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Introduction

The quantization of canonical transformations of smooth symplectic manifolds be-
ginning from classical work by V. Fock [7] plays an important role in the theory of
differential equations. The corresponding operators can be used, for instance, in the
microlocal analysis (investigation of normal forms of Hamilton functions), for reg-
ularization of a wide class of partial differential equations, in different geometrical
questions, e. g. in the Lefschetz theory (see, for example, [4] — [13], [15] — [17],
[19], [23] — [26] and the citations therein). Therefore, it is natural to expect that
quantization of canonical transforms for manifolds with singularities also will be an
important tool for the theory of differential equations on singular manifolds. The
simplest and rather well investigated model of singularities is a singularity of conical
type, and in this paper we work out the theory of quantization of canonical trans-
forms on manifolds with singularities of conical points!. In doing so, it is important
to answer the following questions:

o What is the cotangent bundle of a manifold with conical singularities?

!The exact definition of objects in question will be given below.



e How to describe the structure of canonical transformations (that is, structure-
preserving mappings of the cotangent bundle) near the singular points?

e What do the quantized transformations look like?

e How to define the notion of conormal symbol (which is a usual attribute of
operators acting on manifolds with conical singularities) for these transforma-
tions?

All these issues are touched in the present paper. In a different context, some of
these questions were studied by Melrose [13] who considered a manifold, M, with
boundary dM and the ring of pseudodifferential operators generated by the set of
vector fields everywhere tangent to the boundary. Geometrically, this leads to the no-
tion of the compressed cotangent bundle T*M, which turns out to be adequate in the
conical situation as well (essentially, the cotangent bundle of a manifold with conical
singularities is the compressed cotangent bundle of the blow-up of this manifold).
Melrose also considered (homogeneous) canonical transformations of the compressed
cotangent bundle and the corresponding Fourier integral operators. However, the
spaces in which his operators act are quite different from the spaces H*7, natural in
the theory of differential equations on manifolds with conical singularities. Melrose’s
spaces are spaces of distributions that behave regularly along the boundary in the
sense that the operation of restriction to the boundary commutes with the action
of the operators in question. That is why the notion of conormal symbol, which is
crucial in dealing with operators on manifolds with conical singularities, is absent
in Melrose’s paper.

Our paper is organized as follows. It consists of two chapters. In the first
chapter, the symplectic geometry of the cotangent bundle of a manifold with coni-
cal singularities is considered and general (not necessarily homogeneous) canonical
transformations are studied. Their structure near the singularities is described, and
generating functons are constructed. In the second chapter, the corresponding quan-
tized objects (we shall call them Mellin—Maslov integral operators) are considered.
The notion of conormal symbol is defined. The main properties of these operators
are stated and their proof is outlined.

1 Symplectic Geometry for Manifolds with Con-
ical Singularities

In this section we deal with some of the main notions of sympletic geometry (viz.
the cotangent bundle, canonical transformations, and generating functions) as they



appear in the theory of manifolds with conical singularities. We do not discuss
Lagrangian manifolds other than graphs of canonical transformations (even though
this might be an interesting topic), as they will not be needed in the sequel.

1.1 Manifolds with conical singularities and their cotan-
gent bundles

What do we actually mean by saying that M is a manifold with conical singularities?

This notion is widely used in literature (e.g., see [3, 14, 20] and the literature), and

various forms of the definition occur; to recall it, we proceed in the spirit of [22].
Let us first give some motivation. Recall that o € M is a conical point if

i) M\{a} is a smooth manifold in a neighborhood of « (which does not contain
other conical points).

ii) The point « has a neighborhood U homeomorphic to some cone
K =([0,1) x Q)/({0} x ), (1)

where  is a compact closed C'* manifold, the factorization implies that all
points of {0} x  are identified into one point (referred to as the cone vertex),
and the image of the point a under this homeomorphism is just the vertex;
moreover, the restriction of this homeomorphism to U\{a} is a diffeomorphism

of U\{a} onto K= K\ {the vertex}.

iii) M is equipped with two “structure rings,” one of functions and the other of
differential operators. While outside the conical points these rings consist of
smooth functions and differential operators with smooth coefficients, respec-
tively, they can be described as follows in the neighborhood U = K. Let
(r,w) be local coordinates on K such that r € [0,1) and w = (wy,...,w, ),
n = dim M, is a system of local coordinates® on Q. Then we deal with smooth
functions f(r,w) € C*([0,1) x Q) (smoothness up to r = 0 is required!) and
with differential operators®

1 1
A 22 0 .0 ANANCAY
H=H |r w, —ig e | = Z apo(r,w) <ZTE> <_Za_w> (2)

kt]o|<m

2To simplify the notation, in the following we use the same notation for points w € Q and their
coordinate representations w = (wq,...,w,_;) in some local chart on 2. This will not lead to a
misunderstanding.

3Throughout the following, we use the conventional notation of noncommutative analysis ([12];
see also [18]): the numbers over operators (Feynman indices) denote the order of action of these
operators.



with smooth coefficients ag,(r,w) € C*(]0,1] x Q).

