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1 Introduction

In the present paper, we suggest a Lefschetz formula for endomorphisms of elliptic
complexes defined on manifolds with conical singularities. The corresponding for-
mula for smooth manifolds was for the first time obtained in the famous paper by
Atiyah and Bott [2]. This paper occured to be of a great interest and the number
of works devoted to Atiyah-Bott-Lefschetz theory at present hardly can be evalu-
ated. A new methods for proof of Atiyah-Bott-Lefschetz formula were presented,
this paper was generalized in different directions, etc. We list here only some papers
of the above mentioned type. This is a paper by Gilkey [9], where the heat equa-
tion approach to the Lefschetz theorem was developed, the papers by Bismut [3], [4]
(probability approach), the papers by Fedosov [7], [8], as well as by Sternin-Shatalov
[21], [22] (semiclassical approach). Note that in the latter of the listed papers one can
find an elementary proof of the semiclassical Lefschetz formula for endomorphisms of

elliptic complexes obtained by quantization of arbitrary canonical transformations®.

Tn contrast to “classical” Atiyah-Bott-Lefschetz formula which was proved for the so-called
geometrical endomorphisms of complexes (see [2]).



Needless to say, the classical Atiyah—Bott-Lefschetz formula is a special case of this
general theorem. We also want to indicate the paper by Brenner-Shubin [5], where
the Lefschetz formula for manifolds with boundary is established and which, by the
way, contains a good review on this topic and rather full a bibliography.

As was indicated in the preceding, in the present paper we obtain the Lefschetz
formula for manifolds with conical singularities. Elliptic theory for such manifolds is
presently well developed (e.g., see Schulze [16] and the bibliography therein). Hence,
the problem of evaluating the Lefschetz number in this situation is quite natural.

Let us indicate the main feature of our theory. The Lefschetz formula in this
situation is given by a sum of contributions of the interior part of the manifold (which
has the standard Atiyah-Bott form) and the contributions of the singular points.
The latter are expressed in terms of analytic families, namely, the conormal symbol
of the elliptic operator and the conormal symbols of the operators constituting the
endomorphism of the complex.

A preliminary version of this paper was published as a preprint [13].

2 Preliminaries

For the reader’s convenience, here we briefly recall some well-known definitions and
statements concerning manifolds with conical singularities and (pseudo)differential
operators on such manifolds. A detailed exposition of these and related topics can
be found elsewhere (e.g., see [16, 17] and the literature cited therein).

1. We start with the geometrical definition of a manifold with conical singulari-
ties.

let € be a compact closed ("> manifold of dimension dimQ =n — 1. A model
cone with base § is, by definition, the set

K = Kq = ([0,1) x Q)/({0} x Q).

The points of K will be denoted by (r,w), r € [0,1), w € ©; note that for any w € Q,
the pair (0,w) represents the same point of K, namely, the vertez. We also consider
the sets .

K=1(0,1) xQ

(the cone with vertex deleted) and the blow-up
K"=10,1) x Q
of K, where the vertex is blown up to produce the boundary 0K ~ Q.

Now we stand on the viewpooint of ringed spaces.



On K, we consider two structure rings, namely, the ring

o= (K) € oo (g

of smooth functions of r € [0,1) and w € Q and the ring Diff(K) of differential
operators of the form?

1 1

~ 2 2 0 0
D=0D r— i
r,w,zrar, Zaw

with coefficients in C°°(K)?. The essential point here is the fact that the elements of
Diff(K') are Mellin (or cone degenerated) differential operators with respect to the
variable r; in other words, the differentiation d/dr occurs in these operators only in
the combination rd/dr.
Note that . .
C*(K)C C*(K),  Diff(K) C Diff(K),

where Diff( /() is the ring of all differential operators with smooth coefficients on K.

Definition 1 Let M be a Hausdorff space, and let {aq,...,any} C M be a finite
subset. One says that M is a manifold with conical singularities {aq,...,ay} if the
following conditions are satisfied.

(i) The set M=M \ {a1,...,an} is a C° manifold.

(ii) Two subrings, A C COO(]\}) and B C Diff(]\y), are given (in the following
we use the notation A = C*(M) and B = Diff(M)). These rings admit partitions
of unity subordinate to any locally finite cover of M such that each point «;, 7 =
1,..., N, does not belong to the boundary of any element of the cover. Moreover,
for any open set U C M such that

Un{ay,...,an} =0,

one has

C=(M)| =C>(U),  Difi(M)| = Diff(1).

(iii) For each j = 1,..., N, there exists a neighborhood U; C M of «;, a closed
compact C'* manifold {1;, and a homeomorphism

iU, — K (1)

?To simplify the exposition, in the following we sometimes use the same notation for points
w € §; and their coordinate representations w = (wq,...,w,_;) in some local chart on €2;. This
will not lead to a misunderstanding.

3The numbers (Feynman indices) over operators indicate the order of their action; see [11, 14]



of U; onto the model cone K; with base 2; such that the restriction

W U\ {o;} —K;

’ Ui\{a;}
is a diffeomorphism and

1 (C(M)) = C*(K;), ; (Diff(M)) = Diff(K;)
(the left-hand sides of these equations are well defined since ¥;[y)\(a,} is a diffeo-

morphism).

In the neighborhood U; of the conical point «;, we shall use either the conical
coordinates (r,w), r € [0,1), w € Q;, or the cylindrical coordinates (t,w), where

1
t=1In-€ (0,400l
r

Let M be a manifold with conical singularities {aq,...,an}. We can apply
the blow-up procedure to each of the points «;, y = 1,..., N, using the homeo-
morphism (1) and the blow-up defined for the model cones. Thus, we obtain the
blow-up M”" of the manifold M. Note that

N

(the disjoint union) and that C*(M) = C*(M").

We refer to the ring Diff(M) as the ring of Mellin differential operators on M.
The principal symbols of Mellin differential operators on M are well defined on the
compressed cotangent bundle T*M” (see [12]). We write

7 M e g

The compressed cotangent bundle is a special case of a vector bundle over a manifold
with conical singularities. Specifically, we adopt the following definition.

Definition 2 Let M be a manifold with conical singularities {a, ..., an}. A vector
bundle over M is a vector bundle over the blow-up M”".

