(F1 () @ Ve
a* fen

WZ

Under this choice, the formal adjoints < edge(./zl')>* in (5.2.13) coincide with

the adjoints in the sense of Hilbert spaces. Now the required conclusion is a
consequence of the well-known algebraic fact that for a complex of Hilbert
spaces

- di - d:
Gy Skl SO

to be exact at step ¢ it is necessary and sufficient that A; = d;_1d?_; + d7d;
be an isomorphism of L.
O
The principal significance of the lemma is in the assertion that the
formal adjoint of an elliptic quasicomplex of edge problems of order zero
on M is an associated quasicomplex. Thus, we can adopt the schema of
Atiyah and Bott [AB67] to construct a parametrix for (L, A).

Theorem 5.2.6 Fach elliptic quasicomplex of edge problems on M has
a parametriz being a quasicomplex.

Proof. Combining Theorem 5.2.3 and Lemma 5.2.5 we conclude that
all the Laplacians (5.2.12) are elliptic operators. Since A A1 is a smooth-
ing Green operator, so is Az*—rA* = (.A A 1)%, for each 7 € Z. Therefore,
we get
AN = A A,

A;

. ~ ~ 5.2.14
Aj — Ai_lA? 1 ( )
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modulo smoothing Green operators. In other words, the sequence of A,
defines an endomorphism of both (L,A) and (L, A*) modulo smoothing
Green operators. By Theorem 4.2.2, we can find a parametrix

G € WO(M; VW (0,0, (-1,0)))
for A;, so that
jSZSZ
Ag (5.2.15)

for each ¢ € Z. Multiplying (5.2.14) on the left by G;11 and on the right by
G,, we obtain o o
G A = AG,
gi—hA:'K 1 — "K 1gi

modulo smoothing Green operators, for any ¢ € Z. We now claim that

(5.2.16)

P; = Gi_1 Az is a parametrix for (L, A) which is actually a quasicomplex.
Indeed,

PPiy1 = Gi1GiiAr (A
= 0

modulo smoothing Green operators, the first relation being due to (5.2.16).
On the other hand, invoking (5.2.16) and (5.2.15) we get

A Pi4 Pt A = A G A+ GATA
= GA A +GAA
g:A
=1

modulo smoothing Green operators, as required.
To complete the proof it suffices to use Corollary 5.2.4 according to
which P; = Rl_i P;Ri, i € Z,is exactly what we need.
O
Theorems 5.2.6 and 5.1.3 may be summarised by saying that every
elliptic quasicomplex is Fredholm. The method of proof carries over to
those sequences (5.2.1) which meet a weaker condition than (5.2.2), namely

bt (A Ai) = 0,
Umi-l-mi—l(AiAi_l) - 0

edge

for all . By Theorem 4.1.8, these are still quasicomplexes in the sense of
Definition 5.1.1. The concept of ellipticity still applies to such sequences,
and an analogue of Theorem 4.1.8 gives a parametrix within the calculus,
now merely modulo operators of order —1.

The question arises of whether the ellipticity is necessary for the Fred-
holm property of a quasicomplex of edge problems on M.
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Theorem 5.2.7 For s =y 4 2 the Fredholm property of (5.2.1) im-
plies the ellipticity of this quasicomplex.

Proof. The proof of the theorem lies beyond the range of this paper.
We only give the main ideas.

Let (L, A) be a Fredholm quasicomplex of edge problems on M as in
(5.2.1), with s = v + H'T” Starting with Comp}exes of principal symbols
(5.2.3) and (5.2.4), we construct a complex (L, A) of edge problems on M,
such that ~

() = (A,
ot (A) = ol (A)

edge edge

for each i € Z. As A; and A, differ by compact operators, we deduce at
once that the complex (L, ./Zl) is Fredholm.

To reduce (L, fl) to a complex of edge problems of order zero, we make
use of a diagram similar to (5.2.10). Namely, we take as R; the order
reductions ensured by Theorem 4.4.7, R; being of order v + H'T” Then the
complex at the bottom of (5.2.10) corresponds to the smoothness 0 and the
weight —H'T”.

We now set HO’_%—n(R+ x X) to be the reference space, so that the
dual spaces and formal adjoints will be defined with respect to the scalar
product in HO’_%_R(]R+ x X). Under this shift of weights, we can introduce
the Laplacians (5.2.12) to act in the spaces of weight —H'T”. For the reduced
complex, the Fredholm property proves to be equivalent to the Fredholm
property of all the Laplacians.

For single edge problems of order 0 in HO’_%_n(M, VY @ HO(S, W),
the Fredholm property just amounts to the ellipticity. By Lemma 5.2.5 and
Theorem 5.2.3 we can then assert that (L, fl) is an elliptic complex.

Finally, since the sequences of principal symbols are the same for (L, A)
and (L, ./Zl), it follows that the quasicomplex (L, .A) is elliptic, too. This is
the desired conclusion.