While the requirement of necessarily having the point « attached is here only to

conform with geometric intuition (actually, we always deal either with [C;’ or with
the blow-up K" = [0,1) x Q of K), it is condition i) that is the most essential:
it exactly describes the classes of smooth functions and differential operators we
are going to deal with. Note that our requirment on the operators (2) is in fact a
requirement on their symbols

H(r,w,p,q), S [07 1)7 pEc Rl, (W,Q) eT"Q

they must be polynomials in (p, ¢) with coefficients in C'*(]0,1] x Q). Moreover, if
we intend to consider pseudodifferential operators, then the requirement that H be
a polynomial must be replaced by appropriate growth conditions as |p| + |¢| — oc.

Although in the theory of manifolds with conical singularities one locally deals

A 1 1
with Mellin (pseudo)differential operators H= H (72“,(421, ird/or, —i@/@w), re R,
1 1
rather than with usual p.d.o. f (72“,(421, id/0r, —i@/@w), the principal symbols
H(r,w,p,q) of these operators still can be interpreted as functions on the cotangent

bundle T [O( However, in this case r and p are no longer the standard (Darboux)

canonical coordinates on 1™ K. To preserve the characteristic property

U([ﬁhﬁz]) = —i{Hy, Hy},

where

A A o . aHl 8H2 8H1 8H2
U([HlvHQ]) = {—T ( ap or - or ap ) + {HlvHQ}T*Q}v (3)

A A
is the principal symbol of the commutator of the operators H; and H, with prin-
cipal symbols Hy and Hy, {H;, Hy} is the Poisson bracket, and {Hy, Hy}p+q is the

standard Poisson bracket on T}, we must take the symplectic structure in the form
5 1

w” = ——=dp ANdr + dq A\ dw. (4)
r

This can be verified by straightforward computation, but it is perhaps easier to make
the change of variables r = e~*, which reduces ird/dr to —id/dt, the symplectic
structure to the standard form

W =dp A\dt +dg A dw, (5)



and the Poisson bracket to the conventional expression

oy 0H,  OH,0H,
{Hy, Hy} = op ot T ap + {Hy, Hy}req. (6)

We see from (4) that the symbols of Mellin pseudodifferential operators are

smooth functions on the compressed cotangent bundle T*K" (this notion was in-
troduced by Melrose [13]). Recall that the compressed cotangent bundle T*N of a
C'* manifold N with boundary 9N is invariantly defined as follows. Consider the
C*°(N)-module Vect (N) of vector fields on N everywhere tangent to dN. The dual
module Homeeo (ny(Vecto(NV), C°°(V)) is a locally free C'*°(N)-module and hence is
the module of sections of a C'> vector bundle over N, which is denoted by T*N. We
shall write T7*K instead of T*K". Globalizing, we define the compressed cotangent
bundle of a manifold M with conical singular points «, ..., ay by

M e

where M” is the blow-up of M over all the conical points oy, ..., ay.
Thus, when dealing with a manifold with conical singularities, we deal with two
important rings of functions, namely, the ring

C(M) = € (M)

and
def

C(T*M) = C=(T*M").
The symbols of Mellin pseudodifferential operators belong to the latter ring.
Throughout the paper, we shall use two representations of a manifold with conical
points in a neighborhood of each of these points. The first representation is the
conical one. We represent the manifold in a neighborhood of the conical point as a
cone

K =([0,1] x Q)/ ({0} x Q)

with base ) a smooth compact manifold without boundary. Consequently, the
coordinates near the corresponding point are (r,w), where r € [0, 1] and w are local
coordinates on . The second representation (which is in a lot of cases preferable)
is the cylindrical representation

K = ([0, 400] x Q) / ({00} x ),

where the corresponding cone is replaced by a cylinder with the help of the variable
change r = ¢7" (the coordinates on ! remain unchanged).

The standard symplectic form on T*M in these coordinates is given by formulas
(4) and (5), respectively.



Remark 1 Note that in the conical coordinates, the symplectic form (4) is singular
at r = 0, whereas the Poisson bracket (3) is not.

Remark 2 In the cylindrical coordinates, the elements of C*°(M) and C*(T*M)
can be described as functions exponentially stabilizing to functions independent of
tast — oo.

Lemma 1 The rule
(0,w,p,q) = p (7)
determines a well-defined function p : 0T*M — R' on the boundary of the com-

pressed cotangent bundle (in other words, the value of p is independent of the choice
of the standard local coordinates near the conical point).

Proof. Any admissible change of coordinates in a neighborhood of a conical
point has the form

r=rA(r,w), ' =B(rw), (8)

where A(r,w) and B(r,w) are C* and A(r,w) > 0. To evaluate the effect of (8) on
the variables (p, ¢), we proceed to the cylindrical coordinates, where the symplectic
structure has the standard form (4) and hence the momenta (p, ¢) are trasformed
by the well-known rule. We have

t'=t—InA(e™" w), ' =B w).