2. Let M be a compact manifold with conical singularities {aq,...,an}. We
intend to define Mellin pseudodifferential operators on M. These operators, as well
as Mellin differential operators, naturally act in weighted Sobolev spaces. To define
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these spaces, let us first consider the case of a model cone, K, with base . Let
s € Rand v € R. For any u € C§°(K), we define a norm ||ul|;. by setting

s/2 2

o\ dr
2 _ —2 N
HuHs,'y - /T (1 + (Zrar> + AQ) u " )

L2(Q)

where Ag is the positive Beltrami-Laplace operator on 0 (with respect to some
Riemannian metric).

To define weighted Sobolev spaces on M, we assign some weight v, to each conical
point «;. Thus we obtain the weight exponent vector

¥ =1, N)

We write 3, = y(ew), it =1,..., N.

Now the norm || -||s~ of the weighted Sobolev space H*Y (M) is defined as follows
with the help of a partition of unity. In a neighborhood of each conical point
a;, we use the norm || - ||s(a;) on the corresponding model cone, while outside a
neighborhood of the set of conical points, any of the (equivalent) usual Sobolev
norms || - ||s defined on a smooth manifold is used. The space H*7(M, E), where E
is a vector bundle over M, can now be defined in an obvious way.

3. Now we are in a position to define pseudodifferential operators. The con-
ventional approach, which goes back to [10], is to define them modulo infinitely
smoothing operators. However, this is not appropriate for the aims of the present
paper, since we intend to compute traces, which do depend on the smoothing part.
Therefore, we give a definition which is not explicitly invariant in that it involves
a partition of unity subordinate to a cover of M by coordinate neighborhoods but
has the advantage of defining a unique operator rather than an equivalence class
modulo smoothing operators.

Let M be a manifold with conical singularities {aq,...,an}. Consider a finite
cover of M by coordinate neighborhoods,

M= 0, (2)

where U, is a conical coordinate neighborhood around «;, y = 1,..., N, and the

U;, 3 > N, are some coordinate neighborhoods on ]\04 Thus, for 1 < 5 < N, the
coordinates on U; are (r,w), r € [0,1), w € ;, and for j > N, the coordinates on

U, are just local coordinates (x1,...,2,) on M.



We suppose that a; ¢ U for j # k. Let {e;}_; be a €' partition of unity
subordinate to the cover (2), and let {f;}7_; be a collection of ' functions such
that

fie;j =e¢5, suppf; CU;, j=1,....p.

We consider operators of the form
~ p ~
H=>"fiHe,, (3)
7=1

where the [/:;Tj are mth-order pseudodifferential operators defined in local coordinates.

More precisely, for j > N, the [/:;Tj are usual pseudodifferential operators,

1

~ 0
=0 r,—i—]|, (4)

X

with symbols H;(x,q) belonging to the classical symbol space S™ (R x R}) [10];
for 1 <j5 < N, the [/:;Tj are Mellin pseudodifferential operators,

1

~ ~ [2 . d
H] = Hj T,ZT% 9 (5)

where ﬁj(r,p) is an operator-valued symbol with values in the algebra of pseudod-
ifferential operators on (1; and satisfying the estimates

_mlal P H;

s 7P S Cags, (6)

He(y)—H*(%;)

(149" + Ag,)

a,f=0,1,2,..., s € R, for r € [0,1] and p € L,y = {Imp = v(e;)}. (Needless

to say, the operator H; can be further specialized as

1 1
~ 22 . 0 .0
H] :HJ T,W,ZTE,—Z a_w
if we choose some system of local coordinates (wy,...,w,—1) on §;; here the symbol

H; belongs to the space S™(T*Kj).)



Proposition 1 (see [16]) The operator (3) is bounded in the spaces
H : H (M) — H*™ (M)
for any s € R.

Note that the consideration of Mellin pseudodifferential operators in the spaces
H*"(M) with given v can always be reduced to the case in which

y(a;) =0, i=1,...,N.

First, consider the local situation. Let s € R and v € R. The multiplication by r?
is obviously an isomorphism between H*°(K) and H*"(K), where K is the model

cone. Next,
1al 1al
r T H 72“,ir— P =0 72“,ir— +y |,
dr dr

so that after applying this isomorphism, we must require the estimates (6) to be sat-
isfied for the newly obtained symbol on the real axis. The globalization of this trick
is perfectly easy: one takes an arbitrary nonvanishing function ¥ on M such that
o = (%) near aj, j = 1,...,N. Then the multiplication by # is an isomorphism
between H*°(M) and H*7(M).

Now let us recall the notion of the conormal symbol [16] of a Mellin pseudod-
ifferential operator on a manifold with conical singularities. Let M be a manifold
with conical singularities {aq,...,ay}, and let D be a Mellin pseudodifferential op-
erator on M. Then the conormal symbol of D at a conical point «; is the family of

pseudodifferential operators on (2; defined as follows. Near «;, we can represent D

1
~ ~f2 d
D=D 7 —
(T.?Zrdr)? (7)

where D(r,p) is the operator-valued symbol of D (with values in pseudodifferential
operators on ). The conormal symbol is defined by

in the form

o~

Do(p) = D(0,p), pe€R". (8)

This definition is, in fact, coordinate-independent.

4. In conclusion, let us recall the definition of an elliptic differential operator on
a manifold M with conical singularities.



Definition 3 ([16]) Let D be an mth-order differential operator on a manifold M
with conical singularities {aq,...,anx}. One says that D is elliptic if the following
conditions are satisfied: .

(i) D is elliptic in the usual sense on M= M \ {aq,...,an};

(ii) the conormal symbol Djo (p) of the operator D at each conical point a; is an
elliptic family with parameter p in the sense of Agranovich—Vishik [1] in some sector
containing the real axis.

It is well known that then ﬁjo(p) is finite-meromorphically invertible, that is,
ﬁjo(p)_l is a meromorphic operator family with finite-dimensional principal parts
of the Laurent series at the poles, and moreover, there are finitely many poles of
Djo(p)~" in each strip [Imp| < c.

Furthermore, it M is compact, then for any weight exponent vector + such that
the weight line £.(,,) does not contain poles of Djo(p)_l, the operator

D : H' (M) — H*™(M)

is a Fredholm operator for any s € R. This can be proved by conctructing a regu-
larizer; we shall use a regularizer of a special form in Section 4.