O

We finish this section by deriving an interesting formula for solutions
of the homogeneous edge problems A;u = 0 on M. Namely, if (5.2.1) is an
elliptic quasicomplex and u € H*"(V*) ¢ H*(W*) satisfies A;u = 0, then

u=38u+ A _1Pu

by (5.2.11), where S;u € H (V)@ H*(W?) for some asymptotic type ‘as’
subordinate to (y;, (—(,0]), and Pyu € Hetmi—1vi-y(Vizly g frstmi-i (W=t

5.3 Hodge theory

Let us now establish an analogue of the Hodge decomposition for the de
Rham complex (cf. [Hod41]) in the case of elliptic complexes of edge prob-
lems on M.
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We begin with some generalities on complexes of Hilbert spaces, refining
the material of Section 5.1. For such a complex (L,d), there is always a
natural choice of an associated complex, namely, the adjoint complex:

(Lod): ... —s Li7t 54 i S
R (5.3.1)
(L,d*): ... «— L' «— L'

Lemma 5.3.1 For a complex (L, d) of Hilbert spaces, the following con-
ditions are equivalent:
1) (L,d) is a Fredholm complex;
2) (L,d*) is a Fredholm complex;
3) the Laplacians A; = d;—1d;_| + did; are Fredholm operators in L,
fori e Z.

Proof. See Theorem 4 in Rempel and Schulze [RS82a, 3.2.3.1], and
elsewhere.
O
An important point to note here is the selfadjointness of the Laplacians
A; in L, i € Z. Thus, either they are both injective and surjective or
possess neither of these properties. It is easy to see that the null-space of
A; consists of all u € L such that dju = 0 and d;_,u = 0.

Theorem 5.3.2 Suppose that (L,d) is a Fredholm complex of Hilbert
spaces. Then, for each 1 € 7, the null-space of A; ts finite-dimensional and
we have an orthogonal decomposition

Li = ker AZ D di_ld;f_lgi[/ D drdzgzlj (532)

Proof. Fix 1 € Z. According to Lemma 5.3.1, A; is a Fredholm
operator in L', hence ker A, is finite-dimensional. Denote by (ker Ai)L the
orthogonal complement of ker A; in L. As A; is a selfadjoint Fredholm
operator in L', it follows that A; restricts to a topological isomorphism of
(ker Ai)L. Letting h; stand for the orthogonal projection of L' onto ker A;,
we introduce a bounded operator

g; = <A2 |(kerA,‘)J->_1 (1L’ - hl)

in L!. Then we get 17: — h; = A;g;, which is precisely the decomposition
(5.3.2).
O
The operators g; € £L(L*) in (5.3.2) have the property that d;g; = gi11d;
for all 7 € Z. Indeed, applying (5.3.2) at steps ¢ and ¢ + 1, we obtain easily
d; = d;d7d;g; and d; = d;d} gi1d;, whence A1 (d;gi — ¢iv1d;) = 0. However,
the operator d;g; — giy1d; maps to (ker AH_l)L, hence d;g; — gir1d; = 0, as
required. Thus, the equalities (5.3.2) can be written equivalently in the
form

di—q (df_ﬁ]i) + (digiv1)d; = 1 — hy,
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for 1 € Z, showing that m; = d*_,¢;, © € Z, is a very special parametrix for

(L, d).

Corollary 5.3.3 For any Fredholm complex of Hilbert spaces (L, d), we
have topological isomorphisms

HY (L,d) = kerA;, i€ Z. (5.3.3)

Proof. Indeed, the desired isomorphisms are given by [u] — h;u where
[u] means the class in H'(L,d) of a cocycle u € Z(L,d).
O
When compared with the abstract Hodge decomposition (5.3.2), such
a decomposition for elliptic complexes of edge problems bears more infor-
mation on the operators g;.
Let (L, A) be an elliptic complex within the calculus on M, as in (5.2.1)
but A;A;_y =0 for all 7 € Z. Pick, for each 7 € Z, an order reduction R; =
R%,W@' of WM (M; Vi Wi (%,0,(=1,0])), as is guaranteed by Theorem 4.4.7.

Consider the diagram

HSi—ly'W—l(Vi_l) " Hsz'm(vi) N
(L,A): ... — & = & 5
Hsi—1 (Wi—l) Hsi (Wz)

w{x wllne wdlr

Hs—w,O(Vi—l) } Hs—w,O(Vi)
i .
(LA : ... — & — & —
Hs—w(Wi—l) Hs—w(Wi)

(5.3.4)
the operators A; being defined so as to make this diagram commutative,
le., fL = RH_l.AiRZ»_l.

When compared with (5.2.10), the commutativity relations in (5.3.4)
hold precisely, not only modulo smoothing Green operators. It follows that
(L,./Zl) is an elliptic complex of edge problems of order zero on M. This
allows one to make use of the Laplacians A;, i € Z, defined by (5.2.12).