The Jacobi matrix of this transformation at ¢ = oo has the form

0A 4-
J B a(t/7CU) B 1 — (.(JA 1
a a(t7w) t=o00 B O %—B 7
w
and consequently, for t = oo we have
. 1 0
(#)=n(3)- (2)-()
¢ g 9B\ | \q A
- (%)

where the asterisks stand for the entries whose value is inessential to us. Thus,
p' = p, which proves the lemma.



1.2 Canonical transformations and their conormal fami-
lies. Generating functions

In this subsection we consider structure-preserving mappings of 7*M, that is, canon-
ical transformations. Homogeneous canonical transformations were considered ear-
lier in [13], and we study their counterpart in the true (nonhomogeneous) symplectic
situation. Furthermore, we introduce the notion of the conormal family of a canon-
ical transformation and study generating functions of a special form; both issues
were not touched in [13] (the notion of the boundary transformation dy introduced
there corresponds to the value of the conormal family at p = 0).

Definition 1 Let (M,{ay,...,ayx}) be a manifold with conical singularities. A
canonical transformation of the cotangent bundle of M is a smooth diffeomorphism

g: T"M — T"M 9)
of manifolds with boundary (in particular,
g(T*M)=T*M and ¢(@T"M) = dT*M,
where 9T*M =T*M — T* ]\04 is the boundary of T*M) such that
gw =uw?, (10)

where w? is the symplectic form on T*M (recall that it has the form (4) in the
special coordinate systems near the conical points).

Clearly, away from the fibers over the conical points, ¢ may be an arbitrary
canonical transformation in the usual sense. Let us consider the structure of ¢ near
some conical point o € M. It is obvious from the definition* that ¢ sends the entire
“fiber” of T*M over « to the “fiber” over some (possibly, the same) conical point
B € M. In the special coordinates, we have the transformation

g: T"K — T"K, (11)

where K = [0,00) x  (since ¢ is a differomorphism, it follows that the bases of
cones at o and 3 are necessarily isomorphic). Furthermore, ¢ is given by smooth
functions

ZE( W, P, ))_ rpl(rvvavq)v

ryw,p,q),

) (12)
n(r,w,p.q),

p
W
<
U

“We consider the case in which the bases of the cones are connected.



where (p, 1, £, n) are the standard conical coordinates on the second copy of T*K,
and has the property

dé N d dp N d
g*<—§A p+dnAd%>:——pA " 4 dg A dw. (13)
P
We can restrict ¢ to the boundary
IT"K =R, x T*) (14)

of T*K; this restriction is given by the mappings

£ =£(0,w,p,9),
W =1(0,w,p,q), (15)
n =n(0,w,p,q).

The last two lines in (15) define a family of mappings
o(p): T = T (16)

depending on the parameter p € R'. (By Lemma 1, this definition is coordinate-
independent).

Definition 2 The family g(p) given by (16) is called the conormal family of the
canonical transformation (9) at the conical point o € M.

Theorem 1 (a) For each p, the mapping (16) is a symplectomorphism of T*().
(b) The mapping £ = £(0,w, p,q) has the form

{=p+te, (17)

where ¢ = ¢(g,a) is a constant independent of (p,q) and depending only on g. It
will be referred to as the conormal shift of g at the conical point o € M.

Proof. We pass to the cylindrical coordinates and rewrite (12) in the form

T—tJEX( ) w})?,q),

=1, w,p,q),

¢=¢(ew,piq), (18)
77_77(6 7w7p7Q)7

where
X = —1Inpy. (19)

9



(We have p; > 0, see Lemma 2 below).

To simplify the calculations, we introduce some notation. The independent vari-
ables are (t,w,p,q). Let d be the differential with respect to all the variables, d’
the differential with respect to (w,p,q) with ¢ fixed, and d” the differential with
respect to (w,¢) with ¢t and p fixed. Furthermore, the bar over a letter indicates the
restriction to £ = +o00 (r = 0). In the cylindrical coordinates, condition (13) has the

familiar form

dE Ndr +dn ANdp =dp ANdt 4+ dg A dw.
Let us evaluate the left-hand side of (20) using (18). We have
dr = (1 —e7'x,)dt + d'x,
dé = —e7,dt + d'E,

dip = —e pdt + d',
dn = —e_tmdt + d'n,

and consequently,

dé Ndr + dn A dw
= {(1 = e )+ el x + i€ — i dy} A d
+dENd Yy +dypANdE.

By equating this with dp A dt + dg N dw, we obtain

d'é+ e d X + npd € — X, d'E —1bpd'n] = dp,
dENd Y +dnNdy =dgA dw,

whence it follows that _ _
d¢=dp, {=p+ec
(we assume that (2 is connected), and furthermore,

dENdY +di A dyp = dg A dew,

or

dp Adx + di A dip = dg A dw.

(20)

(21)

(25)

(26)

Equation (24) proves (b). Let us now further evaluate (26). We have (from now we

omit the bars for brevity; all calculations pertain to {r = 0})

dy = xpdp + d"x,

10



and similarly for n and . Thus, by (26), we have
dp ANA{d"x + nyd"b — ,d"n} + d"'n A d" = dg A dw,

or
d"y + npd”?vb N @/)pd”n —0
and

d"n Nd"p = dg A dw. (27)
Equation (27) just means that (a) is satisfied. The proof of Theorem 1 is complete.