3 Statement of the Results

1. Let M be a compact manifold with conical singularities {1, ..., ay}, and let Fy,
Es, ..., E} be finite-dimensional vector bundles over M. Suppose that we are given
an endomorphism of an elliptic complex on M (see [15]), that is, a commutative
diagram
DY k-1
0 —— M7 (El) ., eee —w HsTma—eemmEo1yy <Ek> — 0
Ty T,
Dt DF-1
0 Hs (El) . Hs—mi—mme—1yy <Ek> 0



whose rows are (one and the same) elliptic complex on M. Then, as is usual in

Lefschetz theory, the operators Tj act on the cohomology H’ <D>, and one can
define the Lefschetz number L <b, T) by

k
L <D,T> = Z(—l)j_lTrace Tj

i=1

HI(D)

Our goal is to compute the Lefschetz number for the case in which all the Tj are
geometrical endomorphisms induced by some diffeomorphism of M.

We recall that for the case in which the manifold in question has no singular
points, this problem was already solved long ago [2]. Since the relationship between
the fixed points of the diffeomorphism in question and the Lefschetz number is of
local nature, we shall be interested mainly in the contribution of the conical fixed
points.

2. For simplicity, we consider only short complexes of the form

A

D
0 15 (E) Hs=m (F) 0
Tl TZ
D
0 H* (E) Hs=m (F) 0

. (10)
where D is an elliptic operator on M.
The definition of the Lefschetz number for the diagram (10) becomes

— Trace T .
Ker D Coker D

L <D,T> = Trace T}

In the diagram (10), the Tj are geometrical morphisms, that is,

(Tu) (2) = 4 (2)ulg (@), (11)

where

g: M - M



is a mapping of the underlying manifold and the A; () are bundle homomorphisms,
and z is a point of the manifold M. Since M has a special structure near the
singular points, the mapping ¢ must preserve this structure, and we shall describe
the structure of this mapping in detail.

Since the structure ring of the conical manifold near a conical point is the ring
of functions F(r,w) smooth in both variables up to the point = 0, it follows that
each conical point is necessarily taken by ¢ to a conical point, and we see that ¢
must be given near any conical point o by the expressions

M =rA(r,w),
g { W= B(r,w), (12)

where the function A (r,w) # 0 and the mapping B (r,w) are smooth up to r = 0,
or, in the cylindrical representation,

g { t'=t+a(etw), (13)

W =b(ehw)

with the same smoothness requirement on the functions a (r,w) and b(r,w). Let us
introduce the following definition.

Definition 4 The transformation ¢ given by (13) is said to be nondegenerate if

(i) for any interior fixed point = = g(x) EZ\OL one has
det (1 — g.(z)) # 0;
(ii) for any fixed conical point a = g(«), one has either
a(0,w) > 0forallw e (14)
(then the fixed point is said to be attractive), or
a(0,w) < 0forallwe (15)
(then the fixed point is said to be repulsive).

Clearly, a nondegenerate transformation has at most finitely many fixed points.
Note that the mappings (11) can be rewritten as the Fourier—Maslov integral
operators [11, 14] with the local expression



where @ = (r,w), or, in a more detailed form,

A 2, ERPA WERANY
Ti=A;letw|exp |al|etw 57| P b|etw M ,Jj=1,2, (16)

where ?)(e_t,w) =b(e" w) — w.

We define the conormal symbol of the operator (11) at the point o by
1

ia((),u%)p} exp ?)(O,u%)a% , g =1,2.

2

Tio(p) = A, <O,w> exp

3. Now we are in a position to state the main result of the present paper.

Theorem 1 Let the mapping g be nondegenerate. Then the Lefschetz number of
the diagram (10) has the form

L <D7 T) — Econe + Einta

where

T A - T A
Lo Z race Ay () race Ay ()

[det (1= g. (@) (17)

[e]
r=g(x)EM

is the usual Lefschetz contribution of interior fived points, and

Econe - Z Eoz

oz:g(oz)EM\]\%

is the sum of contributions of conical fired points. Here the contribution L, of a
conical fixed point « is given by

1 N ~
L, = lim Trace — T1o(p)D51(p)(1 + (hQAQ)N)_l
h—0 T L‘v(a)
dDq

x (14 h*N (p—iv(a)*)™! o

(p) dp,

where ﬁo(p) and Do(p) are the conormal symbols of Ty and D at the point «, Te-
spectively, and N is a sufficiently large positive integer.

11



4. Under additional conditions, the expression for the contribution of the conical
fixed points can be further simplified.

Let B (p) be an analytic Fredholm family of operators depending on the param-
eter p € C such that B (p) is finite-meromorphically invertible with a discrete set of
poles p; € C, 7 =1,2,3,..., of the inverse family.

Definition 5 We say that B (p) is a family of power type if the following conditions
are satisfied.

(i) There exist constants C'; and Ny such that

Z 1§017N17 720

|ImpJ|S’Y

(i) The orders of the poles are uniformly bounded. This means that there exists
a number Ny such that for each j the operator function

A

(p—=pi)"* B (p)
is holomorphic near the singular point p; of the family B-1 (p).

(iii) Let B;(p) be the singular part of the Laurent series of B (p) around p;
(it is necessarily a family of finite-dimensional operators). Then there exist
constants ('3 and Ns such that

dim B; (p) < Cs |Imp,[™*
and constants C; and N4 such that

ok .

s [o=nr 57 0| | < o

P=Ppy
for k=0,1,..., Ns.

(iv) There exists a sequence of positive numbers R; — +oo such that B‘l(p) has
no poles on the circle of radius R; centered at zero and

B (p)H < CsRY, p| = Rj,

with some constants C’5 and Ns.

12



The conormal symbol of the Beltrami-Laplace operator

VA N o2
r r— —
or 0p?
corresponding to the metric ds? = dr? + r2dbvarphi® on the two-dimensional cone is an example
of a family of power type (see also Examples below). Actually, this symbol is

2

and its inverse has poles at p = ik, k € Z. So, the requrement (i) is fulfilled. Later on, all the
multiplicities of these poles do not exceed 2, so that the requirement (ii) is fulfilled as well. The

requirements (iii) and (iv) are also valid; the easy check of this fact is left to the reader.