Theorem 5.3.4 Suppose (L, A) is an elliptic complex of edge problems
on M. Then, to every 1 € Z there corresponds operators

H: € U (M;VEWEw ! owy),
P € UM (M VE VIS W Wity
such that
1) H; is a projection of finite rank, satisfying AiH; =0, H; A1 = 0;
2) for each u € H*" (V') ® H*(W?*) with s > 7;, we have

u=H;u+ A;_1Piu+ 732'+1./42'u, (535)

the decomposition being orthogonal with respect to the scalar product
(u,v) — (RZ’U,Rﬂ))HO,O(V@')@HO(W@').
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Proof. Since A; € WO(M; Vi Vit Wi Witl: (0,0, (—1,0])), they map

as in the following sequence:

HO,O(VZ'—I) 1 HO,O(VZ')

(L, A): ... — @ e Ay (5.3.6)
HO(wi—l) HO(WZ)

From Lemma 5.2.2 and the ellipticity of the complex ([, ./Zl) in (5.3.4)
we conclude that (5.3.6) is an elliptic complex. Lemma 5.2.5 now shows
that the Laplacians A; = A;_y A7, + A*A; restrict to elliptic operators
in HOO(VZ) @ HO(WZ) Moreover, when mapping HOO(VZ) @ HO(WZ) to
HOO(Vi=Yy @ HO(W'=1), the formal adjoint Az, coincides with the adjoint
of A;_; in the sense of Hilbert spaces. Hence it follows that A;isa selfadjoint
operator in H*°(V") @ HO(W?), for each i € Z.

By the above, the null-space of A; consists of all u € HOO (Ve HO(W)
satisfying both A = 0and .,Zlf_lu — 0. Moreover, since A, is elliptic, ker A,
is a finite-dimensional subspace of H2°(V*) @ HO(W?), for some asymptotic
type ‘as’ subordinate to the weight data (0,(—/,0]). Denote by H; the
orthogonal projection of H*%(V?) & H°(W") onto the null-space of A, If
<uf,2)> is an orthonormal basis for ker A;, v varying over a finite set of indices,
then H, is an integral operator with the kernel >, ul) ®*ufj), where ‘%’ is a
Hodge star operator associated to the scalar product of H(V*)® HO(W*).
From this we deduce immediately that H; is a smoothing Green operator,
ie.,

H; € U=(M; VEWE (0,0, (=1,0])). (5.3.7)

Let us write (ker AZ)L for the orthogonal complement of ker AZ in
HOO(V)y @ H°(W?*). Then, the operator A, restricts to a topological iso-
morphism of (ker A;)*, hence

Gi = <Az’ |(kerAi)J->_1 (1 —Hi)

is a bounded operator in HO’O(Vi) @ HO(Wi). It is clear from the definition
that

1-H; =

Qe b

A, (5.3.8)
on H® O(Vi) @ HO(Wi)

Our next concern will be the regularity property of ;. To this end,
we first observe that if u € HOO(VZ) @ HO(WZ) then A;Giu = u — H, u,
where Hu lies, by (5.3.7), in HZO(VYYy @ H*(W?). We now invoke The—
orem 4.3.5 and Corollary 4.3.6 on elliptic regularity, for A;, to conclude
that G; preserves H*°(V*) & H*(W') and the corresponding spaces with
asymptotics.
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~ We next fix any one parametrix G € WO(M; VLWL (0,0, (—1,0])) for
Ai, i.e., -

GiA;—1 € W (M; VW (0,0,(-1,0])),

AGi—1 € U (M;VEWL(0,0,(1,0]))
(cf. (5.2.15)). By (5.3.8), we have

<éz — QNZ> A= <1 — QNZAZ> —H,

on HY®(V*) & HO°(W?*). Applying the operator G, to this equality from the
right, we get

<Gi - g~z> = <Gz - g~z> <1 - A@) + <1 - QNZAZ> G: — H.G:

showing that G; and G; differ by a smoothing Green operator. We can thus
assert that

iy € WO(M: VW (0,0, (—1,0)) (53.9)
From what has been proved we see that each u € H*(V*) @& H°(W*)

splits into
u = 7:[2u + .Zli_l.zzl?_léiu + .zzlr.[lzézu, (5310)

the decomposition being orthogonal with respect to the scalar product in
HOO (V) @ HO(WH).

We claim that A;G; = éi+1¢ii. Indeed, if u € H®O(V*)® HO(W') satis-
fies .,ZlZu = 0, then ./leflz*jlzélu = 0. Hence it easily follows that ./leézu = 0.
Thus, for arbitrary u € H®°(V') @& H°(W?), we have A = ./leflz*jlzélu
on the one hand, and Aiu = ./leflz*ézﬂflzu on the other. Hence it follows
that Az(flzélu - CN?Z'H%LU) = 0, and since A;Giu — CN?Z'H.%L'U is orthogonal
to ker Ai—l—l then A;Giu — éiﬂfliu = 0, as required. Thus, (5.3.10) results
in

w = Hiu + AP+ 75¢+1~«le'u

for all u € HO’O(Vi) @ HO(Wi), where P; = ./le*_léz Note that the sum-
mands on the right are still orthogonal with respect to the scalar product
in (V) @ HO(WY).