Let us now proceed to a more informative description of the canonical transfor-
mation g.

In classical symplectic geometry, it is known that any canonical transformation
can be locally described by a generating function [1]. Here the lemma about the
local canonical coordinates is important. However, we unfortunately cannot directly
apply this lemma here, because the symplectic form itself has a singularity as r — 0.
Hence, we must state and prove this lemma separately.

Lemma 2 (canonical local coordinates on the graph of g) Let a canonical
transformation (11) be given, and let

(07 77Z)07 507 770) = g(oawoapo, QO)

Then there exists a subset I C {1,...,n—1} such that the functions (p,1,n7,p,q),
where I ={1,...,n—1}\I, form a system of local coordinates on the graph of ¢ in
a neighborhood of the point

zo = (0,0, po, 903 0, 0, {0, 10) € graph g C 17K x T™K (28)

Proof. First, note that the function pq(r,w,p,q) in (12) does not vanish for
r = 0. Indeed, we have

D(p,¥.&m) _ ( D(@b,f,n))

0 Nt
7 D(r,w,p,q)

+ O(r) (29)

r=0

"'D(w,p,q)

by virtue of (12). Let L = graphg. We claim that the differentials dp, dp and dg
are linearly independent on L at zo. Indeed, suppose that

edp—~dp+ 6dqg=0. (30)

By (12), we have
dp = prdr 4+ rdpy, (31)

11



and since r = 0 at zp, we can combine (30) with (31) to obtain
eprdr+vdp+6dg=0 (32)

at zo. But the differentials dr, dp, and dg are linearly independent on L, since L
is the graph of a smooth mapping. Taking into account the fact that p; # 0, we
obtain ¢ = v =6 = 0, as desired. Now let [ C {1,...,n — 1} be a maximal subset
such that the system
(dp = prdr,dipy, dp, dq)

is linearly independent on L at z,. Then (p, 1,77, p,q) is the desired coordinate
system. Indeed, let us fix p and p; then (d”¢y, dq) is a maximal linearly independent
system in (d"t,dq). By the standard lemma on local coordinates [11, 15], applied
to the canonical transformation ¢(po), it follows that the system (d"¢;, d"ng, dq) is
linearly independent. Hence, so is (dp, di'r, dng,dp, dg), and the proof of the lemma
is complete.

We can now descibe generating functions. For simplicity, we first consider the
“nonsingular” case (I = )); the result in the general case is similar, except that the
notation is more complicated. In the nonsingular case, the generating function, S,
depends on the variables (p, 1, p, ¢), and the transformation itself is defined by the
implicit equations

& =053 (0,00, 9)
pap PP, 4q),
aS
U W(pv ¢7p7 Q)v
r = exp <_%_g(p7¢7p7Q)> )

wz%%m¢mﬂ)

(33)

(the easiest way to obtain (33) is to pass to the cylindrical coordinates and use the
standard formulas known in symplectic geometry).

Let us try to find a function S(p,,p,¢) so that the transformation defined by
(33) coincides with g. To this end, let us solve the first pair of equation in (12)
for (r,w) as functions of (p, 4, p,¢) (which is possible in the nonsingular chart) and
substitute the result into the second pair of equations in (12). Then we obtain

r=pl(p,2,p,q),

w=G(p,,p,q),
{=p+c+pH(p,¥,p,q), (34)
n=1(p,%,p,q)

(in the equation for ¢, we have taken into account Theorem 1, (b)), where F, G, H
and [ are smooth functions, F' # 0).

12



The generating function, by virtue of (33), must satisfy the Pfaff equation

ds —§dp+nd¢+wdq—lnr-dp
P

_<p:C+H> dp—(In p+ ®)dp + I dyp + G dg, (35)

where ® = In F' is a smooth function. Of course, the integrability of (35) is guaran-
teed, since (12) is a canonical transformation. It readily follows from (35) that

S(pybypyq) = —(p+c)lnp+ Si(p,e,p, q), (36)

where 57 is a smooth function; moreover, for each fixed p the function S1(0,%,p, ¢)
is a generating function of g(p), where {¢g(p)} is the conormal family of ¢.

Likewise, for “singular” charts (I # (), the canonical transformation is defined
by a generating function of the form

Sf(pqubbnfvpvq) = _(p—l_ C) lﬂp + SII(PM/’I?U%P?Q)- (37)

Let us study the following question. Under what conditions does a function of the

form (36) define a canonical transformation? The answer is obvious. It is necessary
that the Jacobian D(&,n)/D(p,q) be nonzero:

D(&,n) ! pazgl pazgl

L pop POq

a) det 25, 723, # 0. (38)
Jpap dPpdq

Note that for p = 0 we have

2
— det a Sl(oqubv}%Q)

