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Abstract

For general elliptic pseudodifferential operators on manifolds with
singular points, we prove an algebraic index formula. In this formula
the symbolic contributions from the interior and from the singular
points are explicitly singled out. For two-dimensional manifolds, the
interior contribution is reduced to the Atiyah-Singer integral over
the cosphere bundle while two additional terms arise. The first of
the two is one half of the ‘eta’ invariant associated to the conormal
symbol of the operator at singular points. The second term is also
completely determined by the conormal symbol. The example of the
Cauchy-Riemann operator on the complex plane shows that all the
three terms may be non-zero.

AMS subject classification: primary: 58G10; secondary: 58G03.
Key words and phrases: manifolds with singularities, pseudodif-
ferential operators, elliptic operators, index.
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Introduction

Since Atiyah, Patodi and Singer [APS75] investigated the index problem for
first order elliptic differential operators arising in Riemannian geometry on
manifolds with cylindrical ends and introduced the famous ‘eta’ invariant,
there appeared a great number of papers dealing with index theorems for
elliptic operators on manifolds with conical points. Among notable general-
isations of their formula in the setting of Dirac operators are those to non-
compact manifolds by Briining and Seeley [BS88], Briining [Brii90], Miiller
[Miil87], Stern [Ste89, Ste90] and Klimek and Wojciechowski [KW93], to sin-
gular manifolds by Cheeger [Che83, Che87], Melrose [Mel93], Lesch [Les97]
and Hassell, Mazzeo and Melrose [HMMO96], to boundary value problems by
Branson and Gilkey [BG92], Douglas and Wojciechowski [DW91], Miiller
[Miil94], Grubb [Gru92] and Grubb and Seeley [GS95], to families by Bis-
mut and Cheeger [BC89, BC90] and Melrose and Piazza [MP93], and also
to define “higher” ‘eta’ invariants by Lott [Lot92], Getzler [Get93] and Wu
[Wu93].

The problem of extending the Atiyah-Patodi-Singer index theorem to
a general index theorem for elliptic pseudodifferential operators on man-
ifolds with conical singularities is of considerable interest. For a class of
zero order pseudodifferential operators on a closed manifold having a dis-
continuity of first kind at isolated points, an index formula was proved by
Plamenevskii and Rozenblum [PR90, PR92]. Their approach is based on
considering C'*-algebras generated by such operators; it was further devel-
oped by Rozenblum [Roz94]. In the framework of the b-calculus of Melrose
[Mel81] and Melrose and Mendoza [MMS83], an index formula for general el-
liptic operators was established by Piazza [Pia93] who made use of the ‘zeta’
function approach. His formula expresses the index of an operator acting
on a Sobolev space of weight v € R, as the sum of an interior contribution
given in terms of regularised ‘zeta’ functions, and a boundary contribution
generalising the ‘eta’ invariant of Atiyah, Patodi and Singer. This second
term measures the asymmetry of the spectrum of the indicial operator (or
conormal symbol) with respect to a weight line I', in the complex plane.
While the Atiyah-Patodi-Singer index theorem for a twisted Dirac operator
can be obtained from the formula of [Pia93], it is still an open problem as to
whether, for a general elliptic b-pseudodifferential operator A, the interior
contribution depends only on the principal symbol of A. For an elliptic
differential operator on a manifold with a conical point whose conormal
symbol is symmetric with respect to some weight line, Schulze, Sternin and
Shatalov [SSS97] proved a formula expressed the index as the sum of the
ranks of spectral points of the conormal symbol and the integral from the
Atiyah-Singer form over the smooth part of the manifold. The authors have
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also contributed to this problem.

But despite such an activity during the last 20 years the situation re-
mains still unsatisfactory. The main difficulty is that the algebra of pseu-
dodifferential operators on a manifold with conical singularities consists of
components of different nature (interior and conormal) obeying some com-
patibility conditions, and it is not quite clear in which terms the index of
elliptic operators should be expressed. In other words, one has to find proper
functionals on this algebra to express the index in a possibly simple way.
Such an investigation was done by Melrose and Nistor [MN96a] who com-
puted the Hochschild and cyclic homology groups for the algebra of ‘cusp’
pseudodifferential operators on any manifold with boundary. These compu-
tations are closely related to the index problem since the index functional
for this algebra can be interpreted as a Hochschild 1-cocycle. Their index
formulas contain various extensions of the trace functional of the Wodzicki
non-commutative residue type, thus resulting in a pseudodifferential gener-
alisation of the Atiyah-Patodi-Singer index theorem. In [MN96a], they also
computed K-theory invariants of algebras of pseudodifferential operators on
manifold with corners and proved an equivariant index theorem.

Here we use another approach based on the algebra of formal symbols
on a manifold with conical points blown up to a smooth manifold with
boundary, M. This algebra is a particular case of the algebra of observ-
ables in deformation quantisation adopted to the special cotangent bundle
structure of the symplectic manifold in question. It was previously used
by the first author [Fed74] (see also Section 1 below for a short review) to
approximate pseudodifferential operators on a smooth manifold up to trace
class operators. It turns out that the algebra of formal symbols is equally
good to approximate the conormal components of pseudodifferential opera-
tors on manifolds with conical points. This approximation leads to an index
formula which we call algebraic,

indA=Tr(l —roa)ly—Tr(l —aor)|y
1 - / -1 . , . - ,,
+ 9 /_Oo dr Tr (Ac (14 iy)ALUT 4+ 17) — Opam(r(7) 0 a (T))W|N—1)
(0.1)

(see Section 3). Here a and r are the formal symbols of the operator A
and its parametrix R defined up to the boundary, o stands for the product
of formal symbols, A.(7) and AZ'(7) are the conormal symbol of A and its
inverse, Tr’ means the trace of a pseudodifferential operator on the boundary
of M, and N is the order of approximation, N > dim M. The subscript =
signalls for a formal complex shift of the real argument,

= a(k)(T) - Nk
w(7) = 30 )", (02)

k=0

~ defining the weight line.
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It should be mentioned that more or less similar formulas were previ-
ously obtained in various particular cases, see e.g. [PR90] or [SSS97]. We
have plucked up the courage to publish formula (0.1) because to our mind
it seems new in such a form and such generality. The only assumptions we
impose are that the symbols do not depend on the normal variable near the
boundary (translation invariance in the terminology of [MN96a]), and that
A.(7) and AZ'(7) are holomorphic in a strip around the weight line.

As but one application of formula (0.1) we extend the result of Schulze,
Sternin and Shatalov [SSS97] to the case of pseudodifferential operators.
Namely, combining (0.1) with arguments of Section 4 ibid. thinking of M
as half of a compact manifold without boundary by doubling across the
boundary, we arrive at a nice index formula of the Atiyah-Singer type for
operators satisfying the symmetry condition of [SSS97] and possessing a
meromorphic extension to the strip between the weight line and the sym-
metry axis ['g. More precisely,

1
indA:—(§ Z rank z + Z rankz)sgn’y—l—/ AS (A),
S*M

zEspec A, zEspec A,
Fz=0 3z€(0,y)
S*M being the cosphere bundle of M and AS (A) being the Atiyah-Singer
integrand manufactured from the principal interior symbol of A and differen-
tial-geometric information in M by local operations.

