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Abstract

Parabolic equations on manifolds with singularities require a new calculus of anisotropic pseudo—
differential operators with operator—valued symbols. The paper develops this theory along the lines
of an abstract wedge calculus with strongly continuous groups of isomorphisms on the involved Ba-
nach spaces. The corresponding pseudo—differential operators are continuous in anisotropic wedge
Sobolev spaces, and they form an algebra. There is then introduced the concept of anisotropic
parameter—dependent ellipticity, based on an order reduction variant of the pseudo—differential cal-
culus. The theory is applied to a class of parabolic differential operators, and it is proved the

invertibility in Sobolev spaces with exponential weights at infinity in time direction.
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2 CONTENTS

Introduction

The theory of parabolic partial differential equations is a classical field of mathematical analysis with
a large variety of models in physics, engineering and applied sciences. A simplest example is the heat
equation. Typical aspects are the construction of fundamental solutions, of inverse operators to initial—
boundary value problems, or the regularity of solutions and asymptotic properties, cf., in particular,
AGRANOVIC, VISIK, [AV], SOLONNIKOV [Sol], [So2], EIDEL’MAN [Eil], FELLER [Fe], FRIEDMAN [Fi] and
AMANN [Am].

Heat operators in several variants also occur in other areas of mathematics (spectral theory, index
theory, geometry and topology), cf. ATHIYAH, PATODI, SINGER [AS] and GILKEY [Gi].

Similarly to the theory of elliptic equations, where pseudo—differential operators are a standard tool
to express parametrices, to prove elliptic regularity and the Fredholm property in Sobolev spaces, etc.,
it is natural to ask for a pseudo-differential approach also for parabolic equations.

Another motivation to study parabolicity under the aspect of pseudo—differential operators is that
non—-smooth spatial configurations are very difficult to handle by using direct traditional methods only.

The present paper is the first one of a series of systematic investigations on parabolic pseudo—
differential operators. We will obtain a general calculus aimed at solving initial boundary value problems
on spatial manifolds that may have singularities of conical or edge type. Solutions will be given in
terms of inverse operators expressed by means of various symbolic levels. The singularities require a
special approach with pseudo—differential operators with operator—valued symbols. Moreover, parabolic
operators have a typical anisotropic behaviour; the time covariable is involved in the symbols with another
homogeneity than the spatial covariables. In the operator—valued set—up the homogeneity is connected
with natural one—parameter groups of isomorphisms on the Banach spaces in which the symbols act as
operator functions. Such groups are also contained in the corresponding Sobolev spaces of vector—valued
distributions. This material is the main subject of the present paper.

In recent years the program to establish a pseudo—differential calculus on manifolds with singular-
ities to solve elliptic problems in terms of parametrix constructions made considerable progress. This
concerns, in particular, manifolds with singularities of cone, edge or corner type as well as with singular
boundaries or noncompact exits to infinity, cf. the papers and monographs of SCHULZE [Sul], [Su3],
[Sul0], EGorov, SCHULZE [ES], and papers jointly with DORSCHFELDT [DS], SCHROHE [SS2], FEDOSOV,
TARKHANOV [FST], STERNIN, SHATALOV [SSS1], [SSS2]. Moreover, pseudo—differential methods for the
singular set—up were developed by CORDES [Col], [Co2], PLAMENEVSKL [Pl], ESKIN [Esl], [Es2], MEL-
ROSE, MENDOzA [MM], MELROSE [Me], UNTERBERGER, UPMEIER [UU].

Ellipticity and parabolicity may be understood in close connection to each other, cf. AGRANOVIC,
VISIK, [AV], SOLONNIKOV [Sol], [So2], [So3]. Nevertheless, the pseudo-differential calculus for the
parabolic theory was not so intensely developed as the elliptic one. This seems to be in fact a real gap in
the literature, though there are some crucial papers, in particular, of PIRIoU [Pil], [Pi2], that consider
parabolic pseudo—differential operators under the aspect of algebras of anisotropic pseudo—differential
operators and a subalgebra of Volterra operators.

Anisotropic pseudo—differential operators were studied under different aspects by HUNT, PIRIOU
[HP], BocaiaTTo, BuzaNo, RopiNo [BBR] and many other authors. Parabolicity of boundary value
problems in cylindrical domains were investigated by CHAN Zur Cno, EskiN [CE]; the structure of
fundamental solutions in terms of pseudo—differential analysis was studied in a series of papers of IWASAKI
[Iwl], [Iw2]. Let us also note that ESKIN [Es3] considered particular parabolic problems for differential
operators in non—smooth domains.

Parabolic theory for pseudo—differential operators is by no means a straightforward modification of
the elliptic case, although some ideas, such as generalities on anisotropic pseudo—differential operators
or anisotropic ellipticity are not so far from the isotropic case. There are certain problems and new

difficulties, some of them really serious and unexpected at first glance, even for smooth spatial configu-



rations. For instance, if we want to embed operators of the form % + A for elliptic pseudo—differential
operators A (say on a C'° manifold) into a nice calculus, there appears the problem of handling symbols
like i7 + a(x, &) for pseudo—differential symbols a(x,&). This requires specific structure investigations,
cf. the book of GRUBB [Gr2].

Another new aspect is that parabolicity implies the Volterra property. This is roughly speaking
holomorphy on the level of symbols in a complex 7 half-plane, including the symbol estimates there.
The standard operations with symbols that employ excisions in the covariables destroy this holomorphy.
So, in particular, the asymptotic sums within such symbol spaces have to be carried out by other
methods. We shall do this here on the level of kernels by means of kernel cut—offs, which preserve the
required class.

The notion of parabolicity itself is another source of new discussion, in particular, when the spatial
configurations have a singular geometry. There appear, like in the elliptic theory, additional (operator—
valued) symbolic levels, caused by the singularities which have to be included in the parabolicity, in order
to ensure unique solvability. Also the analysis of initial-boundary value problems with compatibility of
initial and boundary conditions on the edge of the time—space cylinder is a rich program, in particular,
when the given operator is pseudo—differential and the transmission property with respect to the initial
surface is required.

Acknowledgment: The authors wish to thank J.B. Gil and Th. Krainer (Research group “Partial
Differential Equations and Complex Analysis”, University of Potsdam) for fruitful discussions on the

manuscript.

1 Anisotropic operator—valued symbols

In this section we define anisotropic symbols of pseudo—differential operators with values in the space
of linear continuous operators between Banach or Fréchet spaces E and E. Let us first assume that E

and E are Banach spaces. Later on we will extend the theory to the case of Fréchet spaces.

1.1 Operator—valued symbols

Anisotropy refers to any fixed 1 <1 € N. The isotropic case is contained in the anisotropic theory for
= 1. For (1,1m) € R x R = R'"" we define the anisotropic norm function

7l = (177 + )= (1)
and an anisotropic smoothed norm function
[, 0l = w(lmnl) + (1 = w7 nl)|7, 10, (2)
where w(r) € C§° (R4, [0,1]) is supposed to be a cut—off function, i.e.,

1 for 0<r<li,
{ N (3)

Later on we need extensions of symbols with respect to the time covariable 7 in the lower complex half
space C_ = {( =7+ : ¥ < 0}. In this case we use also |-,-|; and [-,-];, where the first variable may
be a complex number.

Let us now introduce anisotropic homogeneity:

Definition 1 A function f(,1) € C°(RI19\{0}) will be called anisotropic homogeneous of order
v € R (anisotropic v—homogeneous), if for all A € Ry the relation

F'T An) = N f(r,m) (4)
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holds. We call f(7,n) € COO(]Rifnq) anisotropic homogeneous of order v € R for large |1,n|;, if the
homogeneity relation (4) is satisfied for all X > 1 and |7,n|; > ¢ for a constant ¢ > 0. The smallest

possible constant is called the homogeneity constant of the given function.

Note that |7, 7|; is obviously anisotropic homogeneous of order 1 and [7, n]; anisotropic homogeneous
of order 1 for large |r,n|;. From now on we will shortly denote anisotropic homogeneity of order v by
v-homogeneity. Set DY, = (=id, )P (—idn)?" and |B|; = 1B + |B'] for B = (o, B') € NI+¢.

Remark 2 Differentiation of both sides of (4) shows that the derivatives D2, f(7,7) are (v — |B];)-
homogeneous for any v—homogeneous function f(r,7) and arbitrary multi-indices 3 € N'*7. A similar
assertion holds for functions that are v—homogeneous for large |7, n|;.

Proposition 3 A function f(r,1) € C*®(R**4\{0}) is v—homogeneneous iff it satisfies the modified

Euler relation

.W@w=h§+;m%-mm=mW> 6

for all (1,n) € R*2\{0}.

Proof: Using anisotropic polar coordinates p = |7,7|; and ¢; = % the equation (5) takes the form

(”a%) f(p,0) =vf(p,o)

which is solved by all functions f(p,0) € C*°(R*4 \ {0}) of the form f(p,0) = p”f(1,0). In Cartesian

coordinates this means f(r,n) = |7,n|] f ) and hence f(A'7,An) = N f(1,7n). O

T _n_
[Tml}? 17ml

Lemma 4 There are constants ¢,C > 0, such that the inequalities

e[Cmle < (L+ ¢ + ) < ¢ ul (6)

and

hold for all s € R and arbitrary ({,n) € Cx R?. Moreover, the anisotropic version of Peetre’s inequality

is satisfied, i.e., there exists a constant ¢ > 0 such that
Gy < ePlic = ¢ =1 '); (8)
holds for all s € R and arbitrary (¢,n),({',n') € C x R?.

Proof: To (6): For (¢,n) € B_é it follows (6) from the compactness of the anisotropic ball B_é =
{1¢,nli < 2}, since [¢,n]; > 1 and (1 +[¢[2 + |n[2)= > 1 for all (¢,n) € C x Re. But for |,n], > 2 we
have [¢,7]; = (I¢|? + |7]?) such that the estimate

1

2 < (2(I¢) + Inl*))

L L

Gl < (L+ 1S + Inf*) =227 [C, i

implies the desired inequality.

To (7): For (¢,n) in the compact set Bl it follows (7) because of [¢,n]; > 1 for arbitrary [ € N\ {0}.
By definition we have {|¢| < 1}N{|p| <1} C B_é such that we only have to check the cases |(| > 1 and
In| > 1. Moreover, for (¢,n) € (C x R?) \ BL we have [¢,5]; = |¢,n]; and hence the estimate

l
) N o mas [ ICE > 12+ [l K>,
P + ) = ()mmw<”> i
( ) JZZ:O J HEPMPED + [t > [P + I nl > 1,
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which gives the first part of (7). The second part is clear for |n| > 1, whereas for || > 1 and || < 1 it
follows from |C[* + [n]* < [¢]* + [¢]* < 2(I¢I* + [nl*").
To (8): In view of inequality (6) it suffices to prove the anisotropic version of Peetre’s inequality (8)

in the form
. 5 s 5 5 |s| . . s
A+ [P+ P <A+ |C=CP+ =) L+ + P2 9)

For arbitrary a,a,b,b € C we have

L+la+al?> +pb+b* < 1+ (a| +la)? + (] + )%
c(1+al* + ) (1 + |al* + |B]*)

IN

which implies (9) for s > 0 with ( =a+a, n=b+band (' =a, ' =b. For s < 0 we get
(L+Ja+al® + [b+b) e (1+ |al* + b)) 2 > (1 + |a]* + b=
which gives us (9) with ( =&, n=b and ¢' = —a, 1’ = —b. a

The estimates (6) and (8) are also essential for the isotropic pseudo—differential calculus where [ = 1.
Sometimes the inequality (7) is used to reduce arguments to the isotropic case.

After these preparations we turn to the operator—valued theory. With the Banach spaces E and E
we associate group actions {k) }aer, and {Fx}rer,, respectively, as follows: A family of automorphisms
{Ka}arer, is called a group action associated with E if the map A — &) belongs to C(R, L, (E)) and if
it satisfies k) 0 Ky = Ky, H;l = ky—1 for all \,u € Ry. Here £, (FE) is the space of all linear continuous
operators a : E — FE equipped with the strong operator topology, i.e., with the system of semi—norms
L(E) 3 a — ||ae||g for e € E. Note that for every group action there are constants M, ¢ > 0 such that

-M <
||"5>\||L(E) < cA for A<,
eAM for A>1.

In view of (10) and (8) for s = 1 we obtain

(10)

Let us simply set x(7,1) = K[, and &(7,7) := &
constants ¢, M > 0 such that

i

5o o (o) oy < el = Com =" (11)
is satisfied for arbitrary (¢,n), (¢',n') € C x RY.
Definition 5 Let v € R and Q = Uy x U with open sets Uy C RPo, U C RP; then the space
SUHQ x R B, E) (12)

of anisotropic operator—valued symbols is defined as the set of all a(t,y,7,m) € C°(Q x R1+q,£(E,E))
such that
15 (r,m{Dg, D yalt, y, 7 mI(r )l o s ) < clrmly ™ (13)

holds for all a = (a,a’) € NP0 x NP, B = (6o,8') € Nx N and all (t,y) € K for arbitrary compact
K CcC Q and all (1,n) € R*Y with constants ¢ = c(a, 8, K) > 0; |B]; = 180 + || for 3 € N1T4,

The best constants ¢ = ¢(a, 3, K) in (13) form a system of semi—norms that define a Fréchet topology
n (12), cf. [Bu]. With this definition the space (12) depends on the specific choice of the ky, &x. They
are always fixed in our applications; so for abbreviation we omit them in the notation. We only need
the cases @ = Uy x U with open Uy CR and U C R? or Q = (Up x U) x (Up x U), where in the latter
case we call the elements of (12) amplitude functions with variables ¢,y,t',y', 7, 7.
Of course, we also allow the special case £ = C or E = C. Then we set k) = id and &) = id for all
A€ R,. With E = E = C we get the scalar anisotropic symbols and write for short $¥!(Q x Ri*¢) =
SYH(Q x RMF4; C,C) (see also [Pil]).
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Denote by S*!(R'*4; E, E) the closed subspace of anisotropic operator—valued symbols with constant
coefficients, that means they do not depend on (¢,y,t',y").

The following assertions are simple generalisations of analogous results of the isotropic theory and
can be proved by the same techniques as in [Sul]. Therefore we will omit the proofs here. The following
lemma is an immediate consequence of the definition of the symbol classes and of the nuclearity of
C> ().

Lemma 6 We have for an open set Q = Uy x U C R and Q2 = Q x Q
SYLHQ? x RV B E) = 0% (0%, SYH R B, E)) = C®(Q%)&, SV (R E, E).

Thus every a(t,y,t',y',7,n) € SYH(Q? x ]RH“I;E',E) can be written as a convergent sum
o0
a(t,y,t',y',mm) =D ¢ibi(t,y)a;(m,m)d;(,y) (14)
=0

with sequences (c;j) € l1, bj,dj = 0 in C(Q) and a;j = 0 in S”’Z(RH‘I;E,E) for j — oo.

Lemma 7 Let Q) = Uy x U with open sets Uy € RP°, U € RP, and let E,E and E be Banach spaces
and {k)}, {kr} and {Rx} the associated group actions. Then for arbitrary v, € R we have the following
relations:

(1) For all v < ¥ there are continuous embeddings

SYHQ x R B E) < SPHQ x R B, E). (15)

(¢i) It holds
SYHQ x R B E)S7HQ x R B E) C §YHHQ x R B E), (16)
with the point—wise composition of the operator—valued symbols.
(7i1) As a particular case of (ii) we have

SYL(Q x R1)S7HQ x R B, E)

N C S¥t7HQ x RMY; B, E), 17
SYL(Q x R B, E)STHQ x RITY) } = ( ) (17)

with point—wise multiplication of the scalar symbols by the operator—valued ones.

(iv) For all « € NPotP 3 € N4 and arbitrary v € R we have

D¢, D? S"HQ x R B, E) C S*7IFIH(Q x R B, E). (18)

Equation (16) is the composition rule for operator—valued symbols. The proof of Lemma 7 is straight-
forward and left to the reader.

Example 8 Let ¢(z,t,y) € C®°(R" x ), Q C R open, be a function with ¢(z,t,y) = 0 for all
(x,t,y) € R* x Q with |z| > ¢ for some ¢ > 0. Define the family m4(t,y) of multiplication operators by
me(t, y)u(z) = ¢(z,t, y)u(z) for u belonging to the standard Sobolev space H*(R™) on R” of smoothness
s € R. Then we have my(t,y) € S (Q x RM7; H¥(R"), H*(R")) with respect to the group action
(kau)(z) = Azu(Az), A € Ry.
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Remark 9 The space S™°(Q2 x ]RH‘I;E,E) has a representation as a projective limit of the

form S™°(Q x R\, E, E) = lim SY1(Q x R, B, E), with the projective inclusion spectrum of the
vER

Fréchet spaces (S"’l(Q x Rt B, E’)) 2 and it is independent of the particular choice of {k)}, {fr}
ve
of the anisotropy .

Moreover, the symbol estimates (13) imply S—°°(R'*; E, E) = S(R'*?, L(E, E)), where the right
hand side the Schwartz space of rapidely decreasing functions in R'*? with values in ﬁ(E,E). Thus
Lemma 6 and the stability of the projective tensor product under the projective limit allows us to write
§7°0(Q x R4, B, E) = C°(Q, SR, L(E, E))).

There is an important generalisation of the homogeneity of scalar functions to the operator—valued
case. Let us start with a function

p(7,m,€) € C(RTTF\ {0})
which is ¥~-homogeneous in the sense
P(N'T, A, AE) = N'p(7,1,€)

for all A € Ry and (7,7,&) € RMT4T7\ {0} (here (7,m) € R, x R?, £ € R*). Then we can form a classical
pseudo—differential operator in R™, defined by

frmu() = [ [ e rn, utads'de (19)
for every fixed (7,1) # 0. This can be regarded as an operator function
f(rm) € C(R™\ {0}, L(H*(R"), H*™"(R")))
for every s € R. Setting (kau)(z) = A2u(A\r), A € Ry, an elementary calculation shows that
FO'T, M) = N raf(r,m)ky (20)

holds for every A € Ry and all (7,1) € R**¢\ {0}. This motivates for general group actions the following
definition.

Definition 10 A function f(r,n) € C°(R'"t7 \ {0}, L(E, E)) is called anisotropic v-homogeneous

in the operator—valued sense if it satisfies
FO'T, ) = N Raf(r,m)R3 ! (21)

for all X € Ry and every (r,m) € R'T7\ {0}.
We call the function f(r,n) € C®(R**Y, L(E, E)) anisotropic v—homogeneous in the operator—valued
sense for large |7, if equation (21) holds for all X\ > 1 and every (7,m) € R*Y with |7,n|; > ¢ for some

constant ¢ > 0. The smallest constant ¢ with this property is called homogeneity constant of f.
Lemma 11 Every a(r,n) € C*(R',L(E,E)) which is anisotropic v-homogeneous in the
operator—valued sense for large |T,n|; belongs to S"’l(Rl"‘q;E,E‘).