D(p,q)|,—o goag 7" (39)

which agrees with the fact that the function S1(0,, p, q) determines the conormal
family of canonical transformations

g(p) : T°Q = T7Q,

depending on the parameter p.
Using (36), let us rewrite (13) in the cylindrical coordinates

t=—Inr,w,p,q; 7= —1np,¢,€ﬂ7-

13



We obtain the following formulas:

oS

{ = p+c—€_76—;(6_77¢,pm,
no= aa—?(e‘ﬂb,pm,

t = T+aa—i1( LU0, ),

w = %—?(e‘ﬂb,pm-

Similar formulas hold for singular charts (1 # 0). Specifically, let Si(p,¥r, 17, p, q)
be the generating function of ¢ in a singular chart of type I, I # (). Then

Sf(pqubbnfvpvq) = _(p + C) lﬂp + Sl[(pqubfvnﬁ}%Q)v

where Si; is a smooth function. Moreover, the formulas describing the canonical
transformation read

oS 0511
fz_pa—l(pqubbnﬂ}%Q)Ep—l_c_ a (pqubfvnjvpv )7

a5 a5
r = exp ( o —L(p, %1, 17, s )) =p-exp (— a;I(p,@bz,nf,p,Q)) ,

oS
nr = aJI(p7¢Ivn17p7 )7

08,
77Z}I - 877[ (pqubfvnlvpv )7

0511
w = aql (pqubfvnjvpv )7

or, in the cylindrical coordinates,

—785 -7
f:p—l—c—e a;l(e 777Z)1777T7P7Q)7

oS
=71+ a;I(e_TquvanTv}%Q)v
05y
nr = 877;[ (6 777Z)1777T7P7Q)7

14



oS

¢T: - 8771;(6 777Z)1777T7P7Q)7
oS

- aqll(e_q—qubbnfv}%Q)'

w =

In the intersections of the charts, the generating functions of different types are
related by the Legendre transformation [1]. For example, in the intersection of the
nonsingular chart and the chart of type [ we have

def
Sp =8 —npbp, iy = Y nak,
jel
where both sides are understood as functions on I = graph g.
Let H € C*(T*M). Then corresponding Poissonian vector field

is defined, where { -, - } is the Poisson bracket. In the standard canonical coordinates

(x,&) on T ]\04, this is juct the Hamiltonian vector field
V(H)= H:0, — H,0k,

whereas in the conical coordinates (r,w,p,¢) near a singular point we have

OH 0 OHoO OH o0 0HO
VIH)=—r——+4+r—5+ ————— ——.

dp Or Jr dp  0dq dw  Ow Oq

Of course, in the cylindrical coordinates we have the usual Hamiltonian expression
for this field, but with regard to the special behavior of the coefficients of H as

t — oo:

(40)

8H8+_t8H8+8H8 0H 0

=— 4 ' ——F—— — ——.
dp Ot or dp  0dq Odw  Ow Oq
Consider the phase flow {¢];} of the field V(H). This is obviously a one-parameter

V(H) (41)

family of (generally, local) diffeomorphisms of 7™ ]\04 preserving the form w?, i.e., a

one-parameter family of canonical transformations of 7 Af. But what is the bound-
ary behavior of these transformations? The following important theorem shows that
the class of transformations we consider in natural.

Theorem 2 The phase flow {g};} consists of canonical transformations of the com-
pressed cotangent bundle T*M .

Proof. Using the conical representation (40), we see that the field V(H) is
smooth up to the boundary on T*M and that the d/dr component of this field
vanishes on dT*M, whence the desired assertion follows readily.

15



2 Quantization

In this section, we deal with asymptotic quantization on M (e.g., see [10, 19]). We
introduce appropriate Sobolev spaces, rewrite the definition of a pseudodifferential
operator so as to involve the small parameter h, and finally introduce Mellin—Maslov
integral operators on M and state the boundedness and composition theorems. The
construction of these operators is very much parallel to the construction of Fourier
integral operators in [13]; however, the central point in our exposition is the notion
of the conormal symbol of a Mellin-Maslov integral operator, which is lacking in

[13].

2.1 Weighted Sobolev spaces with small parameter h

Let M be a compact manifold with conical singularities {aq,...,an}. By ]\04 we
denote the smooth part of the manifold M, that is, the complement in M of the set
{ag,...,an}.

The operators considered in this paper will act in weighted Sobolev spaces
H;7(M), where h — 0 is a small parameter. These are defined as follows. Let

v:qa,...,an} = R

be a given mapping (the weight exponent vector). Let s € R. For a function u on
M, the norm ||u||s~ is defined with the help of a partition of unity

N
e;j()=1, x € M,
7=0
where eg(2) = 0 in a neighborhood of the set {aq,...,ay} and each function ¢;(x),

J = 1,..., N, is supported in a neighborhood U; of «; where the local conical
representation

UiN\aj} =(0,1) x Q;
is valid. We set

N
[lull2, =D llejullz,.
i=0

where ||egu||s~ = ||€ou||s is one of the (equivalent) norms on the usual Sobolev space

H; (M\ U;V:l Uj> (say,

92 s/2
Jeau =/‘(1 i)
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in local coordinates, see [15]), and ||ejulls~, j = 1,..., N, is defined as follows in
the conical coordinates (r,w) € (0,1) x Q;:

2

s/2
o 9\ dr
shlay) = /T 2v(ay) (1 + (Zh?“g) + h2A0J> €;u 7

L2(Qy)

llejulls, = llejulls

Here Agq; is the positive Beltrami-Laplace on §2; with respect to some Riemannian
metric. For sections of a vector bundle® E over M, the spaces H;” (M, E) are now
defined in an obvious way.