We use the machinery of cone pseudodifferential operators, referring
the reader to the book of Schulze [Sch94]. The only difference is that we do
not use the Mellin transform applying the change of variables by r = e,
Under this change the conical point becomes a ‘cylindrical end” and Mellin
pseudodifferential operators become Fourier pseudodifferential operators on
the weight line 37 = 7. Such a modification has the advantage that we do
not have to switch between Mellin and Fourier representations of pseudod-
ifferential operators. In particular, the compatibility condition for interior
and conormal symbols looks much simpler for the Fourier representation.

Our next goal is to simplify formula (0.1), in particular, to reduce its
interior contribution to the Atiyah-Singer integral over the cosphere bundle.
Unfortunately, we have succeeded only in the case dim M = 2. The reduced
formula is

) 1 1 _ 1 _ 1 _
indA = ) /S*M gtr (ay'dag)” — §tr 0°(ay" dag) — §tr Q' (Dapagt)

1 . . . .
+ %Tr(Ac_l(T + i) ALUT + i) — iy(ATH (T + i) Al + 7)) )
? _1 6@0 _1 6@0)

I =~ _
s (I T

(0.3)

0% and Q' being the curvature forms of the bundles £° and E' and tr
meaning the matrix trace of matrix-valued functions.
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The first summand on the right-hand side of (0.3) is the usual Atiyah-
Singer integral. The next two summands contain the functionals Tr (reg-
ularised trace) and Tr (formal trace) introduced by Melrose [Mel95]. In
particular, the second summand is the ‘eta’ invariant (or rather one half
of it) of A.(7) shifted formally to the real axis. On the other hand, the
functional Tr is non-zero on functions a(x,&,7) on (T*OM) x R positively
homogeneous of degree —1 = —dimdM in (£, 7). For such functions it
takes the form

Tv:—,/ tra(e,&,7)=", déde. 0.4
fo= b [ rate 62 deds (0.4

The advantage of formula (0.3) is that it contains merely principal
symbols of A, namely the principal interior symbol ag and the conormal
symbol A.(7), which control the Fredholm property of A acting on the
Sobolev space of weight v. The lower-order term a;(x, £, 7) entering into the
third summand of (0.3) is completely determined by the conormal symbol.

Clearly, formula (0.3) can be extended to symbols which are not trans-
lation invariant near the boundary.

We consider the example of the Cauchy-Riemann operator on the com-
plex plane C treating the point at infinity as a conical point. This is a
particular case of the Riemann-Roch theorem in the interpretation of Mel-
rose [Mel93, 6.3]. This example shows that all the three terms in (0.3) may
be different from zero. It is curious enough that they are half-integer (if
non-zero).

[t would be interesting to extend formula (0.3) to higher dimensions, but
even in the case of half-space R} this seems to be a non-trivial homological
problem.

1 Formal symbols

Recall an algebraic index formula on a smooth manifold, cf. [Fed74].

Let M be a smooth manifold and E° E! vector bundles on M. A
formal symbol a € Symb (M; E°, E') is defined by its local expressions and
transitions rules. In a local chart ' C M and for given trivialisations of the
bundles E°, E' over U the local expression is a formal series

a = a’

= Clo(l‘,f) + hal(:z;,f) + h2a2(x7§) T

where h is a formal parameter and ai(x,¢) are functions on U x R"™ with

values in the space of (r' x r%)-matrices of complex numbers. Here, n is the

dimension of M and r°, r! stand for the ranks of E° and E! respectively.

These expansions form an associative algebra with respect to the product
qob= Y (—zh’)| L 0%a 0°b

al 9Er Jx”

aEZﬁ
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usually called a star-product or the Leibniz product.
For a change of coordinates y = f(x) in U NV we define a transition
rule by

a(2,6)
— @' (f(2). & @) o exp T @)+ (@) =2) = F9))lmo
(1.1)

the symbol multiplication on the right-hand side being taken with respect
to the variables y and ¢ while x is fixed. The vector (or rather the covector)
n = f 7 () in coordinates is defined by the equality

Ofi(x
fi:nj g;l)v

and so (1.1) is a formal version of the change of variables for pseudodif-
ferential operators. Note that (1.1) does not contain negative powers of h
because of the second order zero in y — & in the exponent.

Changing frames of the bundles results in the following rule

"' = gy " o gy (1.2)

For the leading term ao(x, ) we have

ag = giv f*ag v
where (f*a¥)(z,&) = a"(f(z), £f 7 (x)). So ao(x,§) varies like a function
on T*M with values in Hom (7*E°, 7*E*').
The higher order terms vary in a more complicated way, in particular,
U 1% L A
a a (f($)777) + 9 Nk axla:p] aflagj s (f($)777) ( )

where n = ff’_l(:zj). Choosing a torsion-free connection V on M, we may
express (1.3) in another way by saying that

? k azao(l',f)
ay(x,§) — 5& L' 0606

behaves like a function on T*M under change of variables, Ffj being con-
nection coefficients. Similarly,

; aao(xv 5)

0
o6 L

Cll(l',f) +

behaves like a homomorphism of bundles, I'? being connection coefficients

for the bundle E°.
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Given a function a(x, &) on T*M with values in Hom (7*E°, 7*E'), we
can always construct a formal symbol @ with the leading term ao(x,§) =
a(x, ). To this end choose a covering (U,) by coordinate charts, local triv-
ialisations of the bundles and a partition of unity (p,). For a chart U,, we
define the symbol p,a = p,(x)a(x, ) to consist of the leading term only, for
chosen trivialization. Other local expressions for the symbol p,a are defined
by (1.1) and (1.2). Summing all the symbols p,a, we obtain the desired
symbol a.

Clearly, if the local functions a¥(z,¢) are classical symbols of order
m —k, m € R,on U xR (for example, if they are homogeneous of order
m — k in £ for large |€]), then so are the functions a} for any other local
representation. The symbols with this property we denote by Symb™.

The calculus of formal symbols is very similar to the calculus of com-
plete symbols of classical pseudodifferential operators. The only difference
is that for the formal symbols not only the asymptotic behaviour for large
|€] is relevant but the behaviour of their coefficients for small |£| as well.
For example, formal symbols vanishing for large || are meaningful objects
unlike complete symbols.

It is clear that for a classical complete symbol of order m we can con-
struct a formal symbol whose local coefficients a(x,¢) coincide with the
homogeneous components of degree m — k of the complete symbol, for large
|€]. In this case we say that the corresponding pseudodifferential operator
A and the formal symbol a are compatible.

