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Abstract

A version of the classical Lefschetz fixed point formula is proved
for the cohomology of the cone of a cochain mapping of elliptic com-
plexes. As a particular case we show a Lefschetz formula for the
relative de Rham cohomology.
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4 Lefschetz Formula

1 A Brief Survey

Let M be a closed manifold and f: M — M a continuous mapping. The
Lefschetz number of f is defined by L(f) = ¥,(—1)"r (H f);, where (H f);
denotes the induced endomorphism in the cohomology with real coefficients
H'(M,R) and tr the trace. In 1926 Lefschetz proved that L(f) is equal
to the sum of the mapping degrees of 1 — f at fixed points of f, provided
all these points are isolated (cf. [Lef26]). His argument is based on the
intersection theory applied to the cycles A and I'; representing the diagonal
and the graph of f in M x M, respectively.

A few years later, considering simplicial mappings of finite simplicial
complexes, Hopf [Hop29] proved an alternating sum formula which by sim-
plicial approximation lead to an alternative proof of the Lefschetz formula.

The classical fixed point theorem of Lefschetz [Lef26] is easily formu-
lated in terms of the de Rham complex. This complex, together with the
well-known Dolbeault complex in complex analysis, gives rise to the impor-
tant concept of an ‘elliptic complex’. Elliptic complexes of pseudodifferential
operators on manifolds arise in various problems of geometry and analysis
rather than single elliptic operators.

In their paper [AB67], Atiyah and Bott established an analogue of the
Lefschetz fixed point formula for geometric endomorphisms of elliptic com-
plexes. The original proof of the formula in [AB67] can be considered as a
generalisation of Hopf’s argument. Its central point is again an alternating
trace formula for endomorphisms of elliptic complexes given by pseudodif-
ferential operators.

To state their result, let

An_1

EV): 00— EVO) 2 gvhy &y 2 g(vN) — 0

be an elliptic complex, where V' are complex vector bundles over M and A;
classical pseudodifferential operators of type V' — Vit! satisfying A; 4 A; =
0. The ellipticity of £(V") means that the corresponding sequence of prin-
cipal symbols
0 — 70 T e 7)) N

is exact in the complement of the zero section of 7*M. Here, 7V — T*M
stands for the pull-back of the bundle V' under the canonical mapping
m: T*"M — M. Just as in the case of the de Rham complex, the cohomol-
ogy H'(E(V")) = ker A;/im A;_; of an elliptic complex is finite-dimensional
at each step ¢. Suppose E is an endomorphism of the complex £(V"), i.e., a
sequence I7;: E(V*') — (V') of linear mappings such that A;F; = F; A;.
Then E preserves the spaces of cocycles and coboundaries of £(V"), hence
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after passing to quotient spaces it induces an endomorphism (H F); of the
cohomology H'(E(V")), for every i = 0,1,...,N. As these are finite-
dimensional, the traces tr (H E'); are well-defined which yields the Lefschetz

number of £ by
N

LE) =Y (=1)'tr (HE);.
i=0
If £ =1d is the identity endomorphism of £(V"), then L(Id) = x(E(V")) is
just the Euler characteristic of the complex £(V"). In particular, if N =1,
this becomes the index of the elliptic operator Ag. The question of how to
compute L(FE) is therefore a generalisation of the index problem for elliptic
operators. Atiyah and Bott [AB67] evaluated the Lefschetz number L(FE)
in the case when F is a geometric endomorphism of £(V"). The latter is
constructed via a smooth mapping f of the underlying manifold M and a
family of smooth bundle homomorphisms hy:: f*V' — Vi. For abbrevia-
tion, let us use the same letters hy: to designate the corresponding mappings
E(f*V?) — E(V?) of sections. An endomorphism F is said to be geometric
if all £; are of the form F; = hyo f*. Then, the Atiyah-Bott formula reads

S (= 1)tr hy(p)

M= 2 Reia— o)) 1)

provided f is of general position. Note that the bundle homomorphism
hyi: f*V' — Viis a family of linear mappings hy+(p): sz’(p) — Vpi. Hence,
at a fixed point p of f we have VJZ(p) =V, and s0 hy:(p) is an endomorphism
of the vector space V. It follows that trhy:(p) is well-defined.

Thus, the Atiyah-Bott formula expresses the Lefschetz number of a
geometric endomorphism of an elliptic complex on a closed compact man-
ifold via infinitesimal invariants of f and hy. at the fixed points of the
mapping f. It is worth pointing out that formula (1.1) does not explicitly
involve the pseudodifferential operators A;. Thus it is much simpler than
the Atiyah-Singer index formula. Of course the A; are implicitly involved
by the condition A;E; = F; 1 A;.

New proofs of the Atiyah-Bott formula appeared in Kotake [Kot69],
Toledo [Tol73], Nestke [Nes81], Bismut [Bis85] and Fedosov [Fed91].

A fixed point formula for higher-dimensional sets of fixed points was
found by Gilkey in [Gil79] by means of heat equation methods.

A particular case of (1.1) is the Lefschetz fixed point formula for the
Dolbeault complex which is referred to as the holomorphic Lefschetz for-
mula. For direct constructions along more classical lines we refer the reader
to Patodi [Pat73], Toledo and Tong [TT75], et al. Donnelly and Feffer-
man [DF86] found an analogue of the holomorphic Lefschetz formula for
strictly pseudoconvex domains in C* provided with the Bergman metric.
This corresponds to the case of a non-compact manifold.
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In the paper of Efremov [Efr88] the Atiyah-Bott fixed point formula is
extended to universal coverings of a closed manifold. In the L%-cohomology
setting there are various further extensions of the Atiyah-Bott formula
to non-compact manifolds by Shubin [Shu92] and by Shubin and Seifarth
[SS90].

