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Linear and non-linear analogues of the Black-Scholes equation are derived when
shocks can be described by a truncated Lévy process.

A linear equation is derived under the perfect correlation assumption on returns for
a derivative security and a stock, and its solutions for European put and call options are
obtained. It is also shown that the solution violates the perfect correlation assumption
unless a process is gaussian. Thus, for a family of truncated Lévy distributions, the
perfect hedging is impossible even in the continuous time limit.

A second linear analogue of the Black-Scholes equation is obtained by constructing a
portfolio which eliminates fluctuations of the first order and assuming that the portfolio
is risk-free; it is shown that this assumption fails unless a process is gaussian.

It is shown that the difference between solutions to the linear analogues of the Black-
Scholes equations and solutions to the Black-Scholes equations are sizable.

The equations and solutions can be written in a discretized approximate form which
uses an observed probability distribution only.

Non-linear analogues for the Black-Scholes equation are derived from the non-arbit-
rage condition, and approximate formulas for solutions of these equations are suggested.

Assuming that a linear generalization of the Black-Scholes equation holds, we derive
an explicit pricing formula for the perpetual American put option and produce numerical
results which show that the difference between our result and the classical Merton’s for-
mula obtained for gaussian processes can be substantial. Our formula uses an observed
distribution density, under very weak assumptions on the latter.
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I. Introduction

1.1. After seminal papers by Black and Scholes (1973) and Merton (1973), a geo-
metrical Brownian motion model is widely being used as a standard reference model
particularly in the context of option pricing and hedging, but empirically it is demostra-
ted to be incorrect in number of ways. Main difficulties this model faces are systematic
deviations of option prices from the ones predicted by the Black-Scholes formula, and a
leptokurtic character of stock return variability.

The deviations may be due to various factors, for instance, due to an unrealistic
assumption of continuous trading, at no cost, which is assumed in the Black-Scholes
model, but the fact that real processes do not conform to the gaussian assumption
certainly accounts for at least part of the deviation.

For models with non-zero cost of trading, see e.g. Morton and Pliska (1995), Gran-
nan and Swindle (1996), Whalley and Wilmott (1997) and the bibliography there, and
for different approaches to modelling of stock volatility, see e.g. Hull and White (1987),
Merton (1976), Cox and Ross (1976), Rubinstein (1983), Taylor (1994), Duan (1995),
Scott (1997), Bjork, Kabanov and Runggaldier (1997), Renault and Touzi (1996), Rogers
(1997) and bibliography there.

In some sense, almost all approaches to modelling of a stock volatility start with
gaussian processes: one selects an appropriate mixture, with possible addition of jump
components, or uses a convolution of the Brownian motion kernel with a polynomially
decaying one, in models based on the Fractional Brownian motion (see e.g. Bouchaud
and Sornette (1994) and Rogers (1997)).

In the paper, we suggest to use a family of "truncated Lévy processes” as refe-
rence models.? Truncated Lévy distributions were constructed by Mantegna and Stan-
ley (1994), and Koponen (1995) suggested a family of infinitely divisible truncated Lévy
distributions, which admit explicit description in terms of their Fourier transforms.
Truncated Lévy distributions were observed in real financial markets (Mantegna and
Stanley (1995), Cont et al. (1997)). Cont et al. (1997) gave a formula for the probabi-
lity distribution of the Standard & Poor’s 500 index futures, which explicitly describes
the exponential fall-off in the tails of the distribution and fits the data.

By using the same simple heuristic ideas which are used to derive the Black-Scholes
equation, we obtain their analogues and find the solutions for European call and put
options.

The formulas are on almost the same level of complexity as the Black-Scholes for-
mula, and hence admit simple adjustment so popular among practioners with the Black-
Scholes formula. Possible advantages of the suggested approach are:

1) the basic processes have "fat tails”, as empirical distributions do, so in applica-
tions, there may be no need to find an appropriate mixture of basic processes;

2) a basic process is characterized by three parameters, not by variance only, which
entails additional possibilities of adjustment;

2 After the first variant of this paper (without the last Section on the perpetual American put) had
been prepared, Prof. Mantegna informed us about a paper by Matacz (1997) where the truncated Lévy
distributions were used for similar purposes. The methods and results of this paper and a paper Matacz

(1997) are different.



3) the equations and formulas admit natural approximate discrete versions which
use an observed distribution only. (We illustrate the last point in Section 9, where we
solve a discretized version of a generalized linear Black-Scholes equation for the perpetual
American put; a continuous-time version of this result will be published elsewhere).

The simplest analogs of the Black-Scholes equation are linear pseudo-differential
equations, which can easily be solved by means of the Fourier transform (in this respect,
our approach is close to Scott (1997)). They are obtained under assumption that the
returns on a stock and a derivative security are perfectly correlated, but we show that
this assumption fails unless a process is gaussian.

We use the no-arbitrage approach, and derive two non-linear equations. They are
rather involved, and we are unable to solve them as yet, though we suggest a scheme
for an approximate solution.

1.2. Let S = S(t) be a current or spot price of a stock S, and let F' be a current
price of a derivative security for the stock. Let r be the riskless rate. The celebrated
Black-Scholes equation for the dynamics of F'

1
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was derived under two assumptions:
I. § follows a Geometric Brownian Motion, i.e. can be described by a stochastic
differential equation

d
?S = adt + odz,

where dz is the increment of the standard Wiener process with zero mean and unit
variance;

IT. In the limit At — 0, the returns on the stock and the derivative security are
perfectly correlated: for some non-stochastic b,

AF — E[AF] _ | AS — E[AS]
F B S

Instead of (1), we assume that the returns can be described by a stochastic process
obeying rather general conditions which are satisfied e.g. by a family of truncated Lévy

+o(At) as At — 0. (2)

distributions which was constructed by Koponen (1995). For the sake of brevity, we
consider only symmetric distributions of this family. In terms of the Fourier transform,
these distributions are given by

Punoai(k) = exp[—Ata* V[N — (k* + )\2)”/2 cos(varctan(k/N))]/v(v — 1)],

where ¢ > 0,A > 0 and v € (0,2],v # 1 are parameters. Note that the variance is
independent of A and v.

For v = 2, we obtain pg . ai(k) = exp(—Atc?k?/2) which means that ps s, s i8
a gaussian distribution. As v moves from 2 down, p,\,a¢ deviates from a gaussian
distribution, and for fixed v € (0,2),v # 1, in the limit A — +0, p, .+ becomes a
Lévy distribution with p, a+(k) = exp(Ate, |k|").

Note that p, (k) are holomorphic on a strip |Sk| < A, and we use this observa-
tion as the starting point.



1.3. In the paper, we impose the following condition on the behavior of
A(ln S)(t; At) = (InS)(t 4+ At) — (In S)(t), as At —0:

A(In S)(t; At) = aAt + Yy ar + o( At), (3)

where for fixed At, Y, o; are 1.1.d. random variables with the distribution density pa,

given by
+oo
pacly) = (2m)"! /_ expliyk — AtP(k)}dk. (4)
The main properties of the Koponen’s (1995) family are
a)
P(k)y=P(-k)>0V ke R\0, P(0)=0, P"0)>0; (5)

b) there exist A > 0 and v € (0, 2] such that

P is holomorphic on a strip |Sk| < A, (6)
and for any X € (0,A) and s =0, 1,

P < Conl1 4+ K™, K] < 7)
c) there exist P, > 0 and p > 0 such that for any X" € (0, )

P(k) = Po|k|” + O(Jk|"™"), ask — too, |Sk| < N. (8)
In this paper, we shall use (7) with s = 0, and instead of (8), a weaker condition:
P(k) = +o0 as k + oo,

but (7) with s = 0,1 and (8) are needed for a continuous version of results of Section 9,
which will be published elsewhere.

1.4. Clearly, gaussian processes satisfy (3)—(8) with A = 400, but there are many
other processes different from gaussian ones, say, the ones described by truncated Lévy
distributions, which satisfy (3)—(8) with A < +o0 (and do not with A = 400).