For a pair (A,a), A and a being compatible, we define a regularisation

of A as follows. Let
N-1

EL|N = Z ak(l',f)

k=0

be a partial sum for a with h = 1. Let further
Op (aly) =3 _ Op(p.a™

NP, (1.4)

be the pseudodifferential operator on M defined by a coordinate covering
(U,), partition of unity (p,) and trivialisations of the bundles. The functions
p. are required to be identically equal to 1 on the supports of p, but still
satisfy suppp, C U,. (In this way we obtain what will be referred to as
‘covering functions’.) As usual, Op means a standard pseudodifferential
operator on R” defined by the symbol p,a|y. Of course, the operator (1.4)
depends on the choices mentioned above. The operator

reg|yA := A — Op(aln)

is of order m — N and thus is of trace class in each Sobolev space H*(M)
provided N —m > n (we suppose M is compact).
Define a reqularised trace of A by

Trreg|y A :=Tr (A - Op (a|n)),
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A and a being compatible. The properties of the regularised trace are
described in the following proposition.

Proposition 1.1 Let A be a classical pseudodifferential operator of or-
der m and let a € Symb™ be a formal symbol compatible with A. Then:
1) the regularised trace Tr (A — Op (a|n)) is independent of the choices
of coordinate charts, trivialisations and partition of unity.
2) the regularised trace vanishes on commutators, more precisely,

Trreg|yAB = Trreg|y BA

if the regularisations of AB and BA are defined by the formal symbols a ob
and b o a, respectively.

The proofs may be found in [Fed74].

If @ € Symb™ with m < —n, then the operator Op (a|y) belongs to
the trace class and its trace is correctly defined by the symbol @ and the
truncation number N. In this case we abbreviate the notation of its trace
to

Tra|y := TrOp (a|n).

This number may be interpreted as an integral over T*M ., more pre-

Tra|y = (Qi)n /M (/Rntmmdg) de, (1.5)

where the inner integral defines a density on M not depending on the lo-
cal representation of the formal symbol a. In (1.5) and subsequently, the
notation tr stands for the matrix trace of the coefficients ay(x, ).

cisely,

We are interested in the application of the notion of formal symbol to
the index theorem for elliptic operators. If A is an elliptic pseudodifferential
operator then there exists a parametriz R such that 1 — RA and 1 — AR
are smoothing operators. If further, @ and r are formal symbols compatible
with the operators A and R the following algebraic index formula holds

indA=Tr(l —roa)ly—Tr(l —aor)|y (1.6)

for any N > n. This formula is an intermediate step between the analytical
index formula

indA="Tr(l — RA)—Tr(l — AR) (1.7)

and the topological index formula due to Atiyah and Singer.
For further references let us write down the Atiyah-Singer index formula
for two-dimensional manifolds,

1 _L l -1 3 l 0/, —1 l 1 -1
1ndA—47T2/S*M6tr(a da) 2trQ (a™"0a) 2trQ (Jaa™), (1.8)
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where S*M is the cosphere bundle oriented as a boundary of the coball
bundle B*M with the orientation form

w" (d&; A dz')"
n! n!
= d& Ndx' AL N dE, N da”,

the covariant differential @ of homomorphisms a : £° — E! is defined on

sections u € C*°(M, E°) by
(Da)u = 0" (au) — ad’u,

d°, 0' being connections on K°, E', and Q° Q! are the curvature forms of
E°, E'
, B
We finish this section by a remark that the calculus of formal symbols
is a particular case of a more general calculus, called deformation quantisa-
tion, on an arbitrary symplectic manifold. Here, the symplectic manifold in
question is T*M.

2 Pseudodifferential operators

From the point of view of analysis, a manifold with a conical point is in
fact a smooth manifold with boundary (M,dM). A collar neighborhood of
the boundary is diffeomorphic to a cylinder 9M x I, where [ is the interval
0<r<l.

Typical differential operators considered in the cone theory (see e.g.

Schulze [Sch94]) are of the form

A=pP éak(r) (—r%)k (2.1)

close to the boundary, with coefficients ax(r) smooth up to r = 0, their
values being differential operators on dM of order m — k. Usually one
considers the weight factor in front of the sum with p = m but this is not
necessary, we allow any p € R. The analysis of such operators is based on
the Mellin transform which evokes a technical difficulty caused by switching
between Fourier and Mellin representations of pseudodifferential operators.
To avoid it we pass from the collar neighbourhood to a cylindrical end by
changing the variable r = ¢™", 0 < ¢ < co. The operator (2.1) becomes

et Zak(e_t) (—) ) (2.2)
prrd ot
The exponential stabilisation of coefficients as ¢ — oo is inherited from

the smoothness up to r = 0 in (2.1). The exponential weight factor ¢’ may
be included into basis sections of the bundle E! in the cylindrical charts.
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This means that we pass from the frame e;(2/,1),...,e.1(2’,t), ' being the
rank of E', to the frame

(2 1) = (2, t)e”, .. €a(al ) = e (2 1),

In this new basis the operator (2.2) becomes

In the sequel by a conical point we mean a cylindrical end Ry x OM
and exponential stabilisation of all the objects in question at t = +o00. We
assume that near the end everything has a cylindrical structure. So, vector
bundles over the end are lifted from the boundary dM, local charts have
the form U, = Ry x U’, with U’, C dM, thus resulting in the splitting of
coordinates « = (t,2'), @’ € U’,. Next, for a cylindrical chart U;, we have

pr) = peolt)p(e’),
plx) = poal(t)p (),

where (p,) is a partition of unity and (p,) the set of covering functions. We
emphasise that p., € C*(Ry) is equal to 1 close to ¢ = 400 and vanishes
close to t = 0.

Introduce the weighted Sobolev spaces H*Y(M, E) by requiring p,u €
H?*(R") for the interior charts and ¢ p,u € H*(R") for the cylindrical charts,
the norm being equal to

ulls, =22 lpwulls + 32 €™ pjully
L J

where ¢ runs over interior charts and j over cylindrical charts. For a C'*°
function wu(t,z’) of compact support in Ry x R"™! the weighted Sobolev
norm ||€”ul|; may be written as

/Rn_l /Fw(l +|R7]2 + |€]7)*

where I, = {r € C: 7 = 4} is a horizontal line in the complex plane to
be referred to as the weight line, and @(7, &) means the Fourier transform
of u(t, ') which is an entire function in 7 rapidly decreasing on horizontal
lines.

i(r, )" drd¢’

There is an embedding
Hslﬁl s H527’72

for sy > s, 1 > 72, which is compact for s; > s3, 91 > 72 (but not for
81 > 89, Y1 = 72), Hilbert-Schmidt for s; > s34+ n/2, 41 > 72, and of trace
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class for s1 > sy +n, 1 > 72 (see e.g. [FS96]). The space H™>~7 is dual
for H*" with respect to the usual paring given in local coordinates by

(u,v) :/ uvdr, for we H®", ve H™>77,

We next describe pseudodifferential operators acting between weighted
Sobolev spaces. We confine ourselves to operators which in the cylindrical
charts are independent of ¢ apart from a weight factor e’ which we always
omit including it into the frame of the bundle E' as was explained before.
For the purposes of index theory this class is sufficient.