A new idea suggested by Fedosov [Fed93] is to consider endomorphisms
of elliptic complexes which are induced by symplectic canonical transfor-
mations of T*M rather than by a mapping f of the underlying manifold.
Such endomorphisms can be realized on sections of vector bundles as Fourier
integral operators obtained by quantising these symplectic canonical trans-
formations. In the case of classical Hamiltonian flows ¢ : T"M — T"M,
Fedosov showed an asymptotic expansion of the Lefschetz number as h — 0,
in terms of fixed points of ¢. Later on, Sternin and Shatalov [SS94] gave an
exposition of this result in the context of rather general symplectic canonical
transformations of the cotangent bundle.

Brenner and Shubin [BS81] extended the Atiyah-Bott formula to elliptic
complexes on a compact smooth manifold with boundary whose differentials
are operators in Boutet de Monvel’s algebra [BAMT71]. We also mention an
infinitesimal version of the classical Lefschetz formula for manifolds with
boundary by Arnold [Arn79].

The aim of this paper is to extend the Atiyah-Bott formula to the case of
relative cohomology. The motivation of this consists in the following. Let M
and S be two C'* compact closed manifolds and F': S — M a differentiable
mapping. The ‘pull-back’ F'# under F gives us a cochain mapping of the de
Rham complex on M to that on S, namely, F'*: E(ANTEM) — E(ANTES).
The cone C' of this cochain mapping is said to be the cone of F' (cf. Dold
[Dol72]). The complex C' is easily seen to be Fredholm, i.e., it bears a finite-
dimensional cohomology H*(C'), for each 7. Moreover, H(C") is naturally
isomorphic to the relative cohomology of the pair (M, F'(S)) with coefficients
in C, provided that F'is an embedding. We now assume that f is a smooth
mapping of the pair (M, 5), i.e., f = (fa, fs) where fy and fg are smooth
mappings of M and 5, respectively. If the diagram

s oM
[ [
s oM

commutes, then f has a natural lift to the complex C', the lift being given
by f}& P fg Denote by L(f) the Lefschetz number of this endomorphism
of C'. By the above, in case F'is an embedding L(f) coincides with the
Lefschetz number in the relative cohomology of (M, F'(S)) induced by fa.
This latter is well-defined because F'(.S) is invariant under the mapping fas.
For the de Rham complex, our result reads

L(f) = L(fa) — L(fs) (1.2)
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which does not explicitly involve F'. More generally, we consider two ellip-
tic complexes (V") and E(W") on M and S, respectively. To each cochain
mapping T: E(V') — E(W") there corresponds a new complex C' called the
cone of T (cf. ibid.). If T is of finite order relative to the scales of Sobolev
spaces on M and S, then C" proves to be Fredholm. Such complexes of pseu-
dodifferential operators seem to be first investigated by Dynin [Dyn72] in
case S is a submanifold of M. In parallel to the relative de Rham cohomol-
ogy, the corresponding theory in the case of general elliptic complexes on M
and 5 is referred to as the ‘relative elliptic theory’. Yet another example of
great importance in geometry is the cone of a holomorphic mapping of two
complex manifolds F': S — M. In this latter case both £(V") and E(W")
are the Dolbeault complexes on M and S, respectively. We prove formula
(1.2) in the context of relative elliptic theory and show further refinements

of this.

2 An Operator Algebra

We begin by introducing an operator algebra which contains the differentials
of the cones of the cochain mappings in question.

Let M and S be differentiable compact closed manifolds and V' and W
be differentiable C-vector bundles over M and S, respectively. Denote by
W RV’ the external tensor product of the bundles W and V', V'’ being the
dual of V. This is the differentiable C-vector bundle over S x M whose fibre
over a point (y,x) is W, ® V’,, and whose transition matrices are tensor
products of the transition matrices for W and V'. If S = M, the restriction
of WK V' to the diagonal gives the internal tensor product W @ V.

Sections T'(y,x) € E'(W K V') are said to be kernels of type V.— W
on S x M. Each kernel T'(y,z) € & (W K V') defines a continuous linear
operator T: E(V) — E'(W) by the formula

(9, Tu)s = (T(y, 2), 9(y) @ w(@))gpr (2.1)

for g € E(W') and u € E(V'). The Kernel Theorem of Schwartz in its global
formulation asserts that this correspondence is a topological isomorphism.

We need a more delicate characterisation of kernels on S x M. It is based
on the observation that &'(W K V') = E&'(W) @, E'(V'), where @, stands
for the projective tensor product. The kernels T'(y,x) € EW) @, (V')
are said to be regular. They are characterised by the property that the
corresponding operator T' maps £(V') into E(W) continuously. The kernels
T(y,x) € (W) @, E(V') are said to be continuable. Such kernels are
characterised by the property that the corresponding operator T' extends
to a continuous mapping E'(V) — &' (W). A kernel T(y,z) is said to be
biregular if it is both regular and continuable.

For an operator T': E(V) — E'(W), let T": E(W') — &'(V') stand for
the transposed operator. By identifying the second dual of a bundle with
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the bundle itself it is easy to see that the kernel T"(z,y) of the transposed
operator is in &' (V' B W). Moreover, a kernel T'(y,x) is regular if and only
if the kernel T"(x,y) is continuable, and inversely.

Later on we will use the same terminology both for operators and their
kernels. This will not lead to misunderstandings in view of (2.1).

Example 2.1 Any pseudodifferential operator between sections of vec-
tor bundles over a differentiable compact closed manifold is a biregular op-
erator.

4

A pseudodifferential operator followed by restriction to a proper sub-
manifold fails to be a biregular operator while being regular. What is sur-
viving under such a composition is the order of an operator with respect to
the scale of Sobolev spaces on a manifold.

Definition 2.2 An operator T: E(V) — &' (W) is said to be of finite
order if there are real numbers oy and st such that T' extends to a continuous

mapping H*(V) — H*=°T (W) for all s > sr.

It follows from the Sobolev Embedding Theorem that each operator of
finite order is regular.

