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Abstract

In the preceding paper we proved an explicit index formula for
elliptic pseudodifferential operators on a two-dimensional manifold
with conical points. Apart from the Atiyah-Singer integral, it con-
tains two additional terms, one of the two being the ‘eta’ invariant
defined by the conormal symbol. In this paper we clarify the meaning
of the additional terms for differential operators.

AMS subject classification: primary: 58G10; secondary: 58G03.
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Introduction

In [FST97] we proved the following index formula for elliptic pseudodiffer-
ential operators on a two-dimensional manifold with a conical point:

. 1
ind A= /S*M AS(4) = 5 n(A.)

1 1 _laao _laao . -1
“i e (5“’(% e gy ) T m

M being the manifold in question whose cross-section close to the conical
point is identified with the unit circle S'.

- d¢dr, (0.1)

T7=-1

The index is evaluated for A acting on weighted Sobolev spaces on M
as H*"(M, E°) — H*="™7(M, E'), where E° and E' are C"*° vector bundles
over the smooth part of M which behave properly under approaching the
conical point.

The first term on the right-hand side of this formula is the Atiyah-
Singer integral derived from the principal interior symbol ay of A and the
curvature forms Q° and Q! of the bundles £° and E!, respectively. We have

1 /1 _ 1 _ _
AS(A) = e (6 tr (ag'dag)® — 5 tr (Qoao '0ao + Q' dagay 1)) )
The weight exponent v enters only the second term on the right side of
(0.1) which is known as the ‘eta’ invariant of the conormal symbol A, of A
at the conical point. More precisely,

WA =~ T (A2 + i) Al i) = A i) i)
Tr being a regularised trace (cf. Melrose [Mel95]).

Both these terms occur in the Atiyah-Patodi-Singer formula for the in-
dex of Dirac operators (cf. [APS75]). In contrast to this latter formula,
(0.1) contains an additional third term which does not vanish even for the
Cauchy-Riemann operator on the plane. This summand is in excess deter-
mined by the conormal symbol of A because the symbol components ag and
ay entering into the expression are evaluated at the conical point.

Of course, formula (0.1) is still true for manifolds with several conical
points. A slight change we have to do is that the ‘eta’ invariant and the
additional terms should be summed up over all conical points of M.

The aim of this paper is to give an explicit description of the contri-
bution of a conical point for elliptic differential operators. This description
is given in terms of the monodromy matrix M(7) for an ordinary differ-
ential equation defined by the conormal symbol A.(7). More precisely, we
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introduce a phase function
1 -1
(1) = 5 log det (M(T) + M7 (1) — 2)

which is an analytic function of 7 with logarithmic ramification points. Then
the ‘eta’ invariant term in (0.1) may be characterised as the variation of
©(7)/2mi along a suitable contour defined by the weight line I'. For first-
order systems, the whole contribution of the conical point may be described
as the variation of ¢(7)/2mi along yet another contour (Theorem 5.3). We
would like to emphasise that this variation is integer or half-integer, hence
so is also the interior contribution. To our mind, this property is a special
feature of the two-dimensional case.

Our method is based on the asymptotical analysis of solutions and
the monodromy matrix for a system of differential equations with a large
parameter. Although there exists vast literature on this topic, we have not
found the desired facts and were forced to prove them. The proof uses
the ideas of Faddeev and Takhtajan [FT87] for the non-linear Schrodinger
equation.

If p(7) possesses some natural symmetry properties, then the contribu-
tion of the conical point has very simple nature (Theorem 7.1). We show
some sufficient conditions for this symmetry.

1 Ellipticity and splitting

We start by describing special coordinates and bundle trivialisations near a
conical point. Recall that the neighbourhood of a conical point is treated
as a cylindrical end with coordinates ¢ € Ry, @ € R mod (27). Since
any complex vector bundle over a circle is trivial, we may assume that
E° = Bl =~ C over the cylindrical end and, for given trivialisations, the
connection one-forms I'°, I'" are equal to 0. There is a freedom in choosing
global frames of the bundles E°, E' over a circle, we use it to simplify the
conormal symbol of an elliptic operator.