Proof: Because of the (¢, y)-independence of the function a we only have to check the estimates

1&(r,{D2 a(r,m) }s(r,n)|| < Clr,n); =" (22)
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for every f € N'T¢ and (r,n7) € R, But for |r,n|; < ¢ we get (22) from the compactness of this
anisotropic ball. For |7,n|; > ¢, using the homogeneity, we obtain

15 (r,m) (D7 ) (r, me(r,m)|

= & (n,p)[na) PR B a T U kT, m)k(T
= I il D) (o ) (]

@20 (5 e 7))

< Cfrly ",

v—|Bi

= [l

with C = sup{||D§’na(T, nl : |7, =1}
In the above estimate we used that the derivatives of homogeneous functions are again homogeneous
of the corresponding diminished order. This follows immediately by differentiating equation (21). O
Let us now observe an analogue of Euler’s homogeneity relation, cf Proposition 3, in the operator—

valued set—up. First we consider the particular case (19); then we pass to the general case.

Proposition 12 Euler’s homogeneity relation for p(r,n,§), namely

(lr +Zm8 +Z£ka§) (m,m,€) = vp(7,n,€), (23)

implies a corresponding homogeneity relation for f(r,n):

Eifr) = | gl + 3 W | (o) = W1+ H)o f(rn) (24

n

with the operator H defined by u(z) — Hu(z) = > %(mku)(:ﬂ).
k=1

Conversely, (24) implies (23) and hence (20).

Proof: Using relation (23) we obtain

vf(rmule) = [ e=ptrn O
-/ “ﬁ(T—+Zma +25k6£> (7., ()€
<175+;%—m> F(rym) / ”éz%g p(r, 1, €)a(€)) .

Further we have

/ ’“Zﬁkaf P UV dE = =) 83(% / e"zép(r,n,f)a(ﬁ)df)
= —(H o f(r,n)u()

which gives us (24). For the converse direction we use that

/ €78 a(£)a(€)d = / EB(€)a(€)dE

for all u(z) € SE]R”) implies a(§)@(€) = b(€)a(€) and hence (a(€)—b(&))v(€) for v € S(R™). In particular,
for v(€) = e 1+1€Z #£ 0 we obtain a(£) = b(§).

Starting with (24) and using the above computation in opposite direction we get the second part of
the proposition. O
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Remark 13 Notice that the operator H := > fk% acting on scalar symbols of the class S”(V x
k=1

R™), V C R™ open, also plays a role in the symbol estimates that are traditionally written
| D2 D, )] < e(1 + [¢])7 1!

forall z € K, £ € R, K CC V arbitrary, for all multi-indices « € N, § € N™ with constants
¢ =c(a,B,K) > 0. An alternative description is to define S”(V x R™) as the subspace of all p(z,&) €
C>(V x R") satisfying

D3 H p(x,€)| < 1+ [€])"

for all x,¢ as above and all & € N™ and k € N, with constants ¢ = ¢(a, k, K) > 0.

Remark 14 For the Fourier transform F € R" acting, e.g., on S(R") and the group action
(kau)(z) = A3 u(Az) we have

(Frau)(§) = /e_”g/\%u()\x)dx

/ e RN u(z) AV
= niy (Fu)(9),

ie., Ky = ]—"‘1/@;1}". This relation explains, in particular, the role of the exponent A in front of the
dilations.

To illustrate the nature of the homogeneity of operator—valued functions we want to consider a further

example. Let us start with a function

Po(p, 7,7, 7)€ 0 (By x XS

T7ﬁ77‘;,7ﬁl
a(r,nu = / = p(r,rp, v, (e dr' dp,

regarded as an operator family

a(t,n) : C°(Ry) = C=(Ry),
parametrised by (r,7) € R:4. Setting (kau)(r) = A2u(Ar) for A € Ry, it follows that

a(\'7,An) = N kaa(r,n)ky "
for all A € Ry, (r,m) € R, Writing
-1

l 1—1

f(S7 S’7p77—7n) = p(s 7871p7 Si T7 871777 SlilT7S 77)

we have f(As, As’, A\p, \l7, An) = A f(s, 8", p,7,n) for all A € Ry, s5,5' € Ry, (p,7,n) € R*1H4, Thus we
get, cf. Proposition 3,

f ! f f f ! Crf
0 6 f. i E = = 2
s +s o +p +Ir +j 177]3773' wf, (25)

and we can obtain a homogeneity relation for the operator family a(7,n):

Proposition 15 The operator family a(r,n) satisfies the homogeneity relation
Oa ! da
Balryn) i= |t + > nig - | (rn) = pa(rm) + ha(r,n) — a(r, )k (26)
j=1 J

_ .0
for the constant operator h = r4_.
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Proof: Setting g(s,s',p,7,n) := f(s7 1,81, p,7,m) we get from (25)

) ,09 g g
—*é 57 -—+l——+§:j = ug. (27)

This yields

0 0 0
{arn) ~ Eralr, (o) = [ [ et (—s@— aS,+pa) 9,5, p, 7 )u(s)ds'dp. (28)

Using 2 (e%*g) —ipe’*’g = €' 2 (e’“"’g) +ipe 'Pg = e 7 0L the right hand side of (28)
may be written
0
—saa(T, nu(s) + I + I + I3

for

L = // e=50i(s — s\ pgu(s')ds' dp,

i(s—s' 9
I, = //e( )pg@(s'u(s'))ds'dp,
I; = // ei(s_s’)ppg—iu(s')ds'dp.

Applying pa% (ei(s_s’)pg) =1i(s — s')pei(s_s’)pg + ei(s_s’)ppg—z it follows that I3 = Iy — I; for

Iy = //p% (e"(sfsl)"g) u(s")ds'dp.

Moreover, for I we obtain Ir = a(r,n)u(s) + a(r,n)sZu(s). In Iy we may replace pa% by the operator

2 5 —id. Thus
Iy = —a(7,n)u(s) // 2p (ei(s_sl)pg) u(s")ds'dp.
) ap

The second term of the right of the latter equation vanishes. So Is = —a(7,n)u(s) — I; and hence

L +L+13 =L +a(r,n)u(s) + a(r,n)hu(s) — a(r,n)u(s) — I
= a(r,n)hu(s)

We thus obtained pa(r,n) — Eja(r,n) = —ha(r,n) + a(r,n)h which is the assertion. a

The following interesting generalisation of Euler’s homogeneity relation for operator—valued functions
is due to Th. Krainer. Recall that we are interested in L(E, E’)fvalued functions, where E and E are
Banach spaces endowed with group actions k) and k). By A and A we denote the infinitesimal generators
of the Cy groups @ : R — L(E) with Q(t) = Kexp(¢) and @ R — E(E) with @(t) = Kexp(t), respectively.
Further let D(A) and D(A) be the domains of A and A. Then we obtain the following result.

Proposition 16 A function f(r,n) € C®(R'*? \ {0}, L(E, E)) with f(r,n)D(A) C D(A) for all
(1,m) € R4 is anisotropic v—homogeneous in the operator—valued sense if and only if for everyu € D(A)

the differential equation
Eif(r,mu= (wf(r,n) + Af(r,n) — f(T,n)A)u
is satisfied.

Proof: Suppose first f to be anisotropic v—homogeneous in the operator—valued sense. Then for all
(r,m) € R4\ {0} we have

— r Vi T ) et
FCrom) = |0l Rir . f (ITJ)I%’ |Tﬂ7|z> Bl
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In anisotropic polar coordinates (p, o), cf. Proposition 3, this means

F(0.0) = 0"Rp f(1, 005, = 9 Qin p)f(1,0)Q(~In ).

Then for u € D(A) we can form 8%f(p, o)u and it holds

(pﬁ) Flp.ohu = p(vp" G ) F(L.0YQ(~np)

dp
+p" L AQ(In p) £(1,0)Q(~ In p)
—p" "1 Qn p)f(1,0)Q(~n p)A)u
(Vp"kpf(l, a)m;l + p”gkpf(l, 0)/@;1 — "R, f(1, O')I'Q;lA) u

(Vf(paa) + Avf(pao—) - f(p,O')A)u

which is the desired differential equation in polar coordinates.

On the other hand we suppose that f satisfies

(pa%) (o o)u = (v (p,0) + Af(p,0) — F(pr o) A)u (20)

for all w € D(A). Then setting F(p,0) = ;?;;lf(/% o)k, = Q(—1Inp)f(p,0)Q(ln p) we get
(paip> F(p7 U)U = (-ANI?Lplf(pa U)I‘f/p + /2‘/;1 ((p%) f(p,o’)) Kp + I}"—/plf(p70_)h:p> w.

Therefore inserting (29) we have (pa%) F(p,0)u = p"F(1,0)u or f(p,0) = p"k,f(1,0)k,", and that is
equivalent to the anisotropic r—homogeneity in the operator—valued sense. |

1.2 Classical symbols

We now turn the subspaces of classical anisotropic operator—valued symbols. The scalar versions of
these spaces can be found in [Pil]. Denote by S®)1(Q x (R1+4\{0}); E, E) the subspace of all operator—
valued functions f(,)(t,y,7,n) € C°(Q x (R"T7\{0}), L(E, E)) that are v~homogeneous in (r,7) for all
(t,y) € Q.

By definition we have
SUIHQ x (RTI\{0}); E, E) = C(Q x (R™\{0}), L(E, E)) (1)

and SM)H(Q x (R17\{0}); E, E) is a closed subspace of C*°(Q x (R'+7\{0}), £(E, E)) in the induced
topology.

Furthermore, denote by S [”]’l(Q x Rt E, E‘) the subspace of all operator—valued functions
f(t,y,7,m) € C°(Q x R4, L(E, E)) that are v—homogeneous in (7, 7) for large |, 7];. For an arbitrary
excision function x(7,7n) we have

X(1,m) S Q x (RH\{0}); B, E) C S (Q x R B, B).
From Lemma 11 it follows that S(Q x R E, E) C §*{(Q x R B, E).

Definition 1 Let v € R and Q = Uy x U with open Uy x U € RP° TP qas in Definition 5. Then the
space of classical anisotropic operator—valued symbols of order v

SuHQ x R, B E) (2)
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is defined as the set of all a(t,y,7,n) € S"(Q x ]RH‘I;E,E) such that there is a sequence
(@miy (3, 7)) With 0o (t,y,7,m) € SU=DI(Q x (BH1\{0}); B, ) for every j, satisfying the

relation

N
a(t,y,7,n) = >_x(r,mag_j(ty,7,n) € S NHHQ x R B, E)
7=0

for every N € N and for any excision function x(1,1). Analogously to the isotropic case the function

ox(a)(t,y,T,n) = aw(t,y,7,n) is called the v—homogeneous principal symbol of a.

Remark 2 The (v — j)-homogeneous components a(,_;)(t,y,7,m) of an a(t,y,7,n) € Sé’l’l(ﬂ X
Rt B, E‘) are uniquely determined.

The notation ¢% for the homogeneous principal symbol is motivated by one of the main applications
of the theory namely to equations on manifolds with edges. There is then an operator—valued homoge-
neous principal edge symbol (which is an analogue of the classical boundary symbol in boundary value
problems) together with a homogeneous principal interior symbol, denoted by 0 For higher singular-
ities there are additional principal symbolic levels associated with lower—dimentional skeletons of the

given configuration.

Remark 3 Every function a(t,y,7,n) € S (Q x RT7; E, E) belongs to Sgl’l(ﬂ x R B E).
Taking the uniquely determined v~homogeneous extension a,(t,y,7,n) € SWHQ x (R9\{0}); E, E)
of a(t,y, T,n)|{[rn,=k} With some constant K > 0 larger than the homogeneity constant of a, we have

a(tayaTa 77) - X(Ta n)a(u) (tayaTa 77) € Coo(ﬂas(]Rl+q7£(E7E)))

for every excision function x(7,7). In other words a(t,y,7,n) — x(7,m)aw)(t,y,7,n) € ST(Q x
R B E).

Example 4 Setting E = H*(R*) and E = H* #(R") endowed with the standard group actions
(kau)(z) = A2u(\z), A € Ry, we form

alrym) = op, (11 + 7+ ol F) = [ =51+ ir + ol Fute')da'd,

where the powers are defined by the branch of logarithm that is real for real arguments. Then an
elementary calculation shows n;la(/\lT, An)kru = Ma(r,n)u, i.e., a(r,n) is anisotropic y—homogeneous
in the operator—valued sense. Thus we have x(7,n)a(r,n) € S é‘l’l(]RHq . E, E) for every excision function
x(7,m).

Next we want to define a Fréchet topology in the space of classical anisotropic operator—valued
symbols. By definition we have a canonical embedding

S5 Q x R B, E) < S"H(Q x R B E) (3)
for every v € R. Moreover, the relation (1) induces a Fréchet topology in $t)1(Q x (R*4\{0}); E, E).
By a +— a(,_j) we get a sequence of linear mappings
aj : SYQ xR B E) — SU(Q x (RM9\{0}); E, E), j € N. (4)
k

Furthermore, by a(t,y,7,n) — x(7,n) E aq—j) (t,y,7,1m) we get a sequence of linear mappings
=0

B+ SUHQ X RFG B E) — SYVTFL(Q x R B E), ke N (5)

that is well-defined by Remark 2. Now we topologise (2) with the weakest locally convex topology such
that all the mappings (3), (4) and (5) are continuous. The completeness then follows analogously to the

isotropic case.
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Remark 5 The assertions of 1.1 Lemma 6 and 1.1 Lemma 7 also hold in analogous form for classical

symbols.

1.3 Examples and remarks

In the applications the spaces E often run over scales of Hilbert spaces {E®},cr analogously to the
standard Sobolev spaces. In particular, we have continuous embeddings B E*, when s’ > s and

E*> := (] E° is dense in every E°, s € R. Further, there is a reference space E°, where the scalar
seER
product

(-, )go : E° x E*® = C
extends to a non—degenerate sesquilinear pairing

(,)po : E*x E=* = C

for every s € R. Moreover, on E° we have a unitary group action (i.e. k) is an unitary operator for all
A € Ry) that restricts (or extends) to a group action on E? for all s € R. Setting F = E® and E~° = E'
for fixed s > 0 we get Gelfand triples

{EanaE’;{ﬁ)\})\ERJr} (1)

with unitary group actions. The simplest example is E = H*(R"), E° = L*>(R"), E' = H~*(R") for
s >0 and (kyu)(z) = A2u(lz), X € R,.

More general Gelfand triples appear when we insert for E the weighted cone Sobolev spaces K7 (X "),
5,7 € R. Here X is a closed compact C* manifold of dimension n and X" = Ry x X. First H%%(X")
is defined as r~% L2(R;. x X), where the L? space refers to the measure drdz with dz being associated
with a Riemannian metric on X. Then H®°(X") for s € N is the subspace of all v € H%?(X") such
that (rD,)*vy -...-vyu € H®O(X") for every choice of vector fields v; on X and arbitrary k, N with
k+N <s. Then by duality with respect to (-, -)30.0(x) we can pass to H#O(XN) for —s € N and finally
obtain H®%(X") for arbitrary s € R by interpolation.

The spaces H*°(X") now form a scale in the above sense. More generally we set H*7(X") =
rYH*?(X") for arbitrary s,y € R. Here s is the smoothness as before and ~ is a weight as it plays a
role for the conical singularities r — 0.

The applications require spaces that are modelled on the usual Sobolev spaces for r — oo that is
why we pass to the K7(X") spaces defined by setting

K57 (XM = [wHSY(X) + [1 — w]HE (X)

with some cut—off function w(r) € C5°(Ry); here H*(X") is the subspace of all u € Hf (X") with
(X37)+ (L —w(r))gu) € H#(RY") for every chart (V,¢) on X.

Here we used the (non-direct) sum G = E + F of Banach spaces E, F that are contained in a
Hausdorff vector space. It consists of all g = e+ f withe € Eand f € F. f A ={(g9,—g) : g € ENF},
then G = (E @ F)/A leads to a Banach structure in G. Further, if a Banach space E is a module over
an algebra A, then [a¢]E for a € A will denote the closure of {ae : e € E} in E. In particular,
the spaces H*7(X") and K*7(X") are modules over C§°(Ry x X) as well as over the algebra of all
é(r,z) € C*(X") which vanish near r = 0 and for which 1 — ¢ € C5°(R; x X).

The cone Sobolev spaces K7 (X”) are (Hilbertisable) Banach spaces and equipped with the group
action {kx}rer, with (kxu)(r,z) = (Rau)(r,z) = /\HTHu(/\r, z) for all u(r,z) € K7 (X"), n = dim X.
Then we can define the symbol spaces S¥{(Q x RIF4; 7 (XN), K37 H(XN)).

An example is the operator M, of multiplication by ¢(r) € C§°(R;) which belongs to
SOL(RMTE; K057 (XN), K7 (X)) for arbitrary s, € R. Moreover, M : ¢ — My induces a continu-
ous map M : C§°(Ry) — SOHRMY; 57 (XN), K57 (X)) for all s € R.
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Let us now consider the case of Fréchet spaces E and E. Assume that there are representations

E =lim E; and E = lim B},

JEN keN
with projective inclusion spectra of Banach spaces Ey < E; ¢ --- and EIO < E; > - such that
the associated sets {ﬁg\])};‘;o and {Fag\k)},‘fzo satisfy the compatibility conditions /<;§\”|EH1 = ng\ﬁ'l) and
kg\k)|gk+1 = Fag\k"'l) for all j,k € N. Without loss of generality we also assume that the corresponding

norms ¢; in E; and g in E}, are ordered norm systems in E and E, respectively.

Definition 1 Under the above assumptions we define for v € R and an open set Q = Uy x U C RPo+P
the space S"'(Q x R4 E, E) of anisotropic symbols of order v as the set of all functions a(t,y,T,n)
with values in L(E,E) such that for every k € N there is some j = j(k) € N with a(t,y,7,1) €
SYHQ x R B, By).

The subspaces of classical anisotropic symbols S:l’l(ﬂ X ]RH“I;E,E) are defined by the condition
S:l’l(ﬂ x R\ B, Ey) for every k € N with some j = j(k) € N.

Remark 2 The assertions of 1.1 Lemma 7 are also valid for Fréchet spaces E and E.

Example 3 Let us describe a class of concrete Fréchet spaces which are necessary in the theory of
parabolic operators on manifolds with conical and edge singularities, cf. [BS]. Fix a weight v and a
weight interval © = (0,0], —oco < 6 < 0, and set

K7 (X7) = lim 7077 (X7)
JEN

in the Fréchet topology of the projective limit. Denote by As(vy,®) the set of all sequences, so—called
asymptotic types, P = {(p;, mj,L;)}j=0,1...~ for N = N(P) when 6 is finite, P = {(p;,m;,L;)}jen
when 6 is infinite, where p; € C, 2+ — v+ 6 < Re p; < 2L — 5 for all j, Re p; — oo for j — oo in the
infinite case, m; € N and the L; are finite-dimensional subspaces of C*°(X) for all j.

Then K37 (X") for s € R and P € As(y,0) is defined as the subspace of all u € K£*7(X") for which
there are coefficients c;; = cjr(u) € L — j, 0 < k < m,, such that

N mj

un(r,z) = u(r,z) + w(r) Z Z cinr P loghr € K& (XM)
j=0 k=0

holds for N'= N(P), when 6 is finite, uny € K{}5;(X") for each # < 0 and all N > N(B) for some
N(B) € N in the infinite case. Here w(r) is an arbitrary cut—off function. The spaces K37 (X") are
Fréchet in a natural way, and we then have for arbitrary P € As(y,0) and @ € As(J,©) the symbol

spaces S () x Rl*‘q;leﬂ(X/\),ngd(X/\)) for s,r € R.