Having disposed of this preliminary step, let us dwell upon a description
of operators in our algebra. They are of the form

A:(? g) (2.2)

where A is a classical pseudodifferential operator of type V. — V on M,
T is an operator of type V' — W and of finite order, and B is a classical
pseudodifferential operator of type W — W on 9.

Lemma 2.3 Given any s,t € R with s large enough, each operator of
the form (2.2) induces a continuous linear mapping

H*(V) H*=4(V)
A & = ® . (2.3)

HY(W)  H=s (W)

Proof. Indeed, for u; € H*(V') and uy € H'(W), we have

U1 - Au1
A(UQ)_(TU1+BUQ)

From the continuity properties of pseudodifferential operators it follows that

Auy € H*7°4(V) and Bugy € H'=°8(W). Since Ty € He=or (W) for s > sy,

we can assert that T'uy + Buy € H'7?5(W) provided s — oy >t — og. This
completes the proof. O
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In particular, A restricts to a continuous mapping between the spaces
of U sections of the corresponding bundles.

If S is a submanifold of M, then the entry 7" has the meaning of a
trace operator in parallel to the operators in Boutet de Monvel’s theory (cf.

[BAMT1)).

Lemma 2.4 The composition of any two operators of the form (2.2) is
again of the same form.

Proof. Indeed,

A0 A0 AA 0
T BJ\T B) \TA+BT BB
provided the bundles in question allow compositions of the operators. Since
both pseudodifferential operators and operators of finite order survive under
the composition, the lemma follows.
O

In the sequel, we write Alg(V, VW, W) for the resulting “operator al-
gebra.”

Definition 2.5 An operator A € Alg(V, VW, W) is said to be elliptic
if its diagonal elements A and B are elliptic pseudodifferential operators on
M and S, respectively.

The main result of this section is that the ellipticity of A is equivalent
to the Fredholm property of the mapping (2.3).

Lemma 2.6 An operator A € Alg(V, VW, W) is elliptic if and only if
the mapping (2.3) is Fredholm for each s,t € R with s > t.

Proof. It is immediately seen that for the mapping (2.3) to be Fred-
holm it is necessary and sufficient that both the mappings

A HAV) = H7oa(V),

B: HYW)— H=5(WV)

be Fredholm. As for pseudodifferential operators on a closed manifold the
ellipticity is equivalent to the Fredholm property in Sobolev spaces, the
lemma follows.
O
Under ellipticity it is easy to show an explicit parametrix construction
for A. To this end we fix pseudodifferential parametrices P and @ for the
diagonal elements of the matrix A, i.e.,

Poe Wt (M;V, V),
Q € U (S W, W)
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such that
PA = 1d, OB = 1Id,
AP = 10 ™ o = w1

modulo smoothing operators on M and S, respectively. Set

P:(_QPTP g) (2.4)

Theorem 2.7 As defined by (2.4), the operator P belongs to the algebra
Alg(V,V; W, W) and satisfies both PA =1d and AP = 1d up to trace class

operators.

Proof. In fact,

73./4 - Id—So,
./473 = Id—Sl,

where
s Id— PA 0
© 7\ —QTId-PA) 1d-QB )’
s — Id— AP 0
"7\ —(Id=BQ)TP 1d—-BQ |-

All the entries of the matrices Sy and Sy are smoothing operators, with

the exception of O = —(Id — BQ)T'P. On the other hand, this latter op-

erator extends to a continuous linear mapping H*~°A(V) — H'=°5(W),

for each s > sp. Since O actually maps H*7°4(V) to E(W), the oper-
ator O : HS_OA(\N/) — Ht_OB(W) can be represented as the composition
of the bounded operator O : H*°4(V) — HY"(W) and the embedding
Ht/(W) — Ht_OB(W), where ' > t — og. We next observe that the em-
bedding HY (W) — H'°8(W) is of trace class for ' large enough (cf. for

instance Maurin [Mau67]). Hence it follows that O: H*=°4 (V') — H*=°8(1V)

is a trace class operator if s > sp. Thus, both

H>(V) H>(V)
So D — o,
HY(W) HY(W)
Ho=oA(V) Ho=oA(V)
St &b — S%;
Ht—oB(W) Ht—oB(W)

are trace class operators, provided s is large enough. This is our claim.
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3 Relative Elliptic Theory

Here we deal with elliptic complexes of operators in the algebra introduced
in the preceding section.

Namely, let (V") and E(W") be two complexes of pseudodifferential
operators on the manifolds M and S and let A and B stand for the differ-
entials of these complexes, respectively. Without loss of generality we may
assume that the complexes are of the same length N, for if not, we complete
one of them by zero bundles.

By a cochain mapping T: E(V') — E(W") is understood any sequence
of continuous linear mappings T;: E(V*) — E(W?) satisfying Tipq A; = B/T;
forallz =0,1,..., N — 1. This just amounts to saying that the diagram

0 — (VO 2 ogvhy AR g — 0
[ In |7
0 — W) By gy By B ogwNy — o
commutes.
For a cochain mapping 7': E(V') — E(W"), the cone of T is defined to
be
e(v?e) evt) E(VAT)
. .Ao .Al -AN
C:0— b — B .. b — 0, (3.1)
ew=1) W) E(WH)
where

-A;, 0
Ai_( T, Biaa )7
for i = 0,1,..., N (cf. Dold [Dol72]). Recall that both V* and W* vanish
unless ¢ = 0,1,..., N.

In the case where M is a differentiable compact manifold with boundary
and S the boundary of M, complexes (3.1) were first investigated by Dynin
[Dyn72].

From now on we make a standing assumption on the cochain mappings
T: V) — EW) under consideration. Namely, it is required that all
the components T; of T" are operators of finite order. Hence it follows that
the differentials A; in (3.1) belong to the algebras Alg(V, VL Wit W),
We now invoke Lemma 2.3 to conclude that, for each s, € R with s large
enough, complex (3.1) extends to a complex of continuous linear mappings
in Hilbert spaces

Hso(vo) Hsl(vl) H5N+1(VN+1)
0— B oy g Ay AN B 0,
Hi= (W) Ho(W°) Hiv (W)

(3.2)
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where
S; = S — 04, — ... 04, 4,
ti = t_OBO_---_OB,'_l-

Definition 3.1 Complex (3.1) is said to be elliptic if both E(V") and
E(W") are elliptic complexes on M and S, respectively.