We are now able to finish the proof. Let v € H*" (VZ) @ HS(WZ) where
s > 7. Then Ryu € H*°(V*Y) & H°(W') whence

Riu = HiRu + Ai 1 PiRiu + Pip1 AiR;u.
Applying the inverse R;! from the left and substituting A = Rii AR,
we arrive at the decomposition (5.3.5), with
H, = R;lﬁﬂzi,
P, = (Rf_lRi_l)_lAf_lRfGiRi

having the desired properties because of (5.3.7) and (5.3.9). The proof is
complete. O
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The principal interest of the theorem is that it allows one to represent
the cohomology classes at step ¢ for the complex (L,.A) by elements of the
invariant subspace of the projection H,;.

Corollary 5.3.5 For any elliptic complex (L, A) on M, the correspon-
dence [u] — H;u induces a topological isomorphism of H'(L, A) onto the
invariant subspace of the projection H;.

Proof. Indeed, from item 1) of Theorem 5.3.4 it follows that the cor-
respondence [u] — H;u is a well-defined continuous mapping of H'(L,A)
onto the invariant subspace of the projection H;. If H,u = 0 for some
u € Z'(L,A), then u = A;_;Piu, and so [u] = 0. This proves the injectivity
of the mapping [u] — H;u. On the other hand, the surjectivity of this map-
ping is obvious because the invariant subspace of H; belongs to Z(L,.A).
To complete the proof, it suffices to observe that the inverse of [u] — H;u is
given by the canonical mapping of the invariant subspace of H; to H*(L, A).

O

In particular, the cohomology of an elliptic complex of edge problems on
M is independent of the smoothness of the weighted Sobolev spaces where
it is evaluated (but does depend on the weights).

5.4  External multiplication

Given any two Hilbert spaces H and L, we denote by H @ L the Hilbert
tensor product of H and L, i.e., the Hilbert space generated by the formal
products v ® u, where v € H and u € L, satisfying the bilinearity relations
and equipped with the scalar product (vy @ uy, vy @ ug) = (v, vq)(us, usz).
For operators 9 € L(H,H) and d € £(L, L), the Hilbert tensor product
0®de L(H® L,[:] ® f/) is uniquely determined via its restriction to
elements of the form v @ u, where v € H and u € L, the restriction being
(0@ d)(v®u) = 0v@du. If both 9 and d are of trace class, then so is
0®dand trd @ d = trd trd. However, the Fredholm property does not
survive under tensor multiplication of operators, as is easy to see. To cope
with this drawback and gain the multiplicative property of the index, one
uses the following construction. Let us identify the operators d and d with
the complexes

0 — H % 0 — 0,
0 — L -5 L — 0
and define the Hilbert tensor product of these by
0—HoL 2 HoGHoL) 2 HolL — 0, (5.4.1)
where

do1
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It is a simple matter to see that D; Dy = 0, i.e., (5.4.1) is a complex of
Hilbert spaces.

Lemma 5.4.1 [f both 0 € L(H, [:[) and d € L(L, f/) are Fredholm, then
so is (5.4.1). Moreover, the Euler characteristic of this complex is equal to

indd indd.

Proof. Indeed, the Laplacians of complex (5.4.1) are easily verified to

be
DiDy = 00®1+1®dd,
« « B 00" @1+ 1®dd 0
Dolo +Diby = ( 0 8*8®1+1®dd*>’

D\D; = 00" @1+ 1@ dd.

The null-space of 9*0® 1+ 1® d*d is spanned by elements of the form v @ u,
where v € ker d and u € kerd, and similarly for the other diagonal elements
of the Laplacians. Hence it follows that

dimker D§Dy = dimkerd dimkerd,
dimker (DoDj + DiDy) = dimkerd* dimkerd + dimker d dimker d*,
dimker DD} = dimker9* dimker d*,

and so the Euler characteristic of (5.4.1) amounts to
dimker Dj Dy — dimker (Do Dy + D} Dy) + dimker Dy D} = ind dind d,

as required.
O
By Lemma 5.1.8, the Fredholm property of complex (5.4.1) is equivalent
to the Fredholm property of the operator (D + D*).. A trivial verification
yields