The cone pseudodifferential operators are of the form

Au = po Aint Pott + poc Ay Poctt (2.3)

where p., € C™(Ry4) is a non-negative function satisfying p., = 0 near
t =0 and po, = 1 near t = 400, and py = 1 — po,. The operator Ay
is a classical pseudodifferential operator of order m € R in the interior
of M. The operator A, is defined by a so-called conormal symbol A.(T),
7 € I, which is a parametre-dependent pseudodifferential operator of order
m on OM. We assume that A.(7) has an analytic extension to a strip
|ST — 74| < € around the weight line and on each horizontal line in this strip
is a parametre-dependent pseudodifferential operator on M uniformly with
respect to I7 in a smaller strip |37 — 4] < ey, with ey < e. Then, A, acts
on functions u(t) € €3, (R4, C*(OM, E)) as
Au (t) = Op/(Ac(r))u (1)
= i/ e ATy a(T) dr
27 Jr,
= e " Opi( AT + 7)) € (1). (2.4)

Here we denote by Op] a standard pseudodifferential operator with
the shifted integration line S7 = ~ while the notation Op, = Op? means
that the integration line is the real axis. In both cases the symbols A. are
operator-valued functions.

It is well known, cf. Schulze [Sch94], that such operators are bounded,
when mapping from H*Y to H*™™".

The operators A, and A, in the cone theory are not independent. They
satisfy a very important compatibility condition expressing the fact that A,
arises in practice as a result of redefinition of Aj. Roughly speaking, it
means that, for any py,p2 € C2 (R4), the difference

comp
P1 Aling P2 — P1 Aw P2 (2-5)

is a smoothing operator on M and thus belongs to the trace class in the
spaces H*7. More precisely this condition can be formulated in terms of
formal symbols.
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Let a be a formal symbol of A;,. We assume that in the cylindrical
charts it takes the form

El(t7 T7 xl? 5/) = EI/(T7 xl? 5/)
€ Symb™(M;E° E").

Being independent of ¢, the symbol @ may be considered as a formal symbol
on M and we can construct a parametre-dependent operator Opans(a(7)|n)
as described in Section 1. Define a formal imaginary shift of the parametre
T by

a(r) = a(r+ihy)

= Z gma )(Z’y)k

= ¢ a(r) oe M. (2.6)

The compatibility condition in a more precise form means that, for any NV,
the difference

Rn(7) = Ac(T 4+ 1v) — Opan(a(r + thy)|n), 7€R,

is a classical parametre-dependent pseudodifferential operator of order m —
N on OM bearing the following trace norm estimate, for m — N < —n + 1,

ak
|5 BN (Dl < € (rym =i

where || -||; stands for the trace norm of the operator in any space H*(9M).
For standard pseudodifferential operators on R"~! whose symbols are ho-
mogeneous in (7,¢') outside a ball these estimates are valid but in general
we have to postulate them.

Operator (2.5) may be written as

p1 (Aine = Op (aln)) p2 — p1 e Opi( R (7)) € pa,

so, for compactly supported p; and py, both summands are trace class op-
erators in H*7, for each ~.

Denoting by C™" the class of such operators (obeying the compatibility
condition), we obtain what is called the cone algebra. Indeed, one can
verify that the composition of A € C™" and B € C'" gives an operator
BA € C*™7. In the case when the order m coincides with the exponent
p of the weight factor e’ in (2.2), this algebra was studied by the second
author (see e.g. [Sch94] and references therein). It is worth pointing out
that the cone theory deals with Mellin pseudodifferential operators near a
conical point, but the results may be easily transported to our case by the
change of variables r = e,
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3 Algebraic index theorem

In this section we consider elliptic operators of the type (2.3). Recall that
ellipticity means that the principal homogeneous symbol ag(x, €) is invertible
for £ # 0 (interior ellipticity) and that the conormal symbol A.(7) is an
invertible pseudodifferential operator on M for any 7 € I, (conormal
ellipticity).

The interior ellipticity implies that there exists a formal symbol 7 on
M such that 1 —roaand 1 —a or vanish for |£| large enough. We denote
by Rint a pseudodifferential operator on M compatible with 7 (see Section
1).

The conormal ellipticity allows one to define an operator
R, = 0p](AZ'(1)).

The operators 1 — Ry Ajne and 1 — Ay Rine are smoothing in the interior
of M (that is, being multiplied by a cut-off function p of compact support
away from the boundary of M), hence the compatibility condition for Rjy
and R., follows from (2.5). Indeed,

RW - Rint — RW (1 - AintRint) + Rw (Aint - Aw) Rint

and we see that both summands are smoothing in the interior.
We introduce an operator

R = Po Rint ,50 + Poo RW ﬁoo
e ¢ (3.1)

called a parametriz of A.
Theorem 3.1 The operators

1—RA: H* — H*,
1— AR: H®=™7 — Ho=ma

are of trace class and the following index formula holds
indA = Trpo(l —roa)|ly—Trpo(l —aor)|y
1 0
—|—2—/ Tr' reg|y_1 AZH (T +iy)AL(T +iy)dr,  (3.2)
T J—o00

for any N > n.

Let us explain the notations and give some comments. First of all, Tr’
denotes a trace on M and reg|y_; denotes a regularisation of the corre-
sponding A7!' A’ (here the prime means the derivative with respect to 7) by
means of its formal symbol as was explained in Section 1. It is important
for this formal symbol (and thus the regularisation) to be defined by the
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interior formal symbols a and r as follows. In a cylindrical chart the symbols
a = a(r) and ¥ = 7(7), being independent of ¢, may be considered as formal
symbols on M depending on the parametre 7 € R. Denote by

ar(7) = a(r+ihy),
(1) = T

the formally shifted symbols defined by (2.6). Then we must take the symbol

(7)o a/w(T) = (r(7)o &/(T))w

to regularise A7'A’. In other words,

reg|n-1 AT (7 4 i7) AT +17)
= AZ(7 i) AUT +i7) = Opan((7(7) 0 @/(7))s|n—1)- (3.3)
The cut-off function py entering into the first two terms in (3.2) is

inessential. Indeed, for two different choices of po(t), we have Apy €

Conp(Ry), so the difference of the corresponding expressions is

1

7 /OOO Apo(t)dt /_O:o dr (Tr' (1 —=r(r)oa(r)) |y — Tr' (1 —a(7) o7 (7))|n)-

But the expression in the parentheses vanishes because it is equal to the
index of A.(7) which is zero for A.(7) is invertible.

Proof. The starting point is formula (1.7). Using (2.3) and (3.1), we
obtain

1—-RA = 1- pORintﬁOPOAintpNO - pORintpNOPOOAwﬁoo
—Peo RwﬁoopoAintﬁO - Poonﬁoopokoﬁoo (3'4)

and

1-AR = 1-— pOAintpNOPORintpNO - pokopNOOPORintpNO
—PoAintPopoo Bypos — oo AnPooPoc By Poo- (3'5)
The corresponding terms in (3.4) and (3.5) differ by the order of factors.
We will transform these terms pairwise and write AB ~ ', BA ~ D if

AB — ' and BA — D are of trace class and their traces coincide. For
example,

AB ~ A'B'", BA~ B'A (3.6)
if both A — A’ and B — B’ are of trace class since

Tr(AB— A'B') = Tr(A—AB+TrA'(B—B'),
Tr(BA— B'A') = TrB(A—A')+Tr(B— B)A"

Op (por 0 po © poa o po|n) = Op (por © poal|n),
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the first pair in (3.4) and (3.5) may be replaced by another one equivalent
to it, namely

Op (por © poaln),  Op (poa o por|n), (3.7)
which is clear from Proposition 1.1.