The main result on an elliptic complex C* is that such a complex is
Fredholm, i.e., has a finite-dimensional cohomology H*(C’). Moreover, this
cohomology is independent on the Sobolev spaces at which it is evaluated.
This is stated by our next result.

Lemma 3.2 A complex C is elliptic if and only if the complex (3.2) is
Fredholm for each s,t € R with s large enough.

Proof. An easy computation shows that for the complex (3.2) to be
Fredholm it is necessary and sufficient that both the complexes

0 —s Ho(VO) A opgety Au B g (vN) o
0 — W) 2 pnwry By B gy — o

be Fredholm. Since for complexes of pseudodifferential operators on a com-
pact closed manifold the ellipticity is equivalent to the Fredholm property
in Sobolev spaces, the proof is complete.
O
We complete Lemma 3.2 with an explicit parametrix construction for
the complex (3.1). To this end we fix pseudodifferential parametrices P and
@ for the complexes £(V") and E(W), i.e.,

Poe UMV VI,
Qi e \I};OBi_l (S, Wi, Wi—l)
such that

P Ay + AP = Id—R;,
Qiq1Bi + Bi_1Q; = 1d—=5;

forall e =0,1,..., N, where R; and 5; are smoothing operators on M and
S, respectively. Set

—F; 0
Fi= ( Qi1 i Py Qiy ) ' (33)

Theorem 3.3 As defined by (3.3), the operators P; belong to the alge-
bras Alg(V', V=L W=t W=2) and satisfy

732'4_1./42' + A P =1d-S; (3.4)

for each 1 =0,1,..., N + 1. Moreover, S; are trace class operators on the
Sobolev spaces involved in (3.2).



A Lefschetz Formula 13

Proof. Indeed, for a fixed : = 0,1,..., N 4 1, equality (3.4) is fulfilled
with

S — R; 0
N QTR — Sia TP Sicq )7

as 1s easy to check. Analysis similar to that in the proof of Theorem 2.7
shows that S; is a trace class operator on the space

@
HI (W)

provided s > s7._, — o4,_,. This is the desired conclusion.
O
As but one consequence of this theorem we conclude that the cohomol-
ogy of complex (3.2) is isomorphic to that of complex (3.1) if s is sufficiently
large. In particular, this cohomology is independent of s and ¢.

4 A Lefschetz Formula

In this section we introduce a Lefschetz fixed point theorem for the pair of
manifolds (M, 5).

Let C* be the cone of a cochain mapping of elliptic complexes on M
and S as in (3.1). By an endomorphism of C' we mean a cochain mapping
£:C —C,ie., afamily & = (&) of linear mappings & : C' — C* such that
Ein1 A = A& for all i = 0,1,..., N. Then &£ induces an endomorphism
(HE); of the cohomology H'(C"), for every : = 0,1,..., N+1. As described
above, these are finite-dimensional vector spaces, and so the traces tr (HE);
are well-defined. We introduce the Lefschetz number of € by

N+1

L&) = S (=1)itr (HE),.

=0

We restrict our attention to those endomorphisms of C* which obey the
shape of operators in our algebra. In other words, they are required to be

of the form
E;, 0
(B0 "

for © = 0,1,...,N + 1, where E; is a regular operator of type V¢ — V*
on M, H; is a regular operator of type V' — Wil and F,_; is a regular
operator of type W' — W'! on S.

Lemma 4.1 As defined by (4.1), the family (&;) is an endomorphism of
C' if and only if the family (F;) is an endomorphism of E(V"), the family
(F}) is an endomorphism of EW"), and F;T; —T;E; = Hi41 Ai + Bi—1 H; for
each 1 =0,1,..., N.
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Proof. Indeed,

B — i A 0

Eirr A = ( —Hip A + BT, FiB; ) 7
—AE; 0

A& = ( T E;+ B,_1H;, B;_1F;_4 )

showing the lemma.
O
The lemma shows that each endomorphism of C* of the form (4.1) in-
duces endomorphisms £ = (F;) and F' = (f;) of the complexes £(V") and
E(W"), respectively. Since these complexes are Fredholm, the Lefschetz
numbers L(FE) of E and L(F') of F' are well-defined. Now our main result

reads as follows.

Theorem 4.2 Suppose that £ is an endomorphism of C' of the form
(4.1). Then,

Proof. Consider the sequence

0 — HOC) = HOE(V)) -5 HOEWY)) -
— HYC) T HYE(VY)) S oHYEW)) o (42)
— H(C) T H(E(V) T H(EW) S o

where 7, T and ¢ are defined by by

Uz

v mod BAEV)) — Tw mod BI(EW)),
J: f mod BY(EW")) w (?C) mod B(C),

o (“1) mod Bi(C) — w, mod BI(E(VY)),

for (Z;) € Z7HC),ue Z(&V")) and f € Z{(E(W")). Here, Z' and B' stand
for the spaces of cocycles and coboundaries at the step ¢ in the corresponding
cochain complex. The sequence (4.2) is exact, as is a simple matter to see.

The endomorphism £ induces an endomorphism of (4.2). Namely, the

following diagram commutes
Hi(C) = HI(EVY)) -5 HI(EW)) = HFY(C)
Ja JE JF Jsm (4.3)
Hi(C) = HI(EV)) -5 H(EW)) = HH(C)

for each 1 =0,1,..., N, as is easy to check by Lemma 4.1.
From Lemma 3.2 and the remark after the proof of Theorem 3.3 it
follows that all the vector spaces occurring in (4.2) are finite-dimensional.
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Since the complex (4.2) is exact, we may invoke the algebraic alternating
sum formula to conclude that the Lefschetz number of the endomorphism
(4.3) of this complex is equal to zero. On the other hand, this number is
easily seen to be L(E) — L(E) + L(F'), whence the theorem follows.
O
The proof above is purely algebraic. We have used only the fact that
the complex C" is Fredholm, i.e., bears a finite-dimensional cohomology.
In particular, setting £ to be the identity endomorphism of C, we de-
duce that y(C) = x(E(V"))—x(E(W")) (cf. Proposition 5 in [RS82, 3.2.3.1]).