2 Pseudo—differential operators

We now pass to anisotropic pseudo—differential operators with operator—valued symbols. As in the
previous section we first fix Banach spaces E and E and associated strongly continuous groups k) and
K, respectively.
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2.1 Local operators and distributional kernels

Let S(R'tY, F) = S(R'?)®, E be the Schwartz space of rapidely decreasing E-valued functions. We
then define the Fourier transform

F . S(R*™? E) » S(R*?,E)
by F = F ® idg, where F' denotes the standard scalar Fourier transform. Setting
(B, E) = L(S(R™), E)

we define for any T € E(S(]Rtlzq), E) the Fourier transform FT' =T o F € L(S(R}!?), E). Then we get
the inverse Fourier transform by 'S = So F~! for S € L(S(R}}7), E). We then obviously obtain
F7YFT =T. Since F = F and F~! = F~! for E = C we use the same letter for the Fourier transform
of vector—valued distributions and scalar ones.

Definition 1 Let a(t,y,t',y',7,n) € ¥ (Q2 xR, B, E) with a given open set Q@ = Uy x U C R4,
Then we define

Op(a)u(t,y) = f(;}n)_)(t7y)f(t,’y,)ﬁ(ﬂn){a(t,y,t',y',T, mu(t',y")} (1)
= [[ et e,y pute ey dr

for u(t',y") € C§° (O E).

We denote by ¥ (Q; E, E) the Fréchet space of all operators Op(a) with a(t,y,t',y',T,m) € SV (22 x
]RH‘J;E,E'). Furthermore, we write \Ilgl’l(Q;E,E) for the subspace of all Op(a) with classical symbols
and call the elements of \Il”J(Q;E,E) anisotropic pseudo—differential operators, those in \Ilgl’l(Q;E,E)

classical anisotropic pseudo—differential operators of order v.

Remark 2 Similarly to the scalar theory each A € ¥"!(Q; E, E) is continuous as operator
Op(a): C(VLE) — C®(O, E).

Analogously to the isotropic theory we use the notation

vl E,E) = | 9N E, E), (2)
veR

VTR B E) = () N B E). (3)
veER

The space \II’OO(Q;E,E) is isomorphic to the space of all integral operators with kernel in C*(Q x
0),L(E, E)).

Note that in (1) we can also use operator—valued symbols depending only on (¢,y) € Q or (¢',y') € Q.
In this case we will call them left or right symbol, respectively. In the next section we will show,
that it is possible to choose a left or right symbol as representative modulo smoothing operators for
an arbitrary symbol, i.e., for every a = a(t,y,t',y',7,1) belonging to S*!(Q? x ]RH‘I;E,E) there exist
a = ai(t,y,7,n) € SVHQ x R1+Q;E,E‘) and a, = a,.(t',y',7,n) € SV(Q x ]R1+‘1;E,E) such that
Op(a) + Gy = Op(a) = Op(a,) + G, with Gy, G, belonging to ¥=°°(Q); E, E). Notice that a; or a, by
not unique.

Next we discuss the distributional kernels of operators in ¥*/(Q; E, E) In view of Remark 2 every
A = Op(a) € ¥ (Q; E, E) has a kernel K4 € D'(02, L(E, E)), i.e., we have Au = (K 4,u) for all
u€ CP (M E).

Let us write

Op(@)ult,y) = [ K@ttt =ty = yult i df
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with
K(@)(t,y, 6y, p,0) = / TN oty o 7 m)dr d. (4)

These integrals exist in the classical sense for sufficiently negative order v, otherwise in the dis-
tributional sense. Because of 1.1 Lemma 6 we can describe K(a) first for symbols with constant
coefficients. The case of variable coefficients is then an easy generalisation. For constant coeffi-
cients we have K (a)(p,0) = [ ePmo0a(7,n)dr dn. Because of SV{(R'1Y; E, E) C S'(R'¢, L(E, E))
we can write K(a)(p,0) = -7'—(_7,177)%(,,,0){(1(7'777)}: and hence K(a) belongs to S'(R'7,L(E,E)).
For a(r,n) € S™°(R?;E,E) = S(R'?, L(E,E)) the distribution K(a) is even a regular dis-
tribution belonging to S(R*,L(E, E)). Using that the inverse Fourier transform induces an iso-
morphism F~! : S~®(R\“; B E) — SR, L(E,E)) we define the space T"!(R'; E,E) =

T(;ln)%(p o) (S”’l(]Rin;E, E)) with constant coefficients; in the general case we set
v,l 2 1+q. N . —1 v,l 2 1+4+q. T
T Q2 x R E B = FLL (S (Q2 x R\, B, E)) .

We topologise these spaces with the Fréchet topology induced from the symbol spaces by the inverse
Fourier transform. Analogously to 1.1 Lemma 6 we obtain

T"(Q? x R B, E) = C°(Q%, TV (RY; B, E)) = C®(0)&, T (R B, E)). (5)
For any a(t,y,t',y',7,m) € S»(Q? x ]RH‘I;E,E) we then get the kernel Koy, of the corresponding
pseudo—differential operator by the formula
KOp(a) (ta Y, tla y,) = K(a) (ta Y, tla yla P U)|(p,a):(t—t’ y—y'):

Denote by S,(R'T, £(E, E)) the subspace of all f(p,o) € 8'(R*+?, L(E, E)) with x(p,0)f(p,0) €
S(R', L(E, E)) for every (p, o)—excision function x(p, o).

Proposition 3 For every a(r,n) € S (RY; E, E) we have K (a) € S}(R'TY, L(E, E)).
Proof: By definition there is a v € R with a(r,n) € S* (R E, E) for every v € R. We have to show

Gos(XK () := sup |[(p,0)° D, (x(p,0) K (a)(p,0)) |z s 5y < o0
(p,o‘)ER1+‘1 ’

for all a, 3 € N!T4_ for an arbitrary excision function x(p, ). Without loss of generality we may assume
that |p| > 1. Then it follows that

1(p, 0)° D5 (x(p, 0) K (a) (p, 0)) || < [|p7 (p,0) D5 ; (x(p,0) K (a)(p, 0)]|

for some 1 < F' € N. But then we obtain

o’ (p,0)’ D2, (X(p, o) / elrr g7, n)d‘rd‘n> H

/pF(p,U)B 3 <$> (D35 x(p, )

y<a

qo,s(xK(a)) < sup
(p0) ER L

sup
(p,0)ER1+a

(Dzﬂei(‘”“r") ) a(r,n)drdn H

< sw Yo [ (DFD2e0 ) i n)drdnH
(p7‘7)eR1+q7§a

< Zéy/lﬂnl‘”' |D7 D ya(r,m)|| drdy
v<a

< Z CFY /[T,n]§|7‘+M+M+V*|B‘l*leLTdLn < 00
v<a

with IF + |8]; > l|a| + M + M + v + 1+ q where M and M are the constants from (1.1.10) for s and
Ex, respectively, which completes the proof. O
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Corollary 4 Anisotropic pseudo—differential operators with operator—valued symbols are pseudo—
local, i.e., singsupp Au C singsupp u is satisfied for all u(t,y) € D'(, E) and every A € >(Q; E, E)

In fact, equation (5) allows us to restrict the considerations to symbols with constant coefficients.
The above Proposition 3 then gives singsupp K (a)(p,0) C {0} and hence singsupp Ka(t,y,t',y") C
{(t,y) = (t",y")} , A= Op(a), a(r,n) € S*!(R'T?; E, E). But then the assertion follows from

sing supp Au C m(singsupp Ka(t,y,t',y') N (R ;7 x sing supp u)),
where 7 : RITY x R,79 — R T denotes the projection to the (¢, y)-coordinates
T Tty "y Y ’ :
Proposition 5 Let ¢(p,o) € S(R™) and a(t,y,t',y',7,n) € SV (0% x R B E), and set
(h(¢)a) (t7 Y, tla yla 7, T’) = }—(p,a')ﬁ(r,n)gb(p: U)f(:}n)_)(pﬂ) a(t7 Y, tla ZJ’: T, 77)
Then we get a continuous operator
h(g) : SVN(Q* x R B E) — SV1(Q* x R B E).

Moreover, for fived a(t,y,t',y',7,1) € SV(Q? x R\ B, E’) the map ¢ — h(d)a is a continuous operator
S(R'*?) — SV1(Q? x R\T9; ELE).

Proof: It suffices to consider symbols with constant coefficients; the (¢,y,t',y')-dependent case can be

treated in an analogous manner. We shall prove the symbol estimates

|5~ () D2, (W(@)a) r ()| . ) < c(@)mly "

for arbitrary fixed group actions ky, Ky, where cz(¢) is some constant continuously depending on ¢ €

S(R'H9).
We have
D? (h(@)a)(r,n) = D2 (¢ *a)(r,n)
= D7, / o(r —7'sn—na(r' i) dr'df
/¢T—T n—n')DY, a(r',n')dr'dy,
and hence

R RENEOBICEECRN]

=[5t [ o= 7= Dt dr 't i)

<c1/|¢7'—7'7) n |H TT)D, ,a(T n' )k TT)Hd‘T'd‘n
<CICB/|¢T—T n— 77 |H 7'71]1| TI] K [rmli |dT'dTI
[T,n]; [~".n"]
g@%/War—fm—nwh—TmrﬂﬂV“ﬁfmw*“dﬂM' (6)
v— v— n ANI M+|v—
< eacpcl Wwamlwﬂ/wu—fm—wnh—fm—vh+ Bt (7)
< ca(@)[r,n)y 1. (8)

For the estimate (6) we used the inequality (1.1.11) and for (7) Peetre’s inequality (1.1.8) with s = v—|f];.
As desired the constant cz(¢) depends continuously on ¢. O
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Remark 6 Proposition 5 extends to the case when ¢ depends as a rapidely decreasing function only

on one variable or on a group of variables. Let, for instance, ¢ = ¢(p) € S(R) be given. Then we obtain

(h(@)a)(T,m) = [ &(r — 7")a(r',n) dr' and hence as above

|& rmp2, (@),
= Hk—l(r, n) /O:o b(r — TI)DE,ma(TI, n) dr'k(7,n) H
<e /O:o 60 =)l |& (DL, ol smys(r, )| @’

o)
S 0105/ |¢(T - TI)|HR"[T’>W]1 |[Tlan];/7‘ﬂll |K' [m,n]; | dTI

—0 [r.nl; [,

< cacp /oo |o(r — )|[r = 7', — n]lM+M[T’,n];’*|5\l ar

— 00

o0 ~
SQ%WWWMWHW/ |6 — )7 — 7, 0 g
—0o0

< ca(@)rmly "

Thus (k(¢)a)(r,n) belongs to the space S*!(R*; E, E).

Example 7 Let ¢ € C5°(R'T?) be a (p, o)—cut—off function with 1)(p, o) = 1 in a neighbourhood of
(p,0) = 0. In this case the operator h(¢) is called a kernel cut—off operator. It satisfies the relation

h()a —a € S0 x RMY; B E). (9)
In order to verify (9) we write A(1)a = a which implies

o h($)a = h(1 - )a
= f(ﬁﬁ)%(rm) (1 - w)K(a)(ta Y, tla yla P, U)-

The right hand side of this equation is the Fourier transform of a rapidely decreasing function and hence
rapidely decreasing itself which yields the assertion.

Definition 8 The operator A = Op(a) € () E, E) with operator—valued symbol is called properly
supported if the corresponding distributional kernel Ka(t,y,t',y'") is properly supported in Q x Q, i.e., if
m; : Q0 x Q — Q denotes the projection to the j—th component, 71']-_1(0) Nsupp K4 is compact for every
compact set C CC Q, j=1,2.

Remark 9 From the definition it follows immediately that each properly supported pseudo—diffe-

rential operator A € *!(; E, E) induces continuous operators

A:CP(VE) = CP(OLE), A:C®(Q,E) = C®(Q,E) as well as
A:CP(Q) = CX(Q,L(E,E)), A:C®(Q) = C®(Q,L(E,E)).

Proposition 10 Every pseudo—differential operator A = Op(a) € \Il”J(Q;E,E) possesses a de-
composition A = Ay + Ay with a properly supported Ay € \II"J(Q;E,E) and a smoothing operator
A € U E, E).

In fact, it suffices to set Ap := Op(wa) and A; := Op((1 — w)a) where w(t,y,t’,y’) € C°(Q x N) is a
properly supported function which equals 1 in a neighbourhood of diag € x €.
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2.2 The algebra

We call a(t,y,t',y',7,n) asymptotic sum of a sequence a;(t,y,t',y’',7,n) € S"1(Q2 x R B, E),j €N,
of anisotropic operator—valued symbols with v; — —oo for j — oo, if for every p € R there is an N, € N
such that

N
a(tayatlay’77—7 77) - Zaj(tJyatlaylaT7 77) € SNJ(QZ X ]RlJrq;EJE); (]-)
j=0
holds for all N > N,,. In this case we write a ~ ) a;.

Proposition 1 Let aj(t,y,t',y',7,n) € S¥ ' (Q? x R E, E), j €N, be any sequence of anisotropic

operator—valued symbols with v; — —oo for j — oo.

00 00
Then a(tayatlaylaTa 77) ~ E aj(tayatlaylaTa 77) and d(tayatlaylaTa 77) ~ E aj(tayatlaylaTa 77) Zmphes
j=0 Jj=0

a(t7y7tl7yl77—7 n) = d(t7y7tl7yl77—7 77) mOd S_OO(Q2 X ]Rl—‘rq;E? E)'

Proof: Since a ~ E a; and a ~ E aj for given € R there are constants Ny and Ny such that
j= j=0
N N
(t yat Z—/ T, 77) Z j(tayatlaylaTa 77) as well as d(tayatlaylaTa T’) - Z aj(tayatlaylaTa T’) belongs to the
7j=0 j=0
space S*!(Q? x R E E) for all N > max{Ny, No}. Thus we obtain for all u € R

N N
(a—a)(ty,t'y',mm) = (a—Y_aj—a+Y_aj)(t,y,t'y,7n) € S“(Q* x R+ E,E)
=0 =0
and hence (a — a)(t,y,t',y',7,n) € S~°(Q* x R*+7; E, E). O

In the sequel the notation E;’;l a; will always be used in the sense of a choice of a representative
in the class of all symbols that are equal modulo someone of order —oco. All calculations below will be
independent of the particular choice, modulo corresponding smoothing remainders.

Theorem 2 Let a;(t,y,t',y',7,n) € SY1(Q% x R4 EE), j = 0,1,..., be any sequence of an-
isotropic operator—valued symbols and suppose v; — —oo for j — oo. Then for every cut—off function

w(p, ) there exists a sequence {c;}5, of constants such that the sum
o0
K(a)(t7y7tlaylap7 Zw ij,cj ( j)(tayatlayl7p7a) (2)
7=0

converges in T"' (02 x R\, B E), v = max{v; : j € N}.
Setting a := F(, 5)—(r,m K (a) we have a(t,y,t',y',7,n) € S (Q? x R E, E)anda~ Y aj holds.
=0

Proof: Assuming the convergence of (2) within the space T%!(Q2 x R'*7; E, E) and fixing any order
# € R we may find N, € N such that

N N o]
a—Zaj :K(a)—ZK(aj): Z K (a;)
=0 i=0 j=N+1

belongs for all N > N,, to T"¥«'(Q? x R'*Y; E, E). But this implies

a— Zaj S7vul(Q? x R B E) € SPHO2 x RV, ELE)

for all N > N, such that we get a ~ ) a;.
i=0
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For any fixed semi-norm 7 in T"!(Q? x R*4; E, E) we have to find an index jo = jo(m) such that
m(w(cp,co)K (aj)(t,y,t',y',p,0)) = 0 for all j > jo as ¢ = oo. Without loss of generality we choose an
ordered system of semi-norms {7} in the Fréchet space T%!(Q? x R'*4; B, E). We will find constants
cjr € R such that

T (e, ci10) K (7)1, p,0)) < 279

holds for all j,k € N. But then with ¢; := ¢;; we obtain

o] k—1 0
Zw (cjp,cjo)K(aj)) < () wlcip,cjo ) + mx( Zw (cjp,cjo)K(ay))
j=0 j=0 j=k
k—1
< (D wlcip, cjo Zﬂk w(cjp,cjo) K(aj;))
=0
k-1

IN

w3 wlesp o) K () + 320 < oo,
j=k

<.
I
=}

and hence (2) converges .
Up to now we considered symbols with constant coefficients. The (t,y,t',y’,7,n)-dependent

case can be treated in an analogous manner. For the case of constant coeflicients the sym-

_lﬂ‘l‘

bol estimates are of the form ||/%’1(T,17)Dfma(7,17)/<a(7' 77)||£EE) < gl Because of

sup [0 P (r, m)DE atr ()| < sup [raly O MOHENDS i, of. (1.1.10), we

(r,m)€R (T.m)ER
can set k) = idg and &) = id];: for all A € Ry up to a fixed loss of order. Here and later on we write
simply |11 = | L5 35

In view of

(7, m) D2 ya(r,n)|| < I(T,n)l'“‘llDf, a(r,n)||
clr, ) *eglr,m)y 17"
[T n]" 1B +l\04|

I/\ IN

ie., |[(r,n)*D? a(r,n)|| < &r,n), ™" for a, 8 € N'T with p + |B]; > I|a], we can pass to a system of

semi—norms of the form

ar  sup ||(r,m)* DL a(r,n) (3)
(r,m)eERta

for , 8 € N**¢ with |3|; — v > l|a|. This may be replaced by the system of semi-norms

1

a4 [ 1(0,0)* D2 K (a)(p,0)|2dpdor b (4)
|/ }

which is stronger than (3), up to a loss of order only depending on n.

Summing up we have to check

c— 00

i [ 11(6,0)7D] o(cp,c0) K (a5)(p,0) Pdpdor = .
For |B~| =0, ¢ > 1 und arbitrary F' € N we obtain

(p, ) w(cp, co) K (a;)(p,0) = w(p,0)(p,0)*p~"w(cp, co) K (a;)(p,0)p"
= K;(p,0)w(cp, co)p”

with K;(p,0) := w(p,a)(p,a)dp_FK(aj)(p,Na). Furthermore, since v; — —oo for every m € N, there is a
jo such that K (a;)(p,0) € C™(R'*?, L(E, E)) holds for all j > jo. Subtracting a finite Taylor expansion

at p = 0 we see that the remainder becomes flat of order m at p = 0, where the Taylor expansion together
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with the above cut—off factor is a Schwartz function which corresponds on symbol side to an error of
order —oo. Thus, after this change we may assume that K(a;)(p, o) is flat of order m at p = 0.

Since v; — —o0, we get an jo € N so that the functions K;(p, o) are continuous with compact support
and hence bounded for all 7 > jg. But then we have

[ 15 ntcncor Pdpdo < sup 165G ? [ elep, o) P dpdo.
(p,o)ERIFa

This implies
[ 1tep,corpt Ppdo = [ fotp,orpt e et dpao
e [ (o) P dpdo 0

for ¢ — oo which is the desired behaviour. For |ﬁ~ | # 0 we can argue in an analogous manner, where the
powers of ¢ arising in the differentiation will be compensated by a suitable choice of F.

So it remains to prove that (4) gives a topology stronger than (3). For that reason we consider the
operator—valued function f(7,n) := (7, n)“Dfma(T, 7). Note that by choosing jo € N large enough we
may assume f as fastly decreasing as we want. Then from ||F f|lcc < || f]1 it follows that

1lleo < IF1 11l
< [ 174 5(.0)ldpdo

/Ilf_lf(p, (L +p* + 1) (L + p* + |o*) "N dpdo

IN

{17 0o 2+ o dpa )™ { [a0s 62 162 dpas )

1

o{ [ 10,070}, K(@(p.0) oo}

where the latter integral has the form (4) which completes the proof. |

IN

| /\

Now we are able to check the standard algebra properties for anisotropic pseudo—differential operators

with operator—valued symbols.