Under conditions (3)—(8), we derive non-gaussian analogs of the Black-Scholes equa-
tion (1). We use four approaches, which give the same equation (1) in the gaussian case.
The approaches use, respectively:

1. The non-arbitrage condition

E[AF]—rFAt E[AS] —rSAt

E[(AF — E[AF))}'/2 ~ E[(AS — E[AS])21/? +o(At), as At — 0. (9)

2. The perfect correlation assumption (2).

3. The construction of a risk-minimizing portfolio consisting of shares of the stock
and the derivative security. (This is in a spirit of Bouchaud and Sornette (1994))

4. The construction of a portfolio which eliminates fluctuations of order 1.

Let’s call the corresponding equations the Generalized Black-Scholes equation I, 11,

[T and IV, respectively, or GBSE-I, GBSE-II, GBSE-III and GBSE-IV.
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As it turns out, these equations look different (though for gaussian processes, reduce
to the same equation (1)), and for non-gaussian processes obeying (3)—(8), are different.
To be more precise, let F' be the spot price of an European call (or put) option. We
have solved the GBSE-II and proved that

a) F satisfies the perfect correlation assumption (2) if and only if it satisfies both
GBSE-T and GBSE-II;

b) F', a solution to GBSE-II (subject to appropriate boundary conditions) satisfies
the perfect correlation assumption (2) if and only if P satisfies a certain very complicated
non-linear pseudo-differential equation® (this is a condition (21) below), and we show
that if the excess rate of return on the stock is not high then P does not satisfy condition
(21) unless P(k) = %kz, i.e. the process is gaussian. We believe that non-gaussian P
do not satisfy (21) in all cases;

c) the riskless portfolio consisting of shares of the stock and option exists if and only
if F' satisfies (21), and if F' satisfies it then F satisfies both GBSE-II and GBSE-III.

Thus, in the case of non-gaussian processes obeying (3)—(8), the perfect correlation
assumption fails, a riskless portfolio consisting of a stock and an European option does
not exist, and the standard hedging is impossible. It is no suprize that the assumption
and the riskless portfolio disappear simulteneously: the latter can be constructed if and
only if the returns on the stock and the option are perfectly correlated.

1.5. GBSE-T and GBSE-III are non-linear pseudo-differential equations, and GBSE-
IT and GBSE-IV are linear pseudo-differential equations. We derive GBSE-I and GBSE-
IT in Sections 2 and 3, respectively. In Section 3, we also derive condition (21).

In Sections 4 and 5, we solve GBSE-II for Furopean call and put options, and
produce some numerical results which show that the difference between our result and
the Black-Scholes formula can be sizable (assuming that the variance is the same), and
in Section 6, we prove that the solutions does not obey the condition (21) unless the
process is gaussian.

In Section 7, we derive GBSE-III, and in Section 8 — GBSE-IV; solutions to the
latter are similar to the ones for GBSE-II.

Both GBSE-I and GBSE-III (especially the latter) are very complicated, and so far,
we were unable to solve them.

In fact, we doubt that an analytical solution exists at all, and even the justification
of an iteration procedure which we suggest in Section 8 for GBSE-I, seems to be very
hard.

We suggest formulas for the first and the second approximation.

We suggest a way to rewrite our formulas in terms of an observed probability distri-
bution. We hope that this can be used to produce appropriate computational schemes.

3An equation is called pseudo-differential if it involves pseudo-differential operators. A pseudo-
differential operator P(y, Dy) with the symbol P = P(y, k) acts as follows:

+eo  ptoo
u(z) — (271')_1 /_ /_ exp(i(y — 2)k) P(y, k)u(y)dydk.

If P(y,k) = >_pj(y)k? is a polynomial in k, then P(y, D,) = ij(y)D‘;, D, = —idy, is a differential
operator. If P is independent of y, one writes P(D,).



Finally, in Section 9, we derive a formula for the perpetual American put option,
assuming that the dynamics of its price obeys a linear generalized Black-Scholes equa-
tion, and produce numerical examples showing that the difference between our formula
and the Merton’s one can be significant.

2. Derivation of the Generalized Black-Scholes Equation I:
The Non-Arbitrage Approach

The nominators and denominators in Eq. (9) can be calculated by means of the
following two lemmas.

Set y =1nS, f(y,t) = Fexpy,1).
Lemma 2.1. Let f = f(y,t) be continuously differentiable and admit a bound

|f(y7t)| S Ct GXP()\1|y|)7 \V/ yvtv

where Cy > 0 and Ay € (0, X) are independent of y.
Then for all y,t, as At — 0,

Ey[Af] = (Ji + afy = P(Dy) )y, )AL + o Al). (10)

Proof. For small At and y,
Fly+ Ayt + Al) = fy,t) = (fly + Ay, 1 + At) — fly + Ay, 1))+

+H(f(y + At t) = fly, 1) + [y + Ay, t) — fly + oAt ).

The first and second differences above being equal to

fily + Ay, 1) At + o(Al) = fiy,t)Al + o(At),

and

fyly + aAt )AL+ o(AL) = [, (y, )AL+ o(Al),
respectively, it remains to calculate

Bl fy+adtt Ay, )= fy+ant, 0] = [ fyaditz, pa)dz—fly+adi,t) =

— 00

= [ S+ ant = = palz)dz — Sy + ALY,

(Here we have used the symmetry of p). By using one of the main properties of the
Fourier transform f xqg = f g: the convolution becomes the multiplication, and then

Eq. (4), (6) and (7) (which allow us to change the order of calculation of the limit and
the integral below), we obtain

im B, [f(y + Ay, 1) — f(y,0)]/AL =

At—0

>

eXp (tk(y + aAt)(exp(—=AtP(k))) — 1) f(k, t)dk =

Alt—>0 27rAt



) 1 Foo . A
= Jim s [ exp(iky) (= ALP(k)) + o A1) (k. )k =

1
S 2m
Thus, (10) has been proved.

Lemma 2.2. Let f and g satisfy conditions of Lemma 2.1.
Then

/_;OO exp(iky)(—P(k)) f(k, t)dk.

EIAf=E[AM(Ag—E[Ag])] = (=P(Dy)(fg)+9P(Dy) [+ [P(D,)g)At+o(Al). (11)

Proof. Simple algebraic manipulations give

E[(Af = E[Af])(Ag — E[Ag])] = E(f + Af = E[f + Af])(g + Ag — Elg + Ag])] =

= LI(f + Af)(g+ Ag)l — E[(f + A)E[(g+ Ag)] =
(using (10) and the equality (fg¢): = fig + fg:, we continue:)

= fg+ ((fg): +al(fg)y — P(Dy)(fg))At + o( At)—

—(f+ (i + afy = P(Dy) )AL+ o(Al))(g + (9t + agy — P(Dy)g)Al + o(Al)) =

= (_P(Dy)(fg) ‘|'9P(Dy)f‘|‘ fP(Dy)g)At+ O(At)-

Lemma has been proved.
Direct calculations show that for |a| < A,

e WP(Dy)e" = P(Dy, —ia),
(as operators), and P(D,) acts on exponents as follows:
P(D,)e™ = P(—ia)e™.
Using (10), (11) and (13), we can rewrite (9) as follows:

(fe +af, = P(D,)f = rf)At + o(At)
[(=P(Dy)(f2) + 2/ P(Dy) [)AL + o( AL)]H/?
_ (o= P(=i) = 1)Al +o(At) o
T [(—=P(=2i) + 2P(—1))At + o( At)]}/? + o((At) / )-

Passing to the limit, we obtain the Generalized Black-Scholes Equation-1:

+ol(An'?) =

(o= P(=i) =)

fitaly=PDy)f —rf= . ~(=P(D,)(f*) + 2/ P(D,) [)'"*.

—P(=21) + 2P(—1)

Example 2.1. Let pa; be gaussian. Then p(k) = exp(—At%kZ), and therefore

2 2
)

P(k) = %k2, Pl—ia) = =7,

7
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0.2 2

Pu%y:wgﬁ,fm—my+y%4):%44—m:aa

= PO = Sy = (Pl + (1)) 2fP(D)] = ="y (15)
and (14) turns into

ft+afy+7fyy_rf:(O‘—I'?_T)fy' (16)

Since
fily, ) = Fy(S,1), - fyly,t) = SFs(5,1),
fu(y,t) = S*Fss(5,1) + SFs(5,1),
we obtain the Black-Scholes equation (1).

Thus, for gaussian p, Eq. (14) reduces to a linear differential equation, but for other
p, it 1s a very complicated non-linear pseudo-differential equation.

3. Derivation of The Generalized Black-Scholes Equation II:
The Perfect Correlation Assumption Approach

Now suppose that AF and AS are perfectly correlated in the limit At — 0, i.e. (2)
holds. Multiplying (2) by (AS — E[AS]), taking the expectation F = FE;,, and applying

Lemmas 2.1 and 2.2, we obtain
CPDNIE) 4 PO+ [PD) | =P+ 20PDE

/ ev
(17)
Using (12) and (13), then dividing (17) by e*At¢ and passing to the limit as At — 0,
we obtain

—P(Dy —i)f + P(Dy)f + P(=0)f
f

= b(—P(—2i) + 2P(—i)).