To transform the next pair we use the pseudolocality of pseudodiffer-
ential operators. Since ppp., has a compact support in R, we may replace
po by p1 and p., by ps, each of them having a compact support in R, such
that popeo = p1p2. By p1, p2 we denote “covering” functions for pq, py still
being of compact support in R.

Let us justify, for example, the replacement of p., by py. We choose p;
so that (pee — p2)po = 0. Then

(poo - /02)AwﬁoopoRint/50

is a trace class operator by the pseudolocality property since p., — p2 and pg
have disjoint supports (details may be found in [FS96]). The trace of this
operator is 0 since
Tr (poo - /02)0150 = Tr (poo - 102)/0000150
= Trpoooﬁo(poo - 102)
= 0.

The corresponding term with the order interchanged is identically zero.
Similarly we may replace step by step po by p1, po by p1 and p., by pa.
As a result we obtain an equivalent pair of the form

P1 RintﬁlPZAwﬁ% PzAwﬁzm Rintﬁ1 .

Now, using (3.6) and compatibility condition (2.5), we replace ps A, po
by pg Ainep2 obtaining the pair

p1ERinep1p2 Ainep2,  p2AineP2p1 Binep1-
Since
Op (p17 0 paa|n) = Op (por 0 pectt|n),
we may make use of Proposition 1.1 once again to replace the latter pair by
Op (po7 © pos|n),  Op (pectt 0 por|n). (3.8)
Similarly, the third pair in (3.4), (3.5) may be replaced by

Op (peet 0 pod|n),  Op (po@ 0 pect|n). (3.9)

In the last pair the operators may be treated as pseudodifferential op-
erators on the half-axis ¢ € R, with operator-valued symbols. The cut-offs
Poo May be omitted by pseudolocality. Denote temporarily

O(t,7) = peo(t)Ac(7),
Pt,7) = puol(t)AZN(T).
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In these notations the last pair in (3.4), (3.5) is
Op/(P(t,7)) Op/ (O(t, 7)), Op/(O(t, 7)) Op{(P(L,7)).
It is equivalent to the pair
Op/(P(t, 7)o O(t,7)[n), Op{(O(t, 7)o P(t,7)|n), (3.10)

which is due to the theorem on the regularised trace of a product from
[FS96] similar to Proposition 1.1, n. 2). Here o means the symbol product
of operator-valued symbols on the shifted real axis and the subscript N
means truncation, that is

N-1 [~k akp Ak
(—2)" O"P 00
PoOlv = Z k! ork otk

k=0

Gathering all the terms (3.7)-(3.10), we obtain

1—RA ~ 1-0p(poropoa|n)—Op
—Op (peot 0 po|n) — Op
I —AR ~ 1—=0p(poaopor|n) — Op (pec
—Op (poa o pec|n) — Op/

Further,

pec AT T) 0 pocAc( )N = pocATH(T) 0 (L= po)Ae(7) |y

and similarly

PooAc(T) 0 pac AT TN = poc — pocAc(T) 0 poATH(T)| N
This results in

1—RA ~ Op(po(l —70a)n)

+0p] (pes Ae(T) © po AT (7)) = Op (pec 0 por|n). (3.12)

The first terms on the right-hand sides of (3.11) and (3.12) are trace
class operators and the difference of their traces gives precisely the interior
terms in (3.2). In the rest terms all the symbols have compact supports in
t € Ry since poopo has, so we may regard them as operators on the cylinder
R, x OM.

To feel free with the exponential weight functions let us formulate the
following lemma.
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Lemma 3.2 Let a(t,7) be an operator-valued symbol with a compact
support on Ry. Then, for N large enough, the operator
e Op; (a(t, 7)) e — Op{(e"a(t,7) 0 ™|x)
is of trace class and its trace vanishes.

Proof. This is a particular case of the theorem on the regularised trace
of a product. We take

A = Opj(e’a(t, 7)),
B = Op{(e™).

Note that e may be replaced by any function coinciding with e#* on
the support of a, which is due to pseudolocality.
.
Consider the last two terms on the right in (3.11). We will use the
notations

A(r) = A(r +1iv), TER,
for the complex shift and
a(t, 7,2’ &) = a(t, T+ ihy, o', &)
for the formal complex shift. By (2.4),
0p] (poc AT 0 poAcly) = €7 Opi(pec AT 0 podeln) €

and
€ Op (peo © poa|n) €77 ~ Op (poct™y © pody ),

the last equality being a consequence of Lemma 3.2 and (2.6). Further,
using the equality Op = Op; Opsns, we obtain finally for the last two terms
in (3.11) the equivalent expression

Op: (pee Az 0 po el = Opans(pects (7) © pods (7)Iv)) (3.13)
and similarly for the last two terms in (3.12)
Opy (e Ac 0 po AT [N = Opant (pociis (7) 0 por (7)) - (3.14)

The operators (3.13), (3.14) are of trace class due to the compatibility con-
dition, so the conjugations by e~ do not affect their traces.

The next transformation goes as follows. We carry the factor pg through
A. and a, in (3.13), thus obtaining

Op: {Opan(poc(1 — 74 0 @) 0 po|n)
—peo AT 0 [Aey pol v + Opont(peoy © [as. pol[v) . (3.15)
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In (3.14) we move p., through A. and a., as follows
prode = Apos = [Acs po]
= Ape + [Ac, pol-
This gives
Op; {Ac 0 Poo O ,00121;1|N — Opanr(@(7) 0 pos 0 por (7))
+[Aes po] 0 po AT v = Oponr([@y (), pol © pors(T)|n) } - (3.16)

Now, expressions (3.15), (3.16) are trace class operators in H*?. More-
over, expressions in the curly brackets in (3.15), (3.16) are trace class opera-
tors on dM since each operator-valued symbol is regularised by subtracting
a non-trace class part. We may change the order of operators in (3.16)
changing simultaneously the order of symbols, thus arriving at

Op: {Opan(po(l — 7 0a,) 0 poc|n)
+poA;! o [A,, ,oonN — Opanr(pory () o [ay(7), pol|n) } - (3.17)

Finally, taking traces of (3.15) and (3.17) and subtracting yields

_% /OOO dt /_O; dr Tr' (Ac_l o [AcvaHN — Opanm(ry(7) 0 [dw(r),pOHN)) .

Now,

(—i)F d*A. d* py

[Aer o] = ,; KU drkdit
. o (—iVk BFa(r) d*po
[ay(T),po] = Z L a:k Atk

o
Il
—

Integration over ¢ yields zero unless k = 1. In the latter case

e

and we obtain the desired result.

