A Remark on the Index of Symmetric Operators

Boris Fedosov Bert-Wolfgang Schulze Nikolai Tarkhanov*

Institut für Mathematik Universität Potsdam Postfach 60 15 53 14415 Potsdam Germany

February 11, 1998

^{*}Supported by the Max-Planck Gesellschaft.

Abstract

We introduce a natural symmetry condition for a pseudodifferential operator on a manifold with cylindrical ends ensuring that the operator admits a doubling across the boundary. For such operators we prove an explicit index formula containing, apart from the Atiyah-Singer integral, a finite number of residues of the logarithmic derivative of the conormal symbol.

AMS subject classification: primary: 58G10; secondary: 58G03. Key words and phrases: manifolds with singularities, differential operators, index, 'eta' invariant.

The Index of Symmetric Operators

	- 1		1
LO	nt	$\mathbf{e}\mathbf{n}$	1T.S
\sim			LUD

1	Introduction	5
2	Statement of the main result	5
3	Proof	7
4	Some examples	11
$\mathbf{R}_{\mathbf{k}}$	eferences	12

1 Introduction

When studying the 'eta' invariant of an elliptic boundary value problem on a C^{∞} compact manifold M, Gilkey and Smith [GS83a, GS83b] introduced a symmetry condition on a differential operator A ensuring that it admits a doubling across the boundary. In fact, the condition involves the symbol of A in a collar neighbourhood of ∂M and amounts to saying that two copies of A in the collar patch together smoothly by some bundle isomorphisms. This actually implies that in favourable cases the index of A subject to elliptic boundary conditions is one-half of the index of the operator on the double of M. Thus, the index formula on manifolds without boundary could be used to derive a corresponding cohomological formula for the index of the boundary value problem. Later in [SSS97] this observation was applied to elliptic differential operators on manifolds with a conical point treated as a cylindrical end, thus resulting in a simple index theorem. Unfortunately, this index theorem is valid for a narrow class of operators. When describing the contribution of a conical point in the index formula for singular surfaces, the authors [FST97b] observed that it reduces to a finite number of the residues of the logarithmic derivative of the function $f(\tau) = \det(M(\tau) + M^{-1}(\tau) - 2)$ provided f is even with respect to a centre τ_0 in the complex plane. Here, $M(\tau)$ is the monodromy matrix for the ordinary differential equation defined by the conormal symbol. Thinking over the geometrical meaning of this property, we come to a generalisation of the symmetry condition encompassing, in particular, all first-order scalar differential operators. In the present paper we give an exposition of the symmetry condition in the general setting of pseudodifferential operators on higher-dimensional manifolds with conical singularities and show a simple index formula for the operators satisfying this condition.

2 Statement of the main result

Here we consider a manifold M of arbitrary dimension n with a conical point which is interpreted as a cylindrical end (see [FST97a]) and a pseudodifferential operator A between sections of smooth vector bundles E^0 and E^1 over M. We assume that A is elliptic with respect to a weight line $\Gamma = \{\Im \tau = \gamma\}$ in the complex τ -plane. This condition consists of two parts: interior ellipticity and conormal ellipticity. The first part means, similarly to the smooth case, that the interior principal symbol $\sigma_0(A) \in C^{\infty}(T^*M \setminus 0, \text{Hom } (E^0, E^1))$ is invertible everywhere on $T^*M \setminus 0$. The second part we formulate for an operator A which on the cylindrical end is independent of the variable t along the cylinder axis. We also assume that all the structures (vector bundles, Riemannian metric, partition of unity and so on) are of product-type

over the cylindrical end $\mathbb{R}_+ \times \partial M$ where ∂M means the cross-section of the cylinder. The operator A on the cylinder is treated as a pseudodifferential operator on \mathbb{R}_+ whose symbol $A_c = A_c(\tau)$ with values in pseudodifferential operators on ∂M satisfies the following conditions:

- it is holomorphic in some strip $S = \{|\Im \tau \gamma| < \varepsilon\}$ around the weight line Γ :
- the operator $A_c(\tau): C^{\infty}(\partial M, E^0) \to C^{\infty}(\partial M, E^1)$ is invertible for each $\tau \in S$ (conormal ellipticity).