Thus,

_ _P(Dy — Z)f‘|‘ P(Dy)f‘|‘ P(_i)f

B (—P(=2i) +2P(=i)) f ‘
Consider forming a portfolio by investing a fraction w in the option and 1 — w in the
stock. The return on this portfolio is

(18)

and its uncertain component is equal to

AF AS AF AS
_ AF — E[AF] AS — E[AS]
CTTTTF (1—w)=—%



AS — E[AS]
S

The choice w = 1/(1 —b) makes the portfolio riskless, and since a riskless portfolio must

= (wb+ 1 —w)

earn the riskless rate of return, we obtain

rAt = E[w% + (1 - w)%] + o(At),

or

_fitaly=PD,)f b ae'—P(D,)
B (1—b)f 1—b ev

Dividing by At, passing to the limit At — 0, next using (13) and (18), and finally
multiplying by (1 — b)F', we obtain
[(=P(=2i) + 2P(=i))f = (=P(Dy —10)f + P(Dy)f + P(=i)f)]r =
= (=P(=20) + 2P(=0))(fi + afy — P(Dy)[)—
— (=P(Dy =) + P(Dy) [ + P(=1) f)(e = P(=1)). (19)
By using simple algebraic manipulations, we can rewrite (19) as
ferafy =P(Dy)f—rf=

_ a—=P(=i)—r
= P(=21) 4 2P(—1)
Example 3.1. Let pa; be a gaussian distribution. Then, using (15), we obtain

rAt

oY
At 4 o(At).

(=P(Dy = i)f + P(Dy)f + P(=1) ). (20)

—P(Dy —i)f + P(Dy)f + P(=1) [ =

2

= T (D, = i)+ D= 1) = D, = o,
~P(=2) +2P(~i) = o?, —P(~i)= ",

and therefore, (20) turns into (16), which is the Black-Scholes equation (1).

Thus, in the case of gaussian processes, Eq. (20) and (14) are identical and reduce
to the Black-Scholes equation (1), as it should be the case since it is well-known that
for gaussian processes, the approaches used in Sections 2 and 3 give the same result.

For a non-gaussian pa;, the RHS’s of (14) and (20) differ: in the former, it is a
non-linear in f, and in the latter — linear. Clearly, a linear equation (20) is much easier
to solve, and we shall do it in the next two Sections for European call and put options,
respectively.

But a linear equation (20) has been derived under the perfect correlation assumption
(2) which implies a non-trivial restriction on P and F. To derive it, multiply (2) (with b
defined by (18)) by AF — E[AF], take the expectation and apply Lemmas 2.1 and 2.2:

_P(Dy)(fz) ‘|’2fP(Dy)fAt _ b_P(Dy)(fey) +e'P(Dy)f + fP(D,)

oY
7 ” At 4 o(At).




Using (13), dividing by At and passing to the limit as At — 0, then multiplying by f
and using (18), we obtain

_P(Dy)(fQ) ‘|’2fP(Dy)f =

—P(Dy —1)f 4+ P(Dy)f + P(=1)f
—P(=2i) + 2P(—i)

(=P(Dy —i)f + P(Dy)f + P(=1)f),

or

(=P )+ PP =P+ 2P0 = (PO, =T+ PP+ PE=i
21
Theorem 3.1. The following statements are equivalent:

a) F(S,t) = f(In S,t) satisfies the perfect correlation assumption (2);

b) F(S,t) = f(InS,t) satisfies (21);

¢) [ is a solution to Eq. (14) if and only if it is a solution to Fq. (20).

Proof. The equivalence of a) and b) has been proved already. Further, the LHS
in (21) is non-negative, being the limit of non-negative functions, therefore (21) is equi-
valent to the statement: the RHS’s of (14) and (20) are equal. Since the LLHS’s are
identical, ¢) and b) are equivalent.

Theorem has been proved.

4. A Solution to The Generalized Black-Scholes Equation 11
for European Call Options

Rewrite (20) as
fe=P(Dy)f, (22)

where
a— P(—i)—r

P(Dy) =r=iaDy + P(Dy) + —p5n =y

(—=P(Dy —1) + P(D,) + P(—1)).

Eq. (22) is valid for any derivative security of the stock S. If F' is the spot price of an
European call option, F' satisfies the following boundary conditions

F(S,T) =max(S — X,0), (23)

F(0,8) =0, F(S,t)<S, (24)

where T' is the expiration date and X is the striking price. In terms of f(y,t) = F(e¥,1),
(24) can be rewritten as

fly, T) = max(e’ — €,0), (25)

where z = In X.
Take w € (1,A — 1), and set g(y,t) = e “Yf(y,t). Then a problem (22), (25) for f

is equivalent to the following problem for ¢:
g =P(Dy —iw)g, (26)

9(y, T) = max(c(= — =7+ ). (27)

10



By making the Fourier transform w.r.t. y, we see that a problem (26)—(27) is equivalent
to

g =Pk —1w)g, (28)
g(va) = ib(k)v (29)

where

—co
+oo k
_ / e~ wly _ et dy =
e(l—w—zk)y teo e(x—l—(—w—ik)y teo
1l —w—ik —w —tk
x x
1-w—ik)x 1-w—ik)x 1-w—ik)

o o

[ A R (b —iw)(k—iw+1)
By solving the Cauchy problem (28)—(29), we obtain

exp(—7P(k —iw) —ikx + (1 —w)x)
(k —iw)(k —iw+1) ’

where 7 =T — ¢, and therefore,

oty =5 [ erklh 0k =

o
B ell=w)z rtoo exp(i(y — 2)k — 7P(k — iw))
or /—oo (k —iw)(k —iw+1) dk.
Since f(y,t) = e“Yg(y,t), we have
G exp(i(y — x)(k —iw) — 7P(k —iw)) B
f(y’t)__ﬁ/_oo (k—w)(k—inri) dk =

Y

" roomiwexp(i(y —a)z — 7P(2))
_g/—oo—zw z(z +1) dz

and by returning to the initial variables X = ¢, S = €Y, F'(S,t) = f(y,1),

F(S,1) = —

y /+oo-m exp(iln(S/X)z — 7P(z)) | (30)

% —co—1w Z(Z + Z)

Here is another form of F'(5,1). Since the integrand in (30) is meromorphic on any
strip —w < Jz < —wy, wy € (0, A), with the only pole at z = —i, we have

dz—

+oo—twy exp Zln(S/X)Z - 7'73( ))
St___/oo it (Z—|-@)
X 2m,exp(i In(S/X)z —7P(2))

T z

z=—1

11



by the residue formula.

Since P(0) = 0, we have

P(—i)=r—a+ P(—i)+
and therefore,

F(S,t)=8— —

T J—co—iw z(z +1)

X /‘l'oo wi exp(eIn(S/X)z — T,P(Z))dz‘ (31)
Under conditions (6)—(8), the integrals in (30) and (31) converge and decay faster than
any power of In(S/X), as S+ 5! — +oo. Hence, F'(0,¢) = 0. Below, we present some
numerical results for a family (2)*.

We fix S =100, r = 0.1, and for X = 80,100,120 and v = 2.0,1.6,1.2 and different
values of o, A and 7, compute F'(S5,1). Recall that the variance is indepependent of A
and v, and that for v = 2, a process is gaussian.

In the first series of examples, we take a = P(—1), which implies that the stock
itself has zero drift.

Table 4.1.

Values of F(S,t), parameters: r =0.1,A =3,7 =0.5
o 0.25 1025025 |05 |0.5 0.5
X 120 | 100 | 80 120 | 100 80

v=2.0 1248 | 9.58 | 24.30 | 8.98 | 16.26 | 27.76
v=1.6 12831946 | 24.28 | 9.11 | 16.23 | 27.67
v=1213361]9.28|24.26 | 9.32 | 16.16 | 27.59

Table 4.2.

Values of F(S,t), parameters: r = 0.1,A = 3,7 = 0.25
o 0.25 1025025 |05 |0.5 0.5
X 120 | 100 | 80 120 | 100 80

v =2.010.67]6.26 2207|433 | 11.11 | 23.83
vr=1.611.02]6.05|22.09 | 443 | 10.97 | 23.76
v=1211.46 5742210 | 4.61 | 10.74 | 23.67

We see that for stocks with zero drift, our formula gives higher price for options out
of the money than the Black-Scholes one, and for options at the money (and usually,
for options in the money) - lower price.

The next table shows that the results can change significantly if the drift changes.
Here we take o = 3P(—1)/2.

