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perfect hedging is impossible even in the continuous time limit�

A second linear analogue of the Black�Scholes equation is obtained by constructing a
portfolio which eliminates �uctuations of the �rst order and assuming that the portfolio
is risk�free� it is shown that this assumption fails unless a process is gaussian�
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�The research is partially supported by RGNF grant�
The authors are grateful to Professor R�Ericson for a discussion on the �rst variant of the paper�
The �rst author thanks Professor B��W�Schulze and Instit�ut f�ur Mathematik� Potsdam Universit�at�

for kind hospitality during the last stage of the work� and the participants of seminars of Arbeitgruppe
Partielle Di�erentialgleichungen und Complexe Analysis for useful discussions�

�



I� Introduction

���� After seminal papers by Black and Scholes 
��
�� and Merton 
��
��� a geo�
metrical Brownian motion model is widely being used as a standard reference model
particularly in the context of option pricing and hedging� but empirically it is demostra�
ted to be incorrect in number of ways� Main di�culties this model faces are systematic
deviations of option prices from the ones predicted by the Black�Scholes formula� and a
leptokurtic character of stock return variability�

The deviations may be due to various factors� for instance� due to an unrealistic
assumption of continuous trading� at no cost� which is assumed in the Black�Scholes
model� but the fact that real processes do not conform to the gaussian assumption
certainly accounts for at least part of the deviation�

For models with non�zero cost of trading� see e�g� Morton and Pliska 
������ Gran�
nan and Swindle 
������ Whalley and Wilmott 
���
� and the bibliography there� and
for di�erent approaches to modelling of stock volatility� see e�g� Hull and White 
���
��
Merton 
��
��� Cox and Ross 
��
��� Rubinstein 
������ Taylor 
������ Duan 
������
Scott 
���
�� Bj�ork� Kabanov and Runggaldier 
���
�� Renault and Touzi 
������ Rogers

���
� and bibliography there�

In some sense� almost all approaches to modelling of a stock volatility start with
gaussian processes� one selects an appropriate mixture� with possible addition of jump
components� or uses a convolution of the Brownian motion kernel with a polynomially
decaying one� in models based on the Fractional Brownian motion 
see e�g� Bouchaud
and Sornette 
����� and Rogers 
���
���

In the paper� we suggest to use a family of �truncated L�evy processes� as refe�
rence models�� Truncated L�evy distributions were constructed by Mantegna and Stan�
ley 
������ and Koponen 
����� suggested a family of in�nitely divisible truncated L�evy
distributions� which admit explicit description in terms of their Fourier transforms�
Truncated L�evy distributions were observed in real �nancial markets 
Mantegna and
Stanley 
������ Cont et al� 
���
��� Cont et al� 
���
� gave a formula for the probabi�
lity distribution of the Standard � Poor�s �		 index futures� which explicitly describes
the exponential fall�o� in the tails of the distribution and �ts the data�

By using the same simple heuristic ideas which are used to derive the Black�Scholes
equation� we obtain their analogues and �nd the solutions for European call and put
options�

The formulas are on almost the same level of complexity as the Black�Scholes for�
mula� and hence admit simple adjustment so popular among practioners with the Black�
Scholes formula� Possible advantages of the suggested approach are�

�� the basic processes have �fat tails�� as empirical distributions do� so in applica�
tions� there may be no need to �nd an appropriate mixture of basic processes�

�� a basic process is characterized by three parameters� not by variance only� which
entails additional possibilities of adjustment�

�After the �rst variant of this paper �without the last Section on the perpetual American put	 had
been prepared� Prof� Mantegna informed us about a paper by Matacz �
���	 where the truncated L
evy
distributions were used for similar purposes� The methods and results of this paper and a paper Matacz
�
���	 are di�erent�
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�� the equations and formulas admit natural approximate discrete versions which
use an observed distribution only� 
We illustrate the last point in Section �� where we
solve a discretized version of a generalized linear Black�Scholes equation for the perpetual
American put� a continuous�time version of this result will be published elsewhere��

The simplest analogs of the Black�Scholes equation are linear pseudo�di�erential
equations� which can easily be solved by means of the Fourier transform 
in this respect�
our approach is close to Scott 
���
��� They are obtained under assumption that the
returns on a stock and a derivative security are perfectly correlated� but we show that
this assumption fails unless a process is gaussian�

We use the no�arbitrage approach� and derive two non�linear equations� They are
rather involved� and we are unable to solve them as yet� though we suggest a scheme
for an approximate solution�

���� Let S � S
t� be a current or spot price of a stock S� and let F be a current
price of a derivative security for the stock� Let r be the riskless rate� The celebrated
Black�Scholes equation for the dynamics of F

�

�
��S�FSS � rSFS � rF � Ft � 	 
��

was derived under two assumptions�
I� S follows a Geometric Brownian Motion� i�e� can be described by a stochastic

di�erential equation
dS

S
� �dt � �dz�

where dz is the increment of the standard Wiener process with zero mean and unit
variance�

II� In the limit �t � 	� the returns on the stock and the derivative security are
perfectly correlated� for some non�stochastic b�

�F � E��F  

F
� b

�S � E��S 

S
� o
�t� as �t� 	� 
��

Instead of 
��� we assume that the returns can be described by a stochastic process
obeying rather general conditions which are satis�ed e�g� by a family of truncated L�evy
distributions which was constructed by Koponen 
������ For the sake of brevity� we
consider only symmetric distributions of this family� In terms of the Fourier transform�
these distributions are given by

!p�������t
k� � exp���t������ ��� � 
k� � ������ cos
� arctan
k���� ��
� � �� �

where � 	 	� � 	 	 and � � 
	� � � � �� � are parameters� Note that the variance is
independent of � and ��

For � � �� we obtain !p�������t
k� � exp
��t��k���� which means that p�������t is
a gaussian distribution� As � moves from � down� p�������t deviates from a gaussian
distribution� and for �xed � � 
	� ��� � �� �� in the limit � � �	� p�������t becomes a
L�evy distribution with !p���t
k� � exp
�tc� jkj���

Note that !p�������t
k� are holomorphic on a strip j�kj 
 �� and we use this observa�
tion as the starting point�
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���� In the paper� we impose the following condition on the behavior of

�
lnS�
t� �t� � 
lnS�
t� �t�� 
lnS�
t�� as �t� 	 �

�
lnS�
t� �t� � ��t � Yt��t � o
�t�� 
��

where for �xed �t� Yt��t are i�i�d� random variables with the distribution density p�t

given by

p�t
y� � 
�����
Z ��

��
expfiyk ��tP 
k�gdk� 
��

The main properties of the Koponen�s 
����� family are
a�

P 
k� � P 
�k� 	 	 � k � R n 	� P 
	� � 	� P ��
	� 	 	� 
��

b� there exist � 	 	 and � � 
	� � such that

P is holomorphic on a strip j�kj 
 �� 
��

and for any �� � 
	� �� and s � 	� ��

jP s
k�j � C���s
� � jkj���s� j�kj � ��� 

�

c� there exist P� 	 	 and � 	 	 such that for any �� � 
	� ��

P 
k� � P�jkj� � O
jkj����� as k � �	� j�kj 
 ��� 
��

In this paper� we shall use 

� with s � 	� and instead of 
��� a weaker condition�

P 
k� � �	 as k �	�

but 

� with s � 	� � and 
�� are needed for a continuous version of results of Section ��
which will be published elsewhere�

���� Clearly� gaussian processes satisfy 
��"
�� with � � �	� but there are many
other processes di�erent from gaussian ones� say� the ones described by truncated L�evy
distributions� which satisfy 
��"
�� with � 
 �	 
and do not with � � �	��

Under conditions 
��"
��� we derive non�gaussian analogs of the Black�Scholes equa�
tion 
��� We use four approaches� which give the same equation 
�� in the gaussian case�
The approaches use� respectively�

�� The non�arbitrage condition

E��F  � rF�t

E�
�F � E��F  �� ���
�

E��S � rS�t

E�
�S � E��S �� ���
� o
�t�� as �t� 	� 
��

�� The perfect correlation assumption 
���
�� The construction of a risk�minimizing portfolio consisting of shares of the stock

and the derivative security� 
This is in a spirit of Bouchaud and Sornette 
������
�� The construction of a portfolio which eliminates #uctuations of order ��
Let�s call the corresponding equations the Generalized Black�Scholes equation I� II�

III and IV� respectively� or GBSE�I� GBSE�II� GBSE�III and GBSE�IV�
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As it turns out� these equations look di�erent 
though for gaussian processes� reduce
to the same equation 
���� and for non�gaussian processes obeying 
��"
��� are di�erent�
To be more precise� let F be the spot price of an European call 
or put� option� We
have solved the GBSE�II and proved that

a� F satis�es the perfect correlation assumption 
�� if and only if it satis�es both
GBSE�I and GBSE�II�

b� F � a solution to GBSE�II 
subject to appropriate boundary conditions� satis�es
the perfect correlation assumption 
�� if and only if P satis�es a certain very complicated
non�linear pseudo�di�erential equation� 
this is a condition 
��� below�� and we show
that if the excess rate of return on the stock is not high then P does not satisfy condition

��� unless P 
k� � ��

�
k�� i�e� the process is gaussian� We believe that non�gaussian P

do not satisfy 
��� in all cases�
c� the riskless portfolio consisting of shares of the stock and option exists if and only

if F satis�es 
���� and if F satis�es it then F satis�es both GBSE�II and GBSE�III�
Thus� in the case of non�gaussian processes obeying 
��"
��� the perfect correlation

assumption fails� a riskless portfolio consisting of a stock and an European option does
not exist� and the standard hedging is impossible� It is no suprize that the assumption
and the riskless portfolio disappear simulteneously� the latter can be constructed if and
only if the returns on the stock and the option are perfectly correlated�

���� GBSE�I and GBSE�III are non�linear pseudo�di�erential equations� and GBSE�
II and GBSE�IV are linear pseudo�di�erential equations� We derive GBSE�I and GBSE�
II in Sections � and �� respectively� In Section �� we also derive condition 
����

In Sections � and �� we solve GBSE�II for European call and put options� and
produce some numerical results which show that the di�erence between our result and
the Black�Scholes formula can be sizable 
assuming that the variance is the same�� and
in Section �� we prove that the solutions does not obey the condition 
��� unless the
process is gaussian�

In Section 
� we derive GBSE�III� and in Section � " GBSE�IV� solutions to the
latter are similar to the ones for GBSE�II�

Both GBSE�I and GBSE�III 
especially the latter� are very complicated� and so far�
we were unable to solve them�

In fact� we doubt that an analytical solution exists at all� and even the justi�cation
of an iteration procedure which we suggest in Section � for GBSE�I� seems to be very
hard�

We suggest formulas for the �rst and the second approximation�
We suggest a way to rewrite our formulas in terms of an observed probability distri�

bution� We hope that this can be used to produce appropriate computational schemes�

�An equation is called pseudo�di�erential if it involves pseudo�di�erential operators� A pseudo�
di�erential operator P �y�Dy	 with the symbol P � P �y� k	 acts as follows�

u�x	 �� ���	��
Z ��

��

Z ��

��

exp�i�y � z	k	P �y� k	u�y	dydk�

If P �y� k	 �
P

pj�y	k
j is a polynomial in k� then P �y�Dy	 �

P
pj�y	D

j
y � Dy � �i�y� is a di�erential

operator� If P is independent of y� one writes P �Dy	�

�



Finally� in Section �� we derive a formula for the perpetual American put option�
assuming that the dynamics of its price obeys a linear generalized Black�Scholes equa�
tion� and produce numerical examples showing that the di�erence between our formula
and the Merton�s one can be signi�cant�

�� Derivation of the Generalized Black�Scholes Equation I	
The Non�Arbitrage Approach

The nominators and denominators in Eq� 
�� can be calculated by means of the
following two lemmas�

Set y � lnS� f
y� t� � F 
exp y� t��
Lemma ���� Let f � f
y� t� be continuously di	erentiable and admit a bound

jf
y� t�j � Ct exp
��jyj�� � y� t�

where Ct 	 	 and �� � 
	� �� are independent of y�
Then for all y� t� as �t� 	�

Et�y��f  � 
ft � �fy � P 
Dy�f�
y� t��t� o
�t�� 
�	�

Proof� For small �t and y�

f
y � �y� t� �t� � f
y� t� � 
f
y � �y� t� �t�� f
y � �y� t���

�
f
y � ��t� t�� f
y� t�� � f
y � �y� t�� f
y � ��t� t��

The �rst and second di�erences above being equal to

ft
y � �y� t��t� o
�t� � ft
y� t��t� o
�t��

and
fy
y � ��t� t��t� o
�t� � fy
y� t��t� o
�t��

respectively� it remains to calculate

Et�y�f
y���t��y� t��f
y���t� t� �
Z ��

��
f
y���t�z� t�p�t
z�dz�f
y���t� t� �

�
Z ��

��
f
y � ��t� z� t�p�t
z�dz � f
y � ��t� t��


Here we have used the symmetry of p�� By using one of the main properties of the

Fourier transform df 
 g � !f � !g� the convolution becomes the multiplication� and then
Eq� 
��� 
�� and 

� 
which allow us to change the order of calculation of the limit and
the integral below�� we obtain

lim
�t��

Et�y�f
y � �y� t�� f
y� t� ��t �

� lim
�t��

�

���t

Z ��

��
exp
ik
y � ��t�
exp
��tP 
k���� �� !f 
k� t�dk �

�



� lim
�t��

�

���t

Z ��

��
exp
iky�
��tP 
k�� � o
�t�� !f
k� t�dk �

�
�

��

Z ��

��
exp
iky�
�P 
k�� !f
k� t�dk�

Thus� 
�	� has been proved�
Lemma ���� Let f and g satisfy conditions of Lemma ����
Then

E�
�f�E��f  �
�g�E��g � � 
�P 
Dy�
fg��gP 
Dy�f�fP 
Dy�g��t�o
�t�� 
���

Proof� Simple algebraic manipulations give

E�
�f � E��f  �
�g � E��g � � E
f � �f � E�f � �f  �
g � �g � E�g � �g � �

� E�
f � �f�
g � �g� � E�
f � �f� E�
g � �g� �


using 
�	� and the equality 
fg�t � ftg � fgt� we continue��

� fg � 

fg�t � �
fg�y � P 
Dy�
fg���t � o
�t��

�
f � 
ft � �fy � P 
Dy�f��t� o
�t��
g � 
gt � �gy � P 
Dy�g��t� o
�t�� �

� 
�P 
Dy�
fg� � gP 
Dy�f � fP 
Dy�g��t� o
�t��

Lemma has been proved�
Direct calculations show that for jaj 
 ��

e�ayP 
Dy�e
ay � P 
Dy � ia�� 
���


as operators�� and P 
Dy� acts on exponents as follows�

P 
Dy�e
ay � P 
�ia�eay� 
���

Using 
�	�� 
��� and 
���� we can rewrite 
�� as follows�


ft � �fy � P 
Dy�f � rf��t � o
�t�

�
�P 
Dy�
f�� � �fP 
Dy�f��t � o
�t� ���
� o

�t����� �

�

� � P 
�i�� r��t � o
�t�

�
�P 
��i� � �P 
�i���t� o
�t� ���
� o

�t������

Passing to the limit� we obtain the Generalized Black�Scholes Equation�I�

ft � �fy � P 
Dy�f � rf �

�� P 
�i�� r�

�P 
��i� � �P 
�i�
�P 
Dy�
f
�� � �fP 
Dy �f����� 
���

Example ���� Let p�t be gaussian� Then !p
k� � exp
��t�
�

� k
��� and therefore

P 
k� �
��

�
k�� P 
�ia� � ���

�
a��






P 
Dy� � ���

�

�y � �P 
��i� � �P 
�i� �

��

�

�� �� � ���

� P 
Dy�
f
�� �

��

�

f��yy � ��
ffyy � 
fy�

��� �fP 
Dy�f � ���ffyy � 
���

and 
��� turns into

ft � �fy �
��

�
fyy � rf � 
� �

��

�
� r�fy� 
���

Since
ft
y� t� � Ft
S� t�� fy
y� t� � SFS
S� t��

fyy
y� t� � S�FSS
S� t� � SFS
S� t��

we obtain the Black�Scholes equation 
���
Thus� for gaussian p� Eq� 
��� reduces to a linear di�erential equation� but for other

p� it is a very complicated non�linear pseudo�di�erential equation�

�� Derivation of The Generalized Black�Scholes Equation II	
The Perfect Correlation Assumption Approach

Now suppose that �F and �S are perfectly correlated in the limit �t� 	� i�e� 
��
holds� Multiplying 
�� by 
�S�E��S �� taking the expectation E � Et�y� and applying
Lemmas ��� and ���� we obtain