Theorem 2 Under the conditions of Theorem 1, suppose that the conormal symbols
of the operator D at the singular fixed points of g are families of power type. Then
the contribution of the conical fizred points can be represented in the form

Econe — Econe,-l— + Econe,—a

where
. . dDq
Leone+ = Z Z Res,, Trace T} o(c, p) Dy (oz,p)a—p(oz,p) . (18)
a€Sing, M | Imp;>~(x)
Leone— = — Z Z Res TraceTl ol p)Dal(oz p)a—bo(oz P) (19)
s Py s 9 9 ap 9

ozESinng Impj<'y(og)

are the contributions of attractive and repulsive fizred singular points, respectively
(here Sing, M and Sing, M are the sets of fixed singular points of these two types).
In (18) and (19), TI,O (o, p) and Dy (a, p) are the conormal symbols of the operators
Ty and D, respectively, at the conical point a.

The requirement that the conormal symbols of D be families of power type is
not too restrictive; in fact, the authors do not know any examples for which this
condition is violated.

4 Proof of Theorems 1 and 2

We conduct the proof for the case in which M has only one conical point «, which is
then necessarily a fixed point of g. The generalization to the case of several conical

13



points is trivial; one must only have in mind that in the latter case some of the points
(or even all of them) may not be fixed. As it will be shown below, the contributions
of such points are zero.

1. Without loss of generality, in the following we assume that v(«) = v = 0;
otherwise, we perform the similarity transformation

D — v "Dr” T — v 7Ty"
bl J J bl

which does not affect the Lefschetz number and shifts the argument p of all symbols
by 27, thus reducing the situation to this special case.

We shall compute the Lefschetz number L <D, T) of the diagram (10) by the

well-known formula (e.g., see [6])
L <D,T> = Trace <T1 <1 — fx’glf))) — Trace <T2 <1 — D]%g1>> , (20)

where fx)gl is some global regularizer of the operator D on the manifold M. More
precisely, we shall use a family of regularizers depending on two small parameters

A > 0 and h > 0 and take advantage of the fact that L <D,T> is independent of
A and h to obtain explicit formulas by passing to the limit as A — 0 and A — 0.
From (20) it follows, in particular, that there is no contributions to the Lefschetz

number from non-fixed conical points of the manifold M since such points produce
zero terms in the integrals expressing the traces on the right in this formula.

2. The regularizer fx)gl will be assembled from local regularizers with the help
of a special partition of unity. First, let us consider the construction of the local
regularizer near the conical point. Here we use the special conical coordinate r € R,
and treat M as the direct product K = R4 x €, with the neighborhood of r = 0
being essential. The operator D here has the form

D=D|rir—

where D (r,p) is the operator-valued symbol of D in this decomposition, defined for
sufficiently small r. By assumption, the real line {Imp = 0} is free of the poles of
the operator family Dj* (p), so that the operator

A ./ d
DO = DO (ZTJ)

is boundedly invertible as an operator from H*° (K') to H*=™" (K) for any s € R.

14



Lemma 1 There exists an € > 0 and an elliptic mth-order operator

1

A . 2 d
D.=D.|ror—
rzrdr

defined on the entire K such that

(i) D. (r,p) = D (r,p) forr <e;
(ii) the inverse )
D7V HY (K) — HP™O(K)
exists and is bounded for any s € R.

Proof. Let p € C§° <E+> be a function such that p(r) = 1forr < land p(r) =0
for r > 2. Then the operator

D. = Do+ p(r/e) [D . DO}

is well defined on the entire K for sufficiently small € (when the support of p (r/e) is
contained in the domain where D (r,p) is defined). Moreover, D—Dy= rF where
F'is an mth-order operator with smooth coefficients, and we have

HD ~ Dy H < (e, (21)

HmO(K)— L20(K)

(one need not differentiate the coefficients of DE — ﬁo to estimate the Ly norm).
Since

Do : H™ (K) — L**(K)
is invertible, it follows from the estimate (21) that so is D. for sufficiently small .
Let us choose and fix such an . We claim that assertion (ii) of Lemma 1 is valid.
Indeed, D. is elliptic, and moreover, it is a Fredholm operator of index zero because
it is homotopic to Do by the homotopy

DEJ = Do+ Tp(r/e) {D — ﬁo} )

Now, for s > m we readily see that the operator D. is invertible: its kernel remains
trivial in the narrower space, and then the cokernel is trivial since the index is zero.
For m > s, the space in which D. acts is broader, but we can use ellipticity: all
solutions to D.u = 0 must belong to [ H*° (K), and so again the kernel is trivial.

The proof of Lemma 1 is complete.

15



We shall use the regularizer R = D;l in a small neighborhood of the conical

point. Clearly, we have

1 1

. A 2 . d 2 0
Rlle T,ZT% :Rl Z, _Za_l' )

where Ry (r,p) is an operator-valued symbol of order —m and Ry (x,&) is a symbol
of order —m (we write x = ({,w) and denote by £ = (p, ¢q) the dual variables).*

3. Away from some neighborhood of the conical point, we will use a pseudodif-
ferential regularizer

constructed in the standard manner (here x are arbitrary (local) coordinates on the
manifold M). More precisely, we choose Rs = R, (h) to depend on the parameter
h in a special way (see below). In the “intermediate zone,” we use some operator

Ry (h) (which is a modification of fx’l)

Now let us precisely describe the zones and the construction of the regularizers.

We cover M by three zones as shown in Figure 1. We see that in zones I and
I1, the operator R gives an exact local inverse of D note also that the “boundary
layer between zones II and III is immovable, Whereas that between zones I and II
moves to the singular point as A — 0.

Let x = x (&) be a function sufficiently rapidly tending to 1 as [{] — oo (the
precise form of the function x (¢) will be indicated later on in the proof). We set
X = x (—thd/0x) and R, (h) = Ry o¥. Next, we define the global regularizer by the

formula
]%gl = <§> o ]%1 o fi <§> + 9y (r,A) o ]%2 (h)o fa(r,A)
+ b5 (r) o ]%3(]1) o f3(r), (22)
where

L= (5) + N + () (23)

is a partition of unity subordinate to the cover by zones I-III and each v; is a cutoff
function equal to 1 on the support of the corresponding f; and intended to ensure
that the operator (22) is well defined (recall that the fij, J =1,2,3, are defined only
locally on M).

*To simplify the subsequent, rather cumbersome, calculations with the regularizers, we proceed
as if the entire Q0 were covered by a single coordinate system, w. More detailed computations,
which can be done easily, include a partition of unity on €.