4The authors thank to Mitya Boyarchenko for the help with calculations.
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Table 4.3.
Values of F(S5,t), parameters: r = 0.1, A = 3,7 = 0.5.

o 0.2510.251025 |05 |05 0.5
X 120 | 100 | 80 120 | 100 80
v=2.0 1248 | 9.58 | 24.31 | 8.98 | 16.26 | 27.76
v=1.6 1289|948 | 24.27 | 9.24 | 16.31 | 27.72
v=1213501]934|24.24 | 9.64 | 16.37 | 27.65

5. A Solution to The Generalized Black-Scholes Equation II
for European Put Options

For an European put option, the boundary conditions are
F(5,T)=max(X — 5,0), F(0,t)=Xe" T F(400,t) = 0.
In terms of y =In S, 2 =In X, f(y,t) = F(5,t),7 =T —t, they can be rewritten as
fly,T)=max(e” —e¥,0), f(—oo,t)=€"""", f(+o0,t)=0.
Take wy € (0, A), and set g(y,t) = e“*Y f(y,1). Then g is a solution to a problem
gt = P(Dy +iwq)g, (32)

g(y,t) = max(e"t*?¥ — eltez)y, 0). (33)

By making the Fourier transform w.r.t. y, we see that a problem (32)—(33) is equivalent
to

Ggi(k, 1) = Pk 4 1w2)g(k, 1), (34)
g(kvt) = ib(k)v (35)

where
~ +oo .
h(k) = / e~k max(ex"'“’?y — e(l""‘”?)y, 0)dy =

— /w e—iyk(ex-l—wzy _ €(1+w2)y)dy —

ex—l—(wg—ik)y z e(l—l—wg—ik)y

z e(l—l—wg—ik)ac
o (ki) (k diws 1)
By solving the Cauchy problem (34)—(35), we obtain

CUQ—Z]C CUQ—Z]C

_exp(—TP(k + iwq) — tkx 4 (1 + we)x)
(k 4 tw2)(k + iwy + 1)

(k1) =

Y

where 7 =T — ¢, and therefore,

dk.

cItw)r  rtoo axny(— 7P (k 4 dwy) + ik(y —
1)~ APk ) bty )

s o (k 4 tw2)(k + 1we + 1)
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Since f(y,t) = e“?Yg(y,t), we have

dk =

) = e” /‘l'oo exp(—7P(k + iwy) + i(k + tw2)(y — )

r ) (k + 1wy (k + iwy + 1)

dz.

e” /+°°+W2 exp(—7P(z) +iz(y — )
27 —co+tiws Z(Z —|— Z)
By returning to the initial variables X = €%, S =¢¥, F'(S,t) = f(y,t), we obtain

F(S,t) = — dz. (36)

{ /+Oo+iw2 exp(—T’P(Z) + ZZlH(S/X))
2 —co+tiws Z(Z + Z)

The integrand in (36) being meromorphic on a strip (—wy,wsy), where wy € (0,A), with
the only pole at z = 0, we can apply the residue formula and obtain

B X too—iw exp(—TP(Z) + 1z IH(S/X))
F(S7t) - _27'[' /—oo—iwl Z(Z + Z) dZ—I_
1 X o @PTPE) T EG) |,
2 Z41
Since P(0) = 0, we have
a— P(—i)—r

P0) =r+P(0)+ (=P(=1) + P(0) + P(=1)) =1,

—P(=2i) + 2P(—i)

therefore

X /—I—oo—iwl exp(—7P(z) + izIn(S/ X))

B % —00—1tw] Z(Z + Z)

F(S,t)=Xe ™ dz. (37)

By comparing (31) and (37), we see that
Fput(S,t) == Fca”(S,t) + Xe " — S,

which is just the statement of the put-call pairity theorem.
Since Fou(0,t) = 0, Eq. (37) implies F,+(0,¢) = Xe .

6. An Analysis of The Perfect Correlation Assumption

We have shown that the perfect correlation assumption (2) is equivalent to Eq.
(21). Using Eq. (21), we derived the Generalized Black-Scholes Equation-11 and found
its solutions for European call and put options.

By denoting the last terms in (31) and (37) by ¢(y,t), we can write

fely, t) = " +g(y, 1), fply,t) = Xe™7 +g(y,1)

(¢ stands for call, and p — for put).
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Let us check (21) for f = f, given by (37). Since [T pas(y)- 1dy =1, ¥V At > 0,
we have P(D)1 =0, and therefore,

P(Dy)f, = P(0)Xe™ + P(Dy)g = P(D,)g,
P(Dy —1)fp = P(=0)Xe™" + P(Dy —1)g,  foP(Dy)fp = (Xe™7 +g)P(Dy)g,
—P(D,)f, = =P(D,)(X*e™" +2Xe g+ ¢*) = —2Xe " P(Dy)g — P(D,)g".

p

It follows that (21) reduces to
(=2Xe™TP(Dy)g — P(Dy)g* +2(Xe™ ™ + g)P(Dy)g)(—P(—2i) + 2P(—i)) =

= (=P(=))Xe7 " = P(D, —i)g+ P(Dy)g + P(—i)Xe ™ + P(—i)g)*.

By simplifying, we see that Eq. (21) for f, is equivalent to Eq. (21) for g.
Similar calculations show that Eq. (21) for f. is equivalent to Eq. (21) for g.
Substituting

dk =

ety — )k~ i) —rPUE = )

gy, t)=—5- | (k — iwy)(k — iwy + 1)

dk

er(Itwi)+yw /‘l'oo exp(i(y — x)k — 7P(k — iwy))
21 —oo (k — 1wy )(k — 1wy + 1)
into Eq. (21), using the following equalities

P(Dy —ia)e f = e P(Dy —i(a+w)f, (F(P(Dy)f)(k,t) = P(k)[(k,1),

+oo L A

| ety = [ 60— k)i,

and cancelling the factor exp(2(x(1 4+ w1) + ywy)), we obtain an equivalent form of Eq.
21):
( ) 1 oo ptoo " ) )
2—/ / R Pk — 2iwy) + 2P(ky — i )) %
T J— —00
y exp(—TP(k — ky - iwl). — 7'77(%1 — iwl)). i x
(k— k1 —iwy)(k — k1 — 1wy + 1) (k1 — twy) (kg — 1wy + 1)
X(—=P(=2i) +2P(—1)) =

1 + oo +oo .
/ dkl/ dke™ (= Pk — ky — iy — i) + P(k — k1 — iwy) + P(—i))x

T 2r e 0
% (—P(kl — iwl — Z) + P(kl — Zujl) + P(—Z)) exp(—TP(k — kl — zwl) — Tp(kl — Zu)l))

By making the inverse Fourier transform, we obtain

dkl X

/"‘00 (—P(k — 2iwy) + 2P (k1 — iwy)) exp(—=7P(k — ky —iwy) — 7P (k1 — iwy))
—oo (k— k1 —itwy)(k — k1 — 1wy + 1) (ky — dwr ) (k1 — 1wy 1)

X(=P(=2i)+2P(—1)) =
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_ /+Oo(—P(k — by —iwy — i) + Pk — by — ior) + P(—i))x

(= P(ky —iwy — i)+ Plly — iwy) + P(—i))x

y exp(—TP(k —k - iwl). — 7'77(%1 — iwl)). k. (38)
(k— k1 —iwr)(k — k1 — 1wy 4+ 0)(ky — dwr) (K — 1wy + 1)
forall k € R,7 > 0, and wy € (0,1).
We have proved
Theorem 6.1. Let (3)-(8) hold.
Then the perfect correlation assumption (2) for an European call option holds if and
only if Eq. (38) hold, and the same is true for an European put option.

The following theorem states that under reasonable conditions, which are certainly
satisfied if the excess return on the stock is not high, Eq. (38), hence the perfect
correlation assumption (2), fails.

Theorem 6.2. Let k = 0 be the only point of minimum of P(k), and let it be
non-degenerate.

Then Fq. (38) fails unless
P(E) = — P(—i)#, (39)

i.e. the process is gaussian.

Before proving Theorem 6.2, we note that the conditions of Theorem 6.2 are satisfied
by P. Taking into account (3)— (8) and the definition of P, we see that there exist ¢ > 0
such if

a—P(—i)—r
—P(=21) +2P(—1)

then P satisfies the condition of Theorem 6.2.

Proof of Theorem 6.2. By continuity of P and on the strength of (5)—(8), there
exists ¢ > 0 such that for any w; € (—e¢, ¢), the minimum of RP(k — iw,) is attained at
the only point £ = 0 and is non-degenerate.

<c,

Fix k = 0 and wy € (0,¢), and consider the asymptotics of integrals in (38) as
T — 4o00. In the both integrands, we see the same fast decaying exponential function,
and the non-degeneracy condition stated above allows us to conclude that the leading
term of the asymptotics of the LHS in (38) is of the form const(w;) x dj(w; )7~ /2, where
const(wy) depends on wy and the fast decaying exponential function only, and

di(wr) = (= P(=2iwy) + 2P (—iw1))(— P(—2i) + 2P(—i)).