5 Geometric Endomorphisms

In this section we are interested in evaluating the Lefschetz number for
geometric endomorphisms of the complex C'.

Assume that f is a differentiable mapping of the underlying pair (M, 5),
ie., f=(fm,fs) where fay and fs are differentiable mappings of the man-
ifolds M and S, respectively. Let we be also given smooth bundle homo-
morphisms

hyi: fy Ve — V¢
hyi @ fsW' — W',

for: = 0,1,..., N. Using the same notation for the induced mappings on
sections, we can then define linear mappings & : C' — C' as the compositions
eV L. EURVY o, L E(V)
R G T S S (5.1)
e ) ESsW) et
Thus,
! 0 hwi—l fg«

meets condition (4.1), for each ¢ = 0,1,..., N + 1. It is worth pointing out
that fiui(a) & fius(y) € V;M(x) P W}S_(ly), but the bundle homomorphism
hyigwi-1 takes us back to V' & W;_l.

If further &1 A; = A&, then the family (&;) defines an endomorphism
of the complex C'. In this case we say that the mapping f has a [ift (i.e.,
£) to the complex C'. Endomorphisms of this type we call geometric endo-
morphisms of C'.

The components of a geometric endomorphism are operators of finite
order, as is easy to see.

If £ is a geometric endomorphism of C* defined by a differentiable
mapping f = (fu, fs) of the pair (M, S), we write L(f) instead of L(FE).

Lemma 4.1 shows that if the mapping f = (far, fs) has a lift to the
cone C of a cochain mapping T: E(V') — EW"), then the components
far and fs have lifts to the complexes £(V") and E(W"), respectively. Let
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us denote by L(fy) and L(fs) the Lefschetz numbers of the corresponding
geometric endomorphisms of (V") and E(W").

Corollary 5.1 Suppose that E is a geometric endomorphism of C de-
fined by a mapping f = (fum, fs) of the pair (M, S). Then,

L(f) = L(fm) — L(fs).

Proof. This is a very particular case of Theorem 4.2.
O
For a mapping m: 0 — o, we denote by Fix(m, o) the set of all fixed
points of m on o.
In particular, let f = (far, fs) be a mapping of the pair (M, S) such
that both fj; and fs have only simple fixed points. If f has a lift to C', then

(1)t hyi(p) (1) b ()
M= 2 TAtld= d (o] sy [ det(id = ()]

pEFix(far,M peFix(fs,S
(5.2)

as follows from Corollary 5.1 and formula (1.1).

6 Relative de Rham Cohomology

In this section we indicate how formula (5.2) may be used to derive an
explicit formula for the Lefschetz number in relative de Rham cohomology.

Let M be a smooth compact closed manifold of dimension n and S be
a submanifold of M of dimension ¢. For simplicity we assume that M is
orientable.

For i € Z, we denote by A'TiM the complexified bundle of exterior
forms of degree ¢ over M. These bundles are non-zero only for: = 0,1,...,n.
They fit together to form a complex E(ATEM) on M whose differential
is given by the exterior derivative on differential forms. This complex is
referred to as the de Rham complex on M and is known to be elliptic.

Similarly, we have the de Rham complex E(A'TES) on S. The length
of this latter is actually equal to ¢ < n. However, we may complete it by
the zero bundles ATT'T5S, ...  A"TAS thus arriving at a complex of length
n.

Let ¢ stand for the embedding S — M. Thus, ¢ is a differentiable
mapping and we denote by * the corresponding ‘pull-back’ operator on
differential forms. Then /* is well known to be a cochain mapping of the

complexes E(NTEM) — E(ATES). The cone of this mapping is
1 nx
E(M) ) E(ATEM) ) M E(NTEM)

cC:0— & % b s b — 0,
0 £(S) E(AITES)

(6.1)
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—d; 0
Ai - ( ij di—l ) )

d; meaning the exterior derivative restricted to differential forms of degree
i (cf. (3.1)).

The key result on the complex (6.1) is that it bears an information on
the relative singular cohomology of the pair (M, S). The following result
can be certainly attributed to the mathematical folk lore (cf. for instance
Proposition 2.10 in Brenner and Shubin [BS81]).

where

Lemma 6.1 There are natural isomorphisms
H(C)= H'((M,S),C), i=0,1,...,n,
H'((M, S),C) being the relative cohomology of the pair (M, S) with complex

coefficients.

Proof. By the de Rham Theorem, we have natural isomorphisms

H(ENTEM)) = H(M,C),

Hi(E(NTES)) ~ Hi(S,C) (6.2)

for each 7. We are going to make use of these to derive the desired isomor-
phisms in the relative cohomology.