W (001 —1ad
(D—I_D)@_(l@d a*®1 ) (542)

mapping as (H @ L) & ([:[ ® E) — ([:[ @ L)& (H® f/) The operator on
the right-hand side of (5.4.2) is sometimes referred to as the #-product of
0 and d. Thus, if 0 and d are Fredholm operators, then so is d#d and
ind d#d = indd indd. Note that the product d#d is commutative and
distributive with respect to the direct sum of factors modulo homotopies.
Moreover, if any one of the factors is invertible, then so is the product.
Lemma 5.4.1 is a very particular case of a Kunneth formula for topo-
logical tensor products of complexes of Fréchet spaces. This formula goes
back to the work of Grothendieck [Grob4] who treated the case of nuclear
Fréchet spaces. In the context of Hilbert tensor products a Kinneth for-
mula was proved by Grosu and Vasilescu [GV82]. Recently Mantlik [Man95]
developed a product theory including a Kinneth formula for complexes of
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so-called hilbertisable Fréchet spaces, a notion adapted from Jarchow [Jar81].
For this purpose the topology 7 used on the tensor product H ® L of two
locally convex (l.c.) spaces should fulfil at least two requirements. Namely,
it has to be

o “injective”, i.e., for any subspace ¥ of H ., the topology of ¥ @, L
coincides with that induced by H @, L;

o “projective”, i.e., for any subspace ¥ of H, the canonical quotient

mapping H @, L — (H/Y) @, L is open.

It is known, e.g., that the m-tensor topology is projective but not injective
(cf. Floret [Flo73], Stegall and Retherford [SR72]) whereas the e-tensor
topology is injective but not projective (cf. Kaballo [Kab77]). Recall that
the m- and e-topologies coincide in the presence of nuclearity, which explains

the result of Grothendieck [Gro54].

Definition 5.4.2 Let H be a Hausdorff l.c. space. By x(H) we denote
the system of all continuous Hermitean forms on H. For h € x(H), let
|ulp, = \/h(u,w) stand for the corresponding seminorm. We call H hilberti-
sable if the topology of H is generated by the system {|-|n: h € x(H)}.

In other words, H is hilbertisable if and only if the completion H is
representable as a reduced projective limit of Hilbert spaces. This class of
spaces includes, e.g., the distribution spaces like Hj, (V) and HZ, (V), V
being a vector bundle over a smooth manifold M, further all nuclear Fréchet
spaces, and, of course, the Hilbert spaces. The property of being hilbertis-
able is inherited by subspaces, various products, Hausdorff quotients, com-
pletions and countable inductive limits (cf. [Jar81, 11.9, 21.1]). Under
suitable conditions also the strong dual Hj of a hilbertisable space H is
hilbertisable; this is the case, e.g., if H is metrisable (cf. Hollstein [Hol85]).

Suppose H and L are fixed hilbertisable spaces. Our goal is to introduce
a natural hilbertisable topology ¢ on the algebraic tensor product H @ L.
For any h € x(H) and g € x(L), we define a Hermitean form h@g on H @ L

by

h@g(Zvé@u;, vé’@u%) :Zh@;,vg)g(u;,vg),
J k 5k
the summations being over y = 1,...,J and &k =1,..., K. It follows that
h@g € x(H®L), and we denote by H®, L the space H® L with the topology
generated by the system of Hermitean forms {h®@g: h € x(H),g € x(L)}.
One can check that the corresponding system of seminorms | - |,5,, where
h € x(H) and g € x(L), is fundamental, i.e., each continuous seminorm on
H @, L is majorised by some | - |ng,-

By Proposition 2.3 of Mantlik [Man95], there exist continuous inclusions

H®, L —H®,L— H®.L. Thus, if H or L is nuclear, then these three



5.4 External multiplication 137

topologies coincide. For Hilbert spaces, H @, L is the usual Hilbert tensor
product.

Since H ®. L is Hausdorff, so is H ®, L. In particular, H ®, L is a
hilbertisable space and so is the completion H®, L.

Let we be given two complexes of hilbertisable Fréchet spaces and closed
operators

(H,0): ... — H~" 228 i 2
(Lyd): ... — L7V 224 pi 4

the domains of the operators not being necessarily dense. We require both
the complexes to be bounded below. Fix isomorphisms n; € L(H'), i € Z,
preserving the domains of 0; and satisfying 0;n; = —n;110; on Dom ¢, for
each 1 € Z. A usual choice of 1; is n;v = (—=1)'v, if v € H*. For any 1 € Z,
set
(H Do L)Z — @ H] Do Lka
Jtk=1
the sum being finite because the complexes (H,d) and (L, d) are bounded
below. We endow each (H ®, L)' with the product topology. Define an
operator D;: (H®,L)" — (H®, L) with domain &, =;Dom d;©, Dom dy
by
Di=0; @1pr +n; @ dy

on Dom d;®, Dom dy, for j+k = 1. It is easy to see that im D;_y C ker D; for
all i. Thus, we obtain a complex (H @, L, D) called the algebraic o-tensor
product of (H,d) and (L, d) ?. Furthermore, each operator D;, i € Z, proves
to be closable in (H®UL)i X (H®UL)H'1, where (H®UL)i = @Hk:iHj@ng.
Letting D; denote the closure of D;, we deduce at once that D;D;_y = 0
for all + € Z. This yields a complex of hilbertisable Fréchet spaces and
closed operators

(H&uL,D): ... — (HO, L)™' 228 (HE, LY 2 (5.4.3)

which will be referred to as the completed o-tensor product of the complexes
(H,0) and (L,d). We emphasise that from the point of view of analysis
the completed o-tensor product is much more interesting than the algebraic
one.