Under these assumptions the operator $A: H^{s,\gamma}(M, E^0) \to H^{s-m,\gamma}(M, E^1)$ is Fredholm and the following index formula holds

ind
$$A = \operatorname{Tr} \rho_0 (1 - \overline{r} \circ \overline{a})|_N - \operatorname{Tr} \rho_0 (1 - \overline{a} \circ \overline{r})|_N$$

 $+ \frac{1}{2\pi i} \int_{-\infty}^{\infty} \operatorname{Tr}' \left(A_c^{-1} (\tau + i\gamma - ih\gamma) A_c' (\tau + i\gamma - ih\gamma)|_{N-1} \right)$
 $- \operatorname{Op}_{\partial M}(\overline{r}(\tau) \circ \overline{a}'(\tau)|_{N-1}) d\tau$ (2.1)

(notation and details see in [FST97a]).

Next, we impose a symmetry condition on the conormal symbol $A_c(\tau)$. Let us denote by T_g an automorphism of the algebra of pseudodifferential operators on ∂M of the form

$$T_g \Psi = (g^{-1})^* v_1^{-1} \Psi v_0 g^*$$
(2.2)

where g is a diffeomorphism of ∂M and

$$v_0: g^*E^0 \to E^0, v_1: g^*E^1 \to E^1$$

are isomorphisms of the vector bundles. The automorphism (2.2) is assumed to be an *involution*, that is $T_g^2\Psi = \Psi$ for any pseudodifferential operator Ψ on ∂M . Consequently, $g^2 = \operatorname{Id}$, so either $g = \operatorname{Id}$ or g is an involution itself.

Definition 2.1 An operator A is called symmetric if its conormal symbol $A_c(\tau)$ has the following property: there exist a point $\tau_0 \in \mathbb{C}$ (the centre) and an automorphism T_g of the form (2.2), such that

- $A_c(\tau)$ extends meromorphically to a strip $\widetilde{S} = \{|\Im(\tau \tau_0)| < |\gamma \Im\tau_0| + \varepsilon\}$, with a finite number of poles in each proper substrip of \widetilde{S} and finite-dimensional principal parts of Laurent expansions at the poles 1 ;
- for any $\tau \in \widetilde{S}$, $A_c(2\tau_0 \tau) = T_a A_c(\tau). \tag{2.3}$

¹Due to ellipticity the same is true for $A_c^{-1}(\tau)$.

In other words, (2.3) means that the symmetry transformation in the τ -plane acts on $A_c(\tau)$ as an automorphism generated by a change of variables g and changes of frames v_0 , v_1 . If g is identity, this condition was studied in [GS83a] in the context of boundary value problems for differential operators. Later in [SSS97] it was applied to cone differential operators resulting in a simple index theorem. We generalise the index theorem of [SSS97] in two directions, namely to both pseudodifferential operators A on M and non-identical involutions g of ∂M .

Theorem 2.2 Let A be an elliptic pseudodifferential operator with respect to a weight line Γ and let the symmetry condition (2.3) be fulfilled. Then

$$\operatorname{ind} A = \int_{\mathbb{S}^{*}M} \operatorname{AS}(A) + \frac{1}{2} (N - P) \operatorname{sgn} (\Im \tau_0 - \gamma)$$
 (2.4)

where N and P denote the number of poles of $A_c^{-1}(\tau)$ and $A_c(\tau)$, respectively, in the strip between the weight line Γ and the line symmetric to Γ with respect to the centre τ_0 .

3 Proof

We may assume that the symmetry centre τ_0 coincides with the origin. Indeed, otherwise we introduce an operator $\widetilde{A} = f^{-1}Af$ with a function $f \neq 0$ such that $f = \exp(i\tau_0 t)$ over the cylindrical end. Then we get $\widetilde{A}_c(\tau) = A_c(\tau + \tau_0)$, so \widetilde{A} is elliptic with respect to the weight line $\widetilde{\Gamma}$ obtained by shifting Γ by $-\tau_0$, and clearly the index of A in $H^{s,\gamma}(M, E^0)$ is equal to the index of \widetilde{A} in $H^{s,\widetilde{\gamma}}(M, E^0)$ with $\widetilde{\gamma} = \gamma - \Im \tau_0$. On the other hand, the right-hand side of (2.4) for \widetilde{A} is the same as for A. Thus, in the sequel we take $\tau_0 = 0$ and the symmetry condition (2.3) becomes

$$A_c(-\tau) = T_g A_c(\tau). \tag{3.1}$$

The automorphism T_g acts on the algebra of formal symbols on ∂M because changes of variables and frames have sense for formal symbols as well (see [FST97a]). When choosing a family of formal symbols $\overline{a}(\tau)$ in (2.1) approximating $A_c(\tau)$, we would like to satisfy a symmetry condition similar to (3.1),