To this end we invoke a standard exact long sequence of singular ho-
mology with coefficients in C,

0 «— Ho((M,S),C) ¢~ Hy(M,C) +— Hy(S,C) >
— H((M,S),C) +— H(MC) +— H(S,C) -
— Hi((M,S),C) +— H(M,C) <~ Hi(SC) =

(6.3)
¢ being induced by the inclusion of cycles and d being induced by the bound-
ary operator. Dual to this we have a standard exact long cohomological
sequence

0 — H°(M,S),C) -% H(M,C) - HS,C) -

— HY((M,S),C) % HY(M,C) % HYS,C) -

— HY((M,S),C) -— H(M,C) -% H(S,C)

(o5

b

(6.4)
d being known as the coboundary operator. Recall that this latter sequence
is obtained from (6.3) by applying the functor Home(-, C).
The task is now to construct a sequence of the de Rham cohomology
analogous to (6.4), i.e.,

(C) s HUENTEM)) -5 HOE(NTES)) —
— HYC) I HYENTEM)) HY(E(ANTES)) -

(C) I HU(ENTEM)) -5 HU(ENTES)) - ... .
(6.5)
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Namely, we define 7, «* and § by

T ( Zl ) mod BY(C) u;  mod BY(E(NTEM)),
2

H
R u mod BY(ENTEM)) —  du mod BY(ENTES)),
5. f  mod BENTES)) ( 2 ) mod BHL(C),

for (4) € Z(C), u € ZHENTEM)) and [ € ZHE(NTES)) (cf. (4.2)). As

U2
mentioned in the proof of Theorem 4.2, the sequence (6.5) is exact.

From (6.2), (6.4) and (6.5) it already follows that the spaces H(C") and
H'((M,S),C) are of the same dimension, for each i. However, the lemma
states more, namely there is a natural isomorphism of these spaces. The
existence of such an isomorphism is a consequence of the fact that there is
a duality between sequences (6.5) and (6.3). This duality is given on

H(ENTEM)) x  H{(M,C),
HY(ENTES)) x Hi(S,C)

by integrating differential forms over singular cycles, just as in the classical
de Rham Theorem (cf. [dR55]). On H'(C') x H;((M,S),C) the duality is
defined by

. N N
((Zl) mod B'(C’), 3 ¢,A, mod B;((M, S),(C)) =y cl,(f u 4+ f uz)
2 v=1
(6.6)
. N
for (“1) € ZYC) and ¥ ¢, A, € Z;((M,S),C), where A, are singular
v=1

simplexes and ¢, € C. It is immediate that (6.6) is well-defined.

Thus, both (6.4) and (6.5) are dual to (6.3). This gives natural ho-
momorphisms of the spaces in (6.5) to the corresponding spaces in (6.4).
Hence we arrive at the commutative diagram

HWENTES) - HIC) s HI(ENTEM)) -5 HI(E(NTES))

S T

Hi-Y(S,C) S Hi(M,S),C) -  Hi(M,C) -5 H(S,C)

with exact rows, for each ¢ = 0,1,...,n. The homomorphisms marked
by the vertical arrows in the diagram are actually isomorphisms, with the
exception of H'(C') — H'((M,S),C). Applying the ‘Lemma on Five Iso-
morphisms’ we can therefore assert that this latter homomorphism is also
an isomorphism. This is our assertion.
O
Having disposed of this preliminary step, we can now return to the
Lefschetz fixed point formula.
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Let f be a differentiable mapping of the manifold M with the property
that f(.S) C S. Then f induces a mapping f = (fum, fs) of the pair (M, )
via far = fla, fs = fls. The ‘pull-back’ operator f* under f commutes
with the exterior derivative on both M and S. Moreover, we have

fgLﬁ = (Lofs)ﬁ
= (fu o)

= Ffh

the second equality being due to the fact that f(5) C S. Hence it follows,
by Lemma 4.1, that f has a lift to the complex C, the lift being given by f*.
We write L(f, (M, S)) for the corresponding Lefschetz number. Lemma 6.1
allows one to conclude that L(f,(M,S)) is just the classical Lefschetz num-
ber of f with respect to the relative cohomology of the pair (M, 5).

Suppose p € S is a fixed point of f. Then, the tangent mappings to fas
and fs induce linear transformations

dfu(p) + T,M — T,M,
dfs(p) : T,5 = T,5,

of the tangent spaces to M and S at the point p, respectively. Letting
dy f = dfy and dsf = dfs, we thus arrive at a linear transformation of the
quotient space T,M/T,S, namely

T M T.M
dyysf(p) 2 —

Moreover,

det (Id — das f(p)) = det (Id — ds f(p)) det (Id — dyyys f(p)) .

as is easy to see by using local coordinates at p.

In particular, we deduce that if p € S is a simple fixed point of fas,
then the determinant of Id — dar/sf(p) is different from zero. Denote by
Fix®)(f,S) the set of all simple fixed points of f on M with the property

that £ det (Id — dyrysf(p)) > 0.

Corollary 6.2 Let f be a differentiable mapping of the pair (M, S) with
simple fixed points. Then

L= Y sendet(ld—df(p))+2 Y sen det(ld — df(p)).

pEFix(f,M\S) p€eFix(7)(£,95)
Proof. Indeed, if p € S is a simple fixed point of f, then
sgn det (Id — dasf(p)) = + sgn det (Id — ds f(p))

where ‘4 is taken for p € Fix(t)(f,S) and ‘=" for p € Fix(7)(f,5). Thus,
the contributions of the points p € Fix(*)(f,S) in (5.2) cancel while the
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attracting ; repulsin/g,-—'

I X

Fig. 1: Specification of the graphs of functions close to a fixed point.

contributions of the points p € Fix(=)(f, S) duplicate. This establishes the
formula.
O

In contrast to Brenner and Shubin [BS81], the specification of simple
fixed points of f on S by those in Fix(*)(f, S) and Fix(=)(f, S) is much more
complicated than the specification by being attracting or repulsing. As is
shown in Fig. 1, Fix(*)(f, S) contains all attracting fixed points of f on S
along with a part of repulsing fixed points.

Note that Corollary 6.2 can be also obtained from the algebraic al-
ternating sum formula applied to sequence (6.4). Indeed, this sequence is
exact and f induces an endomorphism f* of the sequence, which results in
the equality L(f,(M,S)) = L(fa, M) — L(fs,S). This agrees with Theo-

rem 4.2.

7 Extension to More General Operators

Formula (5.2) extends to complexes of operators more general than those in
(3.1). Before describing these operators, we recall that a regular operator
T:E(V)— EW) extends to a continuous mapping H*7(V) — E(W), for
some sy € R, if and only if it has a kernel in E(W) @, H=*7(V'). If such is
the case, we say that T' is an operator of order —oc.