For a first-order differential elliptic operator its conormal symbol has

, 0
A7) = A(2)T — zAg(x)a—x + B(a), (1.1)
where A;(x), Ay(x), B(z) are, for given trivialisations of the bundles E° and
E', (r x r)-matrices of smooth functions on the circle. Thus, the principal

interior symbol restricted to the boundary is

the form

ap = Ar(x)T + Ag(x)€ (1.2)
and the lower-order term is given by a matrix-valued function

a; = B(x).
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The interior ellipticity means that the matrix (1.2) is non-degenerate for
any real (7,£) # (0,0); in particular, A;(z) and Az(x) are non-degenerate
matrices.

Using Aj(x) as a transition matrix, we introduce a new frame of the
bundle E', so that (1.1) becomes

. 0
Alr)=71— zAl_l(x)Ag(x)a— + A7 (2)B(x).
x
The next consequence of the ellipticity is that the matrix A7'(z)Ay(x)
has no real eigenvalues, so at any = € S' its spectrum consists of two
disjoint parts belonging to the upper and lower half-planes, respectively.
The corresponding spectral projectors are given by the Cauchy integrals

1 -1

Pelw) =5 [ (6= 45 (@) Auw) e (1.3)
where cy are closed contours in the upper and lower half-planes, respectively,
consisting of a large semicircle and its diameter. These projectors depend
smoothly on x € S!, thus defining a decomposition of the trivial bundle C
into a direct sum of two subbundles of dimensions ry. Like any complex
bundle over a circle these subbundles are trivial. It follows that we may
choose a frame in C" with a transition matrix C'(x), so that

o O O

and

R G R I !

where a4 (x) are (r4 Xry)-matrices having the spectra in the right (left) half-
plane. Passing to new frames in F°, E' with the same transition matrix
C'(x), we reduce the conormal symbol to the form

0
Afr) =7+ ( ao+ aO ) — + CT'AT'BC + 7 (1.4)
- x
which will be referred to as the canonical form. To simplify notation, we
will write it simply as
0

Afr)=71+ A(:z:)a—x + B(a), (1.5)

with A(x) having a block-diagonal structure as in (1.4).
We investigate first the additional integral terms in (0.1).

'We use spectral projectors for the inverse matrix by reasons to be clear later on. Of
course, these are the same as for the matrix itself.
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Lemma 1.1 For the canonical form, we have

/ i ag1 000 =1 0% B dédr = 0 (1.6)
R T ) ‘

Proof. For A.(xz) given by (1.5),

ap =1+ 1A(2)¢,

so that
o100, ada0 D45 Oag
O 9% O o0& Oz
0 o -1, 0A(x)
= a—f(f—zA (:1;)7') A7 (2) 5 £

The integral over £ in (1.6) is

[ e (= iamap = (e iamap ) de.

It is absolutely convergent and the real axis may be replaced by the contour
¢y (or c_ as well). Integrating by parts and using (1.3), we obtain

[ (eiarn = e —ia)ae=eni (1)),

so that the whole integral (1.6) becomes

tr a;lda+ —tra”'da_
Sl

up to a constant factor. This expression is homotopy-invariant and thus
equals 0 since a4 (x) may be contracted to +1 and a_(x) to —1, proving the
lemma.

Let us calculate the remaining integral in (0.1).

Lemma 1.2 For the canonical form (1.5), we have

i _1 =1 d d a+1 0 d
R/Slx]&tr ag a1‘ _ Edr = =5 / tr 0 o B(z)dz.  (1.7)

Proof. Consider

= —i (6 —iA™ (2)) ™" = (€ +iA7(2))") A7 (2) B(x),

=1
-1 T
ag aq

T=-—1

Integrating over ¢ just as in the previous lemma, we arrive to (1.7).
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2 The Green function and the monodromy
matrix

The conormal symbol A.(7) given by (1.4), (1.5), is an ordinary differential
operator with 2m-periodic matrix-valued coefficients. We will study the
properties of this operator and its inverse when the spectral parameter
varies in the complex plane C. In particular, we are interested in asymptotic
properties for T — Foo while 37 remains bounded.

Let U(x,7) be a matrix-valued function satisfying the following differ-
ential equation and initial condition:

A(m)U = 0,

o -1 (2.1)

We call U a fundamental solution.
The monodromy matriz is, by definition,

M(r)=UQ2n,T).