16



zZone 1 ("conical”)

Zone 1 ("smooth")
A—0

Ad, r=dist(a, - )
lag aj a4
Zone 1l ("intermediate”)

Here Z/)\g(r,p) = Z/)\(i”,]?)

Figure 1. Cover of M by zones.

Standard computations show that then (22) is indeed a regularizer, but we need
to impose some additional conditions on the partition of unity (23) and on the
associated functions 1; so as to evaluate the Lefschetz number (20) effectively.

Condition 1 For any A € (0, 1], we require that

[supp f; U g (supp f;)] Nsupp (1 —1p;) =0, j =1,2,3.

Lemma 2 The functions f; and ; can be chosen so that (23) holds, the regularizer

N

Rg1 s well defined, and Condition 1 is satisfied.
Proof. Since ¢ is a conical diffeomorphism, we have
er <r'(r,w) < Cr,we,

with some positive constants ¢ and (' for sufficiently small r. Consider the arrange-
ments of supports shown in Figure 2.

It is important to have by < &, so that fx’l be a local inverse of D where it is used.
Note that with this arrangement, the condition supp f; N supp (1 — ;) is satisfied
automatically. It remains to ensure the implications

r < Aay = v (rw) < by
Aay r<as = by <7’ (ryw) < by; (24)

<
ro> az = 1 (r,w) < bs.
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supp(1—¥3)
supp (1-V,) supp (1-V,)
supp(1-¥)
supp f, supp f;
supp f,
r
Ab, Aay Aa, b, by a; a, b,

Figure 2. Supports of auxiliary functions.

To this end, we require that

bg < CGQ,
bl < caq, b4 < CG4, (25)

bg <  cas.
Now we satisfy (25) by successively choosing

by < &, ag <min(by,by/C), a3z < aq, by < min (as,cas),
by < bs, az <min(by, by/C), a1 < az, by < min(ay,cay).

The proof of Lemma 2 is complete.

Let
Doﬁjzl_Qﬁ E]OD:1—Q;7]:17273 (26)
Here the Qj and Q; are smoothing operators (for R, = R, (h) = Ry o ¥ it will be

ensured by an appropriate choice of the function y). Note that® Ql =0 and Q’l =0
for r < e. Then routine computations show that

DoRy=1-0Q, RayoD=1-0, 27
g g

5'Ihe precise meaning of these words is that Qlf =0 for r < e if supp f C [0,¢], and the same
for Q.
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where
3

Q = i@bjOQjij—Z{D,@bj}oﬁjij, (28)

Q = i%oc?;ofﬁiwéjo[b,fj}, (29)

and accordingly,
3 3
L <D, T> = Trace <T1 Z (e Q; 0 f]> + Trace <T1 Z ;o R;o {D, fJ)
Jj=2 7=1
3
— Trace <T2 Z joQ;0 f]> + Trace <T2

i=2

]

J=1

{D, %} o Rjo fj>(30)

Note that supp {f), @/}J C supp (1 — ;) and the last term in (30) vanishes by virtue

of Condition 1. By the same condition, it follows that when evaluating the traces,
the functions ¢»; may be omitted in the first three terms, so that

3 3
L <D, T) = “Trace” (Tl Z Q; 0 f]> — “Trace” (TQ Z Qj 0 f]>
j=2 j=2
3
+“Trace” (Tl fo’] o {f),fJ) ) (31)
j=1

where the quotes on the Trace indicate the fact that, even though the operator in
question may not be in the trace class, we evaluate the trace integral of its kernel
(of course, this integral is necessarily convergent). Note that

Do f2(r )| = = [D. (/)] = [D ()]

where the supports of the terms on the right-hand side have an empty intersection,
and so it is reasonable to rewrite (31) in the form

L <D7 T) = ﬁsmooth ()\7 h) + Econe ()\7 h) 5 (32)
where
~ 3 A~ N 3 N
Lesmooth (A, h) = “Trace” ( 1 Z Q; (h)o f]> — “Trace” <T2 Z Qj(h)o f]>
Jj=2 7j=2

+“Trace” < ) <]%3 (h) — R, (h)> {D, f3D (33)



M = e (1 () [pn (D)) o
From now on, we omit the quotes on the word “Trace”.

To begin with, we shall evaluate Lonooth. Since ag (0,w) # 0, we can assume
that ag (r,w) # 0 for r < e, w € Q, and so ¢ has no fixed points on the support of
f1+ f2. Thus, all the contributions to the Lefschetz number from the smooth part of
the manifold come from the terms containing Qg and Qg The computation of these
terms can be done by using in the definition of Rs a cutoff function depending on &
similar to that introduced for R, and then evaluating the integral by means of the
stationary phase method. The answer is the standard contribution of the interior
fixed points plus O (h). We omit the computations and refer the reader to [21]. Let
us consider those terms in Lopnooth Which involve ]%2. These are

Trace <T1Q'2 (h) fo (r, )\)> — Trace <T2Q2 (h) fo (r, )\)> =1(h,A) (35)
and
ﬂw%ﬁ@%@—ﬁﬂﬂ”ﬂﬁbzh@.
Consider I(h, ). Recall that
Qs (h)=1—DRy(h), Q,(h)=1— Ry (h)D. (36)

Let )
Ry (h) = RaX,

where Yy = v <h€> = X (hp, hg). Then

@ = 1-DRiy=1-7%,

G = 1-RiD=1-RDi+ Ry [D.g] (37)
= 1—>2+1%1 {Daf(} .

The symbol x (h¢) will be chosen so that 1—y, as well as R

D, )A(} , will be smoothing

operators for each fixed A € (0,1]; then R, (h) is indeed a regularizer on supp fs.
However, since 1 — y does not contain r as a factor, this property is lost as A — 0,
and [ (h,0) is formally a difference of two divergent integrals. Therefore, we have
to regularize the expression (35). We use the subscript “0” to indicate the operator
with coefficients frozen at r = 0; for example,

~ ~ o, - o, . . o, . .0
Dy=D (O,ZTE> = Dy (ZTE> , Tio ="T; (O,ZTE> =T (ZTE> ,
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where Dq (p) and TzO (p) are the conormal symbols of D and T}, respectively, etc. In
particular, Rm = Ro D L

Lemma 3 The following equation takes place:
Trace <T10Q/20f2> = Trace <T20Q20f2> . (38)
Proof. We have

Trace (TIOQ;O f2> — Trace ( " (1 . RoXD0> f2>
= Trace (Tro (FoDo — Frot Do) 12)
— Trace <T10R0 1% Dof2> (39)
— Trace <T10R0(1 %) {Do, f2D

+ Trace <T10I%0 (1 — )A() ngo) .