$$\overline{a}(-\tau) = T_g \, \overline{a}(\tau). \tag{3.2}$$

Such a choice is always possible. Indeed, using averaging, we may pass to a new symbol

$$\widetilde{\overline{a}}(\tau) = \frac{1}{2} \left(\overline{a}(\tau) + T_g \overline{a}(-\tau) \right)$$

which clearly satisfies (3.2) since $T_g^2 = 1$. On the other hand,

$$\widetilde{A}_c(\tau) = \frac{1}{2} \left(A_c(\tau) + T_g A_c(-\tau) \right)
\equiv A_c(\tau)$$

since $A_c(\tau)$ does satisfy (3.1). Thus, the new formal symbol $\tilde{a}(\tau)$ also defines a suitable approximation of $A_c(\tau)$.

Lemma 3.1 Suppose (3.2) holds. Then the boundary term in (2.1) is equal to

 $\frac{1}{2}(N-P)\operatorname{sgn}(\Im \tau_0-\gamma).$

Proof. For definiteness, consider the case $\gamma < \Im \tau_0$. Let Γ' be the line symmetric to the weight line Γ with respect to the centre τ_0 . By Remark 3.4 in [FST97a] we may replace Γ by Γ' adding the sum of residues of $\operatorname{Tr'}\operatorname{res} A_c^{-1}A_c'$ in the strip between Γ and Γ' . Thus,

$$\int_{-\infty}^{\infty} \operatorname{Tr}' \left(A_c^{-1} (\tau + i\gamma - ih\gamma) A_c' (\tau + i\gamma - ih\gamma) |_{N-1} - \operatorname{Op}_{\partial M} (\overline{r}(\tau) \circ \overline{a}'(\tau) |_{N-1}) \right) d\tau
= 2\pi i \ (N - P)
+ \int_{-\infty}^{\infty} \operatorname{Tr}' \left(A_c^{-1} (\tau - i\gamma + ih\gamma) A_c' (\tau - i\gamma + ih\gamma) |_{N-1} - \operatorname{Op}_{\partial M} (\overline{r}(\tau) \circ \overline{a}'(\tau) |_{N-1}) \right) d\tau.$$
Now, by (3.1)

$$A_c^{-1}(-z)A_c'(-z) = -A_c^{-1}(-z)\frac{d}{dz}A_c(-z)$$
$$= -T_q A_c^{-1}(z)A_c'(z)$$

with

$$T_g \Psi = (g^{-1})^* v_1^{-1} \Psi v_0 g^*,$$

and

$$\overline{r}(-\tau) \circ \overline{a}'(-\tau) = -\overline{r}(-\tau) \circ \frac{d}{d\tau} \overline{a}(-\tau)$$
$$= -T_{\sigma} \overline{r}(\tau) \circ \overline{a}'(\tau).$$

the latter equality being a consequence of (3.2). Thus, the last integral in (3.3) may be rewritten as

$$-\int_{-\infty}^{\infty} \operatorname{Tr}' T_{g} \Big(A_{c}^{-1} (\tau + i\gamma - ih\gamma) A_{c}' (\tau + i\gamma - ih\gamma) |_{N-1} - \operatorname{Op}_{\partial M} (\overline{r}(\tau) \circ \overline{a}'(\tau) |_{N-1}) \Big) d\tau.$$

For the automorphism T_g we have

$$\operatorname{Tr}' T_a \Psi = \operatorname{Tr}' \Psi$$

if Ψ is a trace class operator. Thus, the integral on the right-hand side of (3.3) coincides with the integral on the left-hand side with the opposite sign, proving the lemma.

It remains to show that

$$\operatorname{Tr} \rho_0(1 - \overline{r} \circ \overline{a})|_N - \operatorname{Tr} \rho_0(1 - \overline{a} \circ \overline{r})|_N = \int_{\mathbb{S}^*M} \operatorname{AS}(A). \tag{3.4}$$

To this end we construct a manifold \widehat{M} (a double of M) by gluing together two copies of M with the help of the diffeomorphism g. The symmetry condition allows one to construct an operator \widehat{A} on \widehat{M} whose restriction to each copy of M coincides with A.