Proposition 3 For every symbol a(t,y,t',y',7,n) € SV (Q% x R, E, E) there ezists a left symbol
a(t,y,7,n) € SV(Q x R**Y; E, E) such that

Op(a) — Op(a) € T™°(% E, E)

holds. Moreover, for a we have the asymptotic expansion

1
Q(ta Y, T, 77) ~ Z aDgﬂ’azna(t: Y, tla yl7 T, n)|(t’,y’):(t,y) :

aeNta

For classical a the resulting a is again classical.
The proof is completely analogous to the isotropic case; so it will be left to the reader.

Corollary 4 For every right symbol a(t',y',7,n) € S”'(Q x R4, E E) ezists a left symbol
a(t,y,7,n) € SYH(Q x R*; B, E) such that

Op(a) — Op(a) € \I'_W(Q;E,E)

holds. Moreover, for a we have the asymptotic expansion

. 1
a(ta Y, 7, 77) ~ Z J‘Dg,y’ (_67777)aa(tla yla T, n)|(t’,y’)=(t,y) .

a€ENL+a

For classical a the resulting a s again classical.
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Remark 5 The above left and right symbols satisfy the relation
(Ft.) = (r.m OP(@)W)(7,1) = Fr ) (7. (@) (7, 1) + Ft,y)— (r,my BT, 1)
for all u € C§°(Q, E) with remainder R € ¥~°(Q; E, E).

Our next result is also analogous to the isotropic theory, namely that the symbol of the composition
Op(a)Op(b) of two pseudo—differential operator is the Leibniz product a # b, given by the rule

1
(a#b)(t,y,mm) ~ Y ~10mmalt,y, 7 m) DY bt y, 7, m). (5)

a€ENL+a a
Here a(t,y,,n) € S“ (Q x R F,E) and b(t,y,7,n) € S*1(Q x RM; E, F) implies (a # b)(t,y,7,7) €
Svtil(Q x R B, E), of. 1.1 Remark 7 and Theorem 2. If further @ and b are classical then a # b is

again classical.
For r(t,y,7,n) € S (Q x R'*4; E, E) we can also form powers with respect to the Leibniz product.
In this case we write 75%:= r # ... # 1 as well as r°%:= 1, where I means the operator-valued function
————

k—times
having the corresponding identity as constant value.

Proposition 6 Let A = Op(a) € " (Q; F, E) and B = Op(b) € ¥»L(Q; E, F) with A or B properly
supported be given. Then AB € W”*”’Z(Q;E,E) and

AB - Op(a #b) € U~°(0; B, E).
For classical A and B is AB again classical.

Proof: Since A or B is properly supported the composition gives a map AB : C§°(Q, E) — C*>(Q, E)

We prove the symbolic rule. In view of Remark 5 we have
(FBu) (r,n) = / e~ TEmOp Y )t y') dt'dy' + (FRu)
with some R € ¥~°°(Q; E, F'). But then AB is given by
(ABu)(t,y) = // e T E=) =gty )bty 7, n)ut’,y") dt'dy' drdy

modulo smoothing operators and hence AB = Op(c) with ¢(t,y,t',y',7,1) = a(t,y,,n)b(t",y",7,n).
Using Proposition 3 we get AB = Op(c) mod ¥~>°(Q; E, E), and in view of Corollary 4 we have

cty,mm) ~ Y %( §.0%, (alt,y, bty 7))

weNI+a (ty)=(t.9)

~ Z 5 Z 6?—,3/!(85,770/(7572177—777))( t', ’a b( 3/’;7';77))

aENl+e BJF’Y [¢3

~ Y g @ty 3 O (D0 by )

(' y")=(ty)

B,7ENL+a deN1+e
0
~ ) _( alt,y,,m) Y. (=1 (Dﬂ“a’\ b(t,y, ™ Tl))
g1\ — 0! by FrnTA S )
BEN+ vHo=

Set mo = (1,...,1) € R*¢ then for arbitrary multi-indices v, d, A € N+ we have

(=nkl 1)lél 1) 1 _J1lfor [N\ =0
> |5v BBV Z < > ﬂ(mo o) = 0 for [A| #0

=X S<A
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and hence c(t,y,7,n) = (a # b)(t,y,7,n) € S'TA(Q x R\T,E E), ie., AB = Op(a #
b) mod ¥=°(Q; E, E) as desired.
Finally, since the Leibniz product of classical symbols is classical we obtain the second part of the
assertion. O
Let us now characterise the invertible elements with respect to the Leibniz product.

Proposition 7 Let a(t,y,7,1) € S"'(Q x ]RH“I;E,E) and assume that there is a po(t,y,7,n) €
S=vl(Q x R B, E) satisfying

(aopo — I)(t,y,7,n) € S HHQ xR E,E), (6)
(pooa_l)(t7y77—77)) € Sil’l(QXRlJrq;E:E)' (7)

Then there exists a Leibniz inverse p(t,y,T,nm) € S™"(Q x R E, E) in the sense

(a#p—1)(ty,7n) € S *(QxRYE,E), (8)
(p#a—1D(ty,7,n) € STQ xR, E,E). (9)

Proof: We will constuct p in terms of py. Using (6) we first get a symbol p, satisfying (8). Analogously
from (7) we get an element p; satisfying (9). Then we obtain p, = p,.(ap;) = (pra)pr = pr mod S™°(Q x
R*; E’, E), such that we can omit the subscripts » and [ modulo smoothing remainders.

Using the definition of the Leibniz product it follows immediately from (6)

_(a #pO - 1)(75:1/;7';77) ~ T(tayaTan) € S_Ll(ﬂ X ]R1+q;E'7E)'

o0 o0

We now form (1—r) # 3 7** and check the relation 1 ~ (1—7) # 3. r** (~ indicates equality modulo
k=0 k=0

symbols of order —oo).

For every M € N we have

M
1= (1—=r)# > " e s M LH(Q xR B, E)
k=0
which follows from
M M M
1—(1—-r)# Zrk# =1- Zrk# + Zrk'H#
k=0 k=0 k=0
M M
S Yy e
k=1 k=1

= pMH* e g MLl x R ELE).

M M ~
But then we also get 1 ~a # py # > rk* and hence p = po # > r#* belongs to S—vl(Q x R, B E)
k=0 k=0
which is the desired Leibniz inverse. m|

2.3 Global operators

Next we are going to globalise the anisotropic pseudo—differential operators with operator—valued symbols
with respect to the spatial variables. To this end we have to check the behaviour of the symbols under
changing coordinates.

Let xy1 : U — U be a diffeomorphism between open sets U, U in R? and define

X:RxU—=RxU. (1)
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by x(t,y) := (t,x1(y)). Consider the pull-back

X" : C®RxU,E) = C®R xU,E),
(x*u) (t,y) == u (x(t,y)) = u (¢, x1(y)) which restricts to a mapping

X' 1 CPRxU,E) = CX(R x U, E).

For an operator
A: CPRXUE)— C®RxU,E)

we then get the operator push—forward
<A : CP(RxU,E) = C®°(R x U, E),
defined by (x.«A)u = (x*)~! (A(x*u)). As in the isotropic case, cf. [ES], we obtain the following result.

Proposition 1 The operator push—forward A := x,A of A = Op(a) € ¥ (RxU; E, E) with respect
o (1) belongs to ¥ (R x U; E, E). Moreover, we have A = Op(@) mod ¥=°(R x U; E, E) where @ is

given by the asymptotic expansion

alt,x1(y), 7,7 ~ Y éwa(y,ﬁ) (05a) (t,y, 7, dxa(y)7), (2)

aENY

where pq(y, 1) is polynomial in 7 of order <l gng wo =

Remark 2 Note that (1) only concerns the spatial variables such that the anisotropic behaviour
in the time direction does not play any role in the arguments. It would also be possible to treat
diffeomorphisms in the time variable but it is our goal to investigate pseudo—differential operators on
cylinders in space—time, where the base of the cylinder is a spatial manifold with singularities such that
it suffices to take diffeomorphisms of the form (1).

The smoothing elements of the pseudo—differential algebra in question are given by the following
definition.

Definition 3 Let Y be a closed compact (Riemannian) C* manifold of dimension q without bound-
ary. Then the space U~°(R x Y;E,E) is the set of all integral operators C' on R x Y with kernels
Clty,t',y") € C®((R xY) x (R x Y),L(E, E)).

We call the elements of ¥~°(R x Y; E,E) smoothing operators, although they are not necessarily
smoothing on the level of spaces E, E, i.e., in case of scales (E®) and (Et) (cf. Section 1.3).

For the definition of the global operators on Y we form N-tuples of triples {(( X)), q&],zpj)
Such an N-tuple is a finite atlas {(U;, Xj)}21 on Y endowed with a partition of unity {¢;}}L, and an
N—tuple of functions {¢; € Cgo(Uj)}j-Vzl with ¢j¢; =¢; forall j =1,...,N.

Definition 4 We denote by 97" (]R X Y;E,E) the space of all operators A : CP(R x Y, E) —

C*RxY, E), of the form

(el)

N
A=Y"6;{ ("), Ovlay) p+C 3)
=1
with {a;(t,y,T,m) € SE’C’)(]R{XU xRt B E)}] L Ui = x;(U;), and C belonging to W=°(RxY ; E, E).

Here (Xj_l) , s the operator push—forward with respect to the inverse diffeomorphism x; oij : Rx Uj —
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The spaces ¥

(1) (RxY;E, E) are independent of the particular choice of {(([}j,f(j), qﬁj,z/)j)}év:l.

Remark 5 In Definition 4 we may assume that the complete symbols are invariant modulo symbols
of order —oo with respect to the symbol push—forward of Proposition 1 under x;x : R x )Zj(fjj N ﬁk) —
R x ik(ﬁj N ﬁk)

Then, when the atlas is fixed, the operator (3) is independent (up to a smoothing one) of the choice
of the functions ¢;,;.

We shortly write
VR XY E E) = | ¥ (R xY;E,E)
veR
for the set of all global anisotropic pseudo—differential operators with L(E, E’)fvalued symbols on Y.
Analogously to the scalar theory every A € ¥{(R x Y; E, ENI) represents an operator

A:CP(RXY,E) - C®(R x Y, E).

If A is properly supported we obtain continuous maps 4 : C°(R x Y, E) — C(R x Y, E), A : C°°(R x
Y,E) = C®(R x Y, E). Furthermore, we have AB € U= (R x Y; E, E) for A € U=®(R x V; F, E) and
Be U (RxY;E,F)or A€ U (RxY;F, E) and B € ¥~°(RxY; E, F), provided the composition

exists.

Example 6 The operator My of multiplication by a function f € C*°(R x Y') represents an aniso-
tropic pseudo—differential operator in ¥%/(R x Y; E, E) for each E.

Proposition 7 For all f,g € C*(R xY) satisfying fg =0 we have
M, (\Iloo’l(]R{ x Y;E,E)) M, C U~®(R x Y; E, E).

Proof: Let us fix {(([}j,)zj),@,z/)j)};y:l. Then the operator M;AM, for A € U»!(R x Y;E,E) has a

representation
N

MyAM, = My Z‘ﬁjgﬂ/’j Mg+ MyCM,
j=1

with Ej = A|5j = (Xj_l)* Op(a;). Here the second item is smoothing such that we only have to look at

the first one. Moreover, it suffices to consider the action on functions u belonging to C§°(R x ﬁj, E) for

some fixed j. Then with f; = fla . 5. and g; = g we have locally

RxU;
6545905 = 65 (), Ay,

where 4; : C°(R x Uj; E) = C™(R x Uj, E), U; = %;(U;) has the distributional kernel

Kj(t,y,ty',t =ty —y') = f(t,y) K(a))(t,y, 1y, t =ty —y")g;(t',y)

for f; = (Xj_l)* fjand g; = (Xj_l)* g; which implies f;jg; = 0.

Because of f; = 0 on supp g; there exists an € > 0 such that f;(t,y)g;(t',y") = 0 for all t,y,t',y’
with [(¢,y) — (t',y’)| < €. But then there also exists an excision function x(p,o) with x = 0 near
(p,0) =0 € R and x = 1 for |p, 0| > e. Thus

X(t - tlay - yl)Kj(tathlaylat - tlay - yl) = Kj(t7y7tlaylat - tlay - yl)'

But in view of 2.1 Proposition 3 the left hand side belongs to C*°((R x U;) x (R x U;), L(E, E)) which
yields after globalisation the assertion. a

Let us now turn to the composition of global operators. Remember, that the involved Banach spaces
E, E, F' are assumed to be associated with corresponding group actions.
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Theorem 8 A € U (RxY;F, E) and B € YV (RxY;E,F) and A or B properly supported implies
AB € UVt (R x Y; E,E‘) If A and B are classical pseudo—differential operators, then the composition
AB is also classical.

Moreover, for any fived data as above
N N
A=36;{(G"), Oplap) pubs +Ca and B=3"¢,{(x;"), 0p(5;) } v +
j=1 j=1
imply for AB a representation
N
AB =" 6; {(x;"), Opla; # b))} + C, (4)

j=1

Ce¥ °RxY;EE).

Proof: Since A or B is properly supported, we have AB : C°(Rx Y, E) - C*(R x Y, E) such that we
only have to derive (4).
To this end we fix {((ﬁj,)’%j), ¢j,¢j)};~\’:1. Furthermore, we fix an N-tuple of functions
~ ~ N ~ ~ ~ ~
{wj € Cgo(U])} L Satisfying ijj = d)j and ¢j¢j = ¢j for all ] = ].,...,N. Setting Aj = A|’ﬁ
J= J

and Ej = B|5_ we have

N
AB=>" <¢jgﬂzj§j¢j + 0545 (1= 45) By

j=1
+¢; A0 Bj(1— ;) + b A;(1 — ) Bj(1 — %’)) :

N ~ "~ ~ o~ o~ ~ ~ o~
where 37 <¢jAj(1 — V) B + ¢ Ajh Bi(1 — ) + ¢;A;(1 — ;) B;(1 — lﬁj)) is smoothing since

j=1
¢;(1— QIJ) =0= 1[1]-(1 — ;). Moreover,
N o N o _ o
> i A By = <¢jAij¢j —¢;A4;(1 - ¢j)Bj¢j>,
j=1

Jj=1

N ~ -~ - ~
where ) ¢;A;(1 —;)Bj1; is smoothing because of ¢;(1 — ;) = 0. But locally in U; we have
j=1

A;B; = (x;1), Op(b)) (x; '), Op(a;) = (x; '), (Op(a;)Op(b;) = (x; '), Opla; # b))

which gives the desired relation (4). |

3 Abstract wedge Sobolev spaces

In this section we will introduce a scale of Sobolev spaces of E-valued distributions. It is our goal
to prove the corresponding mapping property, i.e., the pseudo—differential operators of the last section
should extend to continuous mappings between the corresponding Sobolev spaces, where the order of
the operator describes the loss of smoothness of the distribution.

3.1 Definition and basic properties

Let a Banach space E and an associated group action k) be given. Then we can introduce anisotropic
abstract wedge Sobolev spaces of E-valued distributions.
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Definition 1 For every s € R, [ € N\ {0}, we get by

1/2
wolllea= ([ il o Fute o) fpdrdn m

a norm in S(R'* E). The abstract anisotropic wedge Sobolev space W (R'TY, E) of smoothness s is
defined as the completion of S(R'T?, E) with respect to the norm (1).

Recall that the smoothed anisotropic norm function [r,7]; was given by

[TJ 77]l = W(|T;77|l) + (1 - W(|T;77|l))|7'777|l

with the anisotropic norm function |7, 7|, = (7] + |n|*)}/#, where w(r) € C5°(R) was supposed to be
a cut—off function, cf. (1.1.3).

Replacing [7,7]; by equivalent functions we obtain equivalent norms on W*!(R'*¢ E), so, for in-
stance, we will use the functions (7,7) — (7,n); := (1 +|7)* + [7]*)*/* or (1,n) = ([7]* + |n|*")*/? with
[7] = w(|7]) + (1 — w(|7]))|7]. Moreover, if ¢ = 0, i.e., the spatial wedge has dimension 0, then we have
obviously

WS (R, E) = WY R, E).

Note that the anisotropic wedge Sobolev spaces are Banach spaces. As usually we write H*!(R!*?, E)
if we have k) = idg for all A € R;. With E = C we get the scalar version of anisotropic Sobolev spaces,
which we denote by H*!(R'*7).

Remark 2 The isotropic case ! = 1 is contained in our considerations. We will also need this special
case here especially for distributions depending only on spatial or only on time variables. Then we will
omit the index [ in the notation, that means we write, for instance, W*(R;, E) = W*!(R;, E). This
notation meets the original one introduced by SCHULZE [Sul].

Remark 3 Analogously to the isotropic case (cf. [Sul], Section 3.1), the operator

T = f(;ln)ﬁ(t y)n’l(r, M F(t,y)— () €Xtends by continuity to an isometry

T : WY (R, E) » H*'(R*, E). (2)

This gives us the possibility to define W#!(R'*4 V) for subspaces ¥V C E which are not necessary
preserved under k) by W (R1T9, V) := T 1H{(RT9, V).

Lemma 4 For all s € R the space C°(R1TY, E) is dense in W (R1TY, E).

Proof: By definition we only have to prove, that C§°(R'*¢, E) is dense with respect to the norm (1)
in S(R'¢, E). The isotropic case [ = 1 was treated, for instance, in [Sul], so that we have to show the
assertion for [ > 1.

Using the inequality [7,n]; < ¢[r,n]1 we have |lu||s; < ||ul|s,1 for all s € R and every u € S(R'*Y, E).
Thus the isotropic case implies the anisotropic case. O

Example 5 In our applications we are dealing with the case of K*7(X”)-valued distributions.
As in Section 1.3 we take kju(r) = /\"THu(/\r) as associated group action. Then we have from Def-
inition 1 the Banach spaces W*!(R!*? K*7(X")). Setting s = v = 0 we get the Hilbert space
WOLRM CO0(X M) = WO(RM KO(X M), which is independent of the anisotropy [. The correspond-

ing scalar product is given by

(u,0)0 = / (Fu(r, ), Folr,m)xoen drdn.
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Of course, the space C§°(R1T9,C5° (X)) = C§° (R4 x X7) is dense in W (R4, K7 (X)) for every
s, € R, such that the form (-,-)p : C§°(RIT? x X)) x C5° (R} x X) — C extends to a non—degenerate

sesquilinear form
() + WOLRME 57 (X)) x WSL(RM -5 7(XN) = C
for all s,7 € R and all [ € N\ {0}. This allows us to introduce formal adjoints A* of operators
A WOHRIT S (X)) = WL RITE KT TR (X))
that are continuous operators
A* s WSRO (XAY) o sl (RIS (X))
for all s € R.

Remark 6 As in the isotropic case, cf. [Hil], there exists a canonical embedding W*!(R'*?, E) —
S'(R**7, E) given by (u, ¢) = [u(t,y)d(t,y) dt dy with u(t,y) € W>'(R'*?, E) and ¢(t,y) € S(R'*9).

Corollary 7 An E-valued tempered distribution wu(t,y) belongs to the anisotropic wedge
Sobolev space WL (RYTY, E) iff Fu(r,n) is measurable and ||lul|s; < oo.