The operators in question are of the form

A:(A;G g) (7.1)

where A is a classical pseudodifferential operator of type V — V on M, G
is an operator of type V — V and of order —oo, C' is a smoothing operator
of type W — V, T is an operator of type V — W and of finite order, and
B is a classical pseudodifferential operator of type W — W on S. Every
operator of the form (7.1) extends to a continuous mapping of Sobolev
spaces as in (2.3). Moreover, the composition of any two operators of the
form (7.1) is of the same form, as is easy to check. For this reason we say
that operators (7.1) form an “operator algebra” and write Alg(V,V; W, W)
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for it. This “operator algebra” bears a symbolic structure given by the

7= ( "0 on) )

for A of the form (7.1), the symbol o(A) being thought of as a bun-
dle homomorphism of 75,V @ 7:W to 7%,V @ 7%W. Thus, an operator
A € Alg(V,V; W, W) is said to be elliptic if both A and B are elliptic pseu-
dodifferential operators on M and 5, respectively. Note that Lemma 2.6

‘principal symbol’

and Theorem 2.7 are still true for operators (7.1) because (7.1) differs from
(2.2) by a compact operator.

We next consider complexes whose differentials take form (7.1), more
precisely,

g(V°) gV E(VNH)
C:0— & 2 g Ay AN e 40, (1.2)
EW) EW?) EWN)
where
[ A+ G Gy
Ai = ( T; Bi_y )

belongs to Alg(V:, VFL W =L W), for each 7 = 0,1,...,N. Given any
5,1 € R with s large enough, complex (7.2) induces a complex of continuous
linear mappings of Sobolev spaces as in (3.2). Complex (7.2) is said to be
elliptic if the corresponding sequence of principal symbols o(A;) is exact
away from the zero sections of T*M and T*S. This amounts to saying that
the sequences of principal symbols o(A;) and o(B;) are exact in the comple-
ments of the zero sections of T*M and TS, respectively. We emphasise that
the sequences E(V") and (W) themselves need not be complexes. Every
elliptic complex (7.2) is Fredholm. Moreover, its cohomology is independent
on the Sobolev spaces at which it is evaluated. The standard way to prove
this is to construct a proper parametrix of the complex, which is our next
task.

To this end we observe that from A;1.4; = 0 it follows that A, ;A; =0
up to an operator of type V¢ — Vi*2 and of order —oco and B;B;_; = 0 up
to a smoothing operator of type Wi=! — Witl  Since the Laplacians of
E(V') and E(W") are elliptic operators, the usual parametrix construction
for elliptic complexes still applies to the sequences E(V") and E(W"). This
results in pseudodifferential parametrices P and () for the sequences E(V")
and E(W"), respectively. More precisely, there exist

Poe W T (M VL VI,

Qi e \I};OBi_l (S, Wi, Wi—l)
such that

P Ay + AP = Id—R;,

Qiv1Bi + Bi—1Q; (7.3)

I
—
o

|
2
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foralls =0,1,..., N, where R; is an operator of type V' — V' and of order
—o0 and S; is a smoothing operator of type W*¢ — W*. If defined by (3.3),
the operators P; meet the assertion of Theorem 3.3, thus providing us with
a “good” parametrix to every complex (3.2).

When considering endomorphisms € = (&;) of complex (7.2), we will
restrict our attention to those obeying the shape of operators in our algebra.

E, K,

oo () o
for:1=0,1,..., N+1, where E; is a regular operator of type V' — V?on M,
K;_, is a smoothing operator of type W=t — V', H; is a regular operator
of type V¢ — Wit and F,_; is a regular operator of type W=t — Wil on
S. Lemma 4.1 still holds in this more general setting, provided that all the
commutativity relations involved therein are understood up to operators of
order —oo (or smoothing operators). In particular, (F;) is an endomorphism
of £(V') modulo operators of order —oo, and (F;) is an endomorphism of
E(W") modulo smoothing operators.

If P = (P;) is a parametrix of complex (7.2) satisfying (3.4), then
the family S = (S;) is easily verified to be an endomorphism of (7.2). It
is homotopic to the identity endomorphism of (7.2), hence the Lefschetz
number of § is equal to the Euler characteristic of this complex. Moreover,
the composition £S = (&8;) is still an endomorphism of (7.2), for each

They are of the form

endomorphism & of this complex. The advantage of using a parametrix of
C lies in the fact that £S is homotopic to £ while the mapping properties
of this new endomorphism are much better than those of £.

Lemma 7.1 Let P be the parametriz of the complex C' given by (3.3).
Then, for each endomorphism € of C', we have L(E) = L(ES).

Proof. By the homotopy formula (3.4), we get
PiprAiu+ A1 Piu = u — Siu

for all w € £(C"). Applying the endomorphism & to both sides of this
equality yields

(5¢7D¢+1)¢4¢u + A¢_1(5¢_177¢)u =Eu — (5ZSZ)U

for each u € E(Ci). We next observe that the composition &_1P; is a regular
operator of type VG W=t = V'@ W2 foreach: =1,..., N+1. Hence
it follows that (H &); = (H ES); for all ¢, and so L(E) = L(ES), as desired.
O
Let us emphasise that every component &;S; is an operator of type
VigWit 5 Vig Wit and of order —oo. In particular, it is a trace class
operator on any space H*(V*)@® H'(W'=!) with s large enough, for it factors
trough a trace class embedding of Sobolev spaces.
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Lemma 7.2 For any endomorphism € = (&;) of C of the form (7.4), it
follows that

N .
L(g) == Z(—l)Z ( tr (EZ — Esz-l—lAz — Ai—lEi—IPi)
— tr (I — FiQip1 Bi — Bio1 Fio1Qi) ).