D07f2 > = 07

since all elements in this expression except for f, do not depend on r and f; is a
compactly supported function, so that the integral of each of its derivatives vanishes
(cf. [18]). We cyclically permute the factors in the second term:

Now

Trace <T10fx’0 (1 —-x)

Trace <Tlofm’o (1—-x) f2D0> = Trace <D0T10]%0 (1=x) f2>
= Trace <T20Dofl)o (1—-x) f2>
= Trace <T20 (1 —-x) f2> )

which proves the lemma, since 1 — y = ng.

Now we regularize the expression (35) as follows:

I(h,\) = Trace ({TIQ;(/@) —Tmc};o(h)} f2>
— Trace <|:T1Q2 (h) — Tm@zo (h)} f2> . (40)
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From now on we work in the coordinates (¢,w). Let Q (e~ ,w,p,q,h) be the

symbol of Qs (h). Let also @' (e™*,w, p, ¢, h) be the symbol of Q’Q (h). Then

(b = <2L> [ el ()

OO (0,00, p g, )} £ (1,0 didedpdg,  (41)
where )
b (e_t,w> =b (e_t,w> - w,
Ia (e_t,w,p,q, h) = trace |A; (e_t,w> Q) <e_t+“(6_t"”), b (e_t,w> Dy q, hﬂ

— trace

Az (e7w) Q2 <e_t+“(6_t"”), b(ew).p,q, hﬂ (42)

and trace stands for the trace of a matrix.
We can rewrite [ (h,A) in the form

I(h)) = (%)n/ldT/exp{i

a (Te_t,w> p+ b (Te_t,w> q} } et

da Db . or ,  _,
X{<pE+QE>F<T€ 7w7p7Q7h>+E<Te 7w7p7q7h>}
X fo (t, A) dtdwdpdq. (43)

Due to the presence of the factor e7, the integral I (h,A) converges as A — 0 to
the integral of the same form with f; (¢, ) replaced by 1 — f5(¢). We denote this
integral by I (h).

Next, it is an easy exercise (cf. [18]) to show that

Leone (A, h) = Leone (B) = %Trace /T10 (p) o (p) (1 = X (p)) 881;0 (p)dp (44)

Tl

as A — 0. Summarizing, we have the following expression for the Lefschetz number:

L(D.7) = s [ ﬁo<p>1%o<p><1—>z<p>>a£0 () dp

Tl

+ 1 (h)+ Ii(h) + {C.LP} + O (h),

where C.LI.P. stands for the contribution of the interior fixed points written in the
standard form. Now we shall choose x (h{) in a special way so as to
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a) ensure that I (h) = O (h) and I1(h) = O(h);
b) evaluate the first term, which gives the contribution of the conical point.

Namely, we set

= , 45

TRy "
where N = 2N; is a sufficiently large even number to be chosen later. Here, of
course, for brevity we write

M= (4 ) (46)

The function N N N
€ =2 T4 +pg
(I+pV) (1 +¢V)

(47)
possesses the following properties:

a) \ (€) has an Nth-order zero at the origin;

b) (€ =140 ((14p") 7 (L4+4%) ) as fel = oo

¢) x (&) is bounded with all its derivatives;

d) moreover, for a+|3| > 0 the derivative y(*) (£) has a zero of order N —a— ||
at the origin and is at least O <<1 + pN>_1 (1 + qN>_1> at infinity.

We rewrite

1 = (5) /dT/eXp{z

xU <e_t,w,%, > (1 — f3(t)) dt dwdpdyq,

g
h’

t

where U is the expression in the braces in (43). Since a (7e™*,w) # 0 on the support

of the integrand, we can integrate by parts with respect to p. We then obtain
I (h)= O (h) provided that

gy (U (oo B n) e 1 =1 )



is bounded uniformly in h by an integrable function of (p, ¢,?). It suffices to prove
the same estimate for @)} and 5. Since

i Py 1
% () = T ATy

the desired estimate for )y is guaranteed. Next, we have

Qy (7' w,p,q) = 1 — x (hp, hq) + smbl R, {f?,f(} :

Only the last term needs special consideration. We have
lffl {D,f(} = —ffﬁ {quj)} :
Let »
A= (1 + (hp)N> (1 + (hq)N> - {;z) <h£>} .
We have
bt ()] - 4] =[5 4 =(4) [5.4]« (4).

Next,
{D,A} = BN {D,pﬂ 40N {D,QN} 4 p2N {D,quN}
_ BN {DﬂaN} LN {D74N} _I_h2N(jN {DﬂaN} 12N {D g } AN

To commute pV and ¢V with ﬁ, we have in fact to commute them with the coeffi-
cients of D. The commutators with the coefficients are differential operators, which
we represent in such a form that multiplication by x acts before differentiation.

.4 =0 (;ng>

where f comprises the differentiations that originally were present in D and hf
involves those arlsmg in the commutators of A with the coefficients of . More

D, A

\YT oy e\
o (@) e(re)w(m) e (k)
(YT N
h“’“(hp) (hq) E<x,g),j+k = 1,...,N,
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Thus, we represent

is a sum of terms of the form

precisely,

|
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where the <:1;, é) are mth-order differential operators; these terms can be rewritten
in the form 4 4 )

Rk ()N <:1; hé, h) etc.,
where the F'(x,n, h) are mth-order polynomials with coefficients regularly depending
on h (in fact, they are homogeneous mth-order polynomials in (n,k)). Finally, we

see that R, {D, (0 <h§>} is a sum of terms of the form®

s (%g h) - |[h—w%1 (%g) = (hh 5)]

Il
 m—
N
SN

LY
v
=
SN——— s
 —
)
 m—
N
[N~}
SN
LY
o
=
SN————
 —

where = (h, ) is one of the expressions
WM (&), WY (€), or W PN TGN R (€).
To estimate the p-derivatives of
S, &fhh) =S (2, p/h,q/h,h),
we use the ¢'DO composition formula

1
2 £ —1h d/0x

S(l’,f/h,h) = Sl Z, A 7h Sz(l’,f/h,h) (48)

Let us make use of the following lemma.