Similarly, the leading term of the asymptotics of the RHS is of the form const(w;) x
d, (wl)r_l/z, where const(w;) is the same as above, and

dy(w1) = (= P(—iwy — 1) + P(—iw) + P(—1))%
By comparing the leading terms, we see that if (38) holds then ¥V w € (0, ¢),

(= P(—2iw) +2P(—iw))(— P(=2i) +2P(—i)) = (= P(—iw—1i)+ P(—iw)+ P(—i))% (40)
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d; and d, coincide on a segment (0, ¢), and since both are holomorphic on a strip
|Rz| < A/2, they coincide on it. But d, is holomorphic on a wider strip |Rz| < A,
therefore d; also is. Hence, a function z — P(—i2z) is holomorphic on this strip, and
therefore, P is holomorphic on a strip |Sk| < 2A. But by our assumption, |Sk| < A was
the widest strip with this property. Hence, A = 400, and (40) holds for all w;.

Set w = —1. Since P(0) =0, and P(z) = P(z), we obtain from (40)

(—=P(=20) +2P(—0))* = (2P(—1))",

hence P(—2i) = 4P(—1). Using the principle of mathematical induction, it is not difficult
to show that
P(—ni) =n*P(—i), YnecZ.

Now we use the induction on m = 1,2,..., and for fixed m, the induction on s =

0,+1,42, ..., to show that

1 1. 1 R
Eq. (41) means that Eq. (39) holds on a subset of R, which has an accumulation point;
the both sides being holomorphic, Eq.(39) holds everywhere.
Theorem 6.2 has been proved.

7. Derivation of the Generalized Black-Scholes Equation III:
The Risk-Minimization Approach

Consider an investor holding a fraction w of her/his wealth in the derivative security
and a fraction 1 — w in the stock. Suppose that the investor wishes to minimize the
variance of the portfolio

- (wAF — E[AF) AS — E[AS])2

P + (1 —w) S

The first order condition is

E l(AF —FJ?[AF] _AS —S{E[AS]) (wAF —;E[AF]

TS E[AS])] _

S
= o(At),
as At — 0. By using Lemma 2.2, we obtain
w(_f_QP(Dy)fz + Qf_lp(Dy)f) + (w — 1)(_6_2yP(Dy)€2y + 27V P(Dy)e" )+

(1 = 2w0)(= [T eV P(D) (e f) + [TIP(D) [ + e P(Dy)e’) = 0.
Eq. (12) and (13) allow us to simplify

w(=fTP(Dy)f* +2f 7 P(Dy) f) + (w — 1)(=P(=21) + 2P(—i))+
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+(1 = 2w)(=P(D, — 1)+ f'P(D,)f + P(—i)f) = 0.
After rearranging, we arrive at
w(_f_QP(Dy)fQ + Zf_lp(Dy)f — P(=21)) =
= [T'P(Dy —i)f = [TIP(Dy)f — P(=2i) + P(—i),

and therefore,

w =

f7IP(Dy —i)f — fTIP(Dy)f — P(=2i) + P(—1)
—[2P(Dy) f* +2f7 P(Dy) f — P(=2i)

_ (P(Dy —1) = P(Dy) = P(=21) + P(—i)
=7 P(Dy)f? +2P(Dy — i) f — P(=2

For a gaussian pat, Eq. (15) gives

; (42)

PD)S = =T hwe =PD) = T2 +21).

P(D, —i)f = (=i, = i)' f = =0, + D] = = fu + 20, + ).
and
— _fyy_ny+fyy+4f_f _
2fyy + Qf_lfyz —2fyy —Afy =2 +4f

f=1 1=/, 1

B R Y S P A A S
This is the fraction of wealth invested in the option in the Black-Scholes model.
Now we can calculate the minimal variance (attainable with the choice of w given
by (42)).
By using Lemma 2.2 and (12)—(13), we obtain

Vmmin 1= Al%r_r}lo VaTmin/ Al =

= w' (=TI P(Dy)[* + 2f T P(Dy) f) + (1 — w)*(=P(=2i) + 2P(—i))+
+2w(l —w)(=fT'P(Dy — i) f + [T P(Dy)f + P(=i)).
After simplification, we obtain

AB—(?

min — T, . 15 a1 4
v A+ B—20 (43)

where
A=—fP(D)f* +2f7'P(Dy)f, B=—P(=2i)+2P(—i),
C= _f_IP(Dy - Z)f + f_IP(Dy)f + P(_i)-

We see that the nominator in Eq. (43) is zero if and only if the perfect correlation

condition (21) holds.

18



Thus, we have proven

Theorem 7.1. Let conditions (3)—(8) hold.

Then the riskless portfolio exists if and only if the perfect correlation assumption
holds.

We proceed with the derivation of GBSE-III. w and v, being found, we can use
the non-arbitrage condition for the portfolio and the stock:

BlwSF + (1 -w)&] —rar B[R] - ft + (A1),

1/2

)]

By Lemma 2.1,
EIAS/S] = (o — P(—1))At + o(Al),

E(AS/S)?] = (= P(=2i) 4+ 2P(—1))At 4 o( At),

therefore we obtain
wfHfi+afy = P(Dy)f —rf}+ (1 —w)(a— P(—i) —r) =

(o — P(=i) = r)olf2

_ min

T (= P(=21) + 2P(—1))/*

and finally,
fitafy=PDy)f—rf=

Ut
=(a—P(—=1)—r)f % (1 —w t+ W(—P(—2i) + QP(_'))1/2) ) (44)

This is the GBSE III. For gaussian pa;, w = 1/(1 — f71f,), f(1 —w™) = f,, vmin = 0,
and the RHS in (42) is equal to (v — P(—i) — 1) f,.

Thus, Eq. (44) turns into (16), which is the Black-Scholes equation (1).

For other pa;, GBSE-III is a non-linear pseudo-differential equation, more compli-

cated than GBSE-I.

8. A Scheme for Solving GBSE-I and GBSE-III
We can write both GBSE-I and GBSE-III in the form

fet (P(=i)+r)fy = P(Dy)f —rf = (a = P(=i) = r)®(f), (45)
where
®(f) = ®1(f) = (=P(Dy)f* +2fP(D,)f)/(—P(=2i) + P(=))"* = f,,

and
1/2

®(f) = 111(f) = J (1 —w s <_@->>m) v

w(—P(—2i) + 2P

respectively.
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For gaussian pa:, the RHS in (45) is 0, therefore we may expect that if the process
does not deviate too far from a gaussian one, then one can obtain the first approximation
to the solution to (a boundary value problem for) Eq. (45) by solving the corresponding
boundary-value problem for the following equation

fe+ (P(=i)+r)fy = P(Dy)f —rf=0. (46)

We call it GBSE-TV.

Note that one can derive Eq. (46) by constructing a portfolio which eliminates
fluctuations of order e®¥ — 1; the proof is similar to the one employed in Section 3.
Set

PYk) =1+ P(k) — (P(—i) + r)ik,
and write Eq. (46) in the form
fe= Pl(Dy)f-
A function P! enjoys all the properties which we used when we derived formulas for Eu-
ropean call and put options in Sections 4 and 5. Hence, we can write the corresponding

solutions to Eq. (46) by replacing P with P'. The results are:
for an European call option:

+oo—1tw y _ 1
PS.1) = _{/ exp(1 hl(S/X)Z. TP (Z))dz, (47)
21 J—co—iw z(z +1)
where w € (1, A) is arbitrary, or equivalently,
X [Hoo—iw 1 X)z — P!
FS.4) =8 — _/ exp(zIn(.S/ )Z TP (Z))dz, (45)
2m J—co—iw z(z +1)
where wy € (0,1) is arbitrary;
for an European put option:
X [too—iw 1 X)z — P!
F(S.1) = __/ exp(71In(.S/ )Z TP (Z))dz, (49)
21 J—co—iw z(z +1)
where w € (=A,0) is arbitrary, or equivalently,
X [too—ivn 1 X)z — P!
5.0 = xerr - K [ S/ X)s TP, -
2m J—co—iw z(z +1)

where wy € (0,1) is arbitrary.
Here are several examples for an European call option.

Table 8.1.

Values of F(S,t), parameters: r =0.1,A =3,7 =0.5
o 0.25 1025025 |05 |0.5 0.5
X 120 | 100 | 80 120 | 100 80

v=2.0 1248 | 9.58 | 24.30 | 8.98 | 16.26 | 27.76
v=16 12411927 | 24.34 | 242 | 9.33 | 24.34
v=121237] 881 |24.40 | 2.39 | 8.95 | 24.39
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We see that the results differ from the ones for an European call option given by
GBSE-II (see Table 4.1): here GBSE-IV gives higher values of F'(.S,t) for options in the

money, and lower for options at the money and out of the money.