It is known from the theory of ordinary differential equations that
U(xz,7) (and hence M(7)) is an entire function of the spectral parameter 7.
It is invertible for each # € R and 7 € C and its determinant is given by
the Liouville formula

det U(x,7) = exp (— /Ox tr A™My) (7 + B(y)) dy) . (2.2)

Sometimes one considers more general fundamental solutions U(x,y, T)
satisfying the same equation and the initial condition at x =y,

U=y = 1.
The corresponding monodromy matrix is then
M(r,y) =Uly + 2w, y,7).
This more general case may be easily reduced to the previous one by using
Ulz,y.m) = Uz, 7) Uy, 7)

and

M(y,7)=Uly,7) M(7) U™ (y, 7).

In particular, the eigenvalues of the monodromy matrix are independent of
the initial point y.

We will need the following expression for the logarithmic derivative of
the monodromy matrix.
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Lemma 2.1 We have

M1(7) %M(T) - —/0 U=, r) A~ Y ) U (2, 7) de. (2.3)
Proof. Set

U-(z) = %U(m,r).

Derivating (2.1) in 7, we obtain an equation and an initial condition for
U.(x), namely
AU (x)+ Ulx,7) = 0,
U-(0) = 0.
We look for a U, (x) of the form U(x, 7)V (x, 7) (variation of constants).
Substituting this into the above system gives

A(x)U(, T)aa—x\/(:z;, )+ Ul(x,7)=0.
Hence .
Vier) == [ U7y n) A7 W)Uy, 7) dy
and

U-(x)=—-U(x,7) /090 Uy, YA (y)U(y, 7) dy.

Taking « = 27, we arrive at (2.3), as desired.

O
Here is the starting point of our investigations.
Theorem 2.2 The following formula holds:
wday = L2 det (M(7) + M~ (1) - 2)
T c (1) = 5 Pz ogde (7) + (7) —
0? 1 1
= o logdet (Mz(r) — M~5(7)) . (2.4)

Remark 2.3 From the monodromy theorem of complex analysis it fol-
lows that M%(T) is also an entire function.

Proof. The operator A7!(7), when considered on periodic functions on
[0,27], is an integral operator whose kernel G/(x,y,7) (the Green function)
is a periodic solution of the equation

A(m)G(z,y,7) = 6(x —y).

We treat « as an argument while y € [0, 27] is considered as a parameter,
o being the Dirac d-function. This equation means that G satisfies the
homogeneous equation on [0,y) and (y, 27], whence

G(z,y,7) = Ulx,7)C_, for x€]0,y),
G(z,y,7) = Ulz,7)Cy, for x € (y,27],
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the matrices C'x being independent of x. To produce the é-function, these
matrices should satisfy the relation

Cp = Co=Uy,7)A™(y)

while periodicity yields

C_ = Ulx,2m)Cy
= M(T)C_|_
Solving this system, we get a usual expression for the Green function,
namely
oy - VT = M) 07147 ) v e 0,y),
i U, r)M(7)(1 = M(7))"' U~ (y,7)A™ (), = € (y,27],

or equivalently

Gle,y,m) = SU(z, 7)1+ M(r))(1 = M(r))" U (y, 7) A7 (y)

+ % sgn (l' - y)U(xv T)U_l(yv T)A_l(y)'

[N

From the latter formula it follows that (9/07)G(x,y,7) has no jump at
x = y. Moreover,

0

—Gl(z,y,7)

2 = & LU+ M) - M) r) A7 )

or 2

=y

We now take the matrix trace, integrate over y € [0, 27] and make use
of Lemma 2.1, thus obtaining

/%tra—G( T)
o P Yy,

--19 (tr (4 M) = M) M ) )
— o () =1 ) = e 2 ).

which is precisely (2.4).

3 Lyapunov estimates

In this section we consider the so-called stable case of equation (2.1). It
means that the equation may be rewritten in the form

ou

e Az, m)U, (3.1)
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where

A(x,7) =a_(a)T + b(x) (3.2)

is a linear function in 7 and the matrix a_(x) has its spectrum in the left
half-plane (such matrices will be called stable). We will consider (3.1) for
Rr — 400, |S7] < C. Thus, without loss of generality we may regard 7 as
a large positive number by including a_(2)37 into b(x). The whole matrix
A— will be stable for 7 large enough. Moreover, we may add to (3.2) a finite
number of terms with negative powers of 7 without spoiling the stability
property for large 7.

The main result of this section consists in the following estimate for the
fundamental solution U(z,y,7) = U(z,7)U " (y, 7).