The next theorem is central for anisotropic wedge Sobolev spaces, because it shows, that an aniso-
tropic space may be viewed as an isotropic space with values in another isotropic space. Therefore it
allows us to generalise the properties of isotropic spaces to anisotropic ones.

Lemma 8 Let E be a Banach space with group action k. Then for each | € N\ {0} we get by
au(y) = ky s A2 u(A ), X e Ry,

a group action on W*(RY, E) for all s € R. Moreover, if ky is unitary on E° then the resulting x» is
unitary on WO(R?, E°).

Proof: Let us first note Fy_, {xau(y)} = Fysn{kai X2 uN )} = ki A=V F, L u(A"Y ). This

gives
sty = [ 05,y D) i
= [Pl s X O )
= [N i )

This shows that x, is unitary on W°(R?, E®) if &, is unitary on E°. In order to prove that x, is a
group action on W*(R?, E) we show |lu — xau||yysre,z) — 0 for A — 1. To this end we use Lebesgue’s
dominated convergence theorem. Of course,

2 185 Fyn (= a0 I = 111K (Fysmun) = maan A=y (A )
tends to zero for A — 1, since k) is a group action. Moreover,we have
I, (Fuln) = rys i A= FuA )15 < iyt Pl + I, s A2 Fu(A= ) s,

such that it remains to check that [17]23||/<a[7n]1/<a>\1/z/\_q/ﬂ]-'u()\_l/ln))HQE is Ly for A € [£,2]. But this

29
holds, since % is bounded and bounded away from zero. |
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Theorem 9 Let us associate to W*(RY, E) the group action x» given in Lemma 8. Then we have
WeHR, W2 (R?, E)) = WHH(RFY, EB).

Proof: Since S(RxR?, E) = S(R,S(R?, E)) we only have to check the equivalence of the corresponding
norms. Let U(t) € S(R,S(R?, E)) be given as (U(t))(y) = u(t,y) with u(t,y) € S(R x R?, E). Then we
have

1/2
||u||s7l ~ {//([7’]2 + |77|2l)s/l||’iai]2+|n|2l)1/2zf(t,y)—)(r,n)u(Ta 77)||§3de77} )

where ~ means equivalence of norms. Moreover, for the corresponding U we have

1/2
101~ { [ PG e U0 i
Now with (1) := (1 + |n|*")'/?" we compute
W0 ~ [ / (n)zs||ﬁ571>fy»n{x[’r]1ft%TU(T,y)}llfzd‘nd’T
/ / |n|2’>s”||n;;>f AR AT F ([ )
1/l 2l\s/l /QZF 1/l 2 dnd
|”7|) ) ||I€(U> 7-]1/1[ ] (t,y)%(‘r,n)u(T: [T] U)HE nart
// 24 |T}|2l s/lH ([T]2+|n|21)1/21f(t7y)—>(7'7n)u(7-7 77)||2Ed"7d7- ~ ||u||§,l:
which is the desired equivalence. O

Corollary 10 Let E be a Banach space with group action k) and assumme that E' is a continu-
ously embedded subspace of E connected with the group action k' = kx|p. Then there are continuous
embeddings

Wel(RH, E) & WU RV EY)

for all ' > s.
Proof: The isotropic case is proven, for instance, in [Sull] Proposition 1.3.30. Using this twice we get

first continuous emmbeddings
W?(RY, E) < W* (RY, E)
and then
W (R, WS (RY, B)) = W/ (R, W (RY, E'))

for all s" > s. But then the assertion follows from Theorem 9. O
Definition 11 Let Q C Rt be open and K CC Q be compact. Then we define

Wls(l( E) = {ue W R E) : suppuC K},
WL E) = |J WE'(Q.B),
KcCcQ
WELLE) = {u e S'(R™,E) : wue WWHRTY, E) for all w e C°(Q)}.

loc

3.2 Mapping properties

Theorem 1 Let Q@ C R4 be an open set and a(t,y,t',y',7,n) € S (Q* x RITL; E E) be an
anisotropic operator—valued symbol of order v € R and Op(a) € \I'”’Z(Q;E,E’) the associated pseudo—
differential operator. Then Op(a) : Wik, (Q,E) = W, “H(Q, E) is continuous for all s € R.

loc
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The proof will be given in terms of a tensor product argument using the two following lemmata.

Lemma 2 For every v € S(R'*?) the operator M : C§° (R4, E) 5 ¢ — vp € C (R, E) has
a unique continuous extension to M : W' (R4 E) — W*{(R'*Y, E). Furthermore, the map M :
S(R'*Y) 3 v+ M € LWH(R'TY, E)) is continuous for all s € R.

Proof: Let v(t,y) € S(R'T?) and ¢ € C° (R4, E), then (1.1.8) and (1.1.11) imply

Wl = [ oty Fea)m| dray

= [t
o [ [ o

2
s M . os || —
lley //[T—T’,n—n’ﬁ( DN Fo(r—' =) dran[r' ']} HH[JW]Z%(T’,U’)HE dr' dn

CUC\ZS\CZ /[7J7 nl]‘[ls

2

drdn
E

Kol /TU(T =7 =0 Fo(r',n')dr'dyf

2

IN

K= 'y

r ’
molp '

2
Folr =t =) i, For' )| ar'an ardy

IN

IN

2 .
Kt T )| ar'an = Cllol,,

and hence also the extension M, : WH!(R**4 E) — W#!(R1, E) is continuous. Moreover, C,, — 0 for
v — 0 within S(R'T?) which gives the second part of the lemma. |

Lemma 3 Let a(r,n) € S”’l(]R1+q;E,E) be an anisotropic operator—valued symbol with constant
coefficients of order v € R and Op(a) € \Il"’l(]RH‘q;E,E) the associated pseudo—differential operator.
Then Op(a) : WL(RW€ E) — Ws LR E) s a continuous map for all s € R, and we have
10p(@)|] < sup(.yeralrsnly 15T m)a(m. ()l 5 = P60 (@)

Proof: Since (Op(a)u)(t,y) belongs to S'(RT4, E) for all u € W' (R, E) we only have to check

|0p(a)ulls—v; < p(()':g (a). But the symbol estimates yields

Op@)ul i = [l L ol Fulrn) s dr dy
= [l bl Ly Pt drd
< [ Ghd @) oy Futr o)l drd
= (s (a)?lul?,

as desired. O

Proof: (of Theorem 1) For every K CC € there exists a function ¢ € C§°(2) such that ¢(t,y) =1
in a neighbourhood of K. We want to prove that for every fixed K CC Q with such a ¢ € C§°(Q2) and
arbitrary ¢ € C§° () the operator

MyOp(@)My : W' (R, E) - W™ (R, E) (1)

is continuous for all a(t,y,t',y’,7,n) € S (Q2 x RITL; B, E).

Because of S*{(Q2 x R\ E, E) = C®(Q)®,5" (R1; B, E)®,C> () we have the representation
a(t,y,t',y',7,n) = Z;io Ajbi(t,y)aj(m,n)d;(t',y"), where b; — 0 and d; = 0 in C>*(Q), a;j = 0 in
SYU(RIHL B, B) and {\;}%2, € 1y

Thus we obtain

M¢Op(a)M¢, = Z /\le/;bj Op(aj)MMj,
Jj=1
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where ©b; — 0 and ¢d; — 0 in C§°(Q). Therefore, we get by Lemma 2 and Lemma 3

1My 0p(a) Myulls—vi = | Aj My, Op(a;) Moa,ulls—v

j=1
o0
<3 M, 110D 1 Mg I el
j=1
o0
< >IN lews, o (@) con, lulls..
j=1

The convergence of {cys;}, {csa;} and {p(()ljg (a;)} implies, in particular, boundedness, which gives
the continuity of (1). a

Like in Section 1.3 we deal with the case of Fréchet spaces E and E, which have representations
as projective limits of Banach spaces, where the associated group actions satisfy the corresponding
compatibility conditions.

In this case we also set U (Q; E, E) := Op(S*(Q2 x R'*7; E, E)) for arbitrary open © C R and

define W*! (R4, E) = lim WS (R'1Y, Ey) as well as
kEN

Wirhp (@, E) = im Wi, (Q, E) and WyL(Q, E) = lim W;L(Q, Ex).
keN kEN

We then obtain the following mapping property for pseudo—differential operators with symbols that have
values in £(E, E).

Theorem 4 If E and E are Fréchet spaces with above properties, then every A € ¥»!((); E,E) has
a unique extension to a linear continuous operator A : Wil (Q E) — st"’l(ﬂ, E) for all s € R.

comp loc

3.3 Global spaces

Let us now form the global abstract wedge Sobolev spaces in the anisotropic set—up. To this end we
assume that we have a Hilbert space E and a Hilbert space E° equipped with a unitary group action
{Ka}rer,. Moreover, we suppose E C E° or E° C E and k) restricts or extends to a group action on
E. For this pair of spaces we further assume the existence of an isomorphism a : E — E° such that the
map A — kjak, ' belongs to C%°(Ry, L(E, EY)).

As before (cf. 2.3) we start with a diffeomorphism y1 : U — U that induces by x(¢,4) = (¢, x1(y)) a
diffeomorphism y : R x U — R X U. Then the pull-back of E-valued distributions

X" : D'(RxU,E) = D[R xU,E) (1)

is given by (x*u, ) = (u, (x*) L) for u € D'(R x U, E) and ¢ € CP(RxU).
These relations allow us to state the following proposition that can be proven completely analogous
io the isotropic case (cf. [Sul0]).

Proposition 1 The pull-back (1) of E-valued distributions (1) restricts to continuous mappings

X WL R xU,E) —» Wl (R x U, E)

X' WL R x U, E) = WA(R x U, E)

for all s € R.
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Next, we fix on the smooth compact manifold YV a finite atlas {fjj,f(j };VZI with charts x; : [}j —
U; C R? and a subordinate partition of unity {¢;}.,. With

M-

|6 0w, 2)

u = |ullysirxy,B) = .

1

J

we then get a norm in C§°(R x Y, E). Here xj is the pull-back with respect to x; : R x U—-sRxU
defined by x;(t,y) = (¢, X;(y)). In the sequel we will also write || - ||s,; instead of || - [lyys.(rxy,5)-

Definition 2 The global abstract anisotropic wedge Sobolev space W*! (RxY, E) of smoothness s € R
is the completion of C§°(R x Y, E) with respect to (2).

From Proposition 1 it follows that another choice of data ﬁj, Xj,®; yields an equivalent norm on
WSHR x Y, E).

Of course, we have W*!(R x Y, E) C D'(R x Y, E) for all s € R. The space W5 (R x Y, E) is then
the subspace of all distributios u € W*!(R x Y, E) with compact support in R x Y; and Wlso’i(]R xY,E)

is the space of all u € D'(R x Y, E) with pu € WL (R x Y, E) for all p € C§°(R x Y).

comp

Proposition 3 Every A € ¥"!(R x Y;E,E) extends for every s € R to a continuous map
A Wwsl (RxY,E) » WS PN R x Y, E).

comp

Proof: By definition we have a representation
N
A= Z¢j () 45) v+ C
j=1

with 4; € "R x U;; E,E) for all j = 1,...,N and C € ¥~=°°(R x Y; E, E) (cf. 2.3 Definition 4).
Since C' is smoothing, we can restrict the consideration to the first part of the sum. But for this part
we can use Proposition 1 and the local mapping property 3.2 Theorem 1 to check the commutativity of
the diagram

-1
~ . A
Ws7l (R % UJ,E) (XJ)* J

comp

WS_V’Z (]R X ﬁj, E)

loc

(X;*)_ll Xﬁ

1 Aj s—u,l jod
Wgémp(]R X Uj,E) — Wloc ! (]R X Uj,E)
for every j = 1,..., N, and this gives the assertion. O

4 Parameter—dependent ellipticity

4.1 Parameter—dependent pseudo—differential operators

The definitions and results from the preceding sections have a parameter—dependent variant, where the
covariables (7,7) € R'7 in the operator—valued symbols are to be replaced by (¢,n) with ¢ = 7+id € C,
and ¥ = Im ( plays the role of a further anisotropic parameter.
Recall that for (¢,n) € C x R'T? we also have an anisotropic norm function
1

Gl = (I + )=,

and the corresponding smoothed version is given by

[ mle == w(I¢nle) + (1= w (¢ nl))IC, mli-

Here w(r) is a cut-off function, cf. (1.1.3). As above we set x((,n) = ki, for a group kx, A € Ry,
acting in some Banach space E.
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Definition 1 Let v € R, U C R? be open and C_ := {¢( =7+ i € C: 9 < 0}. Then the space
SY(U x C_ x R%; E, E) (1)
is defined as the set of all a(y,(,n) € C®(U x C_ x R, L(E, E)) satisfying

1574 mADy DY D D aly, &ma(Cn)l g g ) < Gl 2)

for all o € NP, B = (Bo1,B02,8') € N x N¢ and all y € K for arbitrary compact K CC U and all
(¢,m) € C_ x RY with constants ¢ = c(a, 3, K) > 0; here |B|; = 1(Bo1 + Boz) + |B8'| for € N>+,

The elements of S*/(U x C_ x RY; E, E) are called parameter—dependent symbols (or amplidude
functions) with parameter ( € C_. There is a trivial modification of Definition 1 leading to time—
dependent amplitude functions denoted by S»/(2 x C_ x R?; E, E‘) where 2 C RP° x RP is an open set,
cf. 1.1 Definition 5.

We will not repeat here the standard properties of these symbol spaces, that are analogous to those
of Section 1.1. In particular, we have the corresponding versions of 1.1 Lemma 6, 1.1 Lemma 7 and 1.1
Remark 9. Moreover, the symbol estimates (2) give

S™®(U x C_ x RY; B, E) := S~HU x C_ x R%; E,E) = C*(U,S(C_ x R?, L(E, E))),

where S(C_ xR?, £(E, E)) denotes the space of restrictions of elements of S(CxR?, L(E, E)) to C_ x RY.
Note that the substitution ¢ = ¢! allows us to replace the parameter space C_ by X = {¢ = ge’¥ €
C:0< ¢ <m/l} as it was done in [AV]. For instance, the symbol estimates (2) then take the form

156 MADF Die ¢t @8> SIS D s 7y < el
for all « € N?, 8 = (By,0") € N* x N and all y € K for arbitrary compact K CC U and all
(¢,m) € T x R? with constants ¢ = ¢(a, 8, K) > 0; here [¢,n] := [¢,n]1 which is also involved in &(s,n)
and &(s,n), respectively.

In the anisotropic parameter—dependent setting we also have an analogue of homogeneity in the

operator—valued sense namely
f(AlCJ )‘77) = AV’%)\f(Can)H;\

for all A € R, and all (¢,n) € (C_ x R?) \ {0}. We then get a natural notion of classical symbols in
(¢,n). An element a(y,y’,(,n) € S (UxUxC_ xR%; E, E) is called classical if there exists a sequence
aw—j)(¥,y',(m) € CX(U x U x (T x R\ {0}; L(E, E)), j €N, satisfying

aw—j W,y N An) = N Raaw—j (v, 9, ¢ Ky

for all A € Ry, all (y,y') € U x U and all (¢,n) € (C_ x R?) \ {0}, such that
N —_— ~
a(y,y',¢m) = Y x(Cmaw—j) (w,y',¢m) € S NITHU x U x Co x R B, E)
j=0

for each N € N, where x(¢,7) is an arbitrary excision function. The a(,_j) (y,¥’,{,n), called anisotropic
(v — j)-homogeneous components, are uniquely determined by the symbol a(y,y’,{,n). In particular,
we set oy (a)(y,y',¢,m) = aw)(y,y',(,n) for the operator-valued principal symbol. The subspace of all
classical symbols will be denoted by S"l(U xUxC_ xRI;E E) Analogously to 1.2 Remark 3 we
obtain, that smooth operator—valued functions that are anisotropic homogeneous in the operator—valued
sense for large [, n]; are classical parameter—dependent symbols.

Let us now introduce the associated parameter—dependent pseudo—differential operators, first in local
form and with time-independent symbols. For open U C R? every a(y,y’,(,n) € S/(U x U x C_ x
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]Rq;E,E') gives a (—dependent family of symbols in S¥(U x U x ]Rq;E,E). This allows us to form the

corresponding parameter—dependent pseudo—differential operators Op, (a)(¢)

(Op, (@)(¢)) uly) = //e“y_y')”a(y,y’, ¢muly')dy'dn (3)
for u(y) € C§°(U, E) which defines a family of mappings
Op, (a)(Q) : G (U, B) = C>(U, E)

that can be extended in the standard way to a family of operators between suitable vector—valued
Sobolev spaces.
Denote by \I'E'éi)(U; E, E;C_) the space of parameter—dependent pseudo—differential operators which

is the set of all Op,(a)(¢), cf. formula (3), for arbitrary a(y,y’,(,n) € SE’éf)(U x U xC_ x RI;E, E).

Furthermore, we set

U°(U;E,E;C_) := (| ¥"/(U; E,E;C.)
veER
= S(C ;¥ >(U;E, E))

with C identified with R? > (7,9).
Similarly as above we can introduce the spaces of operator—valued distributions

T (U x U x T x R E, B) := F4 (S”J(U x U x C_ x ]Rq;E,E)) .
In other words, T"!'(U x U x C_ x R%; E, E) consists of all elements
K(a)(y,y',¢,0) = /e"""a(y,y',c,n)dfi, (4)

for arbitrary a(y,y',(,n) € S"H(U x U x C_ x RQ;E,E'), and

Kop, (@))€ = K(a)(y, 4, ¢, 0)|o=y—y

is then the (—dependent family of (operator—valued) distributional kernels of Op,(a)(¢). The singular
support of KOpy(a)(C) is contained in diag(U x U) for all ¢, cf. 2.1 Proposition 3.

Definition 2 A family A(() € W”’Z(U;E,E;@,) of pseudo—differential operators is called properly
supported if it is properly supported for every ( € C_, and for every compact set C CC U there exists a
compact set M CC U x U with

(ﬂj_l(C) X @,) N supp KOpy(a)(C) CMxC_

for all ¢ € C. Here K(a)(¢) denotes the distributional kernel of A(¢) and 7; : U x U — U means the
projection to the j—th component, j = 1,2,

Analogously to the case of anisotropic pseudo-differential operators with operator—valued symbols

we obtain the following result.

Proposition 3 Every family A(() € Y"!(U; E, E;C_) has a decomposition A(C) = Ao(¢) + A1(C)
with a properly supported Ao(C) € \I'”’Z(U;E,E';@_) and an A;(C) € \I'_W(U;E,E';@_).

Remark 4 Let ¢(y),¥(y) € C>®(U) and suppose supp ¢ Nsupp ¢ = O. Then @A)y €
U—(U; E, E; C_) for every A(C) € W"(U;E, E;C_).
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Remark 5 Notice that it also makes sense to consider a real anisotropic parameter 7 € R instead of
¢ € C_. Also in this case we are interested in symbols a(y,y’,7,7) € S (Rx U x R x U x R\"t4; E| E),
and we get

Op(a)u(t,y) = Op(Op, (a)(7))u(t,y) := F1,0p,(a) (1) Frosrult,y),

first for u(t,y) € C°(R x U, E) and then extended to the corresponding wedge Sobolev spaces.

Regarding the imargenary part of the parameter ¢ as a further covariable we can repeat the arguments
of Section 2.2 to see the algebra properties also for the parameter—dependent calculus, i.e., we have the
following results.