Now we outline a numerical scheme for solving a non-linear GBSE for the case of
an European call option; the case of a put one is similar. Set f°(y,¢) = F(e¥,t), where
F'is given by either (47) or (48), and let f be a solution to Eq.(45) subject to boundary
conditions

f(=o0,t) =0, f(y,T)= max(e’ —€",0).
Set ¢ = f — f°. Then ¢ is a solution to

ge =PHDy)g + (a — P(=i) = r)2(f" + g). (51)
subject to boundary conditions

g(=o0, 1) =0, g(y,T)=0. (52)
By applying F, the Fourier transform w.r.t. y, we reduce a problem (51)-(52) to
gt(kvt) = ,Pl(k)g(kvt) + (a - P(_Z) - r)f(q)(fo + g))(kvt)v (53)
with g subject to
§(k.T) = 0. (54)

(After a problem (53)—(54) is solved, one has to verify the first boundary condition in
(52)). The well-known formula for the Cauchy problem allows us to reduce a problem
(53)—(54) to a family of equations

k1) = (0 = P(=i) =) [ expl(t = )P F(@(° + )k, t)dhr

By making the inverse Fourier transform, we arrive at

o(3.1) = (@ = P(—i) = ) F™" [ exp{(t — )P (D)F(@° + )k, )iy (5)

Suppose, that the simple iteration method is applicable to Eq. (55). Then we can
take

9(5.1) = (0 = P(—i) = )F™ [ exp{(t = )P (IF(@() (k) (56)

as the first approximation to the solution of Eq.(55).

Thus, we suggest f° + ¢ as the second approximation to the solution of either
GBSE-I and GBSE-III, where the first approximation, f, is given by (47)(=(48)), and
a correction term, g, by (56).

Finally, recall that for small 7, approximately,

esp(=TP(D)uly, ) = (pr =)y i= [ poly = ydulpn i, (57

— 00
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and therefore, the following approximate equalities hold:
P(Dy)uly,t) = ((pr * u)(y, 1) —uly,t))/7, (58)
(exp(=mPH(Dy))u)(y.t) = exp(rr)(p- * u)(y — 7(r + P(=i)). 1), (59)
Py, 7) = (exp(=TPY D))y, 7) = exp(rr)(pr * h)(y — 7(r + P(=i)),7),  (60)
where h(y) = max(e¥ — €”,0), and

P(—ia) = (1 -/ +°° pAt(y)eaydy) /AL (61)

o0

By using formulas (57)—(61), one can rewrite formulas (47), (49) and (56) for so-
lutions of GBSE-I in terms of a given function h and an observed distribution pa;,
and discretize them to develop a numerical scheme for computation the RHS’s in these
formulas.

Similarly one can rewrite formulas for solutions of GBSE-III (in this case they are
much more involved).

9. The Pricing of The American Perpetual Put Option

9.1. Suppose that GBSE-IV, one of the linear generalizations of the Black-Scholes
equation, hold, and consider the perpetual American put option (the case of GBSE-II
can be considered similarly). Let X be the striking price, S — the level of the stock, and
denote by G/(S, X) the rational put price. Then

G(X,9) = max{X — 5,0}, G(X,4o00)=0.

For a sufficiently low level of the stock price, it is advantageous to exercise the put.
Define H to be the largest value of the stock such that the put holder is better off
exercizing than continuing to hold the put, and set

r=InS h=InH, gz):=gxX)=CGS,X).

Then
gle)=X —¢€", Yo <h, and g(+o0)=0. (62)

Since g(x) is independent of ¢, it obeys a stationary GBSE-IV:
((P(D)—iyD +7r)g)(x)=0, x>h, (63)

where v = r 4+ P(—1). As a proxy for P(—i), in applications one may use Eq. (61), and
it can be reasonable to adjust v since the hedge used in deriving the GBSE-IV is not
perfect and the portfolio constructed is not risk-free.

A discretized version of the GBSE-IV is

g(z) — e /_T: par(z +yAt — y)g(y)dy = 0, (64)
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The formula for h will be formulated in terms of an observed distribution density pag,
under fairly weak assumptions on (an even) pa;:

+oo
/ pac(x)e’dr < +oo0, (65)

and there exists C' and w > 0 such that p = Fp, the Fourier transform of p, and its
derivative satify bounds

k) <1, VkeR,
POR) + (k)| < C(1+ k)™, Y k€ R (66)

The second bound is a weak form of a smoothness condition. For instance, for a piece-
wise smooth p it holds with w = 1.

To simplify the notation, we normalize At to unity, and drop a subscript At. Set
A(k) =1 —e"%j(k). By the Taylor formula, ¢"Pu(x) = u(z + 7), therefore (64) can
be rewritten as

(A(D)g)(x) =0, Ya<h. (67)
On the strength of (62), we may look for solutions g € Ly(R) and rewrite (67) as
(A(D)g)(x) =z +h), ¥V x, (68)

where b € Ly(R_). Here and below we identify Ly(R_) with a subspace of La(R) by
defining ¥ (x) = 0 ¥ & > 0. Similarly, L2(R;) is regarded as a subspace of Ly(R).

We will solve (68) subject to (62) by the Wiener-Hopf (1931) method, in a bit more
modern version (see e.g. Eskin (1973)). It is based on the factorization of A(k).

The following lemma is a variant of standard factorization theorems (see e.g. Eskin
(1973), Section 6).

Lemma 9.1. Let (65) and (66) hold.

Then A(k) admits a factorization

Ak) = Ay (k)A_ (k) (69)

with the Ay(k) satisfying the following conditions:

a) Ay (resp. A_) is holomorphic in a half-plane Ik > 0 (resp. Sk < 0), and admits
a continuous extension into the closed half-plane;

b) there exist ¢ > 0,C such that

c<|AL(K) <C, ¥V £33k > 0; (70)
c) AL(k)™! admits a representation
Ar(k)™ =1+ Tu(k), (71)
where Ty is holomorphic in a half-plane +3k > 0, and satisfies an estimate
T (E)| < C(1+ k)™, ¥V £S3k>0, (72)

where wy > 0 and C' are independent of k.
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Proof. By (66), p(k) < 1, hence we have RA([) > 1 — e > 0, for all [ € R.
Therefore, In A(l) is well defined by a requirement: Ina is real for ¢ > 0, and we may
set, for 7 > 0 and k£ € R,

, i e In A(D)

Ap(k+i1) = exp(be(k £17)).

The proof that Ay satisfy (69) and a)—c) is a minor variation of the proof in Eskin
(1973); for completeness, we give it in Appendix.

With a factorization (69) at our disposal, we return to (68) and multiply it by
A_|_(D)_1:
(A-(D)g)(x) = (Ap(D)'o)(h + 2), ¥ x.

Since suppé C R_, and A, (k) satisfies (70) in a half-plane Sk > 0, supp A, (D)™'¢ C R_
(see e.g. Eskin (1973), Theorem 4.4). Hence,

(A_(D)g)(z) =0, x> h. (74)
Set u(x) = g(x + h) + " — X. For 3 >0,
A_(D)e = P7e™PTA_(D)e™™ 1 = ""A_(D — i) - 1 = " A_(—if3),
since V ¢ € S(R),
(B(D) - 1,4) = (1, B(D)¢) = (6, Bd) = B(0)d(0) = B(0)(8,) = BO)(1, ).
Hence, we may rewrite (74) as
(A_(D)u)(x) = 04 (2)(A_(=i)e"** — A_(0)X), = >0, (75)

where 0 is the characteristic function of Ry. Note that on the strength of (62), suppu C
Ry, and A_(k) satisfies (70) in a half-plane Sk < 0. Therefore, the LHS of (75) is zero
for < 0, and hence, (75) holds for all z. By applying A_(D)™* to (75), we obtain

u(z) = A_(D) ' 0, (A_(=1)e"™ — A_(0)X), = > 0. (76)

Take € > 1 and set u(x) = e~ “u(a), f(z) = e~ f(x). Next, multiply (76) by e=,
and use an equality e”**A_(D) e = A_(D —ie)~". The result is

ut = A_(D—ic) M0, f, (77)

where f¢(z) = A_(—i)e!1=97 — A_(0)Xe .
Lemma 9.2. For x <0, u(x,h) =0, and for z > 0,

ulw, h) = d(h)(1 + " () + pa())+
+ad(h)A-(0)X + e"xu(w) + xa(2), (78)
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where functions py(x) = o(1), pa(x) = o(1), x1(x) = o(x), x1(x) = o(x), as x — 40, are
independent of h, and d(h) = A_(—i)e" — A_(0)X.

Proof. The first statement is just (62), and (78) will be proved in Appendix.

Theorem 9.1. Let (65) and (66) hold.