The Kiinneth formulas link the cohomology of the complex (H®, L, D)
with those of (H,d) and (L, d).

Theorem 5.4.3 Suppose (H,0) and (L,d) are topological complexes of
hilbertisable Fréchet spaces. Then,

ZU{H&,L) = Zi(H®, L),
B(H&,L) = Bi(H®,L)

?Note that quasicomplexes do not survive under tensor multiplication.
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for any i € Z, the closures being in (H®, L)' In particular, (H®, L, D) is
a topological complex, and the natural mapping HUH)@ H(L) — H(H ® L)

extends to a topological isomorphism
H(H®,L) = H(H)®, H(L). (5.4.4)

Recall that a complex (L, d) is said to be topological if the range of d;_4
is closed in L' for each 7 € Z. This is the case if and only if every mapping
d;_y : Domd;_; — L is open, Domd;_; being equipped with the induced
topology or with the graph topology. In particular, every Fredholm complex
is topological.

Proof. For a thorough proof of the theorem we refer the reader to the
original paper of Mantlik [Man95].
O
Here is another way of stating (5.4.4): for each ¢ € Z, we have a
topological isomorphism

H(HO, L) @ H(H)o,H*L).
j+k=i

In particular, if both (H,d) and (L,d) are Fredholm complexes, then so is
(H®, L, D) and

dim H'(H®,L) = > dim H/(H) dim H*(L), (5.4.5)
Jk=i

for any 1 € Z.

Corollary 5.4.4 Let (H,0) and (L,d) be Fredholm complexes of hilber-
tisable Fréchet spaces. Then, the complex (H®, L, D) is Fredholm and we
have x(H®,L, D) = x(H,0) x(L,d).

Proof. Indeed, using (5.4.5) gives

XHOL,D) = > (=1)" Y dim H/(H) dim H*(L)

_ Z(_w‘ dim HY(H) (=1)" dim H*(L)

= X(Hva) X(Lvd)v

as desired.
O
Suppose (H,0) and (L,d) are Fredholm complexes of hilbertisable
Fréchet spaces. We restrict ourselves to the case where 0; and dj are
continuous. Consider the completed o-tensor product (H®, L, D), where
n; = (=1)'1g: for i € Z. By Corollary 5.4.4, it is a Fredholm complex.
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Let (H®,L,68) be an associated complex for (H®, L, D), the operators &
mapping as in the sequence

(H®UL,5): "'%(H@A%L)i_l &(H(}EUL)Z@

and the Laplacians A; = D;_16; + 524_1 D;, i €7, being Fredholm operators.
We can construct &;, i € Z, e.g., as follows. Choose associated complexes
(H,§y and (L,5") for (H,d) and (L,d), respectively. Consider the
mapping & : (H @, L) — (H @, L)™' whose restriction to H’ @, L,
J+ k =1, 1s given by

8§ =8 @1 + (=11 @ 8.

By the above, we have §;0;11 = 0 for each ¢ € Z. Moreover, we check at
once that

Di_10; 4+ 61 D; = <8j—15](‘H) + 5;53@) @l 4+ 1 @ <dk—15;(f) + 5,(310%)

if evaluated on H’ ®, L* with j + k = i. Denote by J; the closure of &;
in (H®UL)i X (H®UL)i_1. Then, the operators D;_i8; + 6;41 D5, 1 € Z,
are Fredholm, i.e., (H®,L,d) is an associated complex for (H®, L, D), as
desired. We can now apply Lemma 5.1.8 to see that

(D4 6).: (HO,L)™™ — (HO, L)* (5.4.6)

is a Fredholm operator. Assume moreover that the associated complexes

(H,§y and (L,5") meet the condition that

910" + 5o,
di 16" + W d;

are linearly homotopic to (1/2)1: and (1/2)1:, respectively, for all i € Z.
Then D;_16; + ;41D is linear}y h?motopic to Lima, 1y for any « € Z. By
Theorem 5.1.9, the index of (D 4+ §). is equal to the Euler characteristic of
(Ho, L, D), i.e., x(H,d)x(L,d). This generalises the construction (5.4.2)

to arbitrary complexes of hilbertisable Fréchet spaces.

Example 5.4.5 Consider two single Iredholm operators 9 € L(H, ]:])
and d € L(L,L) in hilbertisable Fréchet spaces. Specifying them within
complexes, we fix associated complexes

0 — H % 0 — 0, 0 — L % [ — o,
m . w -
0 «— H ﬁ H +—— 0; 0 «— L & L +— 0.