4

Remark 3.3 If a symbol a(7) decreases sufficiently fast then formal
complex shifts do not affect the value of the integral, that is

/Oo a(t)dr = /Oo a(T + thy)|n-1 dr.
Indeed, the terms of a(t + ¢hy) have the form

(i) d
)




22 The Index of Elliptic Operators

so the integration gives zero, for k large enough. This allows us to replace
expression (3.3) by the formally shifted one. When shifting by —ihy, we
obtain another expression for the integrand in (3.2) which is sometimes more
convenient,

indA = Trpo(l —7oa)|ly—Trpo(l —aor)|y
1 00
+ —/ Tr! (Ac_l(T + 1y — thy) AT 4+ 1y — ihy)|Nn-1

27Ti —00

— Opou(7(7) 0 @/(7)|n-1)) dr. (3.18)

Remark 3.4 A special case of (3.18) arises when A!(7)A’(7) is a mero-
morphic operator-valued function with finite-dimensional Laurent coeffi-
cients at poles. In this case the integral in (3.18) may be reduced to the
integral over the real axis (if there are no real poles) and a finite sum of
residues in the poles between the real axis and the weight line. This is known
as the Relative Index Theorem (see e.g. Melrose and Mendoza [MMS83]). In-
deed, for a meromorphic function a(z) with a regular behaviour as Rz — oo,
we have

o [l i) —alr ity dr = —seny Y resa(z)

2m1 oo 3z€(0,y)
so that (3.18) becomes

indA = Trpo(l —roa)|ly—Trpo(l —aor)|y
1 o0 / — / _ _t
—I—% /_Oo Tr (AC Ym)AL(T) — Opan(P(7) 0 @ (T)|N_1)) dr
—sgny > Tr'res AZ'(2)Al(2). (3.19)

3z€(0,y)

Some corrections should be made when some poles meet the real axis (see
an example in Section 5).

Remark 3.5 There exists another regularisation of AZ'A/ leading to
the so-called ‘eta’ invariant. The latter was introduced by Melrose [Mel95]
as a generalisation of the Atiyah-Patodi-Singer n-invariant. If A(7) is a
parameter-dependent pseudodifferential operator on the boundary dM, we
denote by Tr A(7) the following number. For N large enough, the derivative
AWN(7) is of trace class and Tr' AM(r) has an asymptotic expansion in
negative powers of |7| as 7 — +oo. Hence it follows that

T T T
In(T) = / dny /0 Yo /0 T AM)(r) dr (3.20)
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also has an asymptotic expansion in negative powers of 1" up to a summand
pi(T) + pa(T)log T, where p; and p, are polynomials. Then Tr A(7) is, by
definition, the constant term in the asymptotic expansion of (3.20). Clearly,

Tr A(r) = /_Z Tr' A(7)dr

for each trace class operator A(7) with sufficiently fast decreasing trace
norm. In these notations formula (3.18) becomes

indA = Trpo(l —7oa)|ly—Trpo(l —aor)|y
1
+—Tr AZN7 + 1y — ihy) o AL(T + 47 — ihY)|n_1

27
1
T Opanr(r(r) 0 (7))
(3.21)

The second term on the right-hand side of this formula is usually denoted
by $n(A) and n(A) is called the n-invariant.

4 Two-dimensional case

For the two-dimensional case formula (3.21) admits further simplifications.
We use here direct tiresome computations which can not be generalised
to higher dimensions. Nevertheless the result seems to be of interest for
it shows the structure of the index formula in terms of leading symbols
(interior and conormal). Besides the Atiyah-Singer integral (1.8) and the -
invariant our formula contains an additional term non-vanishing in general.
It has a structure very similar to the Wodzicki non-commutative residue.

Theorem 4.1 [fdim M = 2, then formula (0.3) holds.

To work on a manifold, we need an invariant symbolic calculus. In
general such a calculus is given by deformation quantization. Fortunately,
for n = 2, we need a few first terms, so the full calculus is not needed.

Any symbol may be described locally by means of its coefficients

Ags A1y ...y

where only ag behaves like a function, or globally by means of its principal
symbol ay and subprincipal symbol *

.8@0 0 7 62a0

TSN E T 3 0g0g,

% &

INot to be confused with the common notion of subprincipal symbol in partial differ-
ential equations.
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which also behaves like a function (see Section 1). It is easy to verify that

if

- .Oag 0b,
aOb:aobo+h(—Zagia—aﬁ+aobl+albo)—|—...,

then for the subprincipal symbol we have the following rule

(EL 0 7))1 = —Zgz_o vzbo + Cloi)l + Ellbo (41)
where % %
ibo = = + = T5.6 + oo — boI'?
V.bg axl—l_afj ]ka—l- 2 0g ol;

1s the so-called covariant derivative.
Under changes of variables V;by behave like coordinates of a covector.

We introduce also %
Vby = d¢; a—g + da' Vb,

K3

the so-called covariant differential. 1t is a function on T*M with values in
Hom (EO, El) @ AL

We will not go further into invariant calculus combining the local ap-
proach with the invariant one. So, we start with the local expression

w2

(tr(1 —roa)ly—tr(l —aor)|s) 5

4m?
As we know, it does not depend on the coordinate system giving a

density on M. We have
.0rg 0a
(1 —fod)|2 =1 —T0a0—|— (lagja—x?
1 827“0 82610 n ,87“0 6@1 ,87“1 6@0
- —— 4 -+ - — oy — T — T'aa
206,06, 0x'dxl | 06 x| 9 gt 02 T
and a similar expression for (1 —aor)|. Taking the difference of traces, we

see that the terms not containing derivatives cancel, whence

— Tody1 — 7“1@0)

tr(l —roa)ly—tr(l—aor)|
itr 87“0 8@0 . 87“0 6@0
. 87“0 8@1 87“0 8@1 . arl 8@0 87“1 6@0
ot (a@» 0l o a@») ot (a@» ot o a@»)
1 827"0 82610 827"0 82%
ot (a&a@ 9ida  0w0wi D6DE, ) (42)

Q =

The first term may be rewritten as
8 aao

0 0% 9, O
Zaf' rro@xi Zaxi rroa&.

K3
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Being multiplied by w?/2 it gives
id (tr (rodag) Nw) = —id (tr (droag) Aw).

Similarly may be transformed the second and the third terms on the right
in (4.2). The last term may be rewritten as

lit 87“0 62a0 _ 827“0 8@0 _li 87“0 82610 _ 827“0 8@0
206 \ 91 06,07 0&,0 Oz ) 20x \ Oz 0&;0x;  DEDE; Dl

Multiplying by w?/2, we get

1 Ore . { Oag Jdro\ Jag
(e (e (5e) - (5) ) )

Thus,
%
Q- =d(frw) (4.3)
where
~ : 1 0 0 0 0

Now we would like to switch to invariant objects in (4.3). As for the
exterior differential d in front, it is globally defined provided f is an one-
form. But this is not the case, and we have first to examine the contributions
of non-invariant terms.

The first term 7 tr rodag is invariant. The second one may be written in
the form

1 tr (fldao — droal)

1 627“0 k azao k
87“0 1 6@0 0
+tr (a& I';dag — drg 7, Fi) ) (4.4)

where the first summand is invariant. Finally, the last term in (4.3) be-
comes globally defined if we replace the derivatives in 2! and differentials
by covariant ones,

1 6@0 87“0
§tr (Vﬂ"ov (a—é_]) — V (a—é_]) V]ao) .