�P 
Dy�
fey� � eyP 
Dy�f � fP 
Dy�ey

f
�t � b

�P 
Dy�e�y � �eyP 
Dy�ey

ey
�t � o
�t��


�
�
Using 
��� and 
���� then dividing 
�
� by e�y�t and passing to the limit as �t � 	�
we obtain

�P 
Dy � i�f � P 
Dy�f � P 
�i�f
f

� b
�P 
��i� � �P 
�i���

Thus�

b �
�P 
Dy � i�f � P 
Dy�f � P 
�i�f


�P 
��i� � �P 
�i��f � 
���

Consider forming a portfolio by investing a fraction w in the option and � � w in the
stock� The return on this portfolio is

w
�F

F
� 
�� w�

�S

S
�

and its uncertain component is equal to

w
�F

F
� 
� �w�

�S

S
� E�w

�F

F
� 
�� w�

�S

S
 �

� w
�F � E��F  

F
� 
� � w�

�S � E��S 

S
�

�



� 
wb � � � w�
�S � E��S 

S
�

The choice w � ��
�� b� makes the portfolio riskless� and since a riskless portfolio must
earn the riskless rate of return� we obtain

r�t � E�w
�F

F
� 
� �w�

�S

S
 � o
�t��

or

r�t �
ft � �fy � P 
Dy�f


� � b�f
� b

�� b

�ey � P 
Dy�ey

ey
�t � o
�t��

Dividing by �t� passing to the limit �t � 	� next using 
��� and 
���� and �nally
multiplying by 
�� b�F � we obtain

�
�P 
��i� � �P 
�i��f � 
�P 
Dy � i�f � P 
Dy�f � P 
�i�f� r �

� 
�P 
��i� � �P 
�i��
ft � �fy � P 
Dy�f��
� 
�P 
Dy � i�f � P 
Dy�f � P 
�i�f�
�� P 
�i��� 
���

By using simple algebraic manipulations� we can rewrite 
��� as

ft � �fy � P 
Dy�f � rf �

�
� � P 
�i�� r

�P 
��i� � �P 
�i�
�P 
Dy � i�f � P 
Dy�f � P 
�i�f�� 
�	�

Example ���� Let p�t be a gaussian distribution� Then� using 
���� we obtain

�P 
Dy � i�f � P 
Dy�f � P 
�i�f �

�
��

�

�
Dy � i�� � D�

y � ��f � ��iDyf � ��fy�

�P 
��i� � �P 
�i� � ��� �P 
�i� �
��

�
�

and therefore� 
�	� turns into 
���� which is the Black�Scholes equation 
���
Thus� in the case of gaussian processes� Eq� 
�	� and 
��� are identical and reduce

to the Black�Scholes equation 
��� as it should be the case since it is well�known that
for gaussian processes� the approaches used in Sections � and � give the same result�

For a non�gaussian p�t� the RHS�s of 
��� and 
�	� di�er� in the former� it is a
non�linear in f � and in the latter " linear� Clearly� a linear equation 
�	� is much easier
to solve� and we shall do it in the next two Sections for European call and put options�
respectively�

But a linear equation 
�	� has been derived under the perfect correlation assumption

�� which implies a non�trivial restriction on P and F � To derive it� multiply 
�� 
with b
de�ned by 
���� by �F �E��F  � take the expectation and apply Lemmas ��� and ����

�P 
Dy�
f�� � �fP 
Dy �f

f
�t � b

�P 
Dy�
fey� � eyP 
Dy�f � fP 
Dy�ey

ey
�t � o
�t��

�



Using 
���� dividing by �t and passing to the limit as �t � 	� then multiplying by f
and using 
���� we obtain

�P 
Dy�
f
�� � �fP 
Dy�f �

�
�P 
Dy � i�f � P 
Dy�f � P 
�i�f

�P 
��i� � �P 
�i� 
�P 
Dy � i�f � P 
Dy�f � P 
�i�f��

or


�P 
Dy�
f
�� � �fP 
Dy�f�
�P 
��i���P 
�i�� � 
�P 
Dy� i�f �P 
Dy�f �P 
�i�f���


���
Theorem ���� The following statements are equivalent


a� F 
S� t� � f
lnS� t� satis�es the perfect correlation assumption ����
b� F 
S� t� � f
lnS� t� satis�es �����
c� f is a solution to Eq� ���� if and only if it is a solution to Eq� �����
Proof� The equivalence of a� and b� has been proved already� Further� the LHS

in 
��� is non�negative� being the limit of non�negative functions� therefore 
��� is equi�
valent to the statement� the RHS�s of 
��� and 
�	� are equal� Since the LHS�s are
identical� c� and b� are equivalent�

Theorem has been proved�

�� A Solution to The Generalized Black�Scholes Equation II
for European Call Options

Rewrite 
�	� as
ft � P
Dy�f� 
���

where

P
Dy� � r � i�Dy � P 
Dy� �
�� P 
�i�� r

�P 
��i� � �P 
�i�
�P 
Dy � i� � P 
Dy� � P 
�i���

Eq� 
��� is valid for any derivative security of the stock S� If F is the spot price of an
European call option� F satis�es the following boundary conditions

F 
S� T � � max
S �X� 	�� 
���

F 
	� t� � 	� F 
S� t� � S� 
���

where T is the expiration date and X is the striking price� In terms of f
y� t� � F 
ey� t��

��� can be rewritten as

f
y� T � � max
ey � ex� 	�� 
���

where x � lnX�
Take � � 
�� � � ��� and set g
y� t� � e��yf
y� t�� Then a problem 
���� 
��� for f

is equivalent to the following problem for g�

gt � P
Dy � i��g� 
���

g
y� T � � max
e�����y � e��y�x� 	�� 
�
�

�	



By making the Fourier transform w�r�t� y� we see that a problem 
���"
�
� is equivalent
to

!gt � P
k � i��!g� 
���

!g
k� T � � !h
k�� 
���

where
!h
k� �

Z ��

��
e�iyk max
e�����y � e��y�x� 	�dy �

�
Z ��

x
e�iyk
e�����y � e��y�x�dy �

�
e�����ik�y

� � � � ik

�����
��

x

�
e�x�����ik�y

�� � ik

�����
��

x

�

� � e�����ik�x

�� � � ik
�
e�����ik�x

�� � ik
� � e�����ik�x


k � i��
k � i� � i�
�

By solving the Cauchy problem 
���"
���� we obtain

!g
k� t� � �exp
��P
k � i��� ikx� 
�� ��x�


k � i��
k � i� � i�
�

where � � T � t� and therefore�

g
y� t� �
�

��

Z ��

��
eiyk!g
k� t�dk �

� �e�����x

��

Z ��

��

exp
i
y � x�k � �P
k � i���


k � i��
k � i� � i�
dk�

Since f
y� t� � e�yg
y� t�� we have

f
y� t� � � ex

��

Z ��

��

exp
i
y � x�
k � i��� �P
k � i���


k � i��
k � i� � i�
dk �

� � ex

��

Z ���i�

���i�

exp
i
y � x�z � �P
z��

z
z � i�
dz�

and by returning to the initial variables X � ex� S � ey� F 
S� t� � f
y� t��

F 
S� t� � �X

��

Z ���i�

���i�

exp
i ln
S�X�z � �P
z��

z
z � i�
dz� 
�	�

Here is another form of F 
S� t�� Since the integrand in 
�	� is meromorphic on any
strip �� 
 �z 
 ���� �� � 
	� ��� with the only pole at z � �i� we have

F 
S� t� � �X

��

Z ���i��

���i��

exp
i ln
S�X�z � �P
z��

z
z � i�
dz�

� X

��
��i

exp
i ln
S�X�z � �P
z��

z

�����
z	�i

��



by the residue formula�
Since P 
	� � 	� we have

P
�i� � r � � � P 
�i� �
�� P 
�i�� r

�P 
��i� � �P 
�i�
�P 
��i� � �P 
�i�� � 	�

and therefore�

F 
S� t� � S � X

��

Z ���i��

���i��

exp
i ln
S�X�z � �P
z��

z
z � i�
dz� 
���

Under conditions 
��"
��� the integrals in 
�	� and 
��� converge and decay faster than
any power of ln
S�X�� as S � S�� � �	� Hence� F 
	� t� � 	� Below� we present some
numerical results for a family 
��
�

We �x S � �		� r � 	��� and for X � �	� �		� ��	 and � � ��	� ���� ��� and di�erent
values of �� � and � � compute F 
S� t�� Recall that the variance is indepependent of �
and �� and that for � � �� a process is gaussian�

In the �rst series of examples� we take � � P 
�i�� which implies that the stock
itself has zero drift�

Table ����
Values of F 
S� t�� parameters� r � 	��� � � �� � � 	��

� 	��� 	��� 	��� 	�� 	�� 	��
X ��	 �		 �	 ��	 �		 �	
� � ��	 ���� ���� ����	 ���� ����� �
�
�
� � ��� ���� ���� ����� ���� ����� �
��

� � ��� ���� ���� ����� ���� ����� �
���

Table ����
Values of F 
S� t�� parameters� r � 	��� � � �� � � 	���

� 	��� 	��� 	��� 	�� 	�� 	��
X ��	 �		 �	 ��	 �		 �	
� � ��	 	��
 ���� ���	
 ���� ����� �����
� � ��� ��	� ��	� ���	� ���� �	��
 ���
�
� � ��� ���� ��
� ����	 ���� �	�
� ����


We see that for stocks with zero drift� our formula gives higher price for options out
of the money than the Black�Scholes one� and for options at the money 
and usually�
for options in the money� � lower price�

The next table shows that the results can change signi�cantly if the drift changes�
Here we take � � �P 
�i����

�The authors thank to Mitya Boyarchenko for the help with calculations�

��



Table ����
Values of F 
S� t�� parameters� r � 	��� � � �� � � 	���

� 	��� 	��� 	��� 	�� 	�� 	��
X ��	 �		 �	 ��	 �		 �	
� � ��	 ���� ���� ����� ���� ����� �
�
�
� � ��� ���� ���� ����
 ���� ����� �
�
�
� � ��� ���	 ���� ����� ���� ����
 �
���

�� A Solution to The Generalized Black�Scholes Equation II
for European Put Options

For an European put option� the boundary conditions are

F 
S� T � � max
X � S� 	�� F 
	� t� � Xe�r�T�t�� F 
�	� t� � 	�

In terms of y � lnS� x � lnX� f
y� t� � F 
S� t�� � � T � t� they can be rewritten as

f
y� T � � max
ex � ey� 	�� f
�	� t� � ex�r	 � f
�	� t� � 	�

Take �� � 
	� ��� and set g
y� t� � e��yf
y� t�� Then g is a solution to a problem

gt � P
Dy � i���g� 
���

g
y� t� � max
ex���y � e������y� 	�� 
���

By making the Fourier transform w�r�t� y� we see that a problem 
���"
��� is equivalent
to

!gt
k� t� � P
k � i���!g
k� t�� 
���

!g
k� t� � !h
k�� 
���

where
!h
k� �

Z ��

��
e�iyk max
ex���y � e������y� 	�dy �

�
Z x

��
e�iyk
ex���y � e������y�dy �

�
ex�����ik�y

�� � ik

�����
x

��

� e������ik�y

�� � ik

�����
x

��

� � e������ik�x


k � i���
k � i�� � i�
�

By solving the Cauchy problem 
���"
���� we obtain

!g
k� t� � �exp
��P
k � i���� ikx� 
� � ���x�


k � i���
k � i�� � i�
�

where � � T � t� and therefore�

g
y� t� � �e������x

��

Z ��

��

exp
��P
k � i��� � ik
y � x��


k � i���
k � i�� � i�
dk�

��



Since f
y� t� � e���yg
y� t�� we have

f
y� t� � � ex

��

Z ��

��

exp
��P
k � i��� � i
k � i���
y � x��


k � i���
k � i�� � i�
dk �

� � ex

��

Z ���i��

���i��

exp
��P
z� � iz
y � x��

z
z � i�
dz�

By returning to the initial variables X � ex� S � ey� F 
S� t� � f
y� t�� we obtain

F 
S� t� � �X

��

Z ���i��

���i��

exp
��P
z� � iz ln
S�X��

z
z � i�
dz� 
���

The integrand in 
��� being meromorphic on a strip 
���� ���� where �� � 
	� ��� with
the only pole at z � 	� we can apply the residue formula and obtain

F 
S� t� � �X

��

Z ���i��

���i��

exp
��P
z� � iz ln
S�X��

z
z � i�
dz�

�
X

��
��i

exp
��P
z� � iz ln
S�X��

z � i
j z � 	�

Since P 
	� � 	� we have

P
	� � r � P 
	� �
�� P 
�i�� r

�P 
��i� � �P 
�i�
�P 
�i� � P 
	� � P 
�i�� � r�

therefore

F 
S� t� � Xe�	r � X

��

Z ���i��

���i��

exp
��P
z� � iz ln
S�X��

z
z � i�
dz� 
�
�

By comparing 
��� and 
�
�� we see that

Fput
S� t� � Fcall
S� t� � Xe�r	 � S�

which is just the statement of the put�call pairity theorem�
Since Fcall
	� t� � 	� Eq� 
�
� implies Fput
	� t� � Xe�t	 �


� An Analysis of The Perfect Correlation Assumption

We have shown that the perfect correlation assumption 
�� is equivalent to Eq�

���� Using Eq� 
���� we derived the Generalized Black�Scholes Equation�II and found
its solutions for European call and put options�

By denoting the last terms in 
��� and 
�
� by g
y� t�� we can write

fc
y� t� � ey � g
y� t�� fp
y� t� � Xe�r	 � g
y� t�


c stands for call� and p " for put��

��



Let us check 
��� for f � fp given by 
�
�� Since
R��
�� p�t
y� � �dy � �� � �t 	 	�

we have P 
D�� � 	� and therefore�

P 
Dy�fp � P 
	�Xe�r	 � P 
Dy�g � P 
Dy�g�

P 
Dy � i�fp � P 
�i�Xe�r	 � P 
Dy � i�g� fpP 
Dy�fp � 
Xe�r	 � g�P 
Dy�g�

�P 
Dy�f
�
p � �P 
Dy�
X

�e�r	 � �Xe�r	 g � g�� � ��Xe�r	P 
Dy�g � P 
Dy�g
��

It follows that 
��� reduces to


��Xe�r	P 
Dy�g � P 
Dy�g
� � �
Xe�r	 � g�P 
Dy�g�
�P 
��i� � �P 
�i�� �

� 
�P 
�i�Xe�r	 � P 
Dy � i�g � P 
Dy�g � P 
�i�Xe�r	 � P 
�i�g���

By simplifying� we see that Eq� 
��� for fp is equivalent to Eq� 
��� for g�
Similar calculations show that Eq� 
��� for fc is equivalent to Eq� 
��� for g�
Substituting

g
y� t� � � ex

��

Z ��

��

exp
i
y � x�
k � i���� �P
k � i����


k � i���
k � i�� � i�
dk �

� �ex�������y��

��

Z ��

��

exp
i
y � x�k � �P
k � i����


k � i���
k � i�� � i�
dk

into Eq� 
���� using the following equalities

P 
Dy � ia�ey��f � ey��P 
Dy � i
a� ����f� 
F
P 
Dy�f�
k� t� � P 
k� !f
k� t��Z ��

��
e�iyk�
y��
y�dy �

Z ��

��

!�
k � k�� !�
k��dk��

and cancelling the factor exp
�
x
� � ��� � y����� we obtain an equivalent form of Eq�

����

�

��

Z ��

��

Z ��

��
eiky
�P 
k � �i��� � �P 
k� � i�����

� exp
��P
k � k� � i���� �P
k� � i����


k � k� � i���
k � k� � i�� � i�
k� � i���
k� � i�� � i�
dkdk��

�
�P 
��i� � �P 
�i�� �

�
�

��

Z ��

��
dk�

Z ��

��
dkeiky
�P 
k � k� � i�� � i� � P 
k � k� � i��� � P 
�i���

�
�P 
k� � i�� � i� � P 
k� � i��� � P 
�i�� exp
��P
k � k� � i���� �P
k� � i����


k � k� � i���
k � k� � i�� � i�
k� � i���
k� � i�� � i�
�

By making the inverse Fourier transform� we obtainZ ��

��


�P 
k � �i��� � �P 
k� � i���� exp
��P
k � k� � i���� �P
k� � i����


k � k� � i���
k � k� � i�� � i�
k� � i���
k� � i�� � i�
dk��

�
�P 
��i� � �P 
�i�� �

��



�
Z ��

��

�P 
k � k� � i�� � i� � P 
k � k� � i��� � P 
�i���

�
�P 
k� � i�� � i� � P 
k� � i��� � P 
�i���

� exp
��P
k � k� � i���� �P
k� � i����


k � k� � i���
k � k� � i�� � i�
k� � i���
k� � i�� � i�
dk�� 
���

for all k � R� � 	 	� and �� � 
	� ���
We have proved
Theorem 
��� Let ������� hold�
Then the perfect correlation assumption ��� for an European call option holds if and

only if Eq� ���� hold� and the same is true for an European put option�
The following theorem states that under reasonable conditions� which are certainly

satis�ed if the excess return on the stock is not high� Eq� 
���� hence the perfect
correlation assumption 
��� fails�

Theorem 
��� Let k � 	 be the only point of minimum of P
k�� and let it be
non�degenerate�

Then Eq� ���� fails unless

P 
k� � �P 
�i�k�� 
���

i�e� the process is gaussian�
Before proving Theorem ���� we note that the conditions of Theorem ��� are satis�ed

by P � Taking into account 
��" 
�� and the de�nition of P� we see that there exist c 	 	
such if

� � P 
�i�� r

�P 
��i� � �P 
�i� 
 c�

then P satis�es the condition of Theorem ����
Proof of Theorem 
��� By continuity of P and on the strength of 
��"
��� there

exists c 	 	 such that for any �� � 
�c� c�� the minimum of 
P
k � i��� is attained at
the only point k � 	 and is non�degenerate�

Fix k � 	 and �� � 
	� c�� and consider the asymptotics of integrals in 
��� as
� � �	� In the both integrands� we see the same fast decaying exponential function�
and the non�degeneracy condition stated above allows us to conclude that the leading
term of the asymptotics of the LHS in 
��� is of the form const
����dl
��������� where
const
��� depends on �� and the fast decaying exponential function only� and

dl
��� � 
�P 
��i��� � �P 
�i����
�P 
��i� � �P 
�i���

Similarly� the leading term of the asymptotics of the RHS is of the form const
����
dr
��������� where const
��� is the same as above� and

dr
��� � 
�P 
�i�� � i� � P 
�i��� � P 
�i����

By comparing the leading terms� we see that if 
��� holds then � � � 
	� c��


�P 
��i����P 
�i���
�P 
��i���P 
�i�� � 
�P 
�i��i��P 
�i���P 
�i���� 
�	�

��



dl and dr coincide on a segment 
	� c�� and since both are holomorphic on a strip
j
zj 
 ���� they coincide on it� But dr is holomorphic on a wider strip j
zj 
 ��
therefore dl also is� Hence� a function z �� P 
�i�z� is holomorphic on this strip� and
therefore� P is holomorphic on a strip j�kj 
 ��� But by our assumption� j�kj 
 � was
the widest strip with this property� Hence� � � �	� and 
�	� holds for all ���

Set � � ��� Since P 
	� � 	� and P 
z� � P 
$z�� we obtain from 
�	�


�P 
��i� � �P 
�i��� � 
�P 
�i����

hence P 
��i� � �P 
�i�� Using the principle of mathematical induction� it is not di�cult
to show that

P 
�ni� � n�P 
�i�� � n � Z�

Now we use the induction on m � �� �� � � �� and for �xed m� the induction on s �
	������� � � �� to show that

P 
�

�

�
� s

�

�m
�i� � P 
�i�
�

�
� s

�

�m
��� 
���

Eq� 
��� means that Eq� 
��� holds on a subset of R� which has an accumulation point�
the both sides being holomorphic� Eq�
��� holds everywhere�

Theorem ��� has been proved�

�� Derivation of the Generalized Black�Scholes Equation III	
The Risk�Minimization Approach

Consider an investor holding a fraction w of her%his wealth in the derivative security
and a fraction � � w in the stock� Suppose that the investor wishes to minimize the
variance of the portfolio

E

���w�F � E��F  

F
� 
� � w�

�S � E��S 

S

��
�� �

The �rst order condition is

E

	�
�F � E��F  

F
� �S � E��S 

S

��
w

�F � E��F  

F
� 
� �w�

�S � E��S 

S

�

�

� o
�t��

as �t� 	� By using Lemma ���� we obtain

w
�f��P 
Dy�f
� � �f��P 
Dy�f� � 
w � ��
�e��yP 
Dy�e

�y � �e�yP 
Dy�e
y��

�
�� �w�
�f��e�yP 
Dy�
e
yf� � f��P 
Dy�f � e�yP 
Dy�e

y� � 	�

Eq� 
��� and 
��� allow us to simplify

w
�f��P 
Dy�f
� � �f��P 
Dy�f� � 
w � ��
�P 
��i� � �P 
�i���

�




�
�� �w�
�P 
Dy � i� � f��P 
Dy�f � P 
�i�f� � 	�

After rearranging� we arrive at

w
�f��P 
Dy�f
� � �f��P 
Dy�f � P 
��i�� �

� f��P 
Dy � i�f � f��P 
Dy�f � P 
��i� � P 
�i��
and therefore�

w �
f��P 
Dy � i�f � f��P 
Dy�f � P 
��i� � P 
�i�

�f��P 
Dy�f� � �f��P 
Dy�f � P 
��i�
�

�

P 
Dy � i�� P 
Dy�� P 
��i� � P 
�i��f
�f��P 
Dy�f� � �P 
Dy � i�f � P 
��i�f

� 
���

For a gaussian p�t� Eq� 
��� gives

P 
Dy�f � ���

�
fyy� �P 
Dy�f

� �
��

�

�ffyy � �f�y ��

P 
Dy � i�f �
��

�

�i
y � i��f � ���

�


y � ���f � ���

�

fyy � �fy � f��

and

w �
�fyy � �fy � fyy � �f � f

�fyy � �f��f�y � �fyy � �fy � �f � �f
�

�
f � fy

f � �fy � f��f�y
�

�� f��fy
�� �f��fy � f��f�y

�
�

�� f��fy
�

This is the fraction of wealth invested in the option in the Black�Scholes model�
Now we can calculate the minimal variance 
attainable with the choice of w given

by 
�����
By using Lemma ��� and 
���"
���� we obtain

vmin �� lim
�t��

varmin��t �

� w�
�f��P 
Dy�f
� � �f��P 
Dy�f� � 
� �w��
�P 
��i� � �P 
�i���

��w
� �w�
�f��P 
Dy � i�f � f��P 
Dy�f � P 
�i���
After simpli�cation� we obtain

vmin �
AB � C�

A� B � �C
� 
���

where
A � �f��P 
Dy�f

� � �f��P 
Dy�f� B � �P 
��i� � �P 
�i��
C � �f��P 
Dy � i�f � f��P 
Dy�f � P 
�i��

We see that the nominator in Eq� 
��� is zero if and only if the perfect correlation
condition 
��� holds�

��



Thus� we have proven
Theorem ���� Let conditions ������� hold�
Then the riskless portfolio exists if and only if the perfect correlation assumption

holds�
We proceed with the derivation of GBSE�III� w and vmin being found� we can use

the non�arbitrage condition for the portfolio and the stock�

E
h
w�F

F
� 
�� w��S

S

i
� r�t

var
���
min

�
E
h
�S
S

i
� r�t

E
��

�S
S


����� � o
�t�����

By Lemma ����
E��S�S � 
�� P 
�i���t� o
�t��

E�
�S�S�� � 
�P 
��i� � �P 
�i���t� o
�t��

therefore we obtain

wf��fft � �fy � P 
Dy�f � rfg� 
� � w�
�� P 
�i�� r� �

�

� � P 
�i�� r�v

���
min


�P 
��i� � �P 
�i����� �

and �nally�
ft � �fy � P 
Dy�f � rf �

� 
�� P 
�i�� r�f �
��� � w�� �

v
���
min

w
�P 
��i� � �P 
�i�����
�A � 
���

This is the GBSE III� For gaussian p�t� w � ��
� � f��fy�� f
� � w��� � fy� vmin � 	�
and the RHS in 
��� is equal to 
�� P 
�i�� r�fy�

Thus� Eq� 
��� turns into 
���� which is the Black�Scholes equation 
���
For other p�t� GBSE�III is a non�linear pseudo�di�erential equation� more compli�

cated than GBSE�I�

�� A Scheme for Solving GBSE�I and GBSE�III

We can write both GBSE�I and GBSE�III in the form

ft � 
P 
�i� � r�fy � P 
Dy�f � rf � 
� � P 
�i�� r�&
f�� 
���

where

&
f� � &I 
f� � 
�P 
Dy�f
� � �fP 
Dy�f��
�P 
��i� � P 
�i����� � fy�

and

&
f� � &III
f� � f

���� w�� �
v
���
min

w
�P 
��i� � �P 
�i�����
�A� fy�

respectively�

��



For gaussian p�t� the RHS in 
��� is 	� therefore we may expect that if the process
does not deviate too far from a gaussian one� then one can obtain the �rst approximation
to the solution to 
a boundary value problem for� Eq� 
��� by solving the corresponding
boundary�value problem for the following equation

ft � 
P 
�i� � r�fy � P 
Dy�f � rf � 	� 
���

We call it GBSE�IV�
Note that one can derive Eq� 
��� by constructing a portfolio which eliminates