Define the #-product of 9 and d by

(00l —1sP
a#d_<1®d §H @1
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mapping as (H®UL) @ (F[@UZ) — (]:]®UL) @ (H®gz) (cf. (5.4.2)). It
follows that d#d is a Fredholm operator. If moreover

tSHY 4+ (1 —1)(1/2) 14, t5Bd + (1 —1)(1/2) 1z,
tOSH) 1 (1 — 1) (1/2) 1, tds™ + (1 —1)(1/2)1;

are Fredholm operators for any ¢ € (0, 1), then ind 9#d = ind 9 ind d inde-
pendently of the choice of associated complexes.

4

We now turn to the case where (H,d) and (L,d) are complexes of
pseudodifferential operators on different manifolds & and V, both manifolds
bearing singularities. The completed o-tensor product of (H,d) and (L,d)
is of great importance because it lives on the Cartesian product of the
manifolds S and V, which bears higher order singularities. If both (H,0)
and (L, d) are elliptic, then (5.4.6) yields an example of an elliptic operator
on S x V', thus giving rise to a concept of ellipticity on manifolds with higher
order singularities. For instance, if S is a (' closed manifold and V' is a
(™ closed manifold with conical points, then S x V' is a C'* manifold with
edges. On the other hand, manifolds with edges survive under multiplication
by a ' closed manifold S, which contributes merely to the edges. If S
and V are C'™ closed manifolds with conical points and edges, then S x V
bears a natural C'* structure of a manifold with corners. This class of
manifolds seems to be most important because it survives under Cartesian
multiplication.

When discussing analysis on manifolds with edges, we confine ourselves
to the case where S is a > compact closed manifold and V' is a "> compact
closed manifold with conical points which are vy,...,v;. Set M = 5 x V.
This is a €™ compact closed manifold with edges S x {v;},i=1,...,[, and
the corresponding stretched manifold is M = 5 xV, where V is obtained by
blowing up V at every conical point. Thus, V is a smooth compact manifold
with a boundary bearing the structure of a fibre bundle over the set of
conical points. Consider two complexes of pseudodifferential operators on

S and V,

(H,B): ... — MW=ty 220 guwdy By
(L,A): ... — Hemmm(Visly Db sen(yiy Ay

(5.4.7)

both complexes being bounded above. Here,

Bi € Wg(S; Wi Wi,
Ai € UMV VL Vit )

belong to “algebras” of pseudodifferential operators on S and V., respec-
tively. Thus,

i = tio1 — 01,

Si = Si—1 — M1
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for all 1 € Z. However, the weight data w; = (v, %41, (—[,0]) may be
arbitrary, not necessarily meeting v; = v,_1 —m;_1, as is allowed in the cone
theory (cf. Schulze [Sch98]).

As mentioned, all the spaces of sections entering into (5.4.7) are hilber-
tisable Fréchet spaces. Consequently, the product theory sketched above is
applicable. Setting

(H®UL)i = @ HtJ(W])®UHSka(Vk)7
atk=i , (5.4.8)
Di |y woyganrnry = Bi@1+(=1)7 10 A,

for j + k = 1, we arrive at the completed o-tensor product of complexes

(5.4.7)

(Ho,L,D): ... — (HO, L)™' 228 (Hé, L) 2

where D; stands for the closure of D; in (H®UL)i X (H®UL)H'1.

Denote by W’ K V* the external tensor product of the bundles W7 and
V*. This is a vector bundle over S xV whose fibre over a point (y,w) € S xV
is Wy] ® Vj. The completed o-tensor product Htﬂ(Wj)(EAQUHSk’Wk(Vk) can
be identified within distribution sections of W7 K V* over M. We write
Hsr (WIRVF) for it. By the above, H'+7 (WK V*) is a hilbertisable

Fréchet space.

Lemma 5.4.6 Let W and V' be vector bundles over S and V, respec-
tively, and let v € R. Then

top.
~

H=(W)E, H= (V) = H= (W R V).

Proof. Recall that the space H*7(W K V) is obtained by gluing to-
gether the spaces H*(S,m*(W @ H*"(V))) close to OM = S x 9V and
H*(W R V), away from dM, the former being defined with respect to a
group action (kg )g, in the fibres W, @ H*7(V), y € 5 (cf. (2.2.3)). Asis

mentioned in the proof of Theorem 4.4.1, the group action fulfils an estimate

_I\R
H’ié’HE(Wf@Hs,v(v)) < ¢ max ((9,(9 1)

for all > 0, with R = max(|s|, |y + $£2]) and ¢ independent of §. Hence it
follows that

IA

H’i@l)fyﬁnu"wf@st(V) ¢ (M) N Fymnullwomsn vy,
| Fpntillwyomonry < e ()T Hm@%]—"yﬁnuﬂwﬂ}ww(v)

for all n € RY. Integrating these estimates over n € R? leads to continuous
embeddings