Lemma 4 Let Hi(x, &) and Hy(x, &) be arbitrary smooth functions of x and . Then
for any M > 0, there exists an My > 0 such that the estimates

‘WWHJ‘ (z,¢)

] < Catr+ 1)

SHere [] denote the so-called autonomous brackets. This mean that the order of action of
the operators determined by the Feynman indices inside these brackets is valid only inside them:;
the bracketed expressions are then used as undividable entities. More detailed information about
functions of noncommuting operators can be found, for example, in [11, 14].
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forla| =0,1,2,..., |8 =1,2,... My, j = 1,2, imply the estimates

‘9“”1{ (z,¢)

T ‘ < Cop (L + Jel) "+

forla| =0,1,2,..., |8 =1,2,... M, where

1

2 d
H(xvf):Hl x7€_lha_$ H?(xvf)

(note that M, is independent of v1 and vy).

The proof is a standard exercise in the spirit of the well-known Kohn and Niren-
berg paper [10], and we omit it altogether.
Let us apply this lemma to the estimate (48). We have, say,

f R § hij—jhqu—k
n (x’ﬁ’h>_h h (xh> (L+p™) (1 +4¢N) (49)

Then

hipN =i kN =F
1+ )™ (1 + g™

B pN =i kN =
(L4 [p + g™ (L + )™ (@ + )™
1

C o

(L4 Ip| + lq])

o (il D

e
TN
&
A
>
N———
N

if 2N > m. To obtain this, rather coarse estimate, one uses the inequalities

p| <1, lq] <
h+ [p| + |q| h+ [p| + |q|

Y

— <1,
h+pl+1lq] —

of which the first two inequalities are applied alternately as many times as possible
and the third is applied when no factors p and ¢ remain in the numerator; then we
use the inequality

L+ ) L+ g™ < (T+Jp| + )"

For the other two variants of Sy, the estimate (50) is valid provided that N > m.
By differentiating 57 and using a similar technique, we obtain

26



oats 5 .
‘W [51 (l‘ gh” ‘ < Cap (1 +pl + lg]) (51)

for any « and for |#] < N. Next,

1

So (w0, &/hyh) = Fy (2, 6,0) (L4 pN) 7 (14 ¢Y)7,

and so

oats 5 N N
Dz DED S|, %7 h < Ccvﬁ (1 + |p| + |Q|) (52)

for any a and . Passing to even coarser estimates, we can write, instead of (51)

and (52),

o e N
0207 51| < Cop (L ol + gD 0 < 8] < (53)
and It
[02075] < Copg (L [p| + gy 7770 < ) < - (54)

By choosing N sufficiently large and applying Lemma 4, we ensure uniform inte-
grable bounds for as many derivatives of S (x,&/h, h) as desired.
Now let us show that the integral

I(h) = Trace {Tl <fm’3 — ]%2) {D,f:a} }

can also be evaluated by the stationary phase method (the same argument then
applies to any similar operators arising in the smooth part of the manifold). We

have R, = fﬁX <h€>, where

1

N is even, and ]%1 is a regularizer independent of h. Likewise, assume that Ry =
Ry1 (hE), where R is a regularizer independent of h and x; (h{) has the following
two properties” (as well as y (h¢)):

"For brevity, we in fact discuss a model situation: since local regularizers are usually constructed
in different coordinate systems, at least one of the functions y and y; will depend on coordinates
after the change of variables. This makes the derivation of the estimates even more awkward.
Moreover, to make the estimates global on €, by ¢/ one must understand the symbol of the
(N/2)th power of the positive Laplace-Beltrami operator on .
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(i) x1 (&) has a zero of high order at the origin;

(ii) 1 (&) = 1 — x1(€) decays at infinity at least as fast as (1 + |§|)_N together
with all derivatives, where N is sufficiently large.

Since B, and R are both regularizers of the same operator ﬁ, it follows that the
difference Ry — R is a pseudodifferential operator of high negative order. By the
cyclic invariance of the trace, we have

I = Trace {Tl <fx’3 — ]%2> |:D,f3:|} = Trace { |:D,f3:| Tl <fx’3 — ]%2)}

and, after some computations,

1= () [ [ e (o8) vo - (o) v de

where F' and F; are classical symbols of order —1 whose difference is a classical
symbol of high negative order —M. We have

Fles)vo-r(nHu@ = {r(af)-n (5o

O G EGINCS

Let us consider the derivatives of the first term. We have (the terms in which y is
differentiated can be estimated in a similar way)

[ren (0 8) = re (o i s (1+9) 7 e

_ ChM | (€)| <{ Clv |€| S 17
BT T e ) e BT

provided that the order of zero of y (£) at the origin is at least |3]. The second term
can be estimated separately for (| <1 and [£| > 1:
£
Fl Z, % X1 (5)

F (%%) X(f)‘ +
< (14 5]) (@) < cons

A () 0O - <

S
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for |£] < 1 (similar estimates for the derivatives use the fact that y and y; vanish
to a high order at zero). Moreover,

O (5. 8) (@ - ©)

I CHIRGENEIE
C' R 181

= N
(1+ %)

for |¢] > 1.
The proof of Theorem 1 is complete.
It remains to prove Theorem 2. The contribution of the conical point is given by

(L+ €)™ < Ch 14 g™

+00 P
, 1 . )2
Lo = JimTrace 5 [ Fio ) o (0) (1= 5 ) 572 (0) dp
+oo
= TimTrace o= [ T (p) o (p) — 1
= hl—r% race 5 10\P) fro\p 1_|_(hqA)N1_|_thN
9Dy .
X ap (p) dp—}lbl_r%ﬁcon (h). (56)

To be definite, assume that « (0,w) > 0. Let ¢ = mina (0,w). Since

w

Tro (p) = Aro <u2j> v (0,5;) eié(o,f)) (-ia/aw)

it follows that

0T

< C%se_“lmp, Imp>0, a=1,2,...
Op®

He(Q)—H?*(Q)

(p)

for any s. By virtue of the growth conditions imposed on the conormal symbol, we
can calculate the integral (56) by the residue theorem as the sum of residues of the
integrand in the upper half-plane. We obtain

1 1

1+ (hg)N 1+ ANpN

Leon (h) = Z Trace Res,, Tio (p) Ro (p)

Imp;>0

. N/2-1
dDo - (G 5 (G 1
<y ) Trace 3 T(h>R<h> Tt (b))

(=0
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TG %’?f (5). (57)

s#l

where the (;, I = 0,...,N/2 — 1, are the N/2th-order roots of —1 in the upper
half-plane.