#uctuations of order e�S � �� the proof is similar to the one employed in Section ��
Set

P�
k� � r � P 
k�� 
P 
�i� � r�ik�

and write Eq� 
��� in the form
ft � P�
Dy�f�

A function P� enjoys all the properties which we used when we derived formulas for Eu�
ropean call and put options in Sections � and �� Hence� we can write the corresponding
solutions to Eq� 
��� by replacing P with P�� The results are�

for an European call option�

F 
S� t� � �X

��

Z ���i�

���i�

exp
i ln
S�X�z � �P�
z��

z
z � i�
dz� 
�
�

where � � 
�� �� is arbitrary� or equivalently�

F 
S� t� � S � X

��

Z ���i��

���i��

exp
i ln
S�X�z � �P�
z��

z
z � i�
dz� 
���

where �� � 
	� �� is arbitrary�
for an European put option�

F 
S� t� � �X

��

Z ���i�

���i�

exp
i ln
S�X�z � �P�
z��

z
z � i�
dz� 
���

where � � 
��� 	� is arbitrary� or equivalently�

F 
S� t� � Xe�r	 � X

��

Z ���i��

���i��

exp
i ln
S�X�z � �P�
z��

z
z � i�
dz� 
�	�

where �� � 
	� �� is arbitrary�
Here are several examples for an European call option�
Table ����
Values of F 
S� t�� parameters� r � 	��� � � �� � � 	��

� 	��� 	��� 	��� 	�� 	�� 	��
X ��	 �		 �	 ��	 �		 �	
� � ��	 ���� ���� ����	 ���� ����� �
�
�
� � ��� ���� ���
 ����� ���� ���� �����
� � ��� ���
 ���� ����	 ���� ���� �����

�	



We see that the results di�er from the ones for an European call option given by
GBSE�II 
see Table ����� here GBSE�IV gives higher values of F 
S� t� for options in the
money� and lower for options at the money and out of the money�

Now we outline a numerical scheme for solving a non�linear GBSE for the case of
an European call option� the case of a put one is similar� Set f�
y� t� � F 
ey� t�� where
F is given by either 
�
� or 
���� and let f be a solution to Eq�
��� subject to boundary
conditions

f
�	� t� � 	� f
y� T � � max
ey � ex� 	��

Set g � f � f�� Then g is a solution to

gt � P�
Dy�g � 
� � P 
�i�� r�&
f� � g�� 
���

subject to boundary conditions

g
�	� t� � 	� g
y� T � � 	� 
���

By applying F � the Fourier transform w�r�t� y� we reduce a problem 
���"
��� to

!gt
k� t� � P�
k�!g
k� t� � 
� � P 
�i�� r�F
&
f� � g��
k� t�� 
���

with !g subject to
!g
k� T � � 	� 
���


After a problem 
���"
��� is solved� one has to verify the �rst boundary condition in

����� The well�known formula for the Cauchy problem allows us to reduce a problem

���"
��� to a family of equations

!g
k� t� � 
� � P 
�i�� r�
Z t

T
expf
t� t��P�
k�gF

&
f� � g��
k� t��dt��

By making the inverse Fourier transform� we arrive at

g
y� t� � 
� � P 
�i�� r�F��
Z t

T
expf
t� t��P�
k�gF

&
f� � g��
k� t��dt�� 
���

Suppose� that the simple iteration method is applicable to Eq� 
���� Then we can
take

g
y� t� � 
�� P 
�i�� r�F��
Z t

T
expf
t� t��P�
k�gF

&
f���
k� t��dt� 
���

as the �rst approximation to the solution of Eq�
����
Thus� we suggest f� � g as the second approximation to the solution of either

GBSE�I and GBSE�III� where the �rst approximation� f � is given by 
�
�
�
����� and
a correction term� g� by 
����

Finally� recall that for small � � approximately�

exp
��P 
Dy��u
y� t� � 
p	 
 u�
y� t� ��
Z ��

��
p	 
y � y��u
y�� t�dy�� 
�
�

��



and therefore� the following approximate equalities hold�

P 
Dy�u
y� t� � 

p	 
 u�
y� t�� u
y� t����� 
���


exp
��P�
Dy��u�
y� t� � exp
�r�
p	 
 u�
y � � 
r � P 
�i��� t�� 
���

f�
y� � � � 
exp
��P�
Dy��h�
y� � � � exp
�r�
p	 
 h�
y � � 
r � P 
�i��� � �� 
�	�

where h
y� � max
ey � ex� 	�� and

P 
�ia� �
�

� �
Z ��

��
p�t
y�eaydy

�
��t� 
���

By using formulas 
�
�"
���� one can rewrite formulas 
�
�� 
��� and 
��� for so�
lutions of GBSE�I in terms of a given function h and an observed distribution p�t�
and discretize them to develop a numerical scheme for computation the RHS�s in these
formulas�

Similarly one can rewrite formulas for solutions of GBSE�III 
in this case they are
much more involved��


� The Pricing of The American Perpetual Put Option


��� Suppose that GBSE�IV� one of the linear generalizations of the Black�Scholes
equation� hold� and consider the perpetual American put option 
the case of GBSE�II
can be considered similarly�� Let X be the striking price� S " the level of the stock� and
denote by G
S�X� the rational put price� Then

G
X�S� � maxfX � S� 	g� G
X��	� � 	�

For a su�ciently low level of the stock price� it is advantageous to exercise the put�
De�ne H to be the largest value of the stock such that the put holder is better o�
exercizing than continuing to hold the put� and set

x � lnS� h � lnH� g
x� �� g
x�X� � G
S�X��

Then
g
x� � X � ex� � x 
 h� and g
�	� � 	� 
���

Since g
x� is independent of t� it obeys a stationary GBSE�IV�



P�
D�� i�D � r�g�
x� � 	� x 	 h� 
���

where � � r � P 
�i�� As a proxy for P 
�i�� in applications one may use Eq� 
���� and
it can be reasonable to adjust � since the hedge used in deriving the GBSE�IV is not
perfect and the portfolio constructed is not risk�free�

A discretized version of the GBSE�IV is

g
x�� e�r�t
Z ��

��
p�t
x � ��t� y�g
y�dy � 	� 
���

��



The formula for h will be formulated in terms of an observed distribution density p�t�
under fairly weak assumptions on 
an even� p�t�Z ��

��
p�t
x�exdx 
 �	� 
���

and there exists C and � 	 	 such that !p � Fp� the Fourier transform of p� and its
derivative satify bounds

!p
k� � �� � k � R�

j!p
k�j� j!p�
k�j � C
� � jkj���� � k � R� 
���

The second bound is a weak form of a smoothness condition� For instance� for a piece�
wise smooth p it holds with � � ��

To simplify the notation� we normalize �t to unity� and drop a subscript �t� Set
A
k� � �� e�r�i
k !p
k�� By the Taylor formula� ei
Du
x� � u
x� ��� therefore 
��� can
be rewritten as


A
D�g�
x� � 	� � x 
 h� 
�
�

On the strength of 
���� we may look for solutions g � L�
R� and rewrite 
�
� as


A
D�g�
x� � �
x� h�� � x� 
���

where � � L�
R��� Here and below we identify L�
R�� with a subspace of L�
R� by
de�ning �
x� � 	 � x 	 	� Similarly� L�
R�� is regarded as a subspace of L�
R��

We will solve 
��� subject to 
��� by the Wiener�Hopf 
����� method� in a bit more
modern version 
see e�g� Eskin 
��
���� It is based on the factorization of A
k��

The following lemma is a variant of standard factorization theorems 
see e�g� Eskin