HYR(S W@ HY (V) — H'(S,m*(Wa H* (V) — H™HS,We H(V)),
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for any ¢t € R, where the spaces on the very left and right are defined with
respect to the identity action in the fibres W, @ H*Y(V), y € S. Since
the completed o-tensor product and the Hilbert tensor product coincide for
Hilbert spaces, we see that H'(S,W @ H*"(V)) = H{(W)&,H*"(V), and,

in consequence,
H*(W)0, H*Y (V) = H(WR V) — HW)Q, H*(V)  (5.4.9)

for all s € R large enough. This proves the lemma.
O

The lemma shows that, for {; = co and s; = oo, the spaces involved
in the completed o-tensor product (H®, L, D) are weighted Sobolev spaces
on M, i.e., those serving as domains for operators in the calculus on M
developed in Chapter 3. However, the operators D; of (5.4.8) do not belong
to the algebras ¥™(M; V,\N/; w) described therein, unless v, = v;—1 — m;_y
for each i. If the weight data w; meet this condition, then D;, i € Z,
belong rather to the norm closures of the algebras in question than to the
calculus itself, as is the case provided that all the B; and Ay, are differential
operators.

Loosely speaking, the action of B; @ 1 on a section u(y,w) of W/ X Vk
is given by the operator B; applied in y € S whereas the action of 1 @ Ay
on u(y,w) amounts to Ay applied in w € V. This is why one uses the
specification “external multiplication” for a tensor product of operators on
different manifolds.

Theorem 5.4.7 If (H,B) and (L, A) are elliptic complexes on S and
V', respectively, then the complex (H®, L, D) given by (5.4.8) is Fredholm

and its cohomology does not depend on the particular choice of t; and sy.

Proof. Indeed, both (H, B) and (L, A) are Fredholm complexes, which
is clear from the Hodge theory on S and V' (cf. Theorem 5.3.4). By The-
orem 5.4.3, the complex (H®,L, D) is Fredholm and its cohomology at
step i amounts to @;4 =i H’(H)®, H*(L). This gives the desired conclusion
when combined with the fact that the cohomologies of (H, B) and (L, A)
are independent of the choice of ¢; and s, respectively.

O

Theorem 5.4.7 gains in interest if we realise that, when combined with
construction (5.4.6), it yields interesting elliptic operators on M without po-
tential and trace conditions, the ellipticity being in the Douglis-Nirenberg
sense. Moreover, starting with an elliptic complex (L, A) of Euler charac-
teristic 1 on V and varying (H, B) over elliptic complexes on S, we arrive
at elliptic operators without potential and trace conditions and of a given

index on M 3.

3This result was presented by F. Mantlik in the Workshop “Partial Differential Equa-
tions” at the University of Potsdam (July 13 — July 19, 1997).
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The point of Theorem 5.4.7 is in the assertion that completed o-tensor
products of elliptic complexes bear all essential features of elliptic complexes,
namely, a finite-dimensional cohomology independent of the Sobolev spaces
where it is evaluated. Therefore, they are natural candidates for the class
of elliptic complexes in a calculus of pseudodifferential operators on M to
be specified. As mentioned, this calculus is different from ours; in fact, it
is much simpler because it relies on the identity action in the fibres of M
over S. For more details we refer the reader to Luke [Luk72]. Of course,
it is not the problem that the components B; @ 1 and 1 @ Ay of D; are
allowed to have different orders o; and my. Such operators can be handled
within the concept of weighted homogeneity and ellipticity in the Douglis-
Nirenberg sense. Let us have look at how the ellipticity of (H, B) and (L, A)
is inherited by the product complex. The interior ellipticity of (H&, L, D)
is controlled by the complex of principal interior symbols *a®™(H®, L, D),
where bao’m(Di) =0%(B;)®1+ (—1)j1 ® bamk(Ak) on W*(Wj X Vk). We
check at once that

Yo" ™ (HG, L, D) = o°(H,B) @ 0™(L, A),

and so the exactness of bo®™(H®, L, D) over (T*S\ {0}) x (*T*V \ {0})
follows from that of ¢°(H, B) and "0™(L, A) by Kiinneth formula (5.4.4).
On the other hand, the ellipticity of (H®, L, D) in the normal directions to
the edge S relies on the complex of principal edge symbols Ugdge(H®gL, D),
where Ugdge(Di) =0%(B;)@1+ (—1)j1 ® Ax on W*(Wj ® Hesxx (Vk)) Once

again we see that
erdge(H®0L7D) = UO(HvB) @ (LvA)v

and so the exactness of Ugdge(HéQgL, D) over (T*S\ {0}) follows from the
exactness of 0°(H,B) and the Fredholm property of (L, A) by Kiinneth
formula (5.4.4).
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