Applying V to dag/0E;, we take into account that dag/JE; behaves like a

vector, and so V means a covariant differential of the vector field.
Examining the contributions of the non-invariant terms at a point z¢ €

M, we introduce geodesic coordinates centered at o and the frames in E°,
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E! parallel along the rays since the result is independent of coordinates. In

these coordinates all the Ffj, I'? and T'! vanish at x¢ and their derivatives

define curvatures:

ork. 1, . A
axlj = 6 (Rijl + Rm) )
oo 1

i = _5 Q?j(xo))v

or'! 1

=~ (o)

Since Ffj(:po) = 0, the contribution of the second term in (4.4) is equal
(up to a constant factor) to

02 9%aq
fr ( ¢, REydat A dag + dro A . RE ,dx)

9&0¢; 9&0¢;
0%ry Oag 8r0 0%ag w?
B ( 5608, 8 i + g, agae )7
o 0 (aro 8@0) ¢ R w?
& \9&; 0¢ i
0 Oro dag w? Org dag
~ o (a—fﬁf’f ) o a—@ﬁm ’

the last summand being zero since the convolution RZ]l vanishes. On the
other hand, the first summand does not contribute either because for large
¢ we have 79 = ag' and thus

_1 8@0 6@0 Rk

traO ag] Ay ag 15l

rafj o !
— 0,

the last equality being due to the fact that Rfﬂ is antisymmetric in 7, /[.
Hence the first summand gives 0 after integration in &, for it is a complete
derivative of a function with compact support.

Now the contribution of the third term in (4.4) is

1 87"0 . 8 j
5 (e o e i)

1 1
== —§trdr0/\ﬂl /\dao — §trdr0/\da0/\ﬂo.

Here we may replace d by V since they differ by terms containing dz'. So,
the final contribution is

1
—5 dtr (T()Ql A Vao + Tovao A QO) .
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We next show that the replacement 9/dx’ by V; in the last term in
(4.3) gives no contribution. For example, consider a term

8 aao
dtr |'V; d A
(5o gm)(3e) =
The difference V; — 9/d2’ necessarily contains connection coefficients T'9,
I'? and Ffj. Let us take the term with I'}, that is

ao 1 aao
dtr I rgd ANw=—1tr0Qd Ad A
s (a@) @ = gt datre (a@) “

in the center xg of a special coordinate system. But

8 aao
dz* A d Aw = da* N ———deF A
! (a@) @ =N g

for j # k, and this gives zero since Q]lk is antisymmetric. Precisely the same
reason goes for the other terms. Moreover, it shows that d and V may also
be replaced by each other.

The final expression of (4.3) in the invariant form is

w2
Q7 = d{itrTOVao/\w-
1
—|—Z tr (F1Va0 — vroal) ANw — 5 tr (T()Ql A Vao + Tovao A QO)

1 dag dro
—|—§tr (Vﬂ“ov 7t Vag V; ao) /\w}. (4.5)

Having disposed of these preliminary steps, we can now return to the
inner term in the index formula which is

1
4n? JBm
where B*M is the coball bundle || < 1. The boundary of B*M consists of

two parts, namely S*M and B*M restricted to dM. The application of the
Stokes formula gives two summands.

2
w
Q?v

First, we consider the integral over S*M and show that it is precisely
the Atiyah-Singer integral (1.8). Indeed, we have ro = af, on S*M. Using
(4.1) for @ and 7 and equating it to 0, we obtain

.8@0
e

_1(V Clo) 61 —|— aofl —|— &1a51 = 0,

whence
. -1~ -1 _y Jao
= —ag aiag — tag 7,

ag* (Viao)agy
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Substitution this into (4.5) shows that the subprincipal symbol d; vanishes
and the remaining terms are

L 0a
itrag! Vag Aw + trag? B %o ay (Vjao)ay ' Vag A w
j

1
—3 tr (aalﬂl A Vag + a51Va0 A QO)

1 aao aa_l
—tr [Vag'V=—"—-V—-"LV.ao| A
—|—2 T ( e af} af} ao) w.
Now
dat [ Oag B Jdag\ _ _,Oag
V agj —QOIVQO% 855 L IV(a@)aol—l—aola@aOlV%a !

which leads to the cancellation of the terms with second order derivatives
in

da
tragy’ 650 ay' (Viag)ay'Vag A w
J
1 aao aa_l
—tr [ Vjay'Vor = V—2Vao | A
—|—2 r( e ag} ag} ]ao) w
1 1 0a . Oa
= §tr (ao afj%lv Aoty Wag— %lagj% 1Va0aolvjao) Aw

1
=5 tr (ag'Vao)®.
It remains to observe that
itr ay'Vag Aw =1d (tr (a51Va0)§jdxj) )

so it contributes to a boundary term under integration. Thus, the integral
over S*M is (we suppress the ‘wedge’ product)

41? /S*M —% tr (aEIQIVao + aEIVQOQO) + étr (a5'Vag)?
which is equal (up to a sign) to the Atiyah-Singer integral.

The boundary dM for n = 2 is a circle, so all the bundles and connec-
tions are trivial. Hence, the coefficients ag, ay,... of the formal symbol a
are functions on T*M |55 and their covariant derivatives coincide with the
usual ones. We use global coordinates x,¢, 7, where € R (mod 27) and
£, 7 € R. The result of our computation may be written in the form

Trpo(l —7oa)ls—Trpo(l —aor)|y = AS(A)
S*M
1

_R/B*M| itrrodag A w + i tr (ridag — droay) Aw
aM

1 87“0 8 87“0 8@0
—|— tr (a—x@_§(dao) d ( 65) ) Aw+id(tr (rodag)éde).

(4.6)
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The integrand in the second integral is zero for large r = /&2 + 72.
Indeed, for » > 1 we have ro = a5’ and, as we have seen, the integrand
coincides with the Atiyah-Singer form which is now a constant multiple of
tr (agdag)® since Q° = Q' = 0. Taking into account that a¢ is a homogeneous
function for r > 1, we obtain

tr(ag'dag)® = tr (mr_ldr + dalddo)B
= tr (dalddo)S + 3mr~ldr A tr (dalddo)z
= 0.

Here we have put ag = r™ag, so that dy depends on two variables and thus
(ag'dég)® = 0 while tr (a5 ' dag)? = 0 for any matrix-valued function do.