Theorem 3.1 Let a_(x) be a stable matriz. Then there exist constants
C, d > 0 such that, for 7 > 1,

[U(z,y,7)|| < C exp(=d(z—y)7) (3.3)

provided x >y, where || - || means any matriz norm.

Remark 3.2 In the case of constant coefficients a_ and b, estimate (3.3)
is obvious, because the solutions can be expressed in terms of exponential
functions. For variable coefficients it is not, however, so obvious (recall
stable and unstable zones for the Schrédinger equation).

The following necessary and sufficient condition of stability is due to
Lyapunov (see e.g. [Gan86]).

Lemma 3.3 A complex matriz a_ is stable if and only if there exists a
Hermitian positive definite matriz X such that

at X+ Xa_ =—1. (3.4)

Proof. If a_ is stable, so is a*. Hence both expa_t and expa®t are
exponentially decaying as ¢ — +o00. The matrix X may be defined by an
explicit expression, namely

X = /Oo exp(a”t)exp(a_t)dt. (3.5)
0
Indeed,
a X+ Xa. = /Oo 9 (exp(a* t) exp(a_t)) dt
- o Ot -
- L

Conversely, from (3.4) it follows, for an eigenvector e of a_ with an
eigenvalue A, that

(e,e) = —(Xa-e,e)—(Xe,a_e)
= —(A—I—X)(Xe,e).
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Hence R < 0, as desired.
0
Proof of Theorem 3.1. If a_(x) is a smooth periodic function in z,
then (3.5) shows that X (z) is also a smooth periodic function. In particular,
there are bounds independent of x, for

0<C < X(2)<Cy (3.6)

in the sense of quadratic forms. Denoting the usual norm in C" by |le|| =

(e,e), we define a new norm

lellx = /(Xe,e)

which is equivalent to the usual one. Then, inequalities (3.6) give a precise
form of the equivalence relations

Crllell* < llellx < Ca el (3.7)
For a fundamental solution U(x,y,T), we consider the function

f@) = |[Uelk
= (U (z,y,7)X(2)U(x,y,7)e, €).

Differentiating and using (3.4), we get

g—i = (U* ()\*_X—I-X)\_ —I—X’) Ue, e)

= —7(Ue,Ue)+ (’X + Xb+ X")Ue, Ue).

The matrix 6*X 4+ Xb 4+ X’ is Hermitian and, for 7 large enough, we
have

—%Sb*X+Xb+X’§%

in the sense of quadratic forms. By (3.7), the norm ||Ue||* may be replaced
by [|Uel||%, hence
af

e < —dr f(x)

with some positive constant d. Dividing by f(x) and integrating from y to
x, with x > y, we obtain

f(z)
f(y)

log < —dt(x—1y)

which means that

Uz, y, m)ellxmy < exp(=d (x —y) 7) llellx,)-
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Since the norms || - || x () are equivalent to any fixed norm || - ||, we come

to (3.3), which completes the proof.
0

This theorem has some obvious modifications. For example, an estimate
|U (2, YUy, 7)|| < C exp(—d(z—y)7) (3.8)

holds if 7 — —oco and * < y. Next, we may replace a stable matrix a_ by
a matrix ay with a spectrum in the right half-plane. In this case we have

Uz, 7) Uy, 7| < € exp(d(z —y)7) (3.9)

for 7 = 400 and <y or 7 =+ —oo and = > y, with some C., d > 0.

4 Asymptotics of solutions

In this section we consider the general case of equation (2.1) with a splitted
matrix A(xz). So, we write it in the form

g—g = (A(z,7)+ B(x))U (4.1)

where
s = (M7 )

B ap ()T + by () 0
N ( 0 a— ()T + baa(x) ) (1.2)

is a block-diagonal part and

B(z) = ( 5210(1,) 6120(:1;) )

is an antidiagonal part of the coefficients. We assume that both a_(2) and
—ay(x) are stable matrices.