��
��� Section ���

Lemma 
��� Let ���� and ���� hold�
Then A
k� admits a factorization

A
k� � A�
k�A�
k� 
���

with the A�
k� satisfying the following conditions

a� A� �resp� A�� is holomorphic in a half�plane �k 	 	 �resp� �k 
 	�� and admits

a continuous extension into the closed half�plane�
b� there exist c 	 	� C such that

c � jA�
k�j � C� � � �k � 	� 

	�

c� A�
k��� admits a representation

A�
k��� � � � T�
k�� 

��

where T� is holomorphic in a half�plane ��k 	 	� and satis�es an estimate

jT�
k�j � C
� � jkj���� � � ��k � 	� 

��

where �� 	 	 and C are independent of k�

��



Proof� By 
���� !p
k� � �� hence we have 
A
l� � � � e�r 	 	� for all l � R�
Therefore� lnA
l� is well de�ned by a requirement� ln a is real for a 	 	� and we may
set� for � 	 	 and k � R�

b�
k � i� � � � i

��

Z ��

��

lnA
l�

k � i� � l
dl� 

��

A�
k � i� � � exp
b�
k � i� ���

The proof that A� satisfy 
��� and a�"c� is a minor variation of the proof in Eskin

��
��� for completeness� we give it in Appendix�

With a factorization 
��� at our disposal� we return to 
��� and multiply it by
A�
D����


A�
D�g�
x� � 
A�
D�����
h � x�� � x�

Since supp� � R�� and A�
k� satis�es 

	� in a half�plane �k � 	� suppA�
D���� � R�

see e�g� Eskin 
��
��� Theorem ����� Hence�


A�
D�g�
x� � 	� x 	 h� 

��

Set u
x� � g
x � h� � eh�x �X� For � � 	�

A�
D�e�x � e�xe��xA�
D�e�x � � � e�xA�
D � i�� � � � e�xA�
�i���

since � � � S
R��

hB
D� � �� �i � h�� $B
D��i � h�� $B !�i � B
	� !�
	� � B
	�h�� !�i � B
	�h�� �i�

Hence� we may rewrite 

�� as


A�
D�u�
x� � ��
x�
A�
�i�eh�x �A�
	�X�� x 	 	� 

��

where �� is the characteristic function of R�� Note that on the strength of 
���� suppu �
R�� and A�
k� satis�es 

	� in a half�plane �k � 	� Therefore� the LHS of 

�� is zero
for x 
 	� and hence� 

�� holds for all x� By applying A�
D��� to 

��� we obtain

u
x� � A�
D�����
A�
�i�eh�x �A�
	�X�� x 	 	� 

��

Take � 	 � and set u�
x� � e��xu
x�� f �
x� � e��xf
x�� Next� multiply 

�� by e��x�
and use an equality e��xA�
D���e�x � A�
D � i����� The result is

u� � A�
D � i������f
�� 


�

where f �
x� � A�
�i�eh������x �A�
	�Xe��x�
Lemma 
��� For x 
 	� u
x� h� � 	� and for x 	 	�

u
x� h� � d
h�
� � eh��
x� � ��
x���

� xd
h�A�
	�X � eh��
x� � ��
x�� 

��

��



where functions ��
x� � o
��� ��
x� � o
��� ��
x� � o
x�� ��
x� � o
x�� as x� �	� are
independent of h� and d
h� � A�
�i�eh �A�
	�X�

Proof� The �rst statement is just 
���� and 

�� will be proved in Appendix�
Theorem 
��� Let ���� and ���� hold�
Then a pricing formula for the American perpetual put option is given by
 for any

� 	 ��

G
X�S� � X � S � A�
	�XS�
�����
Z ��

��

eik ln�S�H�

A�
k � i��
ik � �� ��
ik � ��
dk� 

��

where H� the exercise price� is given by

H � eh � XA�
	��A�
�i� � X
� � e�r���� exp
I� � I��� 
�	�

and

I� �
�

��

Z ��

�
ln

�� e�r!p
l� cos
�l��� � 
e�r!p
l� sin
�l����
� � l����dl�

I� �
�

�

Z ��

�
arctan

�
!p
l� sin
�l�

er � !p
l� sin
�l�

�
l��
� � l����dl�

Proof� Direct calculations 
see Appendix� show that A�
	�� A�
�i� are positive�
Due to 

��� if d
h� 
 	� then a condition G
X� ex� � X � ex is violated at x � h� and
if d
h� 	 	� then G
X�S� is not decreasing w�r�t� S� which is also impossible� Hence�
d
h� � 	� which is just 
�	�� the calculations of A�
	� and A�
�i� in Appendix being
taken into account�

Finally� Eq� 
�	� is equivalent to A�
�i�eh � A�
	�X� therefore 


� can be
rewritten as

u
x� � A�
	�Xe�x
�����
Z ��

��
eikxA�
k � i����

Z ��

�

�
e�iky������y � e�iky��y



dydk �

� A�
	�Xe�x
�����
Z ��

��
eikxA�
k � i����

�
�

ik � �� �
� �

ik � �

�
dk �

� A�
	�Xe�x
�����
Z ��

��

eikx

A�
k � i��
ik � �� ��
ik � ��
dk�

and using equalities g
x� � X � ex � u
x� h�� x � lnS� h � lnH� we obtain 

���
Note that due to 

���

lim
S�H��

GS
X�S� � �� 
 �� � A�
	�X � lim
S�H��

GS
X�S��

which means that the smooth pasting condition valid in the standard continuous time
Geometric Brownian motion model 
Merton 
��
��� fails in our discrete time model�

In Merton 
��
��� the exercise price H� � X��
� � ��� where � � ��r��� is the
negative root of the characteristic equation ��k��� � 
r � �����k � r � 	�

Numerical Examples� The �rst truncated L�evy distributions were constructed by
Mantegna and Stanley 
������ Later� Koponen 
����� constructed a family of truncated

��



L�evy distributions which admit explicit description in terms of their Fourier transforms�
For the sake of brevity� we consider only symmetric distributions of this family� with !p�
de�ned by

!p�
k� � exp��������� 

k���� � ����� cos
� arctan
k���� ��
� � �� �

where � 	 	� � 	 	 and � � 
	� � � � �� � are parameters� We have chosen a normalization
so that the variance is independent of � and ��

For � � �� we obtain !p�
k� � exp
���k���� which means that p� is a gaussian
distribution� As � moves from � down� p� deviates from a gaussian distribution� and
for �xed � � 
	� ��� � �� �� in the limit � � �	� p� becomes a L�evy distribution
with !p�
k� � exp
�c�jkj� cos
�������
� � ���� Roughly speaking� 
����� ���� is an
interval where p� di�ers insigni�cantly from a L�evy distribution� and for jxj 		 ����
the distribution exhibits an exponential fall�o��

Here are some numerical examples�� In tables below� we �x r� �� � and see how the
threshold H varies with �� H�� the threshold in Merton 
��
��� is independent of � and
��

Table �� Parameters
 X � �� r � 	�			�� � � 	�		�� � � ���� H� � 	����

� ��	 ��� ��� ��� ��� 	�� 	�� 	�� 	��
H 	���
 	���� 	���� 	���� 	���� 	���� 	���� 	���� 	��
	

Table �� Parameters
 X � �� r � 	�		�� � � 	�	�� � � ���� H� � 	����

� ��	 ��� ��� ��� ��� 	�� 	�� 	�� 	��
H 	���� 	���
 	���� 	���	 	���� 	���� 	���� 	���� 	����

In these two examples� it is clearly seen that the threshold increases as � goes from
� down� i�e� as a process deviates from a gaussian one of the same variance�

Probably� this is a result of a smooth truncation� For instance� for a mixture with

bp� 
x� � � exp
���k���� � 
� � �� sin
�
p

���
�
p

��� � � �	� � �

the threshold decreases 
though weakly� as � goes from � down�
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Appendix

A�� Some basic facts of the theory of the Sobolev spaces and the theory
of pseudo�di�erential operators �see e�g� Eskin ��
���

By S
R� one denotes the space of in�nitely di�erentiable functions decaying at
in�nity faster than any power of x� together with all derivatives� and by S �
R� " its dual
space�

Let s � R� The Sobolev space Hs
R� consists of u � S �
R� with the �nite norm

k u ks�
�Z ��

��

� � k��sj!u
k�j�dk

����
�

The closure of C�
� 
R�� in Hs
R� is denoted by

o

Hs 
R��� The spaces Hs
R� and
o

Hs 
R��

are Hilbert spaces� and H�
R� � L�
R��
o

H� 
R�� � L�
R���
For an integer m � 	 and s 	 m����� Hs
R� � Cm
R�� by the Sobolev embedding

theorem�
The Dirac delta�function 
a linear functional de�ned by �
f� � f
	�� belongs to

o

Hs 
R��� for any s 
 �����
If the symbol of a PDO A
D� is measurable and admits a bound

jA
k�j � C
� � jkj��m��� � k� 
���

then A
D� is said to be of order m� A PDO of order m is a bounded operator from
Hs
R� to Hs�m
R�� If A
k� admits a holomorphic extension into a half�plane ��k 	 	
and satis�es a bound 
��� in the closed half�plane� then A
D� is a bounded operator

from
o

Hs 
R�� to
o

H l 
R��� where l � s�m�

A�� Proof of Lemma 
��� As l � �	� lnA
l� � O
!p
l��� and on the strength
of 
���� there exist C�� 	 	 such that

j lnA
l�j � C
� � jlj���� � l � R� 
���

Fix �� 	 	� and consider b�
k� in a half�plane ��k � ��� Set J� � fl j jk � lj � jkj��g�
J� � fl j jk � lj � jkj��g� On J�� jkj � �jl� kj and jlj � jk � lj� jkj � �jl � kj� hence


� � jk � lj���
� � jlj��� � �
� � jkj�����
� � jlj�������
� � jlj���� 
���

and since 
� � jlj������� � L�
R�� we deduce from 
���"
��� an estimate�����
Z
J�

lnA
l�

k � l
dl

����� � C	�
� � jkj������ 
���

where a constant C	� is independent of k and � � ��� On J�� jlj � jkj � jk� lj � jkj�� �
jk � lj� and hence�


� � jk � lj���
� � jlj��� � C
� � jk � lj���
� � jk � lj�����
� � jkj������

��



Therefore� �����
Z
J�

lnA
l�

k � l
dl

����� �
� C�	�
� � jkj�����

Z ��

��

� � jk � lj�������dl � C�	�
� � jkj������

Thus� 
��� holds with R instead of J�� Similar estimates hold for derivatives w�r�t� k�
and in a region ��k � ��� parts b�� c� and the �rst part of a� have been proved�

To show that A�
k� admits a continuous extension up to the boundary of a half�
plane ��k 	 	� �x k � R and write� for � 	 	�

b�
k � i� � � b��
k � i� � � b��
k � i� ��

where

b��
k � i� � � � i

��

Z
jk�lj
�

lnA
l�

k � i� � l
dl�

b��
k � i� � � � i

��

Z
jk�lj��

lnA
l�

k � i� � l
dl�

The denominator of the integrand of b�� being bounded away from zero� uniformly in
k � R and � � 	� the proof for ��k � �� above shows that b��
k� is continuous in a
closed half�plane ��k � 	 and satis�es all the necessary estimates there�

Consider b��
k�� On the strength of 
���� there exists C 	 	 such that all for all
k � R and c � 
k � �� k � ���

j lnA
c�j� jA�
c��A
c�j � C
� � jkj����
Hence� using the Lagrange formula

lnA
l� � lnA
k� �
A�
c�

A
c�

l � k��

where c � 
k� l� 
or c � 
l� k��� and noticing that

� i

��

Z
jk�lj��

dl

k � i� � l
� � i

��

Z
jlj��

dl

i� � l
�

� � i

��

Z
jlj��

�i� � l

l� � � �
dl �

�

��

Z
jlj��

�dl

l� � � �
� ����

as � � �	� we obtain that b��
k� is continuous up to the boundary of a half�plane
��k � 	� and admits an estimate

jb��
k � i� �j � C
� � j� j� jkj������
This �nishes the proof of Lemma ����

A�� Proof of Eq� ����� Since � 	 �� we have f � � S
R��� Therefore� we may
apply a formula 
����� in Eskin 
��
�� and obtain

��f
� �

mX
s	�


� � iD��s� � 

� � iD�s��f ��
	� � 
� � iD��m��
� � iD�mf �� 
���

��



Here m is a positive integer� � is the Dirac delta�function� and



� � iD��s��
x� � 
�����
Z ��

��
eixk
� � ik��sdk�

By using 
��� and 

��"

��� we can rewrite 


� as

u � e�x
� � T�
D � i����
� � iD���� � f �
	��

�
� � iD���� � 

� � iD�f ��
	� � 
� � iD�����
� � iD��f � �

By introducing the notation

�s � 
� � iD��s�� w�
� � T�
D � i��
� � iD�����

w�
� � A�
D � i����
� � iD�����

w�
� � A�
D � i����
� � iD���A�
�i���

� � iD��e�����x��

w�

 � �A�
D � i����
� � iD���A�
	�X��

� � iD��e��x��

we can write
u � e�xf
�� � w�

��f
�
	� � �� � 
f �
	� � 
f ���
	��� 
���

�w�
� � 
f �
	� � 
f ���
	�� � ehw�

� � w�

g�

Consider terms in 
����

�� We know that � �
o

H l 
R�� for any l 
 ����� and since f � � S
R��� Theorem
��� in Eskin 
��
�� gives ��f

�� ��
� � iD��f � � Hs
R�� for any s � 
	� ����� But
T�
D � i��
� � iD��� and A�
D � i��
� � iD��� are PDO of order �� � � and ���
respectively� and hence� w�

� � H l����
R� � H�������
R� � C
R�� w�
� � H l��
R� �

C�
R�� Similarly� w�
�� w

�

 � C�
R�� The symbols of A�
D � i���� and T�
D � i�� being

holomorphic in a half�plane �k 
 	� we have suppw�
j � R�� j � �� � � � � �� Hence�

w�
�
	� � 	� and w�

j
	� � 
w�
j�
�
	� � 	� j � �� �� ��

�� Consider �s� s � �� �� By the residue theorem� for x 
 	 and � 	 	�

�s
x� � 
�����
Z ��

��
eixk
� � ik��sdk � 
�����

Z ���i	

���i	
eixk
� � ik��sdk � 	�

as � � �	� and hence� �s
x� � 	� Further�Z �

�
e�ixkexdx � 
� � ik����

therefore ��
x� � e�x for x 	 	�
By di�erentiating �� at x 	 	� we �nd

���
x� � 
�����
Z ��

��
eixk

ik


� � ik��
dk � ��
x�� ��
x��

The general solution to an equation ��� � e�x � �� is ��
x� � xe�x �Ce�x� but �� �
o

H
l


R��� � l 
 ���� is of the class C�
R�� and hence� equal to 	 at x � 	� Thus� we obtain
��
x� � xe�x� � x 	 	�

�	



�� Now we calculate coe�cients in 
����

f �
	� � d
h� � A�
�i�eh �A�
	�X�


f ���
	� � 
� � ��A�
�i�eh � �A�
	�X � 
�� ��d
h� � A�
	�X�

�� As x� �	�

e�x��
x�d
h� � 
� � 
�� ��x�d
h� � o
x��

e�x��
x� � x� o
x��

e�x��
x� � x�d
h� � 
� � ��d
h� � A�
	�X �

� d
h� � xd
h��
�� �� � � � 
� � �� � xA�
	�X � o
x� �

� d
h� � xd
h� � xA�
	�X � o
x��

�� By gathering �� " �� and 
���� we obtain 

���
A�� Calculation of A�
�i� and A�
	�� By noticing that 
!p is even and �!p is

odd� and using 

��� we obtain

b�
�i� � � i

��

Z ��

��

ln
� � e�r�i
l!p
l��

�i� l
dl �

� � i

��

Z ��

��

i� l

l� � �
ln
�


� � e�r!p
l� cos
�l��� � 
e�r!p
l� sin
�l�������



dl�

� i

��

Z ��

��

i� l

l� � �

�
�i arctan

e�r!p
l� sin
�l�

�� e�r!p
l� cos
�l�

�
dl �

�
�

��

Z �

�

ln

�� e�r!p
l� cos
�l��� � 
e�r!p
l� sin
�l����

l� � �
dl�

� �

�

Z �

�

l

l� � �
arctan

e�r!p
l� sin
�l�

� � e�r!p
l� cos
�l�
dl�

and

b�
	� � �i �

��
lim
	���

Z ��

��

ln
� � e�r�
l!p
l��

�i� � l
dl �

� �i �

��
lim
	���

Z ��

��


i� � l� ln
� � e�r�
l!p
l��

� � � l�
dl �

�
�

��
ln
�� e�r�

Z �

�

dl

l� � �
� �

�

Z �

�
l�� arctan

!p
l� sin
�l�

er � !p
l� cos
�l�
dl �

�
�

�
ln
�� e�r�� �

�

Z �

�
l�� arctan

!p
l� sin
�l�

er � !p
l� cos
�l�
dl�

Since A� � exp b��

A�
	�

A�
�i� � expf�

�
ln
� � e�r�� I� � I�g�

where I�� I� are the same as in 

���

��
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