The sum (57) converges by virtue of the condition imposed on the conormal
symbol. Moreover, the second sum, which contains N/2 terms, tends to zero as
h — 0 along some subsequence since

. Chi a asin %
— < —_— < _
Tio ( " < Cyexp < hImQ) < Cexp ;

and by virtue of the polynomial growth condition imposed on Ry (p) = Dal (p).
Furthermore, the first sum tends to the contribution indicated in the statement of

the theorem. The proof is complete.

5 Examples

Now let us consider some examples. In all our examples, D will be the Laplace
operator

.9 P ,
. . 5yY1 Y2 S— 2,791,772
D=gntyog s W0 (S) -l (S) (58)

acting in the one-dimensional trivial bundle on the surface of the circular spindle
S = {{[—oo,—l—oo] X Sl} / [{—oo} X Sl] }/ [{—I—oo} X Sl] )

Here the function spaces H*":"2 (S) are defined by the norm

+oo 27 P 9 P 9 s/2
2 . .
ol = [ [ ) (1+(—z%) +(—z§)) of doat,
—oo 0

where 1., ., (1) is a smooth function such that

et —1
@Z)wm (t) = { e—2w2t: > 1, 7

and (t,¢) are the natural coordinates on S.
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Note that in view of the definition of Sobolev spaces H*"(M) for a manifold M
with conical singularities, we have

He" 2 (S) = H7(S),
where

7(=20) =y and y(+00) = —72.

We suppose that the conormal symbol of the operator (58), that is, the analytic

family
N d>

Do (p) = —p* + e (59)

of operators on the unit circle, is invertible on the “weight lines” Imp = ~;, 7 =1, 2.

As was shown in [19] [20] (see also [16]), under these conditions the operator (58)
is an epimorphism with nontrivial kernel for v; < 72, an isomorphism for vy = 73,
and a monomorphism with nontrivial cokernel for 41 > ~,. For brevity, we consider
only the first case.

Let us consider the kernel of the operator (58) in the case v; < 742 in more detail.
First, note that the poles of the inverse of (59) are

Pk = ke Z7
and the kernels of the operators Dy (py) are

Ly = {u = apetv + bke_“w} , k£ 0,
Ly = {u=c¢}.

The kernel of the operator (58) is

Ker D = Ker D%m) = U eMLy.

y1<k<72

To simplify the notation, we suppose that 0 ¢ (v1,v2).
Let us now consider three different mappings of S.

5.1 All points of the conormal mapping are fixed

This situation is realized for the mapping

_{ '=1+e,
I ¢ =,
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¢ > 0. It is easy to see that for such a mapping the singular point ¢ = —oc is
repulsive and the singular point ¢ = +oc is attractive. Moreover, the mapping ¢” is
the identity mapping for each of the two singular points of the manifold, and so all
the points of the circle S' are fixed for these mappings.

Straightforward computation of the Lefschetz number shows that the action of
Ty on the components e* L, of the kernel of the operator (58) is given by the matrix

e 0
0 ekc 9

and hence, the Lefschetz number of the considered diagram is

L (D,T') =2 Y e (60)

y1<k<72

Let us evaluate the Lefschetz number using our theorems.

To compute the contribution of fixed points, we use the standard cylindrical
coordinates in a neighborhood of each point. For the point +o00, these coordinates
are (t,¢). Accordingly, the conormal symbol of T is

To(p) = ™,
the conormal symbol of D is
A 2 2
D = — —
o(p) po+ i
and we obtain '
2e°p
Leone+ = Z Trace Respjﬁ. (61)
Imp;>—2 p dip?
(Recall that the weight exponent of the point +oo is —v2.) We can rewrite (61) in
the form '
9etPe
Econe7_|_ = Z ReSp:ik}% TI’ELCG Pk27

k>—2

where Py is the projection on the subspace of eigenfunctions of — % with eigenvalue
k*. Thus,
Leone+ = Z e * . Trace P2 = Z " Trace P2

k>—2 k<2

32



For the point —oco the weight exponent is v; and the standard cylindrical coor-
dinates are (f = —t,¢). Accordingly,

R . R d>
To(p) = €7, Do(p) = —p* +

dy dp?’
and
2€—ipcp
Leone— = — g TraceRespjﬁ
Impj<’Yl d?
C
= — E Res,— zk e Tracesz
k<m
= —g e Trace Ps.
k<m
Finally,

Econe,— + Econe,-l— — (Z — Z) ekc Trace Pk2

k<va  k<m
= E e Trace Py = 2 E
N <k<v2 1 <k<v2

since, by our assumptions, 0 ¢ (71,72). This is just the answer (60).

5.2 The conormal mapping has no fixed points

It is even more remarkable that we can deform the mapping considered in the pre-
vious example so that the conormal mapping has no fixed points and the Lefschetz
number remains unvanishing and, moreover, tends to that computed in the previous
example. To show this, we consider the mapping

_{ '=1+e,
g @' =+ o

for some value of . In this case, the corresponding conormal mapping is simply
the rotation by g on the unit circle and hence has no fixed points except for the
cases o = 27k, for which it coincides with the mapping considered in the previous
example. Nevertheless the action of the operator Ty on the components e L; of
the kernel of the operator (58) is given by the matrix

ek(c-l-it%) 0
0 ek(c—iapo) >
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and the Lefschetz number is given by

L <D,T> =2 Z " cos (ko) .

y1<k<72

This number does not vanish except for special values of ¢y and tends to the Lef-
schetz number of Example 1 as ¢y — 0. The same answer is given by Theorem 2;
we leave the computations to the reader, as well as in the following example.

5.3 The conormal mapping has discrete fixed points

To illustrate this situation, we consider the mapping

g_{ '=1+e,
=y

Then the conormal mapping for each of the two singular points of the considered
manifold has exactly two fixed points, ¢ = 0 and ¢ = #. Computations similar to
those in the previous subsections lead us to the following matrix representation of
the action of 7 on the components e L of the kernel of the operator (58):

A

T

0 eFe
1 = )
ekl ekc 0 ’

hence,
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