Let us look for a solution of (4.1) in the form (cf. (4.5) in [FT87, Ch. 1])
Uz, 7) = (1 + W(z,7))Z(2,7), (4.3)

where 7 is a block-diagonal matrix and W is an antidiagonal matrix. Sub-
stituting (4.3) into (4.1) and separating diagonal and antidiagonal parts, we
obtain

W w? _ awzibz
0z '

o = (ArBW)Z
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Eliminating 7, we arrive at a matrix Riccati equation for W

ow
a—:AW—WA—I—B—WBW (4.5)
x
Were W a solution of (4.5), the second equation in (4.4) would give us
an equation for Z with a block-diagonal coefficient A + BW.
To find W, we observe that equation (4.5) is equivalent to two separate
equations for wiy and wsyy,

Jw

a:;z = )\_|_w12 — wlz)\_ ‘I‘ 612 - w12621w127 (46)
Jw

8;1 = A_wa — wa Ay + by — warbiaway. (4-7)

Assuming A1 to be of the form (4.2), let us consider 7 positive and large
enough. We will look for solutions to (4.6) and (4.7) on the closed interval
x € [0,27] with initial conditions

w12(27r) == 0, (48)
w21(0) ==
Lemma 4.1 The solutions of (4.6), (4.8) and (4.7), (4.9) exist for T

large enough and satisfy the estimates

[wia(z,7)|| =
(4.10)

szl(l'ﬁ)” =

uniformly in x € [0, 27].

Proof. Let us consider the case of wy,, the reasoning for wy; is similar.
First we reduce (4.6), (4.8) to an equivalent integral equation. To this end,
let us treat f = b3 — wi2b21w12 as a known function and apply the variation
of constants to the equation

w’12 = )\_|_w12 — wlg)\_ + f
In other words, we look for a solution of the form

wig(7) = Uy (2)V(2) U~ (2), (4.11)

where Uy (x,7) are fundamental solutions to the Cauchy problems

oU
= A
b + U:|:7

U:I:|x:0 = 1.
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Substituting, we obtain

v
ox

and, taking into account (4.8),

=U;' fU_

V(e = = [ VR W) S U dy

Now, returning to (4.11) and replacing f(y), we come to the integral equa-
tion

wiz(7) = — /:W Us(2)UL N (y) (br2(y) — wia(y)bar (y)wia(y)) U-(y)UZ" (x)dy.

This equation may be solved by iterations. From Theorem 3.1 and what
has been said at the end of Section 3, we deduce that

10+ (@)U ()l
V- (@)U ()]

C exp(d(z —y)7), (4.12)

<
< Coexpld(z—y)T) (4.13)

for 7 > 1 and @ < y. In particular, these expressions are uniformly bounded
for 7> 1 and 0 < x <y < 27. The initial iteration

N /:W Ur(2)UZ (y) biz(y) U-(y)UZ () dy

may be estimated by means of (4.12), (4.13) as

2 C
_ <
C /x exp(2d(z —y)7) dy < 57n

1
o)
T
When combined with the boundedness of (4.12) and (4.13), this es-
timate implies the convergence of the iterations and the desired estimate

(4.10).

Similarly, for wy; we obtain an integral equation

wale) = [ U-(@)UZ(y) (baa(y) = war(y)bra(y)eon(y)) Vs (y) U5 (2)dy

and then repeat the previous arguments.
O
Turning to the block-diagonal part, we denote by Zi(x,7) the entries
of Z. More precisely, we take them as solutions of the Cauchy problems

0z
* = (Ag + bi2way) Zy,

Ox (4.14)
Zile=o = 1



Asymptotics of solutions 17

and
07_
p = (A +bywz) Z_,
v (4.15)
Z_ |x:0 — 1

The crucial property of the coefficients in (4.14) and (4.15) is that for
7 > 1 the matrix

1
Ao+ bywiy = A + 0 (-)

T

is stable and so is

— (A4 + braway) .

In particular, this implies estimates (3.3), (3.8) for Z_ and (3.9) for Z,.
We have thus constructed a solution of the form (4.3), with

Wiz, 7)=0 (l)

T

uniformly in z. It does not satisfy the initial condition U(0,7) = 1, but this
drawback can be easily corrected. Indeed,

V(z,7) = Uz, m)U0,7)
= (1+W(x,7)Z(x,7)(1+W(0,7))"

is the desired solution. For the monodromy matrix, we obtain

M(r) = V(2nr,71)
= (1+W(2rm)Z2r,7)(1+W(0,7))"

G0 P [ )]

(4.16)

Finally, we apply (4.16) to compute the asymptotic expansion of the
phase function

(1) = % log det (M(T) + M~(r) - 2)

for R7 — 400 and |I7| < C. All the calculations will be performed modulo
mi. From (4.16) it follows that

M)+ M\ () — 2 = (1 L0 (l)) {Z(ZW,T) (1 +0 (1))

T T

(ro (@) 7enn—2(1+0 O} (1+0(2))
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implying

(1) = % log det {Z(ZW,T) (1 +0 (l))

(1o (2) #enn 20 ()} o (2).