Take $t_0 \in \mathbb{R}_+$ and a closed neighbourhood $[t_0 - \varepsilon, t_0 + \varepsilon] \subset \mathbb{R}$, with $\varepsilon > 0$. Let $U \subset M$ stand for the annular neighbourhood $[t_0 - \varepsilon, t_0 + \varepsilon] \times \partial M$ on M. We throw out the points with $t > t_0 + \varepsilon$ and obtain a manifold (still denoted by M) with boundary $\{t_0 + \varepsilon\} \times \partial M$. Consider two copies M_1, M_2 of M and the corresponding annular neighbourhoods $U_1 \subset M_1, U_2 \subset M_2$. For $y_j = (t_j, x_j) \in U_j$ with $t_j \in [t_0 - \varepsilon, t_0 + \varepsilon]$ and $x_j \in \partial M_j, j = 1, 2$, we write $y_1 \sim y_2$ or $y_2 = f(y_1)$ if

$$(t_2, x_2) = (-t_1, g(x_1)). (3.5)$$

Since g is an involution, (3.5) may be rewritten also in the form

$$(t_1, x_1) = (-t_2, g(x_2))$$

which means that the relation \sim is symmetric. We define \widehat{M} to be a disjoint union $M_1 \sqcup M_2$ with identification of the points $y_1 \in U_1$ and $y_2 \in U_2$ for which $y_1 \sim y_2$. We write

$$\widehat{M} = M_1 \sqcup M_2 / \sim .$$

Any point $y \in \widehat{M}$ is either a point $y_1 \in M_1$ or $y_2 \in M_2$, at least one of them being an interior point. This gives a C^{∞} structure on \widehat{M} . If both y_1 and y_2 are interior points, we may use coordinate charts either in M_1 or in M_2 . The transitions between them are given by the diffeomorphism (3.5).

We have embeddings $\iota_1: M_1 \to \widehat{M}$ and $\iota_2: M_2 \to \widehat{M}$. The annular neighbourhoods U_1, U_2 go to the same neighbourhood $\widehat{U} \subset \widehat{M}$. We don't care of orientations, the manifold M itself may be non-orientable. It is also possible to obtain a non-orientable manifold \widehat{M} starting with an orientable manifold M.

Define a vector bundle \hat{E}^0 over \widehat{M} taking two copies of E^0 over M_1 and M_2 with the transition isomorphism $v_0g^*: E^0 \to E^0$ over \widehat{U} . In more detail, a section $\widehat{u}(y) \in C^{\infty}(M_1, \widehat{E}^0)$ is defined by two sections

$$u_1(y_1) \in C^{\infty}(M_1, E^0),$$

 $u_2(y_2) \in C^{\infty}(M_2, E^0)$

such that we have

$$u_2(y_2) = v_0(y_1)u_1(f(y_1)).$$

for $y_2 = f(y_1)$. The same construction gives us a bundle \hat{E}^1 . Now, define an operator

$$\widehat{A}: C^{\infty}(\widehat{M}, \widehat{E}^0) \to C^{\infty}(\widehat{M}, \widehat{E}^1)$$

taking two copies A_1 , A_2 of the operator A on M_1 , M_2 . The symmetry condition implies that on U_1 , U_2 we have

$$A_{1}\left(\frac{\partial}{\partial t}\right) = (g^{-1})^{*} v_{1}^{-1} A_{2}\left(-\frac{\partial}{\partial t}\right) v_{0} g^{*}$$

$$= (f^{-1})^{*} v_{1}^{-1} A_{2}\left(\frac{\partial}{\partial t}\right) v_{0} f^{*}$$

$$:= T_{f} A_{2}$$

$$(3.6)$$

which means that A_1 and A_2 obey the transition rule under the diffeomorphism $f:(t,x)\mapsto (-t,g(x))$ and the bundle isomorphisms v_0f^* and v_1f^* over \hat{U} .

Finally, the formal symbol \overline{a} approximating A and satisfying the symmetry condition (3.2) defines a pair $\overline{a_1}$, $\overline{a_2}$ of identical formal symbols on M_1 , M_2 obeying the transition rule $\overline{a_1} = T_f \overline{a_2}$ similar to (3.6). Thus, they define a formal symbol \widehat{a} on \widehat{M} approximating \widehat{A} .