Proof. For 5,1 € R, set

HY = S
Ht(wi—l)

the space being Hilbert in a canonical way. As mentioned, the composition
O = &S, extends to a trace class operator Ols;: H* — H*' provided s
is sufficiently large. Moreover, both the eigenfunctions and the associated
functions of O, subject to a non-zero eigenvalue belong to H**. There-
fore, the non-zero eigenvalues of the operators Ol;; and O|y 4, if counted
along with their multiplicities, coincide for all s,¢ and s, with s and &
sufficiently large. Now the Lidskii Theorem shows that the trace of Ol,; is
independent of s and ¢ provided s is large enough. In the sequel, by tr O
we mean the trace of O|;, evaluated at a pair s, € R with large s. From
what has already been proved it follows that tr O is well-defined.

The endomorphism ES of complex (7.2) clearly extends to an endomor-
phism £S|;: of complex (3.2), for large s. Since the cohomology of (7.2)
is isomorphic to that of (3.2), it follows that L(ES) = L(ES|s.) for s large
enough. Thus, combining Lemma 7.1 with Theorem 19.1.15 of [H6r85] we

deduce that
N41

=0

We now express S; from equality (3.4) and substitute these expressions
into (7.5). Rearranging the summands, we thus obtain

N+1 '
L(g) = Z (—1)2 tr (52 — 52'732'4_1./42' — gi.Ai_lPi)
=0
N+1 '
= Z (—1)2 tr (52 — 52'732'4_1./42' — Ai—lgi—lpi)
=0
N .
= tr Z (—1)2 (52 + ./42'52'732'4_1 — 52'732'4_1./42'),

=0

the second equality being due to the fact that £ is an endomorphism of
(7.2). Write

A= At AL

& = el
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where

A —A; 0 "o G; Cioy .
Ai_(TZ’ Bi_1)7 Ai_(() 0 )’

E;, 0 0 K,
! _ T {/ — T
“-{ma ) - (0%)

By the above, A” and &£ are operators of order —oo, and hence trace class
operators in Sobolev spaces of smoothness large enough. Hence it follows,

by the Lidskii Theorem, that

tr ALEI Py, = tr &P AL
tI’A;/gZ(,PZ'+1 trgfpiﬂfl;’,
tr AVE Py = trE Py Al

forall e =0,1,..., N. This implies

N
L&) = tr Y (1) (& + AP — EPi A
=0
N41 '
— Z (=1)'tr (& — EPp AL — AL EL[P)).
=0

We are left with the task of determining the traces of the summands
on the right-hand side. In fact,

tr (52 - gZ/,Pz-l—lA; - A;_lgg_lpi) = tr (EZ - Esz-l—lAz - Ai—lEi—IPi)
+ tr(Fioy — Fis1QiBioy — Bio FisQiy),

as 1s easy to check. Hence the lemma follows.
O
As is noted by Fedosov [Fed91, p. 203], the advantage of using this
formula lies in the fact that the operators F; and F; therein need not satisfy
the commutativity relations F;1; A; = A;F; and Fyy1B; = B;F; precisely,
but only up to trace class operators. Moreover, perturbations of A, P and
B, Q) by nuclear terms do not affect the alternating sum of the traces.

Theorem 7.3 Suppose f = (fum, fs) is a mapping of the pair (M, S5),
such that both fyr and fs have only simple fived points. If f has a lift to
(7.2), then the Lefschetz number of f can be evaluated by formula (5.2).

Proof. The theorem follows from Lemma 7.2 by the scheme suggested
by Fedosov [Fed91, p. 204]. Namely, we shall have established (5.2) if we
prove that

N S (—1)itr by (p)

(_1)Ztr (EZ - EZPZ lAi - Ai—lEi—IPi) = 1=0
; ' peFigf:M,M) | det(Id — dfu(p))|
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and similarly for the quasicomplex E(W") on S.

To do this, pick a partition of unity (¢,) on M with the property that
each ¢, either vanishes or is equal to 1 in a neighbourhood of any fixed
point of fys. Let further ¢y be a function of compact support on T*M such
that 1o(€) = 1 near £ = 0, and let ¥, = 1 — 4. In local coordinates on M,

we introduce operators Wy, and ¥, , by

\Ilowu = Fg,_m@bo(hf) & (Qbu )
q}m,uu = F{Hx¢m(h§) o€ (Qbu )

F being the Fourier transform and /& a positive number. These operators
decompose the identity operator; moreover, the operators ¥g , are smooth-
ing and hence of trace class on each Sobolev space. We can assert, by the

Lidskii Theorem, that
tr A, B Py Vo, = tr B P W, A;

whence

N
Z(—l)itr (EZ — Esz-l—lAz — Ai—lEi—IPi)

=0

= Zi(—l)itr BV,

v =0

+ ZZ tr (B — EiPp Ay — A B POV,

v =0

N-1
— 33 (1)t Bi Py [Ai, Yo, (7.6)
v =0
[Ai, o, ] being the commutator of A; and Uy ,.
In a local chart close to a fixed point of fas, the operator £; ¥y, is given
by the iterated integral

6

EiUo u e n U= o ()00 (€) ¢ (y)uly) dydé,

and consequently

tr Ei\IIOJ, =

o ] RO e () o(€)6, () dedr

For h — 0, the limit of the integral on the right-hand side of this
equality can be evaluated by the method of stationary phase. Moreover,
the stationary points are just the points where £ = 0 and fy(z) — x = 0.
In the principal part independent of h the contribution of a fixed point p is
equal to

trhyi(p)
| det(1d — dfar(p))]’
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and so the alternating sum of these contributions gives us the right-hand
side of (5.2). On the other hand, the remaining terms on the right side of
(7.6) are oscillatory integrals whose exponent has no critical points. Indeed,

[Ai7 \I}07y] — [A“ \IIOJ, - Id]
= - [AH \I}OO,V]

close to each fixed point and the function ., vanishes in a neighbourhood
of £ = 0. Hence it follows that the remaining summands in (7.6) are rapidly
decreasing as h — 0. Since the left-hand side of (7.6) is actually independent
of h, we arrive at the desired formula.

4
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