A straightforward computation shows that the expression in curly brackets
transforms further to

(N )0 O )
(R Do )70 9)

T (R0 [ A TR N

Now, Z7'(2n,7) and Z_(27,7) decay exponentially for RT — +oc.
Indeed, applying (3.3) for = 27 and y = 0, we get

|1Z-2n,7)|]] < C exp(—2ndr)
1
T

the same is true for Z7'(27,7), as may be seen from (3.9) for z = 0 and
y = 27. Hence, the previous expression can be rewritten as

(7 D 10 () (0 2imm )

so that

(1) = % log det Z, (27, 7) — % logdet Z_(2m,7) + O (l) :

T

Finally, using the Liouville formula (2.2) for Z; and Z_, we arrive at

o(r) = % /027r tr (Ay + biowgy )de — % OQW tr (A= + byjwys)dx + O (%)
B % /0 (b (as (2)7 + bua(e)) — tr(a ()7 + boa())) d + O G) .
(4.17)

Similarly an asymptotic formula for ¢(7) may be obtained as R — —oo
and |S7| < C. The result will be given by (4.17) with the opposite sign.
We summarise these results as follows.
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Theorem 4.2 Let Rt — +oo and |S7| < C. Then the following asymp-
totic formulas hold:

p(r) = i% /027r (tr (ay(x)7 4 bi1(x)) — tr(a—(x)7 + baa(x))) do + Ny

+0 (3) . (4.18)

T

The integers N1 remain undetermined. We may fix one of them, then
the other will depend on the path to be used for analytic extension.

5 The index formula

Combining Theorem 4.2 with the calculations of Section 1, we give a simple
interpretation of the boundary terms in the index formula.

First we introduce a special value 7y € C to be referred to as the centre.
This is a solution of the equation

/027r (tr (ay ()10 + bra(x)) — tr(a—(x)70 + baz(2))) dx = 0. (5.1)

Lemma 5.1 Fquation (5.1) has a unique solution.

Proof. The equation is linear, so we only need to show that the coef-
ficient

a= /027r (tray(x) —tra_(z))dx

does not vanish. Indeed, R tray(x) > 0 since all the eigenvalues of a4 (x)

have positive real parts. The same is true for —R tra_(xz) > 0, whence
Ra > 0 proving the lemma.

O

The following consequence of Theorem 4.2 justifies the designation ‘cen-

tre’.

Corollary 5.2 Let 7 — 219 — 7 be a symmetry transformation with
respect to the centre tq. Then the function

flr) = det (M(r)+ M7}(r) - 2)

= e2e(7)

is asymptotically even, that is, for |R7| large enough and |37| < C, we have

1) = fem —m) (140(2)). (5.2)

T
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Fig. 1: Variation of () along I'.

Let now I' be a horizontal line (weight line) not containing ramification
points of ¢(7), and 79 € C be a point (centre). Our next objective is to in-
troduce a number Ar -, ¢(7) which will be called the variation of ¢(7) along
I' with respect to the centre 7. To this end, consider another horizontal
line Iy passing through 74. In the closed strip between I' and I'y there are
a finite number of ramification points of ¢(7). In particular, for |R7| > Ty
with Ty large enough, there are no ramification points in this strip. We
consider a contour starting at the point =7 + 79 € [’y with T' positive and
large enough, such that |R(—T"+ 79)| > Tp, then going along I' in the region
where |R7| < Tp, and finishing at the point T + 74 (see Fig. 1).

By (T + 70) — (=T + 79) we denote the variation of ¢(7) along this
contour. Set

Ar (7)) = Tl_igloo (o(T +70) — (=T + 7))

Because of (5.2) this number is an integer multiple of .

Theorem 5.3 The boundary contribution in the index formula (0.1) is
equal to

1
Py AF,TOS‘Q(T)‘
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For the proof, we first need the following lemma.

Lemma 5.4 The term containing the ‘eta’ invariant is equal to

1 1

5 U(Ac) = 971 AF,099(T)-

Proof. Consider

Q) =T 4 (A2 (r) = 1 A7 ()L ).