Then a pricing formula for the American perpetual put option is given by: for any
e>1,

GX,5)= X — 5+ A_(0)X5(2r)" [ M dk, (79
(X, 5) =X =5+4(0) (2m) /—oo A_(k—ie)(ik+e—1)(ik+¢) (79)
where H, the exercise price, is given by

H=¢"=XA_(0)JA_(—i)= X(1 — e ) 2exp(l, — I), (80)
and

1

I /O‘I'OO In((1 —e™"p(l) COS(’)/[))Q + (e7"p(l) sin(’yl))z)(l n lz)_ldl,

"~ oom

1 e H(1) sin(~{
I, = —/ arctan P Esm("y ) l_l(l + lz)_ldl.
7 Jo e" — p(l) sin(y!)

Proof. Direct calculations (see Appendix) show that A_(0), A_(—:) are positive.
Due to (78), if d(h) < 0, then a condition G/(X,e”) > X — e” is violated at @ = h, and
if d(h) > 0, then G(X,S) is not decreasing w.r.t. S, which is also impossible. Hence,
d(h) = 0, which is just (80), the calculations of A_(0) and A_(—1) in Appendix being
taken into account.

Finally, Eq. (80) is equivalent to A_(—i)e” = A_(0)X, therefore (77) can be

rewritten as

+oo | +oo . .
u(z) = A_(O)Xe“’(%r)_l/ e*rA_(k — ie)_l/ (e_lky"'(l_e)y — e_lky_ey) dydk =
oo 0
+oo | 1 1
o ex -1 tkx o1 _ —
— A (0)X e (27) /_OO e A_(k — ic) (ik—|—e—1 ik—|—c) dk
+oo eikl’
= A_(0)Xe"(2m)7" dk,

—oo A_(k—1i€)(tk+e— 1)tk +€)
and using equalities g(z) = X — e 4 u(x — h), x =InS, h =In H, we obtain (79).
Note that due to (78),
lim Gs(X,5)=-1<-14+A_(0)X = Sl}igl_l_oGs(X, S,

S—H-0

which means that the smooth pasting condition valid in the standard continuous time
Geometric Brownian motion model (Merton (1973)) fails in our discrete time model.

In Merton (1973), the exercise price Hy = X3/(1 — 3), where 8 = —2r/o? is the
negative root of the characteristic equation o?k*/2 + (r — o?/2)k — r = 0.

Numerical Examples. The first truncated Lévy distributions were constructed by
Mantegna and Stanley (1994). Later, Koponen (1995) constructed a family of truncated
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Lévy distributions which admit explicit description in terms of their Fourier transforms.
For the sake of brevity, we consider only symmetric distributions of this family, with p,

defined by
Po(k) = exp[—a* X1 — ((k/A)* 4+ 1)/ cos(varctan(k/X))]/v(v — 1)],

where 0 > 0,A > 0 and v € (0,2], # 1 are parameters. We have chosen a normalization
so that the variance is independent of v and A.

For v = 2, we obtain py(k) = exp(—a*k?/2) which means that p, is a gaussian
distribution. As v moves from 2 down, p, deviates from a gaussian distribution, and
for fixed v € (0,2),r # 1, in the limit A — +0, p, becomes a Lévy distribution
with p,(k) = exp(—ci|k|” cos(vm/2)/v(v — 1)). Roughly speaking, (—=A7',A7!) is an
interval where p, differs insignificantly from a Lévy distribution, and for |z| >> A7!,
the distribution exhibits an exponential fall-off.

Here are some numerical examples.® In tables below, we fix r, o, A and see how the
threshold H varies with . Hp, the threshold in Merton (1973), is independent of A and

v.
Table 1. Parameters: X = 1,r = 0.0005, ¢ = 0.002, A = 1.5; Hy = 0.333
v |20 1.8 1.6 1.4 1.2 0.8 0.6 0.4 0.2
H | 0.337 | 0.341 | 0.346 | 0.351 | 0.356 | 0.364 | 0.368 | 0.369 | 0.370
Table 2. Parameters: X =1,r =0.001, ¢ =0.03, A =1.5; Hy =0.181

v |20 1.8 1.6 1.4 1.2 0.8 0.6 0.4 0.2
H | 0.185 | 0.187 | 0.188 | 0.190 | 0.191 | 0.193 | 0.194 | 0.195 | 0.195

In these two examples, it is clearly seen that the threshold increases as v goes from
2 down, i.e. as a process deviates from a gaussian one of the same variance.
Probably, this is a result of a smooth truncation. For instance, for a mixture with

o) = vexp(—o*212) + (1 — v)sin(eVB)/(0V3), v € [0,1],
the threshold decreases (though weakly) as v goes from 1 down.

References

Bjork, T., Kabanov, Yu., and W.Runggaldier (1997). ”Bond market structure in
the presence of marked point processes”, Math. Finance 7, 2:211-239.

Black, F., and M.Scholes (1973). "The pricing of options and corporate liabilities”,
Journal of Political Fconomy 3: 637-659.

Bouchaud, J-P., and D.Sornette (1994). ”The Black-Scholes Option Pricing problem
in Mathematical Finance: Generalization and Extension for a Large Class of Stochastic
Processes”, J.Phys.France 4: 863-881.

Cont, R., Rotters, M., and J.-P.Bouchaud (1997). ”Scaling in stock market data:
stable laws and beyond”, cond-mat /970587

Cox, J., and S.Ross (1976) "The valuation of options for alternative stochastic
processes, J.Financial Econ., 3: 145-166.

>The authors thank Mitya Boyarchenko for the help with calculations

26



Duan, J.-C. (1995) "The Garch Option Pricing Model”, Math.Finance 5, 1: 13-32.

Eskin, G..I. (1973) Boundary problems for elliptic pseudo-differential equations.
Moscow: Nauka (transl. of Math.Monograph 52 (1980), Providence, Rhode Island:
Amer.Math.Soc.)

Grannan, E.R., and G.H.Swindle (1996). ”"Minimizing transaction costs of option
hedging strategies”, Math. Finance, 6, 4:341-364.

Hull, J., and A.White (1987). "The Pricing of Options on Assets with Stochastic
Volatilities”, J. Finance, 42: 281-300.

Koponen, I. (1995). ”Analytic approach to the problem of convergence of truncated
Lévy flights towards the Gaussian stochastic process,” Physical Review F 52, 1: 1197-
1199

MANTEGNA, R.N., AND H.E.STANLEY (1994): ”Stochastic process with ultraslow
convergence to a gaussian: the truncated Lévy flight”, Phys. Rev.Lett., 73, 2946-2949

Mantegna, R. N., and H.E. Stanley (1995). ”Scaling behavior in the dynamics of
an economic index”, Nature 376: 46-49.

Matacz, A. (1997). ”"Financial Modeling and Option Theory with the Truncated
Levy Process”, University of Sydney Report 97-28, October 1997

Merton, R.C. (1973). ”The theory of rational option pricing”, Bell Journal of
FEeonomics 4: 141-183.

Merton, R.C. (1976). ”Option Pricing When Underlying Stock Returns are Discon-
tinuous”, J.Financial Feon. 3: 125-144.

Morton, A.J., and S.R.Pliska (1995). ”Optimal portfolio management with fixed
transaction costs”, Math.Finance 5, 3: 337-356.

Renault, E., and N.Touzi (1996). ”Option hedging and implied volatilities in a
stochastic volatility model”, Math. Finance 6, 3: 279-302

Rogers, L.C.G. (1997). ”Arbitrage with Fractional Brownian Motion”, Math. Fi-
nance 7, 1: 95-105.

Rubinstein, M. (1983). ”Displaced Diffusion Option Pricing”, J.Finance 38: 213-
217

Scott, L.O. (1997). ”Pricing Stock Options in a Jump-Diffusion Model with Sto-
chastic Volatility and Interest Rates: Application of Fourier Inversion Methods”, Math.
Finance 7, 4: 413-426.

Taylor, S.J. (1994). ”"Modeling Stochastic Volatility: A Review and Comparative
Study”, Math. Finance 6, 2: 183-204.

Whalley, A.E., and P.Wilmott (1997). ”An asymptotic analysis of an optimal hed-
ging model for option pricing with transaction costs” 7, 3: 307-324.

WIENER, N., AND E.HopF. (1931): "Uber eine Klasse singulirer Integralgleichun-
gen” . Sitzungzberichte Preussische Akademie, Math.Phys. K1, 696706

27



Appendix

A1l. Some basic facts of the theory of the Sobolev spaces and the theory
of pseudo-differential operators (see e.g. Eskin (1973)

By S(R) one denotes the space of infinitely differentiable functions decaying at
infinity faster than any power of x, together with all derivatives, and by S§’'(R) — its dual
space.