2.2 Symbol spaces and 1/h-pseudodifferential operators.
The 1/h-Mellin transform

We shall consider operators that are usual 1/h-pseudodifferential operators outside
a neighborhood of a conical points and that can be represented in the form

1 1
~ 22 0 .0
A = A T,W,Zh?“ E,—Zh a—w,h

in the conical coordinate system (r,w) near each conical point. We consider the
following symbol spaces ¥™#* = Y™#(T*M x [0,1]). Outside a neighborhood of
the conical points, any symbol H(x,p, h), where (z, p) are canonical coordinates on
T*M, must satisty the estimates

1D DY o, p, h)| < Coph(1 + [p|?) VD72 (42)

and be representable in the form

(z,p, h ZW z,p) + Ry(z,p, h)

for any integer N. Here the function Ry(x,p,h) must satisfy the estimates (42)
with m replaced by m + N 4+ 1. Near each conical point, in the conical coordinates

(r,w,p,q), where

0
Ev q < _Zha_wv

5A vector bundle over M is defined as a vector bundle over M”.

p > ihr

17



the symbol H(r,w,p, ¢, h) must satisfy the estimates

R
are dwP dpv 0¢°

H(r,w,p,q,h)‘ < Capnah(1+ [p|* + |q*)=PIEED2 - (43)

and possess the expansion

N
H(rvvav q, h) = Z hu-l_ka(rvvav q, h) + RN(ravav q, h)? (44)

k=0

where Ry satisfies the same estimates with p replaced by g+ N + 1, for any integer
N.

Lemma 3 If H € X" then

1 1
~ 9, 0
H= H(%,(z),lhr E, —1h a—w,h> . HZ’O — Hz—m,O (45)

is a continuous operator for any s € R, and®
HHHS,O—>s—m,O S Ch#«

The proof does not differ very much from the proof of a similar statement (see
e.g. [20]).

To ensure boundedness of H in weighted Sobolev spaces with v £ 0, we must
require the symbol H to be defined and satisfy (43) and (44) on the line

{Imp = hv}.

This is obvious in view of the fact that the multiplication by r” is an isomorphism
between H;" and H;" and the fact that

0 0
i ON O
r <zhra >r = zhrar + th, (46)

7

so that the argument p of the symbol undergoes a shift by ¢h~. Note also the
following obvious formula for the operator

H: H" — H™™".

5Unless otherwise specified, all constants in the estimates are independent of h.
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One has

1
73 _ 2 ., 0
[Hu](r,w) = ./\/lh;H(r,w,p, —1h a—@)/\/lfwu, (47)
where .
: d
M Sl = [P0 pe L= (mp=ta), (49

0

is the (h™*, v)-Mellin transform of a function f, and ./\/lglw is the inverse transform,
given by
1 1 ~

ML Ay =y [ F (), (19)

By virtue of the isomorphism (46), we can always reduce the case v # 0 to the
case 7 = 0, which is assumed in the sequel.

Lemma 4 (the composition formula) [If H; € ¥™# ¢ = 1,2, then Hyolly =
H

, where

1 1
0 ., 0

H(r7w7p7q7 h) — Hl <7%7u2j7p+lhr E7q_ Zh a_w7h

)(Hz) c Zm1+m27ﬂ1+u2‘

The proof is a standard exercise in noncommutative analysis (cf. [21]).

The notion of the conormal symbol [20] is generalized to h™'-pseudodifferential

A
operator in the standard way. Let D be a pseudodifferential operator on M. Thus,
in the conical coordinates we have

7

1
D=D (? @'hrdi>, (50)

where D(r,p) is the operator-valued symbol of D (with values in the algebra of
h~1-pseudodifferential operators on Q). The operator family

Do(p) = D(0,p) (51)

is called the conormal symbol of the operator D given by (50).
The conormal symbol can be obtained in the following special way.
Let Uy, A > 0, be the operator acting on functions of r by the rule

Uxf(r) = f(Ar); (52)

19



then U;' = Uy-1 and

d d
U/\O<—Z'T%>OU/\_1:—Z'T%, UAoroUA_lz)\r. (53)

(Note that in the cylindrical coordinates U, is represented by the translation by
In A). Then

1

) A2 0O 1 A LodY Lo d
8- /1\1{{(1) UsD |r,ih o Ui =s- ;E?)D()\r,zhr%) = D(O,zhr%>
-/ d -
= Dy zhr% = M; " o Do(p) o My, (54)

where Do(p) is the conormal symbol, Mj, is the 1/h-Mellin transform, and s-lim
stands for the strong limit in Hom (H*"(K) — H*™™7(K)) (here m = ord D and
K is the model cone).