Theorem 6 Let U C RY be any open set and set U? = U xU. Then we have the following properties.

(i) Let aj(y,y',¢,m) € SYH(U? x C_ x ]R{‘I;E,E'), j =0,1,..., be any sequence of parameter—
dependent symbols and suppose v; — —oo for j — co. Then there exists an symbol a(y,y',(,n) €
S (U? x C_ x ]Rq;E,E), v :=maxvj, such that for every p € R there is an N(u) € N with

N
a(y,y',¢,n) =D _a;(y,y',¢,m) € SM(U? x C_ x RY; E, E)
=0

for all N > N(p), and a is unique modulo S~ (U2 x C_ x RY; E, E),

We then write a ~ ) a;.

(ii) For every a(y,y',(,n) € S"(U? x C_ x R%; E, E) There ezists an a(y,(,n) € S*1(U x C_ x
]Rq;E,E) such that

Op(a) — Op(a) € ¥~(U; E, E;C_)
holds. For a we have the asymptotic expansion

aly,¢m) ~ > 'D”‘a“ Uy Gy =y

aeN?

(iii) For everya(y',(,n) € SV (UxC_ XR‘I;E,E) there exists an a(y,(,n) € SVH(UxC_xR?; E, E)
such that

Op(a) — Op(@) € ¥ *(U;E, E;C_)

holds. For a we have the asymptotic expansion

1
&(y:Cﬂl) ~ Z aD;(_aﬂ)aa(y’:Cﬂl)|y’:y'

aeN?

(iv) Let parameter—dependent operators A(() = Op,(a)(() € v (U; F,E;C_) and B(() =
Op, (b)(¢) € vl(U; B, F;C_) with A(¢) or B(C) properly supported be given. Then the point—
wise (in ¢) composition AB(() = A(¢)B(C) belongs to ¥+ (U; E,E;C_) and

AB(() - Op,(a #, b)(¢) € ¥ >( B, E;C-).

Here and in the sequel we set

(a#y D)y, ) ~ Y ~05aly, &) D3b(y, G, )

aeNY
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(v) An element a(y,(,n) € SVH(U x C_ x ]R‘I;E,E) has a Leibniz inverse p(y,(,n) € S™HU x
C_xRY;E,E), ie.,

(a#y,p—1)(y,¢n) € S™(U xC_ x R, B, E),
(p#y,a—1)(y,¢,m) € S(U xC_ xR, E,E),

ezactly when there exists a b(y,(,n) € S~ (U x C_ x RY; E, E) satisfying

(@ob—1)(y,¢m) € STH(U x T x RY; B, E),
(boa—1)(y,¢m) € STH(U x T xR E, E).

(vi) Let U,[? C R? be open sets and let x : U — U be a diffeomorphism. Then the operator push—
forward A(¢) := x+A(() of A(C) = Op,(a)(¢) € v LU B, E;C_) belongs to ¥ (U;E,E;C_),
and we have A(¢) = Op(a)(¢) mod ¥=°(U; E, E;C_), where @ has the asymptotic expansion

AW G ~ Y aly ) (50) (5, Gl (1))

aeN?

where pu(y, 1) is polynomial in 7 of order < % and @9 = 1.

Remark 7 Note that the diffeomorphism x in Theorem 6,(vi) does not concern the parameter such
that the anisotropic behaviour plays no role in the arguments.

We will employ the parameter—dependent pseudo—differential operators in global form along the
(isotropic) edge Y, where Y is a closed compact C* manifold. Notice that here was assumed that E is
a Hilbert space.

First we have the global (isotropic) Sobolev spaces W*(Y, E), s € R. The details of the precise
definition can easily be red off from the above anisotropic construction by setting | = 1 and replacing
the involved variables by y. The time—variable varying along R can be omitted. The spaces W?(Y, E)
may be found in the monograph [Sul0]. We also have the spaces of (isotropic) pseudo—differential
operators \Il’(’cl) (Y;E,E‘), v € R, with respect to pairs {E,k,}, {E, R} of Hilbert spaces with fixed
strongly continuous groups of isomorphisms. Also this can easily be derived from the above definitions

by omitting the time direction such that the anisotropy disappears. Note, in particular, that
U°(Y;E,E) 2 C®(Y x Y;L(E,E))
which is independent of the particular group actions.
Theorem 8 FEvery A € ¥ (Y; E,E), first regarded as a continuous operator
A:C>®(Y,E) - C®(Y,E),

extends to a continuous operator
W3 (Y, E) = W*™"(Y, E)

for each s € R.

This result can be proved by analogous methods as above in the more complicated anisotropic case.
To introduce the global parameter—dependent pseudo—differential operators with anisotropic depen-
dence on the parameters (7,9) we set

U2(V;E,E;C_) = S(C_; ¥~°(Y; E,E)) = S(C; T °(Y; E,E))|=_,
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where U—>(Y; E, E) is endowed with its natural Fréchet topology.

Recall (cf. Section 2.3) that in order to formulate global operators on a closed compact C'*° manifold
Y we fix an N-tuple of triples {((TU;, x;), ®;,%;)} Y j=1> where {( J,XJ)} ", is a fixed atlas on Y, {¢;} .,
is a subordinate partition of unity and {¢; € C§° (U O j=1 N-tuple of functions satistying ¢;v¢; = ¢; for
all j.

Definition 9 The space U

(el) (Y E, E C_) is defined as the set of all (~dependent operator families
that take the form

N
A =30 {(6G1).0p,(@)(© } w5 +C(0), (5)

where a;(y,¢,n) € SUL(U; x C_ x RI;E E), Ui = x;j(Uj), 5 = 1,...,N, and C({) belongs to

> (el)
U—>(Y;E,E;C_).

Remark 10 Again, without loss of generality we may assume the following compatibility conditions
of the tuple of symbols a;(y,(,n) in Definition 9. If x,i : Up N Xk(ﬁj N0 — U; N Xj(ﬁj N Uy) is
the system of transition diffeomorphisms to the above charts, then for the symbol push—forward of the

complete symbols we have
J|U Ax; (U;N0%) = (X ). k|Ukn><k(U nU)

modulo S~ (U; N x;(U; NUy) x C_ x RY; E, E) for all jk€1,...,N.

Due to Theorem 6 (i7) and (iii) we get the same classes of operators if the local amplitude functions
depend on (y,y’,(,n) or (y', ¢, n), respectively. Moreover, it is clear that A((p) belongs to ¥y (Y;E,E)
for every ¢, € C_.

eorem et S\ ; ,N;_, and v, p € R wit > v be given and set p = max{v,v—
Th 11 Let A(C V(Y E,E;C dv,p € R with b d p
u}. Then the inequality

AN 2o (v e v, < €055 AL+ [C[2) MM/ (6)

holds for all ( € C_. Here M and M are the constants associated to kx and Ry, respectively, according
o (1.1.10).

Proof: Because of the compactness of Y it suffices to check the norm estimate (6) locally. Moreover,
by construction every local operator family A;(¢) is uniformly (in {) compactly supported with respect
o (y,y'), i.e., there is a compact set K C R*? such that the support of the kernel of A4;(¢) lies in K.
Thus we only need to look at the case of (y,y')-independent symbols and the general case then follows
by standard tensor product arguments, cf. [Sul0] Theorem 1.2.19.

Now let A(¢) = Op — y(a)(¢) € ¥ (R%;E,E;C_), a((,n) € $*/(C_ x R%; E,E). Then with
() = (1 + Inf*)/2 we have

IIA(C)UIIiHZ/(n)%_”)IIEgﬁ(fA(C)U)(n)II%dn

1572 (¢ma(¢mr(C,m)|” |

5 || g )l
[¢,nl;

Using |, /|| < C([Ca”]l/W))N and ||k e || < e (¢ nle/(n )™ and the symbol estimate
||H C; ) (C;’?)"@(C;ﬂ)” S C(a)[g;"]];j we obtain

2(M+M+v)
1A, < / o s (Fuy ..

(020
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But then we get the desired norm estimate, since the assumptions concerning u,rv and p imply the
inequality
(G < ey MR (L 4|2y MM /21 (7)

In order to see (7) we consider the inequality

~™

(Cmi < em™(C)

where fi,7 € R, i > 7, p = max{p, — fi}, and (¢,n) = (1+ [¢[* + |n|*)% . Since (¢, n) ~ [, n]; the
inequality (8) is equivalent to (7). But for i > 0, where g = 7, we have

(8)

MO > m)'"(C)" > e(¢,m1”,

and for i < 0, where p =7 — 1 < 0, we have

)y = ()T TR < ¢y (G T = (¢
which yields (8). i

Corollary 12 Let A(¢) € V(Y E, E;C_ ) be given and assume that the correspondmg group ac-
tions ky and Ky associated to E and E respectively, are unitary. Then inserting M = M =0 in the
above estimate (6) it follows that for all s € R there is a constant ¢ = ¢(s) > 0 such that we have

AN 2w v,y e (v By < ©

for all (€ C_.

Theorem 11 allows a further essential application. In the process of inverting a pseudo—differential
operator under certain conditions we arrive at families of smoothing operators. Then it remains to invert
I+ C(¢) for some C(¢) € $=>°(Y; E, E;C_). Here and in the sequel we denote by I the corresponding
identity. We will invert I + C(() using a Neumann series argument, such that we have to ensure that the
norm of C(() is sufficiently small. This will be reached by enlarging |(|, since for v < —(M + M+ 1))
the right hand side of (6) decreases for increasing |(].

Proposition 13 For every C(¢) € ¥~=(Y;E,E;C_) and every s € R there exists a constant
¢ = ¢(s) > 0 such that the mapping

I+C(() : WY, E) = W*(Y,E)

is invertible for all ( € C_ with |{| > c(s). Moreover, there exists an operator family G(() €
(Y E,E;C_) with (I +C({))(I +G(¢)) = I+ H(() with H(C) = 0 for (] > c(s).

Proof: We first construct I + Go(¢) as point—wise inverse of I + C(() for sufficiently large |(| as a
Neumann series. This is possible, since Theorem 11 yields ||C'(¢)]|s,s < 1 if |¢| > ¢o for some constant
co = ¢o(s) > 0. Then we set G(() = (1 —w (%)) Go(¢) with a cut—off function w(r) € C§° (R4, [0,1])

with
1 for 0<r<1,
w(r) = P (9)
0 for r>2

It is obvious that G(¢) € $~°(Y; E,E) for € C_ and (I+C({))(I+G(()) = I+ H(¢) with H(¢) =0
for |¢] > ¢(s) = 2¢o(s). Moreover, we have to verify that G(¢) is rapidely decreasing. This follows by
induction, since every derivative G(¥) (¢) = %G (¢) may be written as a sum of products of bounded
functions, where at least one factor is rapidely decreasing.
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Indeed, for k = 0 we have G = —(I + C)1C, where C() is rapidely decreasing and (I + C(¢))™* =
I+ Go(¢) is uniformly bounded for large |¢|. This gives us

GH(Q) =T +C(Q) 'CHQOU+CQ) ™ ==+ Go(Q)CH (I + Go(()).

By induction we then obtain that G*) (¢) is a linear combination of compositions of I+Go(¢), I+C(¢) and
C™(¢), n < k, where every summand contains at least one factor C'™(¢) which is rapidely decreasing.
O

Proposition 14 Let C(() € ¥=°(Y; E, E;C_) be an arbitrary element and assume that
I+CK):W(Y,E) > W*(Y,E) (10)

is invertible for some s = sy € R and all ( € C_. Then (10) is invertible for all s € R and all ( € C_,
and the inverse has the form I + G(() with G(¢) € ¥~=(Y;E,E;C_).
An analogous result holds if (10) is invertible for all ( € C_ with |(| > ¢ with some constant ¢ > 0.

Proof: We only prove the first statement. The second one is easier, since we only have to check that
the constant ¢(s) in Proposition 13 may be chosen uniformly for all s € R.
In order to prove the first part we set

G(¢) = —C(¢) + C(OU + C()) ™ C(¢)-

Then an easy calculation shows (I + G({))(I + C()) = (I +G()(I +C(¢)) = 1.

Moreover, for each { we have to show that G(¢) : W"(Y,E) — W>(Y, E) is continuous for every
r € R. Since this is known for C(¢) it suffices to look at G(¢) + C(¢) which is the composition of
C(¢) : Wr(Y,E) - WX(Y,E) = Wo(Y,E), (I +C(C)"! : Wo(Y,E) = W*(Y,E) and C(() :
W (Y, E) — W>™(Y,E). This gives point-wise G({) € ¥~>°(Y; E,E). The simple arguments for
G(¢) € C®(C_,¥=>°(Y; E, E)) will be omitted.

In a last step we have to check G(¢) € S(C_,¥~>°(Y; E, E)). But this follows from Proposition 13,
since the uniqueness of the inverse implies that for large || the family G({) equals that of Proposition

13, and we proved there that it is rapidely decreasing. O

4.2 Ellipticity, parametrix construction and invertibility

We now turn to the parameter—dependent ellipticity in the class W“’Z(U;E,E;@,), u € R for open
UCRe.

Definition 1 An element A(() € H(U; E,E‘;@,) 15 called anisotropic parameter—dependent ellip-
tic of order p € R if for any representation of A(C) in the form A(¢) = Op,(a)(C) + C((), cf. (4.1.3),
for some a(y,(,n) € S#HU x C_ x R%; E, E) and C(¢) € $=°(U; E, E;T_) the symbol a satisfies the
following
Condition E: For every K CC U there are constants R,c > 0 such that

a(ya C;n)|U><{|Cv77|l>R} E—E
is a family of isomorphisms satisfying the inequality

171 maly, ¢, me(C nullg > ¢, 0} llulle (1)

forallu € E, ally € K and all ({,n) € C_ x R? with |¢,n|; > R.



40 4 PARAMETER-DEPENDENT ELLIPTICITY

Proposition 2 Let a(y,(,n) € S*'(U x C_ x ]R‘I;E,E) be given. Then Condition E is equivalent
to the existence of an element b(y,(,n) € S™H(U x C_ x ]R‘I;E,E) with

aly,(,mb(y,¢,n) —1 € S™Y(U xT_ x R E, E), (2)
by, ¢,maly,¢,m) —1 € S™H(U xC_ x RY; E,E). (3)

Here 1 is the identity as constant operator—valued function and a(y,,n)b(y,,n) means the point—wise
composition of the operator—valued functions.

Proof: Condition E gives a point—wise inverse (a(y,¢,n))"! for |(,n]; > R and we set

by, o) = 0 for |C,nli < R,
T x(¢ ) (aly, ¢om) T for ¢l > R,

where x(r) € C*(R4, [0, 1]) is an excision function satisfying

x(r) =

0 for r <R,
1 for r>2R.

Then b(y, ¢,n) belongs to C®(U x C_ x RY, L(E, E)). It only remains to check the symbol estimates.
Outside the compact set Bbp := {|¢,n]; < 2R} we have

&My, GmEC ) = 5 CGm) (aly, Gn) 7RG ) = (&H(¢Gmaly, G n)s(Cn)

Let T := &=(¢,n)a(y, ¢,n)k(¢,n); then (1) corresponds to
1Tull < e[Cnlf lulle
for all v € E. But this implies
1T~ ollp < e MG ul M ITT ol = Gl vl
for any v € E and hence

16 (Cmb(y, GmEC M 5y < € IComl " (4)

The symbol estimates for a,5 # 0 then follow by induction from (4) and the symbol estimates for

a(y, ¢,n).
This implies b(y,(,n) € S™HH(U x C_ x RY; E, E). Note that differentiation with respect to 7 or ¢

reduces the order of the symbol by [ instead of 1. We obtain
ba—1=(x—1)1€C®U,CF(C_ xR, L(E,E)) c ST"U xC_ xRY; E, E)

and
ab— 1= (x—1)1€ C®(U,C¢([C- xR, L(E,E))) c S V(U x C_ x R"; E, E),

as desired.
Conversely, if there exists for the given symbol a(y,(,n) an element b(y,(,n) € S™*'(U x C_ x
R?; E, E) with (3) we get

r(y,¢,m) = by, ¢,ma(y,(,n) — 1€ S V(U xC_ xR; E, E)

such that there is a constant R; with [|r(y,(,n)llze,r) < 1 for |(,n); > R;. But then there exists
(1+r(y,¢,n))~! point-wise as a Neumann series and 1 = (I +7)"1(1 +7) = (1 +r)"'ba yields a left
inverse of a(y,(,n) for |(,n|; > R;. Analogously (2) gives the existence of a point—wise right inverse
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of a(y,(,n) for |¢,n); > R with a constant Rs. Thus a(y,(,n) : E — E is an isomorphism for
|¢,n|i > max{R;y, R2}.

Moreover, for every K CC U we obtain an R = R(K) > 0 such that
ll—1(¢,m) (1 + 7y, ¢;m)k((,Mlc(e,E) > ¢ >0 holds for all (y,(,n) € K x C_ x R? with |(,n|; > R.
This implies for every u € E

cllulle < &¢I+ r(y, ¢m)e(Cn)ulle

= ||k~ (&I 7 by, R MEH (I 0], Haly, G m)w(C n)ulls

< 6™ CmICmly vy, CmEC M 2 5 gy IE (C ISl aly, ¢ m)s(C,m)ull
< ONl&THE MGl " aly, ¢ m)w(Cmullg,

and hence [|&~(¢,n)[C, 0], *a(y, ¢, n)k(¢;n)ullz > ¢/Cllul|g. Thus Condition E is verified for a(y, ¢,7).
O

Corollary 3 It follows immediately from Proposition 2 that if a = a,+a,—1 s a decomposition of the
given symbol a into a symbol a, of order p and a symbol a,,_1 of order p—1 then a is parameter—dependent
anisotropic elliptic if and only if a, has this property. Especially, the notion of parameter—dependent
anisotropic ellipticity of A(C) is independent of the representation A(¢) = Op,(a)(¢) + C(().

Corollary 3 allows us to characterise parameter—dependent ellipticity of classical families of pseudo—

differential operators by means of the anisotropic homogeneous principal symbol.

Proposition 4 A classical family of pseudo-differential operators A(() = Op,(a)(¢) + C(¢) €
\Ilgl’l(U; E, E’;@_) is pammeterfdepgndent elliptic if and only if the corresponding p—homogeneous prin-
cipal symbol ok (a)(y,(,m) : E — E is invertible for all y € U and all (¢,n) € R'T2\ {0}.

Proof: From the definition of classical families we have a(y,¢,n) = x(¢, )k (4)(y, ¢, n) + au—1(y, ¢, n)
for an arbitrary excision function x({,n) and a remainder a,—1(y,(,n) € Sé‘l_l’l(U x C_ x RY;E, E).
Hence in view of Corollary 3 the ellipticity of a(y, (,n) is equivalent to the ellipticity of a,(y,(,n) =
xX(¢man(A)(y, ¢ m).

On one hand the invertibility of oh(A4)(y,¢,n) for ((,n) # 0 implies that the operator function
a,(y,¢,n) takes values in isomorphisms for [¢,n]; > R and all y € U with some constant R > 0
depending only upon the excision function x. Moreover, the homogeneity of a,(y,(,n) in the operator—
valued sense for large [(,7n]; yields (1) for all u € E, all y belonging to some compact set K and all
(¢,m) € C_ with |¢,n|; > R. Hence the highest order part a, satisfies Condition E.