The second integral may be extended to all of M x R? We would
like to represent it as a trace of a formal symbol on OM = S! integrated
over 7 € R. To this end we observe that d may be replaced by dr A d/d7
everywhere in (4.6) but the last term since other differentials enter into the
form w = d& A dx. The second integral in (4.6) becomes

57 / dT—/ {tr (roag) + tr (riag — roay)
L t (87“0 day  Orf aao)

dx 0¢ o0& Ox

i aﬁ (tr (%—5) 5) - ag<tr<roao>§>}dfdac. (4.7)

The integrand may be represented as

s(x, 6, 7) = tr T(T)O.ELI(T)M

and we rewrite integral (4.7) as

/ dr Tr' Opan(s(z, €, 7))

i

(recall that I has compact support). The index formula (3.18) becomes

ind A = AS (A / dr

S*
Tr! (AC (14 iy — Zh’)/)A/C(T + 1y — thy)|1 — Opam(r o @'y — 3)) .
(4.8)
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0 67“0 , 0 1 dro a
Oz ao 8_5 roagé + 2o

aao Org dag
(o545 (5e50) - o)

(4.9)

The symbol

rr)od(nli-s(r) = -

may be regarded as a new regularisation of the operator
ATHT +iy = ihy) AT + iy = ihy)h
. . . d . .
= AZN T+ i) AUT + i) — iy (AT (7 i) AL i)

This new regularisation is in a sense canonical since the behaviour of the
symbols a and 7 inside the ball » < 1 does not affect the result. This
property may be seen directly from (4.9) because all the terms involved are
complete derivatives.

In Remark 3.5, we have introduced another canonical regularisation
given by the functional Tr. The two regularisations differ by

1 —
57 Tr Opon(s — T oa|y)

and this expression may be computed easily using (4.9). The terms of the
form (9/9€)(+) or (9/dz)(-) are annihilated by Tr while Tr (9/97)(-) can be
computed by Proposition 6 of [Mel95]. In the notation of [Mel95],

1
= Tr Opon(s — T oa|y)

B 1 — 8 ) 87“0 8@0
== —% Tr OpaM (tr (Toa—g) §—|— —tr 8—58— tr Toal)

1 / 1t aroaa0+ ) =t
=—— —tr ——— F1trrea
Am? Jsixr o0& Ox o

dédz.
T=-—1

For further references let us write down the index formula for n = 2 in

detail,

. 1 1 1 _ _
ind A = ] /S*M gtr (aytdag)® — §tr (aolﬂl A dag + aolaaoﬂo)

1 = _1 . 7 . . d _1 . 7 .
45T (Ac (r 4+ i) Al +i9) = iy == (A7 + i) AL + i)

1 1 aao _laao . -1
An? /SlxR (2 tr (ao 65 6:1;) rtrdy al)

Remark 4.2 Note that formula (4.10) being homotopy invariant implies

- d¢de.  (4.10)

T=-—1

that it extends to all symbols a(t, 7) exponentially stabilising when ¢ — oo.
In this case the boundary values in (4.10) are a(7, 00).
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5 Examples

In this section we consider the Cauchy-Riemann operator on a complex
plane C treating the point at infinity as a conical point. Even for this
simple operator the additional term in (4.10) may be non-trivial. Although
all the bundles are trivial over C, the trivialisations and connections may
be chosen in different ways. Our goal is to observe how these choices affect
the three terms in (4.10). So, we consider two cases:

1. the Cauchy-Riemann operator from functions to (0,1)-forms,

0:u dzg—:;

2. the Cauchy-Riemann operator from functions to functions,

Near z = oo we introduce new coordinates
(=t+1ip, teR,, ¢ €R (mod2r),

setting z = €.

Case 1.

We take the global frame 1 for E° and dz, d( as local frames in Uy =
{|]z] < 2} and U,, = {R(¢ > 0} for E'. In these frames we have

0 .0
A = a_x —|— Za—y,
ap = (¢ +in)
in Uy and
J .0
A = a —|— Z%,
ap = (T +10),
Alr) = 1 (T + %)
in U,,. Thus,
9\
A = (r )
D
Case 2.

We take again the global frame 1 for E° and 1, e™* as local frames in

Uy and U, for E* = E°. Again we have

0 L 0

Z ;=
oz oy’
ag = (& +1n)

A =
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in Uy, but

A(T) = e (T + %)

in U,,. Then, just as in Case 1,

AT A7) = (7’ + %) R , (5.1)

and so in both cases the np-invariant term is the same.
The functions ¢, k € Z, form an orthonormal basis of eigenfunctions
of (5.1) with eigenvalues

M(7) = (7 +ik)7T,

provided that 7 # —ik for & € Z. The conormal ellipticity holds for weight
lines I', with v ¢ Z.

To compute Tr AZL A consider

d (o]
T (AZNP)AUT)) = = X (r+ik)7
dr .
= 7 — cothnr.
T

The first integration gives m coth 77. Next, if v < 0, then

. T
Tr (Ac_l(T + i) Al(T + Z’y)) = Th_r}{)lo . 7 cothm(r + 1y)dr
T +imy
= lim coth z dz

T—oo J—xT+iny

= —2min — w4+ 2mey

where n is the number of poles of coth z in the strip Sz € (0,7v). This
may be seen by integrating over the contour which is the boundary of the
rectangle with vertices —nT', 7T, —7T' + twy, 7T + 1wy and with removed
small disc centered at the origin. The principal value of the integral over
the interval (—7T, 7T vanishes since coth z is an odd function.

The second term under Tr functional gives

<
—iy /_Oo il cothm (7 + iy)dr

= —2my.

TF (i 47 e 4 i)+ )
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Thus, the whole n-invariant term is equal to — (n + %), for v < 0. In
general, this term is equal to — (n + %) sgn .

Consider now the interior term. The form tr (ay'dag)® vanishes iden-
tically since aj'da is a scalar 1-form. Thus, the interior term vanishes in

Case 2 since Q% = Q! = 0 in this case.

In Case 1 the interior term is

1 d(&+in) 4
_8?/5»%75“77 O, (5.2)

where the orientation is defined by the form dé A dz Adn Ady on T*M. We
first change the orientation form to dé A dn A dx A dy and then compute the
integral of the first factor in (5.2) obtaining

L / Ol
AT M
with the orientation form dx A dy = dt Adp. Introduce connection forms I},

I'L in Uy, U, for the bundle EY = A% ie., define covariant differentials of
the frames dz in Uy and d( in Uy,. In Uy we set

d(dz) = (dpo)dz + d(,{ooefi) ¢
= (dpo + d(pooec)e_c) dz,

so that

[y = dpo+d(pect)e™
= poo dC.

Similarly, I'!. = —pg d(.
It is a simple matter to see that these forms satisfy the usual transition
rule for connection coefficients. Then

0l = dy
dz,
dpos N dC
= —idpe N dy,

L/ gL
47 Jm 2’

Finally, let us compute the additional term in (4.10). The lower order
symbol a; vanishes in both cases. Moreover, in Case 1 the whole additional

whence

term is zero, since ag does not depend on x.
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For Case 2 we have

S )
472 Js1 S 2) 7 +1i0

= ded L [y
F=—1 ot = m/o S0/—001—|—0'2 o
|

So, we obtain

indd = ind—

For v < 0 one can easily recognise the classical Liouville theorem for
entire functions. Indeed, the inclusion u € H*?Y with v < 0 implies that
lul < Ce™ as t — oo, or |u| < Clz|™". If u € kerd, then, by the
Liouville theorem, it is a polynomial of degree not greater than [—v], and
dimkerd = [—7] + 1. The cokernel in this case is empty (as is always the
case for differential operators and v < 0).
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