2.3 Quantizations of canonical transformations

Let
g: T"M — T"M

be a conical transformation of the compressed cotangent bundle T* M, and let a €
Ce(T*M) be a smooth compactly supported function (note that this condition
requires neither that supp a N IT*M = () nor even that a = 0 everywhere on T*M).
Under an additional condition, we intend to define an operator T'(g,a), associated
with the pair (g, a), in the Mellin-Sobolev scale H*°(M).

Let

LQ

{(pc&mropig) € T7(0.1] x Q) x 17(0,1] x ) |
(p0. &) = g(raw,p,Q)}
be the graph of ¢, and let
7t Ly — T7([0,1] x Q)
be the projection onto the 7th factor, i = 1,2. We set

a= rla. (55)
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Thus, @ is a function on L,.
The manifold L, is Lagrangian in T*M x T*M with respect to the 2-form

~2 %k 2 * 2
W =T — W,

where w? is the standard symplectic structure on the compressed cotangent bundle
T*M. We impose the following condition.

Condition 1 The manifold L, is quantized ([11], [15]).

Condition 1 is necessarily satisfied if, for example, ¢ = ¢gj; for some 7 and some
Hamiltonian H € C*>(T*M).

If Condition 1 is satisfied, then Maslov’s canonical operator K7y, ([11], [15]) is
well defined on Lg; for any ¢ € C5°(L),

(Kr,e)(x,y), (v,y) e M x M

is the kernel of some integral operator acting on M. We define T'(g¢, a) as the integral
operator with kernel (K7, E)(:L',y). Outside a neighborhood of the conical points,
this definition is quite standard; let us write out the expression for T'(g,a) for the
case in which supp @ is contained in a chart of type I near the conical point (as is
usual in the theory of Maslov’s canonical operator, the global definition is readily
patched from local ones with the help of the partition of unity technique). Let
St(p,r,n7, p, q) be the generating function of ¢ in that chart.

We express @ via the nonsingular canonical coordinates (p,r,n7,p,q) on the

graph of ¢ and write a=a (p, 1,7, s q).
Then the operator T(g,a) acts on functions u(r,w), (r,w) € [0,1] x Q as follows:

1 i (n+[I]-1)/2 ' N
[T(g,a)u](p,;/)) — ( > // G/ WS1(pbrmgp.a) gl g (p,;/),p,q)

2h \ 27 h
D _ 1/2
: (%) (€7¢17UT7P7Q)a(p7Q) dpdq dnT7 (56)

where

: (n-1)/2 F
~ ¢ dr i —(i/h)qw
U(paq) = —<ﬁ> /T/dw{rp/he (i/h)e U(fbw)} (57)

0 R»
is the 1/h-Fourier—Mellin transform of u(r,w) and the argument of the Jacobian is
chosen in the way prescribed by the construction of the canonical operator. Let us

~ (D(&Uu%))m .
D(p,q)

write
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for brevity. We can rewrite T'(g, a) as the integral operator with the kernel

[((97!1)(/)7 ¢7 r, w) = [((pv ¢7 r, w)

L\ T2 ' '
— (_) // yoplh ST pbrsmg ) —awt ]
27 h

b(p, 1,07, p,q) dp dg duyg, (58)

where the integration measure for this kernel is, of course, dw dr /r rather than dw dr.
Using the explicit form of the generating function S7, we can rewrite (58) as
follows:

1 " _ ip/h . .
K(p,¥,r,w) = (ﬁ) + [1]/2 //(%) ? p—w/he(l/h)[Su(/wzm;m)—qw-l-wyn;]
-b(p, 1,07, py q) dp dg diyy. (59)

Let us now state the main properties of the operators T'(g,a). In the following
theorem, ¢, g1 and ¢, are arbitrary canonical transformations of T*M, a,a,a; €

Coo(T*M) and H € ¥™9(T*M).
Theorem 3 (a) The operator
T(g,a): HO(M) — (M)
is continuous uniformly with respect to h € (0,1] for any s and k.

(b) For any ¢1, g2 a1, and asz, there exists a function a € C5°(T*M x [0,1]) such
that

T(glv al) o T(927 a2) = T(917927 Cl) + O(hN)

for any N > 0, where O(h") stands for an operator whose norm in the pair
of spaces (H*°(M), H**(M)) is bounded for any s and k. Moreover,

a=(gya1)-az+ O(h).

(c) [f]/—} is a 1/h-pseudodifferential operator on M with principal symbol H, then

A

H oT(g,a) =T(g,ar) + O(h")

for any N, where
a; =g"(H)-a+ O(h).
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(d) We have
T(g, )T (g, az) =a +O(h") (60)

for any N, where the symbol a of the pseudodifferential opemtora is compactly
supported and satisfies

E: Elaz.
In (60), the asterisk denotes the adjoint operator in L*(M) = H*°(M).

(e) If H is a real-valued function for which the Hamiltonian flow is globally well
defined, then there exists a function a; € C5°(T*M xR,) such that the operator

Ut = T(.g;'{.gv at)

satisfies the Cauchy problem

—ih%—l— ﬁ Uy = O(™) for any N,

Ut|t:0 = T(g7 Cl).