On the other hand if Condition E holds for a,(y,(,n), then the operator-valued function

ok (A)(y,(,n) consists of isomorphisms for all (y,(,n) € U x Sg, where Sg = (C_ x R?) N {|(,n); = R}
denotes the anisotropic half-sphere. Choosing R large enough, we get a,(y, ¢, n)|51 =oh(A)(y, ¢, n)|Sz
such that the corresponding extension by homogeneity produces the p— homogeneous principal symbol
oh(A)(y,(,n), and it is an isomorphism for all ({,n) # 0 and arbitrary y € U. a

Definition 5 Let A(¢) € V! (U; E, E;C_) and P(¢) € W=\ (U; E, E;C_) be given and assume that
A(C) or P(C) is properly supported in the sense of 4.1 Definition 2. Then P(() is called a parameter—
dependent parametriz of A(Q) if

A(QP() -1 € T™=(U; B, E5C),  P(QA() -1 € ¥>(U; B, B;C-.).

Proposition 6 For any A(() € ¥*!(U; E,E;@_) which is anisotropic parameter—dependent elliptic
of order p there exists a (properly supported) parametriz P(() € $~H(U; E’,E;@_); it is classical when
A(C) is classical.
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Proof: Without loss of generality we may assume A(¢) = Op,(a)(¢) for some a(y,(,n) € S»H (U x
C_ x ]Rq;E,E) satisfying Condition E. Let b(y,(,n) € S™H(U x C_ x ]R‘I;E,E) be the symbol from
Proposition 2. Then we can apply 4.1 Theorem 6,(v) and pass to a Leibniz inverse p(y, (,n) of a(y,(,n)
with parameter . Now applying 4.1 Proposition 3 to Op,,(p)(¢) we find the required properly supported
parametrix P((). a

We now formulate ellipticity and parametrices for a closed compact C'*° manifold Y of dimension
qge N

Definition 7 An A(() € \I'”’l(Y;E,E;@_) is called anisotropic parameter—dependent elliptic of
order i € R if for any representation of A(C) in the form (4.1.5) the local symbols a;, j = 1,...,N,
satisfy Condition E.

Moreover, an operator family P(() € ¥~H!(Y; E, E;C_) is called a parameter—dependent parametriz
of A(Q) if

AQP(Q) ~T€ ¥ =(V;E,E;C.), PQOA(Q) ~1€¥ *(Y;E EC.).

Theorem 8 For any A(() € ¥H!(Y; E,E;@_) which is anisotropic parameter—dependent elliptic of
order i there exists a parametriz P(¢) € ¥~*(Y; E, E;C_).

Proof: By definition A(¢) can be written in the form

N
A =36 {(G™). Op, (@) } 5 + C(Q),
=1

cf. 4.1 Definition 9, where we may assume C'(¢) = 0. In addition we may assume the compatibility of the
local symbols a; in the sense of 4.1 Remark 10. Let us form the Leibniz inverse p; of a; for every j in
the sense of Proposition 6. Then also the symbols p; satisfy the corresponding compatibility condition,
cf. 4.1 Theorem 6,(vi). Thus defining

N
PO =36 {(G"), 0p, (O} .

we just obtain a parameter—dependent parametrix of A((¢), which belongs to the space
v-ml(y; E, E;C_), cf. analogously 2.2 Theorem 8, where we employ 4.1 Remark 4. a
Let us set T_;,A(¢) = A(¢ —7) and define

vl Y; B, E;C_y) = {T_i, A(Q) : A(C) € ¥"{(Y; E, E;T_)}.

Then ¥¥!(
write W (

YiE,E;C_(,1p) = {T-4,B(C) : B(() € ¥} (Y E, E;C_,)}, and moreover, we will shortly
Y;E,E;C_,) =T_;, ¥ (Y;E, E;C_).
Proposition 9 A(¢) € ¥*!(Y; E, E;C_) implies A(Q)|tm ¢c<—~ € T_m\I'”’l(Y;E,E;@_).

Proof: Since every translation maps smoothing operators to smoothing operators it suffices to check
the symbol estimates for the symbols of the local operators. Let an arbitrary local operator family
Op,(a)(¢) € \Il”’l(U;E,E;@,), U C R?, with symbol a(y,(,n) € S (U x C_ x ]R‘I;E,E) be given.
Then we have to show T_;,a(y, (,n) = a(y,( —iv,n) € S¥'(U x C_ x ]R‘I;E,E).

It is clear that a(y,( — iv,n) is a smooth £(E, E)-valued function on U x C_ x R?, such that it
remains to check the symbol estimates. For lucidity we will only use (y,n)-independent symbols, the
general case then follows analogously.
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But then for ( = 7 + i1 € C_ and arbitrary So1, B0z € N we have

IF=H (¢, m D D T ina(Qm(G, )l = (IR mDE D*a(¢ — im)s(C, )

= ||Fa[<[_ci7],,,], Fa[_g Dfm Dgoza(C - i’Y)’i[(—iv,n]z"'?[C[C;nlz I
O 7

1
—iy,m) e

e, OJMHMC — iy, )y~ (Por 02

< Oy M+ Bor +Bo) V1] = (Bor+5o2)

IN

by (1.1.11) and Peetre’s inequality (1.1.8). i

Theorem 10 Let A(C) € W“’Z(Y;E,E;@,) be anisotropic parameter—dependent elliptic of order p.
Then there exists a constant v > 0 such that

A(Q) : WA (Y, E) = WeTH(Y, E) (5)
is invertible for all |C| > v and all s € R.
Proof: Applying Theorem 8 we find a parametrix P(() € ¢~ (Y; E, E;@,) to A(¢). This gives us

P(OAQ) =1 +C(0) (6)

for C(¢) € ¥~=°(Y;E,E;C_). From 4.1 Proposition 13 we conclude that I + C(() is invertible as
operator in W*#(Y, E) for a fixed s € R and |(| > 7(s). Then by 4.1 Proposition 14 we get invertibility
for all s € R and ~ independent upon s, and there exists a G(¢) € ¥~>°(Y;E,E;C_) such that
(I +G))T +C()) =1 for all |[(|] > . Then (6) implies (I + G(€))P(¢)A(¢) = I for all |(| > 7,
in other words A(() is invertible in W*(Y, E) for all s € R and B(¢) = (I + G(¢))P(¢) belongs to
U—#l(Y; E,E;C_) and equals A=(¢) for || > 7. O

Remark 11 Let A(¢) € ¥#!(Y; E, E;C_) satisfy the conditions of Theorem 10 and ~ be the corre-
sponding constant. Then (A(¢)|m c<—y) " € T_i, O ~HI(Y; E, E;C_).

In the sequel we assume, that we have a Hilbert space E and a Hilbert space E° associated with an
unitary group action {kx}aer,. Moreover, we assume E C EY or E° C E and k), restricts or extends to
a group action on E. For such a pair of spaces we define the following condition.

Condition R: There exists an isomorphism a : E — E° with the property Ii)\alixl €

C=(Ry, L(E, E?)).

Remark 12 Set a(\) = raaky' for some a : E — E° from Condition R. Then the family of the
(point-wise) inverses a=*(\) = kaa 'k, ' belongs to C°(Ry, L(E°, E)).

In fact, to see this we use that a(A\)a=!()\) = idgo implies

e == (:Zi <Z> <dd—; “(A)> (%a‘lw) + (d‘%au)) a—l(A>> .

Thus the smoothness of a~1(\) follows by induction from the smoothness of a()\) and the continuity of

a~t()\). In order to show the continuity of a=!(\) we write
a(A) = a(Xo)(1 = a™ (Ao)(a(o) — a(N)))
which is possible for all A\, \g € Ry since a(\) is a family of isomorphisms. Moreover,

la™ (Ao)(a(Xo) = aM)I < [la~* (Kol fla(Xo) — a(N)]]
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is small for small |A\g — A| by the continuity of a(A). Hence we can invert a(\) using the corresponding
Neumann series for 1 —a~(\g)(a(Xo) — a()\)) and obtain

o0

a ) = [ Y (a7 o) (@) —an))’ | a (o)

=0

a t(No) + Z (o) (@) —a(\)’ | a (M)

But then we have

la™ (A) —a™ (M) < Z “1(Ao)(@(Ao) — a(\)) || la= (o)l
< ZHa a(X0) = a))| lla™* (o)l
_ ||a (Mo)(a(ho) = a(W)] lla= (M)l
1— [l *(ho)(a(ho) — aV)]
< Co)llar) — a(ro)]|

with some constant C'(X\g) > 0 which gives the continuity of a !

Example 13 Let us set E° = L}(R™), E = H*(R™) for some fixed s € R and (kyu)(z) =
N2y(Az). Then Condition R is satisfied, since we can take a = op,(p) for the symbol p(¢) =

(1 + [¢%)*/2. In fact, an easy calculation shows kxop,(p)ky' = op,(px) with pr(§) = p (%) It is

clear that thean aa—;cpA is also a symbol of order s.

Lemma 14 Assume E, E° are Hilbert spaces with a group action ky satisfying Condition R. Then for
every pu € R there exist an parameter—dependent operator—valued symbol a*((,n) € Sty l((C xR?; E,E°)
that gives isomorphisms a*((,n) : E — E° for all ({,n) € C_ x R?.

Proof: Set a*((,n) = [(,n)'k(¢,n)arx~(¢,n) which belongs to C>(C_ x R?; L(E, E®)) in view of
Condition R . Of course, a*({,n) is an isomorphism for every fixed ((,n) € C_ x R? with inverse
[Cml; #K(C,ma~ k1 (¢,m). Moreover, an easy calculation shows, that it is anisotropic u-homogeneous
in the operator-valued sense for large |¢,7|;, which yields a*(¢,n) € S%'(C_ x RY; E, E9). ]

Corollary 15 Under the conditions of Lemma 14 for every order u € R there exists an anisotropic
parameter—dependent elliptic operator A(¢) € (Y ; E, E% C_) such that

A(Q) : WE(Y,E) = WS H(Y, E°)

is an isomorphism for all s € R and all { € C_.

Moreover, the (point—wise for all () inverse A=1(() is of analogous structure of order —u.

Indeed, defining Ay(() locally as Op, (a) with a(¢,n) given as in Lemma 14 and globalising with respect
to Y we obtain an operator family that satisfies the conditions of Theorem 10. Hence A(¢) = Ao (¢ —i7)
is an operator family with the desired properties.

Let us fix an order s € R and choose a parameter—dependent elliptic element R*(() €
U»l(Y; E,E° C_) with the properties of Corollary 15. Then we can define a parameter—dependent
norm in the space W*(Y, E) of the form

llullws (v,B). = [IR*(Q)ullwo(y,Eo)-
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W?(Y, E) endowed with this parameter—dependent norm will be denoted by W*(Y, E).. It is clear that

for every fixed ¢ = (p we have
lullwev,B)e, ~ llullwey,m)

(where ~ means equivalence of norms). Moreover, the parameter—dependent norms are independent of
the particular choice of R*({). In other words, if R*(() is another order reducing family with the above
properties, we have for suitable constants c;,cy > 0

e |R (Q)ullwo v,y < 1R (Qullwoy, o) < eall B (Qullwo v, im0,
for all ¢ € C_. In fact,

IR (Qullwoqy,me) = 1R (QR™* QR (Q)ullwo(y, o)
IR ()R (Ol cowo (v, oy 1R (Qullwo (v, po).-

IN

But now we can apply 4.1 Corollary 12 which implies ||]§S(§)R’S(§)||L(W0(YVE0)) < cfor all ¢ € C_ with

some constant ¢ > 0.

Theorem 16 Let E,E° and E,ENIO be Hilbert spaces with group actions k) and Ry, respectively,
and suppose that Condition R is satisfied. Then every A(¢) € WY E,E;C_) induces a family of
continuous operators

A(Q) : WA (Y, E) = W (Y, B),
s € R, satisfying
1Al iy, < Clluller.ie

for all w € W*(Y, E) with a constant C' independent of (.

Proof: We only have to check the boundedness of A(¢) with respect to the parameter—dependent norm.
But this follows from

1Al ey, = IRV QA ullyyoqy 530
= [IR(Q)* " AR * (OB (Qullyyo y, 5oy
< R AR (Ol goqy.moy yocy. 5o 1B (Qullwoy, po)
< Cllullwsy,p),-

Here we used that in view of 4.1 Theorem 6,(iv) R(¢)*™" A(C)R=*(¢) belongs to WO!(Y; E°, EO; C_) and
is uniformly bounded with respect to ¢, cf. 4.1 Corollary 12. |

Proposition 17 Let A(() € \II“J(Y;E,E;@,) be parameter—dependent anisotropic elliptic. Then

for arbitrary s € R there are constants ¢,y > 0 such that the estimate

[ullwesniy,me < cllAQullyy. iy 7).
holds for all |(| > 7.

Proof: Applying Theorem 10 the anisotropic parameter—dependent ellipticity implies the existence of
an element B(¢) € ¥ *!(E, E;C_) which equals A~1(¢) for |¢| > 7 for some v > 0. But then for any
u € WY, E)¢, [¢| > v, the assertion follows from |[ullyys+u(y,m). = [IB(Q)A(Q)ullws+u(v,E). - a

For the scalar case, i.e., when E = E = C, our results generalise corresponding observations in
the paper [AV]. Consider a closed compact C* manifold X and let ¥*/(X C_) be the anisotropic
parameter—dependent class of pseudo—differential operators on X of order pu. The Sobolev spaces are
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here the standard ones, namely H?*(X), s € R. It is then well known that for every p € R there exists
an element R(¢) € ¥*!(X,C_) such that

R(¢) - H*(X) » H"(X)

is an isomorphism for all s € R. This allows us to introduce parameter dependent norms within the

Sobolev spaces, namely

ull s () = 1B (Q)ull o x)-

Again we denote the corresponding spaces by H*(X)¢ and it is clear that the norm is independent of
the choice of R*(() up to equivalence.

Agranovié, Visik [AV] used on H*(X) for s € N the parameter—-dependent norm u — ||ul|gsx) +
ICI*lull go(x)- We shall show that this norm is equivalent to that defined in this section.
Lemma 18 For all s € Ry ther are constants ¢, C > 0 such that we have
cllullgex)e < lullasco + 1P ullrox) < Cllullas ). (7)

Proof: The first part is nothing else than the mapping property of the corresponding order reduction.
To see the second we obtain for 0 < s’ <'s

HY (X)) = IR (Qullmox) = IR (QR™*(Q)R*(Q)ullmox)

IR = ()l e a0 ) 1R (Qull o x)
Cr (L [C)* 1R (Qul a0 x)
Cor s(L+[C)* %l

[l

IN IN A

He(X)es (8)

which follows from 4.1 Theorem 11 for E = E = C and [ = 1, since R* ~*(() gives by definition a
continuous mapping
R*°(() : HY(X) » H*~* (X) = H°(X).

Using ||ul|gs(x) < ¢sllullgs(x), and (8) for s" = 0 we get
ull s x) + (L+ICD% lullgoxy < esllull s x), + Cosllullms(x).
S C||U| Hs(X)¢»
which is the right hand side of (7). |

Note that (8) implies the often used interpolation inequality

o
€177 [l

me(x) < O s(llullm(x) + [CIPlull o x))

for 0 < s’ < s; but here s and s’ need not to be natural numbers.

4.3 Application to parabolic differential operators

In this section we shall apply the parameter—dependent calculus of the previous sections to treat parabolic
differential operators on infinite cylinders Ry x Y, Ry = [0,00), where Y is a closed compact ¢—
dimensional C**° manifold without boundary. In local coordinates the differential operator A in consid-

eration will have the form
A(y,Di, D) = asDi— Y aaly) DS (1)

|| <t

where ag € L(E, E) and aq(y) € C®(Y, L(E, E)) are given such that the corresponding symbol

a(y,7,m) = aoT — Y aa(y)n”
jal<t
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belongs to SHY(R? x R'TY; B, E‘) (even classical) with Hilbert spaces E, E belonging to Gelfand triples
(E,E°, E'; ky) and (E, EO, E’; Ex) with unitary group actions, respectively, given as above, cf. 1.3.

Then the operator A belongs to the space \Ifi’ll(]R XY, E, E’) but its symbol does not depend on the
time variable ¢t € R, and in view of Section 3.3 A extends to a continuous operator

AW

R X Y, E) 5 Wt (R x Y, E)
for arbitrary s € R. Note that because of the compactness of Y the subscripts comp and loc only refer
to the time variable. Moreover, since the coefficients of the operator do not depend on t we can extend
A to an operator

A: WO R XY, E) > W R x Y, E).

In order to specify the mapping properties with respect to the infinite time cylinder R, x Y we intro-
duce anisotropic Sobolev spaces with some weight v > 0 describing the behaviour of the corresponding
distribution for ¢ tending to infinity.

To this end, we form WS’Z(EJF xR?, E) as the subspace of all distributions in W*!(R*¢, E) supported
in Ry x R? and topologise this space with the induced Banach topology.

Lemma 1 For all s € R we have:
(i) The space C°(Ry x RY, E) is dense in W' (R, x R?, E).
(i1) Wit (R, x R4, E) is a closed subspace of WSI(RITY, E).

Proof: To (i): For given u(t,y) € WS’Z(K+ x R?, E) and any 6 > 0 we set us(t,y) := u(t — J,y). Then
we have supp us C [d,00) x R? and Lebesgue’s dominated convergence theorem yields ||u—usl|s,; — 0 for
§ — 0. Next, in view of 3.1 Lemma 4 we approximate us as element of W*!(R'*¢, E) with a sequence of
smooth functions with compact support. Since us = 0 for ¢ < § we can choose a subsequence supported
in Ry that approximates us and this gives the assertion.

To (ii): Let {u,} € Wit (R x RY, E) and u € W (R, E) with |lu — up||s; = 0 for n — oo be
given. We have to check supp u C R, x RY.

In view of (i) we have sequences {¢}}72, C C3°(Ry x R?, E) with ¢} — u,, for Kk — oco. Then an
easy diagonal argument gives a sequence {¢Z(n)};l°°:1 tending to u within W#!(R'*?, E). Remember that
the elements of W*!(R'*4, E) belong to S'(R'*?, E) = £(S(R'*T?), E). Then our convergence means

u($) = lim / By (6,9 (8, )iy

for every ¢ € S(R'T?).
But then choosing some arbitrary 1 € S(R'T?) with supp 9 C (—00,0) x R? we get

for every n and hence u(¢)) = 0 that is the desired property. a
In order to use the results of Sections 4.1 and 4.2 we convert the time—dependent operator via Fourier—
Laplace transformation £ into a parameter—dependent pseudo—differential operator. This transformation

is given by the formula

Liscu(Cy) = / e "u(t,y)dt.

Proposition 2 For any Banach space F let Sy(Ry, F) be the subspace of all elements in S(R, F)
supported in R,. Then 4(C) is the Fourier-Laplace transform of u(t) € So(Ry, F) if and only if 0(C) is
holomorphic in C_, smooth in C_, and for all m,k € N there erists a constant C = C(m, k) > 0 such
that the inequality

(14 )™ DOl < C

holds for all ¢ € C_.
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The proof is completely analogous to the scalar case treated in [Esl] and will be omitted here.

Using the Fourier—Laplace transformation we can form pseudo—differential operators with symbols
where the covariable corresponding to the time runs over subsets of the complex plane. Remember that
in view of the Paley—Wiener theorem the Fourier transform of a smooth function with compact support
may be extended analytically into the complex plane and for functions supported in R, this is nothing
else than its Fourier-Laplace transform. Multiplying the resulting function by some convenient symbol
and transforming back gives a pseudo—differential operation. In order to do that we need a further
condition concerning the order reduction.