T

By Theorem 2.2, this quantity is equal to

oz () = i ge(r)).
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According to the definition of Tr (see Melrose [Mel95]) and n(A.), we

obtain

1
—3 n(A.) = hm drl/ (14 iy)d

the right-hand side being understood as a constant term in the asymptotic
expansion when 7' — oo. Thus,

T=T+uy

_% n(A) = 1 im (c,o(T) - iv%@(ﬂ)

2m1 T—oo

T==T+1vy

and the variation of ¢(7) is taken along the weight line I' (for (9/07)¢(7),
the variation does not depend on the path). In the region |R7| > Ty where
©(7) is holomorphic in the strip between I' and the real axis, we may use
the Taylor formula, thus obtaining

P(r) — i12p(7) = plr — i) + ol )

where Ry(7,7) is a remainder term which tends to 0 for ®7 — +oo and
|S7| < C. Hence it follows that

however, the variation is now taken along the contour in Fig. 1 with 7o = 0.
This completes the proof.
O

Proof of Theorem 5.3. Consider the difference

Ar (T) = Arop(T)
= lim ((o(T +70) = o(1) = (=T +70) = p(=T)))

where the variations in parentheses are taken along the segments [T, T' 4 7]
and [T, =T + 7] (see Fig. 2).

To calculate the limit, we invoke the asymptotic formula (4.18). This
yields the value

To /027r (trag(x) —tra_(z))dx

- /02” (41 bis(2) — br ba(2)) da,

the last equality being due to the definition of 7. Comparing this expression
with (1.7) (mind the change of notation), we see that they cancel.
O
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T+ To

Fig. 2: Two auxiliary segments.

6 Higher-order operators

Let
, a\"
A(m)u = Z Ajk(a)r? (—za—) u
J+k<m z

be the conormal symbol of an m th order elliptic operator. Without loss of
generality we assume that A, o(x) = 1.

When dealing with higher-order ordinary differential operators, one uses
a standard trick known as the reduction to a system of first-order operators.
Assuming 7 # 0, we introduce new unknown functions

a k
(—a_) we=rhug, k=01 m -1, (6.1)

so that uy = u. Then the operator u — 77"V A (7)u may be rewritten in
the form

Tup + _ Apm—ii() (—zag) et + Y A ()i TR m=bg,
k=1 z j+k<m—1
Together with the relations
COug_y
rr
which are due to (6.1), the above expression defines an operator A(7) acting
in the space of vector-valued functions

+ Tur =0

Ug
- Uy
U =
Um—1
as a matrix

10/0x T 0

0 0 T
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where

Ak(l') = —Z'Am_]“k(l')
and

m—k
Bi(z,7) =Y Ajpoa(a)r/ T, (6.3)
7=0
Thus, we come to a first-order differential operator

A(r) =7+ A(x) % + B(x, 1) (6.4)
where B(x,7) is a polynomial in inverse powers of 7. The matrix A(x) is
completely determined by the principal symbol ao of the operator A.(7)
and the constant term of B(x,7) is determined by the next term «a; in the
complete symbol. The asymptotical analysis of the monodromy matrix of
operator (6.4) remains valid, modulo O(1/7), for B(x,7) of the form (6.3).
We may simply omit all the terms in (6.3) but the constants in .

>

Lemma 6.1 Let the weight line I' not contain the origin. Then the ‘eta
invariants for A.(1) and for A(T) coincide.

Remark 6.2 The assumption 0 € ' involves no loss of generality be-
cause we may change the origin.

Proof. To avoid cumbersome matrix formulas, let us restrict our at-
tention to the case m = 2. In this case matrix (6.2) has the form

. T+A18/8$+B1 A28/8$+B2
Alr) = ( 10/0x T ) ’
with
Al(l') = — Z.ALl(l');
AQ(Q?) = — Z.A072($)
and

Bi(z,7) = Ajo(z)+ Agolx)r™;
By(x,7) = Apa(x).

One immediately checks that

0 0 s,
T(T+A18_x+B1) — (AQQ_:L'—I_BQ) la—x:Ac(T)a

and consequently

(i 2)-(01) e
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where the ‘asterisk’ means any expression whose explicit form is not essen-
tial. We rewrite this matrix identity in an abbreviated form

A(r)C(r) = B(7)
where B(7) means the right-hand side of (6.5) and C(7) stands for the

second factor on the left-hand side.