Proof. All these assertions are well known for the case in which M is a C'*
manifold, and so they follow automatically once the support of the amplitude a of the
operator T'(g,a) in question has an empty intersection with 97*M. Thus, it suffices
to carry out the proof for the case in which suppa lies in a small neighborhood
of 9T*M. Moreover, we can assume that suppa is small enough to ensure that
only one canonical chart is involved in the definition of the canonical operator. To
simplify the exposition, we assume that this is a nonsingular chart, that is, I = 0.
Thus, T'(g,a) is an integral operator with the kernel

4 1 ! r w/h —1c 7 —qw
K (pv ¢7 r,w) = (ﬁ) // (;) P /he( /R)S1(p b pa) = b(p, ¢7p7 Q) dp dQ7 (61)

where b(p, 1, p,q) is a compactly supported function. Let us proceed to the cylin-
drical coordinates by setting r = ¢~*
we denote by the same letter)

1 \" . . . .
K(r,¢,t,w) = (ﬁ) // e/ p(r=1) J(i/h)er (i/R)Si(e ﬂb,p,q)—qwb(e—77 W, p,q) dpdq.
(62)

, p=e¢ 7. Then we arrive at the kernel (which

Set
(p, ¥, p,q) = Silp, ¥, p,q) — q¥. (63)
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Then it is obvious from (62) that T'(g,a) can be rewritten in the form

1 1

2.2

: Zi2 1 - 2 2 0 0
T — oli/me(e™ w,—ihdfot,—ihd /o) +etly [ =t 5 _in L i ] 64

Let us prove (c). Let

o o
&, —ih—, —ih—

. 2
b=n 9
t ol o

Y

be a 1/h-pseudodifferential operator; then, by virtue of the composition formulas
for functions of noncommuting operators [12, 18]

Smbl ([:] oT(g,a))

1 1
= H %7é7p - Zh%’ q B Zha% e(l/h)[©(6_t7W7p7q)+Ct]b(e_t7w?p? q)
_ e(z/h)[q)(e_t w,p,g)+ct]
1 1
d 0P a 09
x H %,uzj,p +c— zha + e—ta,q — Zha_w + o be™" w,p,q).

By expanding this in power of % in the standard manner, we obtain (c¢); moreover,
we can readily obtain the subsequent terms of the expansion, i.e., continue the
expansion to an arbitrary high power of h.

To prove (e), one solves the Cauchy problem asymptotically in the standard way
[11].

Now items (a), (b), and (d) can be proved by the Cauchy problem method as
follows. Any canonical transformation ¢ can be locally included in a family {¢'} of
canonical transformations such that ¢' = ¢ and ¢° = id (see [16, 15]). Let H be
a Hamiltonian such that ¢gi; = ¢' in a sufficiently large ball and H = 0 outside a
larger ball (the size of the interior ball is chosen so that it includes supp ((¢*)*a) for
all t € [0,1]). Then it is easy to construct an amplitude a; € C5°(M), t € [0,1], so
that

Uy =T(g" a")

satisfies the Cauchy problem
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for arbitrary large N.
Now (a) follow by the method of energy inequalities: it follows from (62) that
IT(g,a)||r2 can be estimated by const h~", and from (65) we obtain

L0 e
— ih (07 0) = O(Y). (66)

Hence,

U:Ut — &8&0 —|— O(hN),

and the boundedness of T'(g,a) = {7, in L? follows from the boundedness theorem
for Mellin pseudodifferential operators. The proof of (b) and (d) can readily be
conducted by the same method.

2.4 The conormal symbol of a quantized canonical trans-
formation

Let T(g,a) be an operator on M. We intend to define the conormal symbol of
T(g,a) at a conical point o € M.
Consider the function family a(p), p € R, on T*Q given by

a(p)(w,q) = a(r,p,w,q)‘TzO, (w,q) € TA. (67)

Furthermore, let ¢g(p) be the conormal family of canonical transformations asso-
ciated with ¢g. Then the family

T(p) =T(g9(p),a(p)) (68)

of operators on  will be called the conormal symbol of the operator T(g,a).

Proposition 1 Suppose that the conormal shift of g is zero ”. Then

s-1im U \T(g, G)U/\_l = Mffl oT'(p) o My, (69)

A—0

where T'(p) is the conormal symbol of T(g,a) and My, is the 1/h-Mellin transform.

Proof. The proof is by straightforward computation. We have

(Tlg.a)l(p ) = [ Kip.rhutr) =0, (70)

“The conormal shift was defined in Theorem 1.
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where the kernel K(p,v,r,w) is given by (59) with ¢ = 0. Then for the kernel
K\(p,1,r,w) of the operator U\T(g,a)U;" we have (in the nonsingular chart)

Ki(p.v,rw) = Ap,@/}w w) (71)

K(
o i/MS1 (Ao p ) =
= 1(Ap,,pyg wq
o (i/R)[S1(0,,
1(04:p.0)= dpd
(%h) //() U6(0,4,p, q) dpdg,

which readily proves (69). In the charts of general type (I # (), the computation is
similar.
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