Condition H: For every s € R there exists an element r((,n) € Scsl’l(@, x RY; E, E°) which is

holomorphic for all { € C_ and parameter—dependent anisotropic elliptic.

Corollary 3 Condition H implies the existence of an order reduction R*(¢) € ¥*!(Y;E, E°;C_)
that is holomorphic for all { € C_.

In fact, according to the notation of (4.1.5) we can form
N
B Q) = > 6 { (1), Op, () (¢ + %) } 5 + C(Q)
j=1

for 79 > 0 which is parameter—dependent elliptic with parameter ¢ € C_ and holomorphic in C_. Then
applying 4.2 Corollary 15 the operator

R(C) : We(Y, E) = W°(Y, E®)

is an isomorphism for all { € C_ as soon as 7 is sufficiently large.
In the sequel we allways assume that we have Gelfand triples (E,E°, E', k) and (E‘,EO,E’,FJ}\),
respectively, satisfying the Condition H with resulting order reductions R*(({) and R® ©).

Lemma 4 Let R*(¢) € ¥*!(Y; E,E°; C_) be an order reduction following from Condition H. Then
DZRS(C) € Us—ibl(Y; E,E°% C_), and there are constants c, M > 0 such that for p = max{s — jl,0}

||D2Rs(<)||L‘,(W5*”-l(Y7E)7W0(Y,E0)) < (14 [¢[?) e/ (2)
holds for all j € N,

Proof: Since R*(() is holomorphic in C_ we can form DéRS (¢) and it belongs to ¥*—iLI(Y; E, E°;C ).
This follows immediately from the symbol estimates. The norm estimate (2) follows from 4.1 Theorem 11.
Here we set pn = s — 51 and M = 0 since &, is supposed to be unitary on E°. |

Example 5 Setting £ = H*(R") and E = H**(R") endowed with the standard group actions
(kau)(z) = A2u(Az), X € Ry, we form R*(() according to the notation of 4.1 Definition 9 as

N

RH(C) = ¢ {(; )«0p, (r))(O) }
j=1

with
ri(Cn) = op, ((L+iC+ el + Inl! +18)*F)
where 3 € R’ is an extra parameter that will be chosen below. The powers are defined by the branch of

the logarithm in ¢ € C_ which is real for real arguments.
We then obtain an operator family

R¥(C) : WA(Y,H*(R™)) —» W*™H(Y,H*~*(R"))

that becomes an isomorphism for sufficiently large |3, for all ( € C_ and all s € R. After fixing this
B we get RH(¢) € WY, H*(R"), H*~#(R*); C_) for all s. In particular, inserting u = s we obtain an

order reduction in the sense of Condition H.
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Proposition 6 The operator Op,(R®) := F 1, R*(7)Fi—, gives an isomorphism
Op,(R®) : W' (Ry x Y, E) = WO(R, x Y, E°)
for all s € R.

Proof: It suffices to invert the order reduction locally since then it remains to invert I + C(¢) with
some C(¢) € ¥=>°(Y; E, E°;C_) which can be done with the help of 4.1 Proposition 14. For simplicity
we will denote for the moment the local order reduction also by R?(().

We have WHH(R x R?, E) = Ws/{ (R, W?# (R?, E)) such that Op,(R?®) at least extends to a continuous
map Op, (R?) : W/H{(R,W* (RY, E)) — WOH (R, WO (R?, E®)) = WO(Rx R, E°) since it is an anisotropic
pseudo—differential operator of order s with coefficients independent of ¢ € R. Therefore it remains to
prove that Op,(R®) maps distributions supported in R, to distributions supported in Ry. Since in
view of Lemma 1 the space So(Ry, W*(R?, E)) is dense in W/ (R,, W*(R?, E)) we can restrict our
considerations to W*(R?, E)-valued rapidely decreasing functions supported in R

Using Proposition 2 we obtain that the Fourier transform a(7) of an element wu(t) €
So(Ry, W?*(R?, E)) possesses an analytic extension @(¢) into the lower complex half-plane that satisfies

IDE(Ollr < Cp 1+ 1C) ™ (3)

for all k,7m € N with some constant Cfc,m > 0.

Because of Condition H and the ({(—wise) mapping property of R® the function 0(¢) := R*({)u(()
is analytic in the lower complex half-plane and takes values in W°(R x R?, E®). So by Proposition 2
F L0l c—0 = Op;(R*)u belongs to So(Ry, W°(R?, E?)) if the inequality

(1 + K™ IDéo(Ollr < C (4)

holds for all ¢ € C_ and arbitrary m, k € N.

To check this inequality we only have to remark that D{o(¢) = DE(R*(¢)a(()) is a finite linear
combination of terms of the form DZRS(C)DIZ*]'{L(C). But in view of (2) and (3) and choosing m
sufficiently large we get (4).

Finally recall that an order reduction is a family of isomorphisms. Hence we can form (R*(¢)) ™! (for
every ¢ € C_) which is also an analytic family of isomorphisms. Therefore Op,((R*)™!) is the inverse
operator of Op,(R?®) which completes the proof. O

Definition 7 For any weight v > 0 we define the abstract weighted Sobolev space
T Ry x R4, E)

on the half-space Ry xRY as the set of all u(t,y) € S'(R'9, E) such that e~ "tu(t,y) belongs to Wg’l(ﬁ+ X
RY, E). We endow 7'7”(@+ x R?, E) with the norm || - |51,y given by

=

2

ulls iy = lle™ " ull s = {/[T; i l6=" (rym) Fle  ul(r, n)ll%den} : (3)

Lemma 8 For all s,y € R, 7> 0, we have:
(¢) The space 7;57l(ﬁ+ x R?, E) is a Banach space, that is Hilbertisable.

(13) The space C3°(Ry x R?, E) is dense in Tf’l(@_,_ x R E).
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Proof: To (i): The completeness of ﬂs’l(ﬁJr x R?, E) follows immediately from the completeness of
W§7l(ﬁ+ x RY, E). In order to obtain a scalar product we set

(U:U)s,lw = (e—»ytm e_Pytv)s,l

where (-, -)s; denotes the scalar product in W*!(R'T¢, E).

To (ii): For arbitrary u € 7*/(R; x R?, E) we set v := e "u. Then v belongs to W' (Ry x R?, E)
and ||ul|s;y = ||v]s,;- Using (7) of Lemma 1, namely the density of C§°(Ry xR?, E) in Wg’l(ﬁ+ xR, E),
there is e sequence (¢,) C C§°(Ry x R?, E) such that ||¢,, — v|[s; — 0 for n — co. But then setting
Yy = €"'¢, we obtain ¢, € C°(Ry x RY, E) and [[¢n — ulls59 = [le” 7 (%0 — W[5y = [[¢n — vllsy = 0
for n — oo. |

Furthermore, we have for the smooth compact C* manifold Y the spaces W (R x Y, E) as well as
ng’(® x Y, E) such that we can form the anisotropic abstract weighted Sobolev spaces

TRy x Y, E) == "Wy (Ry. x Y, E)

on the infinite time cylinder R x Y with base Y.
Notice that supposing E° as Hilbert space the above definitions give

T (R x Y, E%) = W' (Ry x Y, E°) = L*(Ry x Y, E),

since the correspondig group action is unitary, and the Fourier—Laplace transform of some function
belonging to this space is nothing else than the analytic extension of its Fourier transform into the lower
complex half—plane. So there should be an analogue of the Paley—Wiener theorem, which is our next
goal.

Definition 9 For s,y € R with v > 0 the space Z>'(C_., x Y, E) consists of all 4(¢) : C_, —
W3 (Y, E) holomorphic for all ( € C_,, such that

1

2
2Ty xY,E) T ﬂsilg {/ |la(r +i19)||ivs(Y7E)Cdr} < o0.

[l

holds. Here we set C_, = {¢ € C:Im ¢ < —v} and C_, is the corresponding closure.
With this definition we obtain the following theorem.

Theorem 10 For all s, € R, v > 0, the space Z*!(C_, x Y, E) is isometric to 7;‘971(@+ x Y, E)

and the isomorphism is given by the Fourier—Laplace transformation.

Corollary 11 Theorem 10 implies that Zs’l(@_,y x Y, E) is Banach and since E is a Hilbert space,
even Hilbertsable. Moreover, the space L(C§°(Ry x Y), E) is dense in Z5'(C_, x Y, E).

In order to prove Theorem 10 we need as a proposition the following vector—valued version of the
Paley-Wiener theorem. It characterises the set of Fourier transforms of all L>—functions supported in
R. We follow here the proof of Rudin in [Ru] Theorem 19.2, where it was shown for scalar L>~functions.

Proposition 12 Let H be an arbitrary Hilbert space. Then F(L?*(Ry,H)) is the space of all H-

valued functions u(7) with the following conditions:
(i) 4 possesses an analytic extension into C_ .

(73) There is a constant C > 0 such that

sup/ [|a(T + i19)||%{d‘7' <C (6)

¥<0 J —oco

holds.
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Proof: Remember that L?(R, , H) denotes the subspace of all functions u(t) € L?(R, H) supported in
R,. For all such functions and ¢ = 7 + i € C_ the analytic extension of the Fourier transform (if it
exists) is given by the formula

a(¢) = / e Wy (t)dt = / e u(t)dt = Lu((). (7
—o0 0
Since |e~#¢| = e!? and t¥ < 0 for t > 0 and ¥ < 0 the second integral in (7) exists for all ( € C_. Let
now ¢ € Cy := {Im ¢ < —¢} for some § > 0 be given. Then for any sequence (, C Cy with {, — ( we
get

lim [a(G) ~ Q) = Jim | / et — eyl

n—o00

n—o0

<t ([T e e ) s =0

n—oo

A

since the integral [ [e="¢» — e~#¢|2d¢ tends to O for ¢, — ¢ because the integrand is bounded by

4e~2%% and tends to zero for every ¢ > 0. Thus @ is continuous in C_. But then Fubini’s and Cauchy’s

/Ha(g)dg = /H/Ooo e~ Uy (t)dtd¢ =0

for every closed path II in C_. Hence @ is holomorphic in C_ by Morera’s theorem. Further, using

theorems imply

Plancherel’s formula for an arbitrary fixed ¥ = Im ( < 0 we get

/ la(r +i0)|2dr = / 1 Fisr {ePu(t)} 2l

—00 — 00

- / 29| u(t)| 2t
000
< / lu(t) 12t = )2

— 00

N

which gives the second claim.
On the other hand for given @ with (i) and (ii) we are looking for u(t) € L?(R,,H) such that
4(¢) = Lu(¢). To this end we consider the integral

/ eit(T"'w)ﬂ(T +)dr

and prove that it does not depend on ¥ for ¥ < 0. First for fixed 9y < 0 Cauchy’s theorem gives

/ eCa(C)dc =0 (8)
r

for the rectangular path [', with vertices +a + ¢ and *a + 1. Setting
B+ido

3= [ eaoc

B

+i

and I = [¥g, —1] for 99 < —1 or I = [—1,9] for ¥9 > —1 we get

18312 = H/ B+ (8 + i) cwH /I||a(5+m)||%{d19/lemdq9.

For A(B) == [, ||a(B + i9)||};d¥ we obtain

/ A(B d/3<c|’9°+1|
7r
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Here we used (i¢) and Fubini’s theorem. Hence there is a sequence a; with a; — oo and A(q;) +

A(—a;) = 0 for j — co. This gives us altogether
®(aj) —» 0 and ®(—a;) -0 (9)

for j — oo and this holds for all ¥o < 0 and the a;j may be chosen independently of 9.
Now setting

v;(¥,1) ::/ ] e a(r 4+ iv)dr

—a

from (8) and (9) it follows that

lim (e *v;(9,t) — ev;(—1,t)) =0. (10)

j—o0
Next we write @y (7) for 4(7 + i) and by hypothesis we have 4y € L?(R, H). Then Plancherel’s formula

gives us
o o]

im [ 1F7 () — oy (0, D)l = 0.

Jj—oo )

But this implies that there is a subsequence of {v;(¥,t)} converging pointwise a.e. to F,_ .,y (t).
Now we define u(t) := e!F, ,i_1(t) and (10) yields

u(t) = e WFL ag(t). (11)

Note that by definition u(t) does not depend on ¥. Moreover, (11) holds for every ¥ < 0. Again by
Plancherel’s formula we have

e ull L2, iy = 1 Fr Setol 2@,y = 1@l 2w, m) < c

This shows for ¥ — —oo that u vanishes for ¢ < 0 and for ¥ — 0 that u belongs to the space L?(R, H).
Finally we compute

Lu(¢) = /000 eCu(t)dt
= /00 eCu(t)dt

— 00

o0
= / eCe WL ay(t)dt
— 00

Il Il
&
— 8
\]
- o
I g
<> S
~eN
& -
=,
<
—~
N
oW
~

which comletes the proof. a

Proof: (of Theorem 10) Let us consider in a first step the case s = v = 0 and values in E°. Since
TOHR, x Y, E®) = L2(R,, L2(Y, E°)) and L2(Y, E) is a Hilbert space, we can use Proposition 12 for
this case. Note that the Fourier—Laplace transform is nothing else than the analytic extension of the
Fourier transform, such that it gives in view of Proposition 12 an isomorphism between %O’l(ﬁJr xY, E°)
and Z%(C_ x Y, E®). Moreover, since the group action on E° is unitary, it turns out that || - [|o 0 is
the L?-norm such that Plancherel’s formula shows that the Fourier-Laplace transformation preserves
the norm.

Next we consider the case s # 0. But then, since

Op;(R®) : W' (Ry x Y, E) = W'(Ry x Y, E°)

and
Mgs : Z5H(CT_ x Y, E) 3 u(C) = Mg-u(C) :== R*(Qu(¢) € ZY'(C_ x Y, E®)
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are isomorphisms, the theorem follows from the commutativity of the diagram

WO (R, xY,E) £ 2%(C_ xY,E)

2 Op,(R?) 1 Mpgs
WO (R, x Y,E%) £ 2Z0(T_ x Y, EY).

For an arbitrary weight v we have to check
L(TPH Ry xV,B)) =L (e”twg’l(ﬁ+ x Y, E)) = z5(T_, x Y, B),
but this follows immediately from £{e"*u}(¢) = Lu(¢ + i7). O

Proposition 13 Let A(¢) € W!(Y; E9, E°;C_) be holomorphic for all ¢ € C_. Then Op,(A) :=
FL A m c=0F - gives a continuous map

Op;(4) : WO(R4 x Y, E®) = WI(Ry x Y, E°).

Proof: Since WO(R; x Y, E%) = L2(R,, L2(Y, E°)) and WO(R,. x Y, E°) = L2(R, , L2(Y, E°)) we can
use Proposition 12 to check A(¢)Lu(¢) € LL* (R, ,L2(Y, E®)). Of course, with A(¢) and Lu(¢) also
A(¢)Lu(¢) is holomorphic in C_. So it only remains to note

sup/ |A(T + i9) Lu(r +i9)||?, . ~ dr < csup/ [|Lu(r + iﬁ)”%z(YEO)d‘T <eC,
¥<0J -0 L2(Y,E?) 9<0J -0 ’
which used 4.1 Corollary 12 and Proposition 12. a

Corollary 14 Every A(() € \I"”l(Y;E,E;@_) which is holomorphic for all { € C_ induces a con-
tinuous map
Op,(A) : Wi Ry x Y, E) - Wi "' (R; x Y, E)

for all s € R.

In fact, we obtain the commutative diagram

WL R, x v,E) 24 werl(R, x Y, E)

1 Opy(R®) L Opy(Re=),
WOR, x Y,E%) %Y WoR, x v, E9)

where 4y(¢) = R*“(C)A(C) (R*(C)) ' e WOV, E°, E% C_). But then the desired continuity follows
from Proposition 13 and Proposition 6.

Definition 15 An operator A = Op,(A(C)) for A(¢) € W (Y;E,E;C_) holomorphic in C_ is
called parabolic of order u if A(C) is parameter—dependent anisotropic elliptic.

Theorem 16 Let A = Op,(A(C)) for A(C) € ¥*L(Y;E, E;C_) be parabolic of order p, then there
exists a weight o > 0 such that

A: TRy xY,E) » TP Ry x Y, E)
is invertible for all v > 7o and all s € R.

Proof: In view of the diagram

TRy x V,E) 5 T ml(Ry x Y, E)

lc lc

29T x Y,E) A9 zswl(T_, xY,E)
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we only have to check the invertibility of the multiplication
My : 2°4Coy x Y, E) — 2°74{(T_, x Y, E)

for all v > 7o with some 79 > 0. But in view of 4.2 Theorem 10 the anisotropic parameter—dependent
ellipticity of A(¢) implies the existence of a weight 79 > 0 such that A(() is ((—wise) invertible as map
WS (Y, E) = W5k (Y, E). Denoting this inverse by (A(¢))™" (it belongs to T_ s, ¥~#L(Y; E, E;C_)) we
obtain M((¢))-1 = M;(lo and hence My (¢) is invertible for sufficiently large ~, which gives the desired
invertibility of A for v > vo. a

Remark 17 Note that B(() = (A(¢))~" itself is a family of pseudo—differential operators that is
holomorphic for all ¢ € C_.,,. Therefore the translated family B(¢ + 7o) belongs to ¥~ #!(Y; E, E;C)
and is holomorphic in C_. Further considerations will show that if we set B,, = Op,(B({ + 7)) then
AB,, — I and B,;A — I turn out to be pseudo—differential operators of order —I. But this will be
the starting point for the construction of a parametrix and the inverse operator within a subspace of
operators in ¥ (R x Y; E, E).

Remember that the differential operator A has in local coordinates the form (1), i.e.,

A(y, D¢, Dy) = aoDy — Z aa(y) Dy
ler| <t

where ag € L(E, E) and aq(y) € C®(R?, L(E, E)) are given such that the corresponding symbol

@

a(y,7,m) = aoT — Y _ aa(y)n
o<t

belongs to SH(R? x R1*¢; B, E) (even classical) with Hilbert spaces E, E. Thus A extends to a contin-
uous map

AT R x YV, E) = T2Y(Ry x Y, E) (12)

for all s,y € R. Moreover, if A is parabolic, then there exists an weight 79 € R such that (12) is invertible
for all v > ~o.
As an example consider, in particular, the operator
0
A= — —Ay — Agm
ot Y R™,
where Ay is the Laplace—Beltrami operator on Y with respect to a Riemannian metric, and Agwm is the
Laplacian in R™ > z with the symbol —|¢|%.
Let E = H*(R™), E = H*"2(R™) both be endowed with the group action (kyu)(z) = A™/2u(A\z),
A € Ry. Then in local coordinates

a(r,n) =it +n> = Agm : E > E

belongs to S%*(R'T; E, E). There is an extension a(¢,7) = i¢ + [n|> — Apm € S5°(C_ x RY; E, E).
The operator-valued anisotropic homogeneous principal symbol equals i¢ + || — Ag= which is an
isomorphism E — E for all |¢,m| #0.

We have A(¢) = i¢ — Ay — Apm which belongs to ¥22(Y, E, E; C_), and A(¢) is parameter—dependent
anisotropic elliptic in the sense of 4.2 Definition 7. Thus A = Op,(A4(()) is parabolic and Theorem 16 is
valid for p = 2.
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