Let s € R. The Sobolev space H*(R) consists of u € S'(R) with the finite norm

lull= ([ 0wy

The closure of C§°(Ry) in H?(R) is denoted by e (R+). The spaces H*(R) and e (Ry)

are Hilbert spaces, and H°(R) = Ly(R), H® (Ry+) = La(Ry).
For an integer m > 0 and s > m+1/2, H*(R) C C"(R), by the Sobolev embedding
theorem.

The Dirac delta-function (a linear functional defined by 6(f) = f(0)) belongs to

[

H* (Ry), for any s < —1/2.
If the symbol of a PDO A(D) is measurable and admits a bound

1/2
a(k)|2dk) .

[A(KR)] < C(L+ k)™, &, (81)

then A(D) is said to be of order m. A PDO of order m is a bounded operator from
H*(R) to H*="(R). If A(k) admits a holomorphic extension into a half-plane £3% > 0
and satisfies a bound (81) in the closed half-plane, then A(D) is a bounded operator

from H?* (R+) to H' (Rg), where | = s — m.

A2. Proof of Lemma 9.1. As [ — oo, In A(l) = O(p(l)), and on the strength
of (66), there exist C',w > 0 such that

ln A < CA+I)™, VIER. (82)

Fix 7 > 0, and consider by (k) in a half-plane +Sk > 7. Set J; = {l | |k = I| > |k|/2},
Jy={l]]k =1 <|k|/2}. On Jy, |k| <2/l — k| and |I| < |k — ] + |k| < 3|l — k|, hence

(L4 Ik = U)M@ )™ < 3L+ kD2 (L + )20+ i), (83)
and since (1 + |I])7'=%/? € L;(R), we deduce from (82)~(83) an estimate

In A(l)
n k-1

dif < Crp(1+ k)72, (84)

where a constant C, is independent of & and 7 > m9. On Jy, |l| > |k| = |k—1| > |k|/2 >
|k — ], and hence,

(L Ik = DT+ < OO+ k= )7L+ k= 1)1+ k)72,
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Therefore,
In A(l)
B k=1

dl‘ <

+oo
< Cum (14 RN [ (0 [ = 1) 747201 < Cary (14 [Rl) ™12,

Thus, (84) holds with R instead of .J;. Similar estimates hold for derivatives w.r.t. k,
and in a region £33k > 79, parts b), ¢) and the first part of a) have been proved.

To show that Ai(k) admits a continuous extension up to the boundary of a half-
plane £3k > 0, fix k € R and write, for 7 > 0,

by(k+it) =by(k£ir)+bi(k +iT),

where
bl(ki')—ii/ A
+ R h—t>1 ki —1
. ' In A(1)
B2k +ir) = ii/ A
1 i) 21 J—<1 k £or — 1

The denominator of the integrand of b being bounded away from zero, uniformly in
k € R and 7 > 0, the proof for 3%k > 75 above shows that b (k) is continuous in a
closed half-plane 3k > 0 and satisfies all the necessary estimates there.

Consider b3 (k). On the strength of (66), there exists C' > 0 such that all for all
ke Rand ce (k—1,k+1),

[In A(e)] + [A(c)/A(e)] < C(1 + [K])™.

Hence, using the Lagrange formula

In AL = In A(k) + X g,

where ¢ € (k, ) (or ¢ € (I,k)), and noticing that

n ? / dl _ 4 ? / -
or Jp—n<r ktir =1 T2 Jy<rit—1
o For — 1 - 1 / Tdl
T2 24T 2m Sy 12412

as 7 — 40, we obtain that bi(k) is continuous up to the boundary of a half-plane
+3% > 0, and admits an estimate

— 1/2,

b2 (k +im)| < C(1+ ||+ |k[) ™/~
This finishes the proof of Lemma 9.1.

A3. Proof of Eq. (78). Since ¢ > 1, we have f° € S(R;). Therefore, we may
apply a formula (5.39) in Eskin (1973) and obtain

00t =S (14iD)6- (1 +iD) F)0) + (1 4iD) "0, (1 +iD)" f*.  (85)

s=1
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Here m is a positive integer, § is the Dirac delta-function, and
Foo |
(1 4+iD)~*8)(x) = (27)"" / (1 4 ik) > dk.

By using (85) and (71)—(72), we can rewrite (77) as
u=e"(1+T_(D—ie))[(1+iD)7'§- f(0)+
(1 4+2D)25 - (1 4+ D) f)0) + (1 +:D)"20_(1 +1D)* fe].

By introducing the notation
bs = (1 +iD)*6, wi=T_(D—ie)(1+iD)7'4,
wy = A_(D — ic)_l(l + iD)_25,
wi=A_(D —ie) Y (1 +iD) 2A_ (=)0, ((1 + iD)?e1=97),
wi = —A_(D —ie) ' (1 +iD)?A_(0)X0, (1 +iD)*e™ "),
we can write
u=e"{(or +wi)f(0) + 2 (f(0) + (/) (0))+ (86)
g - (F9(0) + (F9)'(0)) + €"wfy + wi}.
Consider terms in (86).
1) We know that § € H' (R), for any [ < —1/2, and since f° € S(R;), Theorem
5.1 in Eskin (1973) gives 0, f<.0,.(1 +iD)*f° € H*(R), for any s € (0,1/2). But
T_(D —ie)(1 +1D)™' and A_(D — ie)(1 —iD)~? are PDO of order —1 — w and —2,
respectively, and hence, w{ € H™'*“(R) ¢ H'Y**“/*(R) C C(R), w5 € H**(R) C
CY(R). Similarly, w§, w§ € C*(R). The symbols of A_(D —ie)™' and T_(D — ie€) being
holomorphic in a half-plane Ik < 0, we have suppw§ C Ry, j =1,---,4. Hence,
wi(0) = 0, and w§(0) = (w§)'(0) =0, j = 2,3,4.

J
2) Consider ¢, s = 1,2. By the residue theorem, for < 0 and 7 > 0,
+oo—1iT

bs(x) = (27)! /+°o k(1 ik = (2 [T i)k 0,

—00 —00—1T

as 7 — +00, and hence, ¢s(x) = 0. Further,
/OO T ReTdy = (14 k)™,
0

therefore ¢1(x) = €™ for « > 0.
By differentiating ¢, at « > 0, we find

o 1k
Ghie) = 2my [

- mdk = ¢1(x) — ¢a(x).

ol
The general solution to an equation ¢y = €™ — ¢y is ¢po(x) = xe™ + Ce™", but ¢y €H
(Ry), V1< 3/2,is of the class C'*(R), and hence, equal to 0 at = 0. Thus, we obtain
¢o(x) = 2e™", ¥ o> 0.
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3) Now we calculate coefficients in (86):
F0) = d(h) = A_(=i)e" — A_(0)X,

(fY(0) = (1 —e)A_(=i)e" + eA_(0)X = (1 — e)d(h) + A_(0)X.
4) As x — 40,

e“or(x)d(h) = (1 4+ (e — Da)d(h) + o(x),
e“oo(x) = x + o(x),
() + 2ld(h) + (1 — (k) + A_(0)X] =
— d(h) + d (e — 1)+ 1+ (1 — ] + 2A_(0)X +ofz) =
=d(h)+ zd(h) + zA_(0)X + o(z).
5) By gathering 1) — 4) and (86), we obtain (78).

A3. Calculation of A_(—i) and A_(0). By noticing that Rp is even and Ip is
odd, and using (73), we obtain

) +co _ Tl
b (—i) = _QL/ In(1 e. l p(l))dl _
mJ- —7 —

Z—iﬁjélﬁdw—e%meMVﬂawwmme@ﬂ—

e i _, )
—L/ u —1 arctan p(l) sin(+!) dl =
o0 Joeo 2+ 1 e~ p(l) )

— cos(yl
:_g/mhwu—eﬁmowaw»-+< p)sin(a0))
21 Jo Z+1
——/ arctan < p({) sin(y1) dl,
mJo 241 1 — e 7p(l) cos(~l)
and | Ly
1 +oo In(1 — e+
b_(0) = —i— lim n(l = D)y
2m T=+0 J_ oo —r =1
+oo (g7 — —_ ety
_ —ii m (ir =) In(1 —e p(l))dl _
27T T=+0 T2 4 [2
= — ln 1—e" /OO dl /OO Larctan p(l) sin(y1) dl =
e" — p(l) cos(1)

—ln —e 7 —l - ~larctan p(l) sin(y1)
_21 (1 ) 7T/0 / i e —p()cos(’yl)dl

Since A_ =expb_,

A_((—z) = exp{%ln(l —e ") =1 + L},

where [, [ are the same as in (79).
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