The operator \hat{A} is elliptic and its index is equal to

$$\operatorname{ind} \widehat{A} = \widehat{\operatorname{Tr}} \left(1 - \widehat{r} \circ \widehat{a} \right) |_{N} - \widehat{\operatorname{Tr}} \left(1 - \widehat{a} \circ \widehat{r} \right) |_{N},$$

where $\widehat{\text{Tr}}$ means a trace on \widehat{M} (see [FST97a, (1.6)]). We choose a partition of unity ρ_j , j=1,2, and $\rho=\rho(t)$ with supp $\rho_j\subset M_j$ and supp $\rho\subset \widehat{U}$. Observe that

$$\widehat{\operatorname{Tr}} \rho (1 - \widehat{\overline{r}} \circ \widehat{\overline{a}})|_{N} - \widehat{\operatorname{Tr}} \rho (1 - \widehat{\overline{a}} \circ \widehat{\overline{r}})|_{N} \\
= \frac{1}{2\pi} \int_{-\varepsilon}^{\varepsilon} \rho(t) dt \int_{-\infty}^{\infty} (\operatorname{Tr}' (1 - \overline{r}(\tau) \circ \overline{a}(\tau))|_{N} - \operatorname{Tr}' (1 - \overline{a}(\tau) \circ \overline{r}(\tau))|_{N}) d\tau \\
= 0$$

since the expression in parenthesis is equal to the index of $A_c(\tau)$ which is zero for $A_c(\tau)$ is invertible. The interior terms in (2.1) may thus be written in the form

$$\operatorname{Tr} \rho_1(1 - \overline{r} \circ \overline{a})|_N - \operatorname{Tr} \rho_1(1 - \overline{a} \circ \overline{r})|_N = \frac{1}{2} \operatorname{ind} \widehat{A}.$$

On the other hand, by the Atiyah-Singer theorem

ind
$$\widehat{A} = \int_{\mathbb{S}^* \widehat{M}} AS \left(\sigma_0(\widehat{A}) \right).$$

The integrand vanishes over \hat{U} since the principal symbol is independent of t. The integrals over $M_1 \setminus U_1$ and $M_2 \setminus U_2$ are equal to each other, so we may write

ind
$$\widehat{A} = 2 \int_{\mathbb{S}^*M} AS(\sigma_0(A))$$

proving the theorem.

4 Some examples

As an example we first mention the Cauchy-Riemann operator in the plane with a conical point at infinity. Its conormal symbol has the form

$$A_c(\tau) = \frac{i}{2} \left(\tau + \frac{\partial}{\partial x} \right), \quad x \in \mathbb{R} \pmod{2\pi},$$

the bundles E^0 and E^1 over U being trivial one-dimensional bundles. The symmetry condition is fulfilled with

$$\begin{array}{rcl} \tau_0 & = & 0; \\ g & : & x \mapsto -x; \\ v_0 & = & 1; \\ v_1 & = & -1. \end{array}$$

More general symmetric operators on two-dimensional manifolds M are considered in Example 3.5 of [FST98].

Now, let M be an even-dimensional oriented manifold with a cylindrical end. As usual, we assume that there is a Riemannian metric on M having the form $dt^2 + ds^2$ over the cylinder where ds^2 is a metric on ∂M . Suppose also that there exists an orientation-reversing involution $g: \partial M \to \partial M$ which is an isometry. The Hirzebruch operator on M is symmetric with $\tau_0 = 0$ and with isomorphisms v_0, v_1 given on the bundles of exterior forms by the differential df where $f: (t,x) \mapsto (-t,g(x))$. Since f preserves the orientation, the operators d, d^* , * on two copies M_1, M_2 agree on \hat{U} , thus defining the signature operator on \widehat{M} .

References

- [APS75] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Phil. Soc. 77 (1975), 43–69.
- [FST97a] B. V. Fedosov, B.-W. Schulze, and N. N. Tarkhanov, The Index of Elliptic Operators on Manifolds with Conical Points, Preprint 97/24, Univ. Potsdam, Potsdam, August 1997.
- [FST97b] B. V. Fedosov, B.-W. Schulze, and N. N. Tarkhanov, On the Index Formula for Singular Surfaces, Preprint 97/31, Univ. Potsdam, Potsdam, November 1997.
- [FST98] B. V. Fedosov, B.-W. Schulze, and N. N. Tarkhanov, *The Index of Higher Order Operators on Singular Surfaces*, Preprint 98/3, Univ. Potsdam, Potsdam, February 1998.
- [GS83a] P. B. Gilkey and L. Smith, The eta invariant for a class of elliptic boundary value problems, Comm. Pure Appl. Math. 36 (1983), 85–131.
- [GS83b] P. B. Gilkey and L. Smith, The twisted index problem for manifolds with boundary, J. Differential Geom. 18 (1983), 393–444.
- [SSS97] B.-W. Schulze, B. Sternin, and V. Shatalov, On the Index of Differential Operators on Manifolds with Conical Singularities, Preprint 97/10, Univ. Potsdam, Potsdam, May 1997.