Clearly,
Tr B'(7)B~ (1) = Tr AL(7) A (7).

On the other hand,
T B'(r)B~H(7) = To (A(r)C(r)+ A(7)C'(7)) C7H(r) A7)
= Tr A (A7) + Tr A(T)C(7)C7 (1) A™Y(r).

Since Tr is a trace functional, we conclude that

Tr A(T)C'(T)CTH ) AT (7)) = Te C'(r)C7Y(7)
= 0

which implies
Tr A'(7) A (1) = Tr AL(T)AT (7).
The same is true for Tr = Trd/0r, for Tr is also a trace functional.

Thus,

& (A7 () = i A A7 )

~Tr (AQ(T)A;I(T)— %A’( )AL (T))

which means the coincidence of the ‘eta’ invariants.
O
It follows that, for a higher-order operator, the ‘eta’ invariant term is
Ar op(7), where (7) is a phase function for the operator (6.2).
Unfortunately, we do not know any interpretation of additional integral
terms in (0.1) for higher-order operators in terms of the monodromy matrix.

7 Particular cases

We have seen that, for the function f(7) = det (M(7)+ M~(7) —2), the
asymptotic equality holds

FT +70) = f(=T + ) <1+O<%)) (7.1)

as ' — 4o00. Here 7y € C is a point which we call the ‘centre’. An
interesting particular case is when equality (7.1) is precise, i.e., f(7) is an
even function on the line I'y = {37 = S} with respect to the centre 7o. If
such is the case, Theorem 5.3 admits further simplification.
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Y -
'@ -V I,
27’0 — 71

Fig. 3: The contour [ = {3 U [5.

Theorem 7.1 Suppose f(7) is an even function with respect to the cen-
tre g, that is

FT+m0) = f(=T + 7o) (7.2)
for each real T'. Then,

1 1
— Ar (1) = (p + —q) sgn (S0 — )
21 2

where p is the number of ramification points of ¢(7) (counted along with

their multiplicities) in the strip between the lines I' and Ty and q is the
number of ramification points on the line I'g.

Proof. To be specific, let Sy < . Consider a closed contour { = [ Ul,
where [; is the contour described in Section 5 to define Ar  ¢(7), and Iy
goes along the line 'y by passing the ramification points lying on I'y along
small semicircles (see Fig. 3). Clearly,

1 1

— Ar., = —A
27'['@ F7 OS‘Q(T) 27'['@ 119‘9(7—)
1
= —p—— A .

We next observe that the variation of ¢(7) along [y is equal to the
sum of variations along all the semicircles. Indeed, the variations along the
segments of 'y cancel because of (7.2). When the radii of the semicircles
tend to 0, the variations along them tend to m¢ times the number ¢ of
ramification points on I'y counted together with their multiplicities. This is
the desired conclusion.

O

Since the result is very simple, it is desirable to have simple sufficient
conditions for (7.2) to be fulfilled. One of these is the symmetry condition
of [SSS97] for the conormal symbol: there exist isomorphisms og(x) and

o1(x) of the bundles E° and E*, such that

A(=T + 79) = o1(x) A(T + 70) o0()
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for each real T'. Indeed, in this case we have
M(=T + 1) = 00_1(0) M(T + 1) 00(0) (7.3)

which means that the monodromy matrix is an even function up to conju-
gation. It follows that (7.2) is fulfilled.

There are some other cases which cannot be reduced to (7.3). For
example, if

M(=T + 1) = 051 (0) M~ (T + 75) 00(0) (7.4)

instead of (7.3), then (7.2) also holds.
We finish the paper with a couple of examples where condition (7.4) is
satisfied.

Example 7.2 (scalar case) In this case M(7) is a scalar function of
the form exp(ar + b) and 7 is the root of the equation ar + b = 0. Thus,
M(=T+7) = exp(—al)
= (exp (aT’))™"
= (exp(a(T+m)+5)"
= MMT+m),

as desired.

Example 7.3 (constant coefficients) Let

Afr)=71— iA%

with a constant matrix A. Then
M(7) =exp (—27Ti A_lT)

and we deduce that (7.4) holds with 7 = 0 and o = 1.
O

In particular, geometric operators of the Dirac type have constant
coefficients under appropriate coordinates and bundle trivialisations (cf.

[APS75, Mel93)).
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